
Spring 2022 – Sinclair

Computer Sciences Department

University of Wisconsin-Madison

CS/ECE 552 – Introduction to Computer Architecture

Project Description

This document combines all of the information about the project (except for the Final Report

template) into a single document. Broadly it has four sections: Overview, Project Phases,

Microarchitecture Description, and ISA Description.

Overview

1. Summary

The CS/ECE 552 term project is the complete functional design of a microprocessor called the

WISC-SP22. All components of your design will be written in Verilog. As with the course

homework assignments, the CS/ECE 552 Verilog restrictions apply, and all final code is expected

to pass the Vcheck program.

Phases 1 and 2 of the project will be completed individually. For phases 2.3 and 3 you may

complete them either individually or with a partner.

The specifics of the microarchitecture and WISC-SP22 architecture are found in separate

documents, and will also be posted on the course website.

The project will progress in several distinct stages. Some of these stages are enforced through

grading deadlines; others are not. The deadlines are:

Date Project Component

2/21/22 Design Review (5% of project grade)

3/6/22 Phase #1 (15% of project grade)

4/3/22 Phase #2 (30% of project grade)

N/A Phase #2.1

N/A Phase #2.2

4/8/22 Form Project Group

4/24/22 Phase #2.3 Caching (10% of project grade)

5/3/22 Phase #3 (30% of project grade)

Each stage of the design makes the processor progressively more complicated. For your own

benefit, it is strongly recommended that you not proceed to a new stage before you are confident

the current stage is working to specification. Debugging errors in a complex design is much harder.

It is almost always better to test smaller, simpler components first.

Spring 2022 – Sinclair

Many of the Verilog problems in the homework assignments were designed to be compatible with

the project. Please feel free to reuse these modules (of course, fixing any errors first!).

In addition to the previous homework problems, you will be provided with several reusable

modules that you can use in your design. Most of these are Verilog implementations of memory

system components. Please note that these files do not follow the CS/ECE 552 Verilog restrictions,

so don't include them when you run Vcheck (and do not worry if they don’t pass vcheck). To get

the complete collection of the files you will need for all stages of the project, download the project

tarfile:
/u/s/i/sinclair/public/html/courses/cs552/spring2022/handouts/verilog_

code/project/project.tgz

An assembler for the WISC-SP22 ISA is provided for your use. Sample test programs are also

provided, although you are strongly encouraged to write custom tests to augment these. Be aware

that these test programs were written for a slightly different ISA specification and therefore may

not work as advertised. It will be your job as diligent designers to determine if unexpected

behavior occurs due to a bug in your design or as the result of the change in ISA. See the course

website for a description of how to use the assembler.

2. IMPORTANT NOTES

• Start early: This project is designed to take a considerable amount of time.

• Plan ahead: You may find that the instructor, TAs, and peer mentors will be very

inaccessible the night before a deadline.

• Ask questions: If you are getting stuck on some problem ask for help. Ask me, the TAs,

the peer mentors, or your classmates.

• Functionality: Getting a working design is of paramount importance. Optimizations, clock-

speed and bonus questions come 2nd. First make sure your design works!

If you finish really early, you will get the opportunity to earn extra credit by adding extra features

to your processor, synthesizing your design. Additional details are available in the Extra Credit

document.

If you are able to complete this project without the unnecessary stress that procrastination imposes,

it is our belief that you will find this to be a highly rewarding experience.

All of the files you will need are included in the project tar file.

Finally, a reminder of some important documents:

1. Follow the instructions on ModelSim Setup Tutorial to get your environment setup.

2. Read the Command-line Verilog Simulation Tutorial. Additional references are on course

website.

3. Read the Verilog Cheat sheet and Verilog rules pages. Everything you need to know about

Verilog are in these documents.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/usingAssembler.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/vsimTutorial.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/vsimCommandLine.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handouts/misc/Verilog_cheat.pdf
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogRules.html

Spring 2022 – Sinclair

4. Read the Verilog file naming conventions and Verilog file naming convention checking

webpages and adhere to those conventions. We will be checking this in your submissions

to ensure you followed the rules.

5. Read the Verilog rules checking page on the course website and adhere to the conventions.

This page also provides information on how you can check that your files conform to these

rules.

6. Read the Handin Verification page on the course website. You will need to run this before

submitting your answers.

Project Phases

This project has roughly six stages of development with several deadlines/demos along the way:

1. You will first build a single cycle non-pipelined processor with a highly idealized memory.

2. Your processor can then be pipelined into 5 distinct stages but while still using a highly

idealized memory.

3. The memory will then be transitioned to using a more realistic banked memory module

that cannot respond to requests in a single cycle.

4. A cache can then be implemented that can be used to improve the now degraded memory

performance.

5. Once the cache has been fully verified it can be incorporated into the full processor.

6. Optimizations can then be added for additional processor performance.

More formally:

A. Design review (5% of project grade)

Each student should create a complete hand-drawn (or drawn with the aid of a graphing

program like OpenOffice draw) schematic of an unpipelined WISC-SP22 implementation.

Each module, bus, and signal should be uniquely labeled. The schematic should be

hierarchical so that the top-level design contains only empty shells for each planned

submodule. In general, there will be a one-to-one mapping of modules in your schematic

to the modules you will eventually write in Verilog. The textbook pipeline diagram(s) is a

good starting point but there are many differences between it and the ISA for this project.

You will need to look at the class ISA and make sure to adapt it for that.

Your schematic should explicitly include modules for the Fetch, Decode, Execute,

Memory, and Writeback, and the code for these modules will go into the provided shell

modules. While explicitly drawing the pipeline stages that correspond to these modules is

not required in the schematic, you should still design with a pipeline in mind. It is a good

idea to place modules near their final location in the pipelined design.

During the review, individual team members should be able to describe the datapath of any

legal WISC-SP22 instruction using the schematic as a reference. Teams will also be

expected to defend the design decisions that they make. You need to have thought through

https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogFilenameConventions.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/nameConventionChecking.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogRulesCheck.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html

Spring 2022 – Sinclair

the control path and decode logic. It is not necessary to have done a complete table of

signals, but if you have such a table with the control signal values for every instruction,

that would be great.

Every student will sign up for a 10 minute design review slot on this Google Doc – first

come, first served. Write your last name in your timeslot. Because of the large number of

students, you will be meeting with either Matt or one of the TAs (Matt: column B, Bujji:

column C, Rutwik column D) If none works, discuss with your classmates about a possible

swap. If you still cannot find a timeslot that works, email both the TAs and Matt.

You are expected to explain and answer questions about the whole design. Answering

a question with: "I have no idea" is a failing answer. You must (at least) be able to

answer: "I think it works in the following way...".

B. Phase #1 – Single-Cycle, Unpipelined Design (15% of project grade)

All of the files you will need for the project are in a project tar file

(/u/s/i/sinclair/public/html/courses/cs552/spring2022/handou

ts/verilog_code/project/project.tgz).

To start, you should do a single-cycle, non-pipelined implementation. Figure 4.33 on page

299, Figure 4.35 on page 301, and Figure 4.36 on page 303 of the text are good places to

start.

For this stage, you will use the single cycle perfect memory. Since you will need to fetch

instructions as well as read or write data in the cycle, use two memories -- one for

instruction memory and one for data.

Your design should be running the full WISC-SP22 instruction set, except for the extra-

credit instructions. It should use the single-cycle memory model. You should run vcheck

and your files must all pass vcheck.

You do not need to do a demo for phase 1, unless your design has a significant number of

problems (then we will schedule a demo to give you some partial credit). To verify your

design works, you will run a set of programs on your processor using the wsrun.pl script

(check the verification and simulation page for more info), show that your processor works

on the test programs (full list in Test Programs page). You should run the tests under the

following three categories:

1. Simple instruction tests

2. Complex tests for demo1

3. Random tests for demo1

1. rand_simple

2. rand_complex

3. rand_ctrl

4. rand_mem

https://docs.google.com/spreadsheets/d/1NaDfQqVqKiHPQwy9cTDciUFw7h4_Nfx-MvaV-poaOxo/edit?usp=sharing
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/vsimCommandLine.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verificationSimulation.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/testProgs.html

Spring 2022 – Sinclair

Your grade for phase 1 will be scaled based on how many of these tests you pass, although

some of the categories may be weighted more than others.

Use the -list file to run each of the categories of test. When you run wsrun.pl with the -list

option, it will generate a file called summary.log, which looks like below:

add_0.asm SUCCESS CPI:1.3 CYCLES:12 ICOUNT:9 IHITRATE: 0

DHITRATE: 0

add_1.asm SUCCESS CPI:1.7 CYCLES:7 ICOUNT:4 IHITRATE: 0

DHITRATE: 0

add_2.asm SUCCESS CPI:1.7 CYCLES:7 ICOUNT:4 IHITRATE: 0

DHITRATE: 0

SUCCESS means the test passed. Run all the categories and rename the summary.log files

as shown below:

1. Simple instruction tests: instTests.summary.log

2. Complex tests for demo1: complex_demo1.summary.log

3. Random tests for demo1

1. rand_simple: rand_simple.summary.log

2. rand_complex: rand_complex.summary.log

3. rand_ctrl: rand_ctrl.summary.log

4. rand_mem: rand_mem.summary.log

You can use the script run-phase1-all.sh to run all the required tests. A brief note of

caution: if your all.list has > 1000 failures, wsrun will stop running tests from that list –

please make sure to check your logs if you have many failures.

Running all the tests will take 10-15 minutes. So plan ahead!

The log files MUST have the exact name. These are the log files produced by running

wsrun.pl -list with the all.list file for each of those sets of benchmarks. You will have

to rename summary.log manually into these names. If your handed in code does not

follow this convention, it will not be accepted and you will receive a zero for this demo.

If in doubt about what to submit, email the TAs *before* the deadline and double-

check. Alternatively, you can/should use the verification script

(/u/s/i/sinclair/public/html/courses/cs552/spring2022/handouts/scr

ipts/project/phase1/verify_submission_format.sh) to ensure that your

files are in the correct place.

You should do rigorous testing and verification and should try to have zero failures on the

other categories. It is ok to have a very small number of failures - but for every failure you

must know the reason. You will submit your design electronically, which will be graded

automatically. The instructor will then schedule one-on-one appointments with teams that

have exhibited a large number of failures.

Spring 2022 – Sinclair

Everything due at 1159 PM Central Time on March 6th.

Electronic submission instructions

Submit your demo1.tgz on Canvas containing the following directories [tar -czvf

demo1.tgz demo1] where demo1 is the directory with the summary and verilog sub-

directories. These sub-directories will already exist if you do your work in the demo1

directory from the original tar that was provided.

1. The sub-directories should contain the following files:

1. verilog/ containing all Verilog and Vcheck files. Please copy over

ALL necessary files, your processor should be able compile and run

with files from this directory alone. It should also contain vcheck

files for all of your Verilog files.

2. summary/ containing the 6 summary.log files.

If the summary.log files are missing, you will automatically get zero points.

Please do not submit your __work directory as it will significantly inflate your

submission size and make it hard for us to grade quickly.

Verifying Your Phase 1 Handin

You should also verify your submission has these files by running the verification script:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handout

s/scripts/project/phase1/verify_submission_format.sh

demo1.tgz

Additional details, including a demo of this script are available here.

Single-Cycle Processor Memory Specification

Since your single-cycle design must fetch instructions as well as read or write data in the

same cycle, you will want to use two instances of this memory -- one for data, and one for

instructions.

Note: You should instantiate this memory module twice. One instance will serve as

the instruction memory while the other will serve as the data memory. Note that the

program binary should be loaded into both instances. This will automatically be done

(without any additional effort on your part) if you use the same module definition for

both instances

 +-------------+

data_in[15:0] >-------| |--------> data_out[15:0]

 addr[15:0] >-------| 65536 word |

 enable >-------| by 8 bit |

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html

Spring 2022 – Sinclair

 wr >-------| memory |

 clk >-------| |

 rst >-------| |

 createdump >-------| |

 +-------------+

During each cycle, the "enable" and "wr" inputs determine what function the memory

will perform:

Enable Wr Function data_out

0 X No operation 0

1 0 Read M[addr]

1 1 Write data_in 0

During a read cycle, the data output will immediately reflect the contents of the address

input and will change in a flow-through fashion if the address changes. For writes, the

"wr", "addr", and "data_in" signals must be stable at the rising edge of the clock ("clk").

The memory is initialized from a file. The file name is "loadfile_all.img", but you may

change that in the Verilog source to any file name you prefer. The file is loaded at the

first rising edge of the clock during reset. The simulator will look for the file in the same

location as your .v files (or the directory from which you run wsrun.pl. The file format

is:

@0

12

12

12

12

where "@0" specifies a starting address of zero, and "12" represents any 2-digit hex

number. Any number of lines may be specified, up to the size of the memory. The

assembler will produce files in this format.

At the end of the simulation, the memory can produce a dumpfile so that you may

determine what has been written to the memory. When "createdump" is asserted at the

rising edge of the clock, the memory will create a file named "dumpfile" in the mentor

directory. You may want to use the decode of the "halt" instruction to assert

"createdump" for a single cycle.

When a dumpfile is created, it will contain locations zero through the highest address that

has been modified with a write cycle (not the highest address loaded from the loadfile).

The format is:

Spring 2022 – Sinclair

0000 1234

0001 1234

0002 1234

Examining the source file memory2c.v, several possible changes should be obvious. The

names of the files may be changed. The format of the dumpfile may be changed by

modifying the $fdisplay statement; the syntax is very similar to C's fprintf statement. The

starting and ending addresses to dump may be modified in the "for" statement. The only

thing that cannot be modified is the format of the loadfile; that is built-in.

When you have two copies of the memory, for instructions and data, you may want to let

both memories load the same loadfile, but only have the data memory generate a

dumpfile.

The way to load programs for your processor is to use the assembler, create the memory

dump. Name the memory dump, loadfile_all.img and copy this into the directory where

memory2c.v is present.

C. Phase #2 – Pipelined Design with Perfect Memory (30% of project grade)

At this point, the pipelined version of your design needs to be running correctly, but no

optimizations are needed yet. Correctly means that it must detect and do the right thing on

pipeline hazards (e.g., stall). You will still use the single-cycle memory model. We will

follow similar protocol as demo1. We will run your tests and ask teams with any failures

to sign up for a demo with us.

You must write at least two additional hand tests to test pipelining. Writing more will help

simplify debugging. If you write additional tests, include them in verification/mytests/.

You must create and submit a document which should explain the behavior of your

processor for the perf-test-dep-ldst.asm test. Please use the following format:

Cycle Instruction Retired Reason

1

2

Etc.

The instruction retired (we will discuss what retired means in class, but essentially for our

5-stage in-order processor it means what is in Write Back that cycle) would either be one

of the instructions from the test program or a "NOP" if dependencies necessitate any stall

cycles. The reason column would explain why a stall was needed in that instance. Please

include this information in a PDF file titled instruction_timeline.pdf. Alternatively, you

may submit the instruction timeline electronically on Canvas using the Phase 2

Instruction Timeline “quiz.” Regardless of which mechanism you use, you will get credit.

Spring 2022 – Sinclair

Everything due at 11:59 PM Central time on April 3rd.

Electronic submission instructions

Submit your demo2.tgz file on Canvas containing the following directories [tar -czvf

demo2.tgz demo2] where demo2 is the directory containing the verification and Verilog

sub-directories. These sub-directories will already exist if you do your work in the demo2

directory from the original tar that was provided.

1. verilog/ containing all Verilog and Vcheck files. Please copy over ALL necessary

files, your processor should be able compile and run with files from this directory

alone.

2. verification/mytests/ The assembly (.asm) files that you have written.

3. verification/results/ Run all the categories and rename the summary.log files as

shown below:

1. Simple instruction tests: inst_tests.summary.log

2. Complex tests from demo1: complex_demo1.summary.log

3. Random tests for demo1

1. rand_simple: rand_simple.summary.log

2. rand_complex: rand_complex.summary.log

3. rand_ctrl: rand_ctrl.summary.log

4. rand_mem: rand_mem.summary.log

4. Random tests for demo2: complex_demo2.summary.log

5. Your code results: mytests.summary.log

4. verification/instruction_timeline.pdf - The timeline you have created for the retiring

instructions of perf-test-dep-ldst.asm. Note: if you chose to submit the timeline

electronically via the “quiz” on Piazza, you will not lose points for not having

this as part of your submission.

You can use the script run-phase2-almostAll.sh to run almost all the required tests. It

will create all these summary.log files except for the mytests.summary.log summary file

(hence “almost all”). A brief note of caution: if your all.list has > 1000 failures, wsrun will

stop running tests from that list – please make sure to check your logs if you have many

failures.

Running all the tests will take 10-15 minutes. So plan ahead!

The log files MUST have the exact name. These are the log files produced by running

wsrun.pl -list with the all.list file for each of those sets of benchmarks. You will have

to rename summary.log manually into these names (unless you use the above script).

If your handed in code does not follow this convention, it will not be accepted and you

will receive a zero for this demo. If in doubt about what to submit, email the TAs

before the deadline and double-check.

Spring 2022 – Sinclair

Verifying Your Phase 2 Handin

You should also verify your submission has the correct files by running the verification

script:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handout

s/scripts/project/phase2/verify_submission_format.sh

demo2.tgz

Additional details, including a demo of this script are available here.

The next few deadlines are minor changes to your processor and you should plan on doing

them very quickly. They are optional. No print or electronic submissions required. The

due dates are simply suggestions. Make sure all demo2 tests pass at these phases.

D. Phase #2.1 – Pipelined Design with Aligned Memory (0% of project grade)

No Submission required. This is optional.

At this step, replace the original single-cycle memory with the Aligned single cycle

memory. This is a very similar module, but it has an "err" output that is generated on

unaligned memory accesses. Your processor should halt when an error occurs. Verify

your design. If you want to test, you can test with:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handou

ts/testprograms/public/unaligned.list

Aligned Single-Cycle Memory Specification

Before building your cache, you should use this memory to update and test your processor's

interface to properly handle unaligned accesses. Many processors (e.g., MIPS) are byte

addressable, but require that all accesses be aligned to their natural size (i.e., byte loads and

stores can access any individual byte, but word loads and stores must access aligned

words). Since your processor only has word loads and stores, this is pretty simple (to

support byte stores, the memory would need byte write enable signals; to support byte

loads, either the memory or the processor needs a mux to select the right byte). Notice that

the memory always returns aligned data even on a misaligned load, and memory does not

store anything on a misaligned store.

The Verilog source (memory2c_align.v) was included in the project tar.

Since your single-cycle design must fetch instructions as well as read or write data in the

same cycle, you will want to use two instances of this memory -- one for data, and one for

instructions.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/alignedSingleCycleMem.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/alignedSingleCycleMem.html

Spring 2022 – Sinclair

 +-------------+

data_in[15:0] >-------| |--------> data_out[15:0]

 addr[15:0] >-------| 65536 word |

 enable >-------| by 16 bit |--------> err

 wr >-------| memory |

 clk >-------| |

 rst >-------| |

 createdump >-------| |

 +-------------+

During each cycle, the "enable" and "wr" inputs determine what function the memory

will perform. On an unaligned access err is set.

enable Wr Function data_out err

0 X No operation 0 0

1 0 Read M[addr] 0

1 1 Write Write data_in 0

1 X X if (addr[0]) set 1

E. Phase # 2.2 – Pipelined Design with Stalling Memory: 1 week after Phase #2

(0% of project grade)

 No Submission required. This is optional.

At this step, replace the single cycle memory with the Stalling memory. This is a very

similar module, but has stall and done signals similar to the cache you will build. Your

pipeline will need to stall to handle these conditions. Verify your design.

• Instruction memory: First replace your instruction memory module with this

stalling memory, keep your data memory module the same (i.e. aligned perfect

memory from previous step). Verify your design. This will be easier to debug, as

only module's behavior has changed.

• Data memory: Now, replace your data memory module alone with this stalling

memory, revert your instruction memory module back to the aligned perfect

memory. Verify your design. This will be easier to debug, as only module's

behavior has changed.

• Instruction and Data memory: Now change both instruction and data memories

to the stalling memory design. Verify your design.

Stalling Memory Specification

This module has an interface identical to the cache interface in mem_system_hier.v.

Examining the source file stallmem.v, you will see "rand_pat", a shift register which

controls the "ready" output. This is a random 32-bit number. You can change its value by

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/stallMem.html

Spring 2022 – Sinclair

changing the seed used for random number of generation. You can do this by passing in "-

seed" to wsrun.pl. For example:

 wsrun.pl -pipe -seed 45 -prog foo.asm proc_hier_pbench *.v

If you are executing from inside ModelSim with run -all or using a testbench of your own

for preliminary testing, you can pass in the seed, by adding the string "+seed=<value>" to

the vsim command. Or simply edit stallmem.v and set the seed to a different value.

F. Cache Demo - Working two-way set-associative cache (10% of project grade)

All information on the cache design, including submission instructions is posted on the

cache design page.

Due April 24th at 11:59 PM on Canvas, no exceptions (except for late days).

G. Phase #3 (final demo) - Pipelined Multi-cycle Memory with Optimizations (30%

of project grade)

Due May 3rd at 11:59 PM on Canvas, no exceptions (except for late days).

At this final demo teams are expected to demonstrate the complete design to all

specifications. This includes the following required items:

• Two-way set-associative caches with multi-cycle memory

• Register file bypassing

• Forwarding from beginning of the MEM stage to beginning of EX stage (EX →

EX forwarding)

• Forwarding from beginning of the WB stage to the beginning of the EX stage

(MEM → EX forwarding)

• Branches predicted not taken

When implementing your forwarding remember to not implement it in such a way that the

work of multiple pipeline stages occurs along a single combinational path or you will lose

credit for violating the pipelining. The IPC of your processor will also account for a small

portion of this demo grade so you should try to eliminate excess stall cycles where ever

present.

Hand in format will be similar to demo 1 and 2.

Electronic submission instructions Submit a single demo3.tgz file containing the

following directories [tar -czvf demo3.tgz demo3] where demo3 is the directory that

contains the verification and verilog sub-directories. These sub-directories will already

exist if you do your work in the demo3 directory from the original tar file that was provided.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/cacheDesign.html

Spring 2022 – Sinclair

1. verilog/ containing all Verilog and Vcheck files. Please copy over ALL

necessary files, your processor should be able compile and run with files

from this directory alone.

2. verification/mytests/ The assembly (.asm) files that you have written. (at

least two tests)

3. verification/results/ Run all test programs and rename the summary.log

files as listed below:

1. perf.summary.log

2. complex_demofinal.summary.log

3. rand_final.summary.log

4. rand_ldst.summary.log

5. rand_idcache.summary.log

6. rand_icache.summary.log

7. rand_dcache.summary.log

8. complex_demo1.summary.log

9. complex_demo2.summary.log

10. rand_complex.summary.log

11. rand_ctrl.summary.log

12. inst_tests.summary.log

You can use the script run-final-all.sh to run all the required tests. It will create all

these summary.log files. A brief note of caution: if your all.list has > 1000 failures, wsrun

will stop running tests from that list – please make sure to check your logs if you have

many failures.

Running all the tests will take about 40 minutes. So plan ahead!

We will electronically grade this submission, similar to the prior phases. TAs will be

holding extra office hours on May 2nd (time TBA) for any teams that have failures and need

to meet about partial credit. If this time does not work for a team, please send us an email

in advance to set up an alternative time.

As mentioned previously, you can submit each phase up to 2 days late with a 10%

penalty per day, along with having 5 “free” late days for the project across the

semester. If we meet you for a demo, we will use files that you submitted at or before

1159PM on the 29th of April (or the appropriate day if you are using late days).

• If your design has known failures, then bring to the demo a written short

explanation for as many failures as you can track down. This will exponentially

increase the points you will get, compared to simply showing up and saying we

don't know the reason for the failures.

• If your entire design does not work, then you may show us a demo of a partially

complete processor. So, in your best interest, snapshot working parts of your design

as you add more functionality (or, if you are using git, I strongly recommend make

commits and/or branches for each phase). For example, you may show us any one

of the following, if your full pipeline+cache does not work.

Spring 2022 – Sinclair

o Stalling instruction memory alone

o Stalling data memory alone

o Stalling inst+data memory

o Direct-mapped instruction memory alone

o Direct-mapped data memory alone

o Direct-mapped inst+data memory

o 2-way instruction memory alone

o 2-way data memory alone

o 2-way inst+data memory

You must be present and are expected to explain and answer questions about the

whole design. Answering a question with: "I have no idea" is a failing answer. You

must (at least) be able to answer: "I think it works in the following way....".

Verifying Your Phase 3 Handin

You should also verify your submission has the correct files by running the verification

script:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handout

s/scripts/project/phase3/verify_submission_format.sh

demo3.tgz

Additional details, including a demo of this script are available here.

WISC-SP22 Microarchitecture Specification

Next we describe the microarchitecture, including register file specifications, memory system

organization, etc. you will use for your CS/ECE 552 project. The WISC-SP22 architecture that

you will design for the final project shares many resemblances to the MIPS R2000 described in

the text. The major differences are a smaller instruction set and 16-bit words for the WISC-SP22.

Similarities include a load/store architecture and three fixed-length instruction formats.

1. Registers

There are eight user registers, R0-R7. Unlike the MIPS R2000, R0 is not always zero. Register R7

is used as the link register for JAL or JALR instructions. The program counter is separate from the

user register file. If you chose to implement exceptions for extra credit, a special register named

EPC is used to save the current PC upon an exception or interrupt invocation.

2. Memory System

The WISC-SP22 is a Harvard architecture, meaning instructions and data are located in different

physical memories. It is byte-addressable, word aligned (where a word is 16 bits long – note that

this is different from some of the examples in class), and big-endian. The final version of the

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html

Spring 2022 – Sinclair

WISC-SP22 will include a multi-cycle memory and one level of cache. However, initial versions

of the machine will contain a single cycle memory. See the project deadlines for more details.

The WISC-SP22 cache replacement policy is deterministic. See the cache module description for

an outline of the algorithm you must use.

NOTE: For phase1 and phase2, you will work with a simplified memory model which supports

un-aligned accesses.

3. Pipeline

The final version of the WISC-SP22 contains a five-stage pipeline identical to the MIPS R2000.

The stages are:

1. Instruction Fetch (IF)

2. Instruction Decode/Register Fetch (ID)

3. Execute/Address Calculation (EX)

4. Memory Access (MEM)

5. Write Back (WB)

See Figure 4.33 on page 299, Figure 4.35 on page 301, or Figure 4.36 on page 303 of the text for

good starting points.

4. Optimizations

Your goal in optimizations is to reduce the CPI of the processor or the total cycles taken to execute

a program. While the primary concern of the WISC-SP22 is correct functionality, the architecture

must still have a reasonable clock period. Therefore, you may not have more than one of the

following in series during any stage:

• register file

• memory or cache

• 16-bit full adder

• barrel shifter

You may implement any type of optimization to reduce the CPI (as long as it’s a valid

optimization). The required optimizations are:

• Register file bypassing

• There are two register forwarding paths in the WISC-SP22:

o Forwarding from beginning of the MEM stage to beginning of EX stage (EX →

EX forwarding)

o Forwarding from beginning of the WB stage to the beginning of the EX stage

(MEM → EX forwarding)

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/cacheModule.html

Spring 2022 – Sinclair

• All branches should be predicted not-taken. This means that the pipeline should continue

to execute sequentially until the branch resolves, and then squash instructions after the

branch if the branch was actually taken.

5. Exceptions: extra credit

Exception handling is extra credit. If you choose not to implement exception handling, an illegal

instruction should be treated as a NOP.

IllegalOp is the only defined exception in the WISC-SP22 architecture. It is invoked when the

opcode of the currently executing instruction is not a recognized member of the ISA. Upon finding

an illegal opcode, the computer shall save the current PC into the reserved register EPC and then

load address 0x02, which is the location of the IllegalOp exception handler. Note that if you choose

to implement exceptions, address 0x00 must be a jump to the start of the main program.

The exception handler itself need not be complex. At a minimum it should load the value 0xBADD

into R7 and then use/call the RTI instruction to return to the address specified by the EPC.

WISC-SP22 ISA Specification
1. Instruction Summary
(KEY: sss = rs, ddd = rd, ttt = rt, iii* = immediate)

Instruction Format Syntax Semantics

00000 xxxxxxxxxxx HALT
Cease instruction issue, dump

memory state to file

00001 xxxxxxxxxxx NOP None

01000 sss ddd iiiii ADDI Rd, Rs, immediate Rd <- Rs + I(sign ext.)

01001 sss ddd iiiii SUBI Rd, Rs, immediate Rd <- I(sign ext.) - Rs

01010 sss ddd iiiii XORI Rd, Rs, immediate Rd <- Rs XOR I(zero ext.)

01011 sss ddd iiiii
ANDNI Rd, Rs,

immediate
Rd <- Rs AND ~I(zero ext.)

10100 sss ddd iiiii ROLI Rd, Rs, immediate
Rd <- Rs <<(rotate) I(lowest 4

bits)

10101 sss ddd iiiii SLLI Rd, Rs, immediate Rd <- Rs << I(lowest 4 bits)

10110 sss ddd iiiii RORI Rd, Rs, immediate
Rd <- Rs >>(rotate) I(lowest 4

bits)

10111 sss ddd iiiii SRLI Rd, Rs, immediate Rd <- Rs >> I(lowest 4 bits)

10000 sss ddd iiiii ST Rd, Rs, immediate Mem[Rs + I(sign ext.)] <- Rd

10001 sss ddd iiiii LD Rd, Rs, immediate Rd <- Mem[Rs + I(sign ext.)]

10011 sss ddd iiiii STU Rd, Rs, immediate
Mem[Rs + I(sign ext.)] <- Rd

Rs <- Rs + I(sign ext.)

11001 sss xxx ddd xx BTR Rd, Rs
Rd[bit i] <- Rs[bit 15-i] for

i=0..15

Spring 2022 – Sinclair

11011 sss ttt ddd 00 ADD Rd, Rs, Rt Rd <- Rs + Rt

11011 sss ttt ddd 01 SUB Rd, Rs, Rt Rd <- Rt - Rs

11011 sss ttt ddd 10 XOR Rd, Rs, Rt Rd <- Rs XOR Rt

11011 sss ttt ddd 11 ANDN Rd, Rs, Rt Rd <- Rs AND ~Rt

11010 sss ttt ddd 00 ROL Rd, Rs, Rt
Rd <- Rs << (rotate) Rt (lowest

4 bits)

11010 sss ttt ddd 01 SLL Rd, Rs, Rt Rd <- Rs << Rt (lowest 4 bits)

11010 sss ttt ddd 10 ROR Rd, Rs, Rt
Rd <- Rs >> (rotate) Rt (lowest

4 bits)

11010 sss ttt ddd 11 SRL Rd, Rs, Rt Rd <- Rs >> Rt (lowest 4 bits)

11100 sss ttt ddd xx SEQ Rd, Rs, Rt
if (Rs == Rt) then Rd <- 1 else

Rd <- 0

11101 sss ttt ddd xx SLT Rd, Rs, Rt
if (Rs < Rt) then Rd <- 1 else

Rd <- 0

11110 sss ttt ddd xx SLE Rd, Rs, Rt
if (Rs <= Rt) then Rd <- 1 else

Rd <- 0

11111 sss ttt ddd xx SCO Rd, Rs, Rt

if (Rs + Rt) generates carry

out

then Rd <- 1 else Rd <- 0

01100 sss iiiiiiii BEQZ Rs, immediate
if (Rs == 0) then

PC <- PC + 2 + I(sign ext.)

01101 sss iiiiiiii BNEZ Rs, immediate
if (Rs != 0) then

PC <- PC + 2 + I(sign ext.)

01110 sss iiiiiiii BLTZ Rs, immediate
if (Rs < 0) then

PC <- PC + 2 + I(sign ext.)

01111 sss iiiiiiii BGEZ Rs, immediate
if (Rs >= 0) then

PC <- PC + 2 + I(sign ext.)

11000 sss iiiiiiii LBI Rs, immediate Rs <- I(sign ext.)

10010 sss iiiiiiii SLBI Rs, immediate Rs <- (Rs << 8) | I(zero ext.)

00100 ddddddddddd J displacement PC <- PC + 2 + D(sign ext.)

00101 sss iiiiiiii JR Rs, immediate PC <- Rs + I(sign ext.)

00110 ddddddddddd JAL displacement
R7 <- PC + 2

PC <- PC + 2 + D(sign ext.)

00111 sss iiiiiiii JALR Rs, immediate
R7 <- PC + 2

PC <- Rs + I(sign ext.)

00010 siic Rs

produce IllegalOp exception.

Must provide one source

register.

00011 xxxxxxxxxxx NOP / RTI PC <- EPC

2. Formats

Spring 2022 – Sinclair

WISC-SP22 supports instructions in four different formats: J-format, 2 I-formats, and the R-

format. These are described below.

2.1 J-format

The J-format is used for jump instructions that need a large displacement.

J-Format

5 bits 11 bits

Op Code Displacement

Jump Instructions

The Jump instruction loads the PC with the value found by adding the PC of the next instruction

(PC+2, not PC+4 as in MIPS) to the sign-extended displacement.

The Jump-And-Link instruction loads the PC with the same value and also saves the address of

the next sequential instruction (i.e., PC+2) in the link register R7.

The syntax of the jump instructions is:

• J displacement
• JAL displacement

2.2 I-format

I-format instructions use either a destination register, a source register, and a 5-bit immediate

value; or a destination register and an 8-bit immediate value. The two types of I-format

instructions are described below.

I-format 1 Instructions

I-format 1

5 bits 3 bits 3 bits 5 bits

Op Code Rs Rd Immediate

The I-format 1 instructions include XOR-Immediate, ANDN-Immediate, Add-Immediate,

Subtract-Immediate, Rotate-Left-Immediate, Shift-Left-Logical-Immediate, Rotate-Right-

Immediate, Shift-Right-Logical-Immediate, Load, Store, and Store with Update.

Spring 2022 – Sinclair

The ANDNI instruction loads register Rd with the value of the register Rs AND-ed with the one's

complement of the zero-extended immediate value. (It may be thought of as a bit-clear

instruction.) ADDI loads register Rd with the sum of the value of the register Rs plus the sign-

extended immediate value. SUBI loads register Rd with the result of subtracting register Rs from

the sign-extended immediate value. (That is, immed - Rs, not Rs - immed.) Similar instructions

have similar semantics, i.e. the logical instructions have zero-extended values and the arithmetic

instructions have sign-extended values.

For Load and Store instructions, the effective address of the operand to be read or written is

calculated by adding the value in register Rs with the sign-extended immediate value. The value

is loaded to or stored from register Rd. The STU instruction, Store with Update, acts like Store

but also writes Rs with the effective address.

The syntax of the I-format 1 instructions is:

• ADDI Rd, Rs, immediate
• SUBI Rd, Rs, immediate
• XORI Rd, Rs, immediate
• ANDNI Rd, Rs, immediate
• ROLI Rd, Rs, immediate
• SLLI Rd, Rs, immediate
• RORI Rd, Rs, immediate
• SRLI Rd, Rs, immediate
• ST Rd, Rs, immediate
• LD Rd, Rs, immediate
• STU Rd, Rs, immediate

I-format 2 Instructions

I-format 2

5 bits 3 bits 8 bits

Op Code Rs Immediate

The Load Byte Immediate instruction loads Rs with a sign-extended 8-bit immediate value.

The Shift-and-Load-Byte-Immediate instruction shifts Rs 8 bits to the left and replaces the lower

8 bits with the immediate value.

The format of these instructions is:

• LBI Rs, signed immediate
• SLBI Rs, unsigned immediate

Spring 2022 – Sinclair

The Jump-Register instruction loads the PC with the value of register Rs + signed immediate.

The Jump-And-Link-Register instruction does the same and also saves the return address (i.e.,

the address of the JALR instruction plus one) in the link register R7. The format of these

instructions is

• JR Rs, immediate
• JALR Rs, immediate

The branch instructions test a general-purpose register for some condition. The available

conditions are: equal to zero, not equal to zero, less than zero, and greater than or equal to zero.

If the condition holds, the signed immediate is added to the address of the next sequential

instruction and loaded into the PC. The format of the branch instructions is

• BEQZ Rs, signed immediate
• BNEZ Rs, signed immediate
• BLTZ Rs, signed immediate
• BGEZ Rs, signed immediate

2.3 R-format

R-format instructions use only registers for operands.

R-format

5 bits 3 bits 3 bits 3 bits 2 bits

Op Code Rs Rt Rd Op Code Extension

ALU and Shift Instructions

The ALU and shift R-format instructions are similar to I-format 1 instructions, but do not require

an immediate value. In each case, the value of Rt is used in place of the immediate. No extension

of its value is required. In the case of shift instructions, all but the 4 least-significant bits of

Rt are ignored.

The ADD instruction performs signed addition. The SUB instruction subtracts Rs from Rt. (Not

Rs - Rt.) The set instructions SEQ, SLT, SLE instructions compare the values in Rs and Rt and set

the destination register Rd to 0x1 if the comparison is true, and 0x0 if the comparison is false.

SLT checks for Rs less than Rt, and SLE checks for Rs less than or equal to Rt. (Rs and Rt are

two's complement numbers.) The set instruction SCO will set Rd to 0x1 if Rs plus Rt would

generate a carry-out from the most significant bit; otherwise it sets Rd to 0x0. The Bit-Reverse

instruction, BTR, takes a single operand Rs and copies it to Rd, but with a left-right reversal of

each bit; i.e. bit 0 goes to bit 15, bit 1 goes to bit 14, etc.

The syntax of the R-format ALU and shift instructions is:

• ADD Rd, Rs, Rt
• SUB Rd, Rs, Rt

Spring 2022 – Sinclair

• XOR Rd, Rs, Rt
• ANDN Rd, Rs, Rt
• ROL Rd, Rs, Rt
• SLL Rd, Rs, Rt
• ROR Rd, Rs, Rt
• SRL Rd, Rs, Rt
• SEQ Rd, Rs, Rt
• SLT Rd, Rs, Rt
• SLE Rd, Rs, Rt
• SCO Rd, Rs, Rt
• BTR Rd, Rs

3. Special Instructions

Special instructions use the R-format. The HALT instruction halts the processor. The HALT

instruction and all older instructions execute normally, but the instruction after the halt will never

execute. The PC is left pointing to the instruction directly after the halt.

The No-operation instruction occupies a position in the pipeline but does nothing.

The syntax of these instructions is:

• HALT
• NOP

The SIIC and RTI instructions are extra credit and can be deferred for later. They will be not

tested until the final demo.

The SIIC instruction is an illegal instruction and should trigger the exception handler. EPC

should be set to PC + 2, and control should be transferred to the exception handler which is at PC

0x02.

The syntax of this instruction is:

• SIIC Rs

The source register name must be ignored. The syntax is specified this way with a dummy source

register, to reuse some components from our existing assembler. The RTI instruction should

remain equivalent to NOP until the rest of the design has been completed and thoroughly tested.

RTI returns from an exception by loading the PC from the value in the EPC register.

The syntax of this instruction is:

• RTI

Spring 2022 – Sinclair

Extra Credit
The extra credit components should be implemented atop a working 5-stage pipeline design

with caches (Phase 3). Without a working baseline for the mandatory project

requirement(s), no extra credit points will be awarded.

Extra Credit Components

Up to a total of 10 points (out of a total of 100 points for the course project) can be potentially

obtained by successfully implementing different components of extra credit. The description of

different components and their corresponding points are listed below. More than 10 points of extra

credit options are listed, to provide you with a variety of options. You will be capped at 10 points

of extra credit though.

Note: for the extra credit portion, you must still abide by the 552 Verilog Rules and Filenaming

Conventions. Moreover, you should implement these optimizations in a separate folder from your

Phase 3 submission – i.e., keep a working copy of your Phase 3 submission separate from this.

Due Date: Your extra credit optimizations should be turned in by 11:59 PM on May 6th on Canvas.

Submission Requirements

1. You are required to submit a pdf document summarizing your extra-credit design and its

differences from the baseline in terms of features, benefits and overheads.

2. You are required to develop one or more test cases, which clearly highlight the benefits of your

optimized design, and the results should be shown in the submitted document.

3. You are also required to submit a tar’d or zipped file containing: all the Verilog files of your

design, all testbenches used and any other support files.

Since there are many different extra credit optimizations, please explain in your accompanying

PDF what your directory structure is.

Extra Credit Optimizations

1. Branch Decisions in Decode (0 – 1 point): As discussed in class, doing your decisions for

branches in decode will reduce the number of instructions that need to be flushed and likely

improve CPI. You will need to update your forwarding, stall, and flush logic accordingly when

you make this optimization. After making this optimization, you should see that performance

improves for the tests that use mispredicted branches.

2. Additional Forwarding Paths (0 - 1 point): For Phase 3 you are only required to implement

forwarding from beginning of the MEM stage to beginning of EX stage (i.e., X → X forwarding)

and forwarding from beginning of the WB stage to the beginning of the EX stage (i.e., M → X

forwarding). Thus, there are additional forwarding paths you may implement to improve you CPI:

See the Part 4 in the Microarchitecture description for more information on optimizations.

https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogRules.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogFilenameConventions.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verilogFilenameConventions.html

Spring 2022 – Sinclair

• Forwarding from the beginning of the WB stage to the beginning of the MEM stage (i.e.,

M → M forwarding)

• (if you do branch decisions in decode) Forwarding from the beginning of the MEM stage

to the beginning of the ID stage (i.e., X → D forwarding) and the beginning of the WB

stage to the beginning of the ID stage (i.e., M → D forwarding, assuming you are

implementing branches in ID)

Implementing each of these forwarding paths is worth ½ point of extra credit, with a max of 1

point.

3. Cache Replacement Policy (0-1 points for instruction cache, 0-2 points for data cache):

Increase the performance of your cache design by using LRU (or another) superior replacement

policy. To test the improvement, run all of the tests from Phase 3 and compare the CPI to that of

your design before this optimization (all of the tests that are expected to pass for Phase 3 should

still pass after this optimization).

4. Employing “critical word first” data reads from memory to cache (0-2 point for instruction

cache, 0-3 points for data cache): to service waiting requests early, add support for servicing the

requested (critical) word first, before the other words on the same cache line. This will require

“hit under miss” behavior so that while your FSM is still filling a previous miss, subsequent

instruction fetches, loads, and stores can continue as long as they are to different cache blocks.

You must check to see if they are to the same cache block and stall in those cases until the cache

block is filled.

To test the improvement, run all of the tests from Phase 3 and compare the CPI to that of your

design before this optimization (all of the tests that are excepted to pass for Phase 3 should still

pass after this optimization).

5. Dynamic branch prediction (0-2 points): implement dynamic branch prediction to reduce the

misprediction rate of your processor. To test the improvement, run all of the tests from Phase 3

and compare the CPI to that of your design before this optimization (all of the tests that are

excepted to pass for Phase 3 should still pass after this optimization).

6. Exception Handling (0–2 points): As discussed in the Microarchitecture Specification,

exception handling is extra credit. If you choose not to implement exception handling, an illegal

instruction should be treated as a NOP.

IllegalOp is the only defined exception in the WISC-SP22 architecture. It is invoked when the

opcode of the currently executing instruction is not a recognized member of the ISA. Upon finding

an illegal opcode, the computer shall save the current PC into the reserved register EPC and then

load address 0x02, which is the location of the IllegalOp exception handler. Note that if you choose

to implement exceptions, address 0x00 must be a jump to the start of the main program.

After implementing exception handling, you should see that the exception handling tests now pass.

To verify the correctness of your exception handling, you should run the tests in
/u/s/i/sinclair/public/html/courses/cs552/spring2022/handouts/te

Spring 2022 – Sinclair

stprograms/public/exceptions.list. The exception handler routines in these

programs vary in complexity.

You should also write and submit at least one additional test that demonstrates the handling of

exceptions. In this program, your exception handler routine does not need to be complex. At a

minimum, it should load 0xBADD into R7 and then call the RTI instruction.

7. Synthesizing Your Design (0 – 5 points): Successfully synthesizing your design using the

Synopsys Design Compiler followed by extracting the synthesized netlist and performing

functional simulation by rerunning all the test cases on the post-synthesis netlist. See Synthesis

and Synthesis FAQ for details. Synthesizing your design by itself is worth 2 points.

• On top of (7), optimizing your design for low area. (0-1 point)

• On top of (7), optimizing your design for high IPC. (0-1 point)

• On top of (7), optimizing your design for high IPS (instructions per second); i.e.,

optimizing your design for both high IPC and high synthesis frequency. (0-1 point)

8. Other optimizations (please discuss with instructor/TAs before proceeding) (0-2 points)

Note: Please talk to the TAs or Matt before embarking on any of these extra-credit

components so as to clearly establish requirements of the extra-credit component.

https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/synthesis.html
https://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/synthesis-faq.html

