
Computer Sciences Department

University of Wisconsin-Madison

CS/ECE 552 – Introduction to Computer Architecture

WISC-SP22 ISA Specification

1. Instruction Summary
(KEY: sss = rs, ddd = rd, ttt = rt, iii* = immediate)

Instruction Format Syntax Semantics

00000 xxxxxxxxxxx HALT Cease instruction issue, dump memory state to file

00001 xxxxxxxxxxx NOP None

01000 sss ddd iiiii ADDI Rd, Rs, immediate Rd <- Rs + I(sign ext.)

01001 sss ddd iiiii SUBI Rd, Rs, immediate Rd <- I(sign ext.) - Rs

01010 sss ddd iiiii XORI Rd, Rs, immediate Rd <- Rs XOR I(zero ext.)

01011 sss ddd iiiii ANDNI Rd, Rs, immediate Rd <- Rs AND ~I(zero ext.)

10100 sss ddd iiiii ROLI Rd, Rs, immediate Rd <- Rs <<(rotate) I(lowest 4 bits)

10101 sss ddd iiiii SLLI Rd, Rs, immediate Rd <- Rs << I(lowest 4 bits)

10110 sss ddd iiiii RORI Rd, Rs, immediate Rd <- Rs >>(rotate) I(lowest 4 bits)

10111 sss ddd iiiii SRLI Rd, Rs, immediate Rd <- Rs >> I(lowest 4 bits)

10000 sss ddd iiiii ST Rd, Rs, immediate Mem[Rs + I(sign ext.)] <- Rd

10001 sss ddd iiiii LD Rd, Rs, immediate Rd <- Mem[Rs + I(sign ext.)]

10011 sss ddd iiiii STU Rd, Rs, immediate
Mem[Rs + I(sign ext.)] <- Rd

Rs <- Rs + I(sign ext.)

11001 sss xxx ddd xx BTR Rd, Rs Rd[bit i] <- Rs[bit 15-i] for i=0..15

11011 sss ttt ddd 00 ADD Rd, Rs, Rt Rd <- Rs + Rt

11011 sss ttt ddd 01 SUB Rd, Rs, Rt Rd <- Rt - Rs

11011 sss ttt ddd 10 XOR Rd, Rs, Rt Rd <- Rs XOR Rt

11011 sss ttt ddd 11 ANDN Rd, Rs, Rt Rd <- Rs AND ~Rt

11010 sss ttt ddd 00 ROL Rd, Rs, Rt Rd <- Rs << (rotate) Rt (lowest 4 bits)

11010 sss ttt ddd 01 SLL Rd, Rs, Rt Rd <- Rs << Rt (lowest 4 bits)

11010 sss ttt ddd 10 ROR Rd, Rs, Rt Rd <- Rs >> (rotate) Rt (lowest 4 bits)

11010 sss ttt ddd 11 SRL Rd, Rs, Rt Rd <- Rs >> Rt (lowest 4 bits)

11100 sss ttt ddd xx SEQ Rd, Rs, Rt if (Rs == Rt) then Rd <- 1 else Rd <- 0

11101 sss ttt ddd xx SLT Rd, Rs, Rt if (Rs < Rt) then Rd <- 1 else Rd <- 0

11110 sss ttt ddd xx SLE Rd, Rs, Rt if (Rs <= Rt) then Rd <- 1 else Rd <- 0

11111 sss ttt ddd xx SCO Rd, Rs, Rt
if (Rs + Rt) generates carry out

then Rd <- 1 else Rd <- 0

01100 sss iiiiiiii BEQZ Rs, immediate
if (Rs == 0) then

PC <- PC + 2 + I(sign ext.)

01101 sss iiiiiiii BNEZ Rs, immediate
if (Rs != 0) then

PC <- PC + 2 + I(sign ext.)

01110 sss iiiiiiii BLTZ Rs, immediate
if (Rs < 0) then

PC <- PC + 2 + I(sign ext.)

01111 sss iiiiiiii BGEZ Rs, immediate
if (Rs >= 0) then

PC <- PC + 2 + I(sign ext.)

11000 sss iiiiiiii LBI Rs, immediate Rs <- I(sign ext.)

10010 sss iiiiiiii SLBI Rs, immediate Rs <- (Rs << 8) | I(zero ext.)

00100 ddddddddddd J displacement PC <- PC + 2 + D(sign ext.)

00101 sss iiiiiiii JR Rs, immediate PC <- Rs + I(sign ext.)

00110 ddddddddddd JAL displacement
R7 <- PC + 2

PC <- PC + 2 + D(sign ext.)

00111 sss iiiiiiii JALR Rs, immediate
R7 <- PC + 2

PC <- Rs + I(sign ext.)

00010 siic Rs produce IllegalOp exception. Must provide one source register.

00011 xxxxxxxxxxx NOP / RTI PC <- EPC

2. Formats

WISC-SP22 supports instructions in four different formats: J-format, 2 I-formats, and the R-format. These are described below.

2.1 J-format

The J-format is used for jump instructions that need a large displacement.

J-Format

5 bits 11 bits

Op Code Displacement

Jump Instructions

The Jump instruction loads the PC with the value found by adding the PC of the next instruction (PC+2, not PC+4 as in MIPS) to the

sign-extended displacement.

The Jump-And-Link instruction loads the PC with the same value and also saves the address of the next sequential instruction (i.e.,

PC+2) in the link register R7.

The syntax of the jump instructions is:

• J displacement
• JAL displacement

2.2 I-format

I-format instructions use either a destination register, a source register, and a 5-bit immediate value; or a destination register and an 8-

bit immediate value. The two types of I-format instructions are described below.

I-format 1 Instructions

I-format 1

5 bits 3 bits 3 bits 5 bits

Op Code Rs Rd Immediate

The I-format 1 instructions include XOR-Immediate, ANDN-Immediate, Add-Immediate, Subtract-Immediate, Rotate-Left-

Immediate, Shift-Left-Logical-Immediate, Rotate-Right-Immediate, Shift-Right-Logical-Immediate, Load, Store, and Store with

Update.

The ANDNI instruction loads register Rd with the value of the register Rs AND-ed with the one's complement of the zero-extended

immediate value. (It may be thought of as a bit-clear instruction.) ADDI loads register Rd with the sum of the value of the register Rs

plus the sign-extended immediate value. SUBI loads register Rd with the result of subtracting register Rs from the sign-extended

immediate value. (That is, immed - Rs, not Rs - immed.) Similar instructions have similar semantics, i.e. the logical instructions have

zero-extended values and the arithmetic instructions have sign-extended values.

For Load and Store instructions, the effective address of the operand to be read or written is calculated by adding the value in register

Rs with the sign-extended immediate value. The value is loaded to or stored from register Rd. The STU instruction, Store with

Update, acts like Store but also writes Rs with the effective address.

The syntax of the I-format 1 instructions is:

• ADDI Rd, Rs, immediate
• SUBI Rd, Rs, immediate
• XORI Rd, Rs, immediate
• ANDNI Rd, Rs, immediate
• ROLI Rd, Rs, immediate
• SLLI Rd, Rs, immediate
• RORI Rd, Rs, immediate
• SRLI Rd, Rs, immediate
• ST Rd, Rs, immediate
• LD Rd, Rs, immediate

• STU Rd, Rs, immediate

I-format 2 Instructions

I-format 2

5 bits 3 bits 8 bits

Op Code Rs Immediate

The Load Byte Immediate instruction loads Rs with a sign-extended 8-bit immediate value.

The Shift-and-Load-Byte-Immediate instruction shifts Rs 8 bits to the left and replaces the lower 8 bits with the immediate value.

The format of these instructions is:

• LBI Rs, signed immediate
• SLBI Rs, unsigned immediate

The Jump-Register instruction loads the PC with the value of register Rs + signed immediate. The Jump-And-Link-Register instruction

does the same and also saves the return address (i.e., the address of the JALR instruction plus one) in the link register R7. The format

of these instructions is

• JR Rs, immediate
• JALR Rs, immediate

The branch instructions test a general-purpose register for some condition. The available conditions are: equal to zero, not equal to

zero, less than zero, and greater than or equal to zero. If the condition holds, the signed immediate is added to the address of the next

sequential instruction and loaded into the PC. The format of the branch instructions is

• BEQZ Rs, signed immediate
• BNEZ Rs, signed immediate
• BLTZ Rs, signed immediate

• BGEZ Rs, signed immediate

2.3 R-format

R-format instructions use only registers for operands.

R-format

5 bits 3 bits 3 bits 3 bits 2 bits

Op Code Rs Rt Rd Op Code Extension

ALU and Shift Instructions

The ALU and shift R-format instructions are similar to I-format 1 instructions, but do not require an immediate value. In each case,

the value of Rt is used in place of the immediate. No extension of its value is required. In the case of shift instructions, all but the 4

least-significant bits of Rt are ignored.

The ADD instruction performs signed addition. The SUB instruction subtracts Rs from Rt. (Not Rs - Rt.) The set instructions SEQ,

SLT, SLE instructions compare the values in Rs and Rt and set the destination register Rd to 0x1 if the comparison is true, and 0x0 if

the comparison is false. SLT checks for Rs less than Rt, and SLE checks for Rs less than or equal to Rt. (Rs and Rt are two's

complement numbers.) The set instruction SCO will set Rd to 0x1 if Rs plus Rt would generate a carry-out from the most significant

bit; otherwise it sets Rd to 0x0. The Bit-Reverse instruction, BTR, takes a single operand Rs and copies it to Rd, but with a left-right

reversal of each bit; i.e. bit 0 goes to bit 15, bit 1 goes to bit 14, etc.

The syntax of the R-format ALU and shift instructions is:

• ADD Rd, Rs, Rt
• SUB Rd, Rs, Rt
• XOR Rd, Rs, Rt
• ANDN Rd, Rs, Rt
• ROL Rd, Rs, Rt
• SLL Rd, Rs, Rt
• ROR Rd, Rs, Rt
• SRL Rd, Rs, Rt

• SEQ Rd, Rs, Rt
• SLT Rd, Rs, Rt
• SLE Rd, Rs, Rt
• SCO Rd, Rs, Rt
• BTR Rd, Rs

3. Special Instructions

Special instructions use the R-format. The HALT instruction halts the processor. The HALT instruction and all older instructions

execute normally, but the instruction after the halt will never execute. The PC is left pointing to the instruction directly after the halt.

The No-operation instruction occupies a position in the pipeline but does nothing.

The syntax of these instructions is:

• HALT
• NOP

The SIIC and RTI instructions are extra credit and can be deferred for later. They will be not tested until the final demo.

The SIIC instruction is an illegal instruction and should trigger the exception handler. EPC should be set to PC + 2, and control should

be transferred to the exception handler which is at PC 0x02.

The syntax of this instruction is:

• SIIC Rs

The source register name must be ignored. The syntax is specified this way with a dummy source register, to reuse some components

from our existing assembler. The RTI instruction should remain equivalent to NOP until the rest of the design has been completed and

thoroughly tested.

RTI returns from an exception by loading the PC from the value in the EPC register.

The syntax of this instruction is:

• RTI

See the Part 4 in the Microarchitecture description for more information on optimizations.

