
Spring 2022 – Sinclair

wComputer Sciences Department

University of Wisconsin-Madison

CS/ECE 552 – Introduction to Computer Architecture

Project Phases

This project has roughly six stages of development with several deadlines/demos along the way:

1. You will first build a single cycle non-pipelined processor with a highly idealized memory.

2. Your processor can then be pipelined into 5 distinct stages but while still using a highly

idealized memory.

3. The memory will then be transitioned to using a more realistic banked memory module

that cannot respond to requests in a single cycle.

4. A cache can then be implemented that can be used to improve the now degraded memory

performance.

5. Once the cache has been fully verified it can be incorporated into the full processor.

6. Optimizations can then be added for additional processor performance.

More formally:

A. Design review (5% of project grade)

Each student should create a complete hand-drawn (or drawn with the aid of a graphing

program like OpenOffice draw) schematic of an unpipelined WISC-SP22 implementation.

Each module, bus, and signal should be uniquely labeled. The schematic should be

hierarchical so that the top-level design contains only empty shells for each planned

submodule. In general, there will be a one-to-one mapping of modules in your schematic

to the modules you will eventually write in Verilog. The textbook pipeline diagram(s) is a

good starting point but there are many differences between it and the ISA for this project.

You will need to look at the class ISA and make sure to adapt it for that.

Your schematic should explicitly include modules for the Fetch, Decode, Execute,

Memory, and Writeback, and the code for these modules will go into the provided shell

modules. While explicitly drawing the pipeline stages that correspond to these modules is

not required in the schematic, you should still design with a pipeline in mind. It is a good

idea to place modules near their final location in the pipelined design.

During the review, individual team members should be able to describe the datapath of any

legal WISC-SP22 instruction using the schematic as a reference. Teams will also be

expected to defend the design decisions that they make. You need to have thought through

the control path and decode logic. It is not necessary to have done a complete table of

signals, but if you have such a table with the control signal values for every instruction,

that would be great.

Every student will sign up for a 10 minute design review slot on this Google Doc – first

come, first served. Write your last name in your timeslot. Because of the large number of

https://docs.google.com/spreadsheets/d/1NaDfQqVqKiHPQwy9cTDciUFw7h4_Nfx-MvaV-poaOxo/edit?usp=sharing

Spring 2022 – Sinclair

students, you will be meeting with either Matt or one of the TAs (Matt: column B, Bujji:

column C, Rutwik column D) If none works, discuss with your classmates about a possible

swap. If you still cannot find a timeslot that works, email both the TAs and Matt.

You are expected to explain and answer questions about the whole design. Answering

a question with: "I have no idea" is a failing answer. You must (at least) be able to

answer: "I think it works in the following way...".

B. Phase #1 – Single-Cycle, Unpipelined Design (15% of project grade)

All of the files you will need for the project are in a project tar file

(/u/s/i/sinclair/public/html/courses/cs552/spring2022/handou

ts/verilog_code/project/project.tgz).

To start, you should do a single-cycle, non-pipelined implementation. Figure 4.33 on page

299, Figure 4.35 on page 301, and Figure 4.36 on page 303 of the text are good places to

start.

For this stage, you will use the single cycle perfect memory. Since you will need to fetch

instructions as well as read or write data in the cycle, use two memories -- one for

instruction memory and one for data.

Your design should be running the full WISC-SP22 instruction set, except for the extra-

credit instructions. It should use the single-cycle memory model. You should run vcheck

and your files must all pass vcheck.

You do not need to do a demo for phase 1, unless your design has a significant number of

problems (then we will schedule a demo to give you some partial credit). To verify your

design works, you will run a set of programs on your processor using the wsrun.pl script

(check the verification and simulation page for more info), show that your processor works

on the test programs (full list in Test Programs page). You should run the tests under the

following three categories:

1. Simple instruction tests

2. Complex tests for demo1

3. Random tests for demo1

1. rand_simple

2. rand_complex

3. rand_ctrl

4. rand_mem

Your grade for phase 1 will be scaled based on how many of these tests you pass, although

some of the categories may be weighted more than others.

Use the -list file to run each of the categories of test. When you run wsrun.pl with the -list

option, it will generate a file called summary.log, which looks like below:

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/vsimCommandLine.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/verificationSimulation.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/testProgs.html

Spring 2022 – Sinclair

add_0.asm SUCCESS CPI:1.3 CYCLES:12 ICOUNT:9 IHITRATE: 0

DHITRATE: 0

add_1.asm SUCCESS CPI:1.7 CYCLES:7 ICOUNT:4 IHITRATE: 0

DHITRATE: 0

add_2.asm SUCCESS CPI:1.7 CYCLES:7 ICOUNT:4 IHITRATE: 0

DHITRATE: 0

SUCCESS means the test passed. Run all the categories and rename the summary.log files

as shown below:

1. Simple instruction tests: inst_tests.summary.log

2. Complex tests for demo1: complex_demo1.summary.log

3. Random tests for demo1

1. rand_simple: rand_simple.summary.log

2. rand_complex: rand_complex.summary.log

3. rand_ctrl: rand_ctrl.summary.log

4. rand_mem: rand_mem.summary.log

You can use the script run-phase1-all.sh to run all the required tests. A brief note of

caution: if your all.list has > 1000 failures, wsrun will stop running tests from that list –

please make sure to check your logs if you have many failures.

Running all the tests will take 10-15 minutes. So plan ahead!

The log files MUST have the exact name. These are the log files produced by running

wsrun.pl -list with the all.list file for each of those sets of benchmarks. You will have

to rename summary.log manually into these names. If your handed in code does not

follow this convention, it will not be accepted and you will receive a zero for this demo.

If in doubt about what to submit, email the TAs *before* the deadline and double-

check. Alternatively, you can/should use the verification script

(/u/s/i/sinclair/public/html/courses/cs552/spring2022/handouts/scr

ipts/project/phase1/verify_submission_format.sh) to ensure that your

files are in the correct place.

You should do rigorous testing and verification and should try to have zero failures on the

other categories. It is ok to have a very small number of failures - but for every failure you

must know the reason. You will submit your design electronically, which will be graded

automatically. The instructor will then schedule one-on-one appointments with teams that

have exhibited a large number of failures.

Everything due at 1159 PM Central Time on March 6th.

Electronic submission instructions

Spring 2022 – Sinclair

Submit your demo1.tgz on Canvas containing the following directories [tar -czvf

demo1.tgz demo1] where demo1 is the directory with the summary and verilog sub-

directories. These sub-directories will already exist if you do your work in the demo1

directory from the original tar that was provided.

1. The sub-directories should contain the following files:

1. verilog/ containing all Verilog and Vcheck files. Please copy over

ALL necessary files, your processor should be able compile and run

with files from this directory alone. It should also contain vcheck

files for all of your Verilog files.

2. summary/ containing the 6 summary.log files.

If the summary.log files are missing, you will automatically get zero points.

Please do not submit your __work directory as it will significantly inflate your

submission size and make it hard for us to grade quickly.

Verifying Your Phase 1 Handin

You should also verify your submission has these files by running the verification script:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handout

s/scripts/project/phase1/verify_submission_format.sh

demo1.tgz

Additional details, including a demo of this script are available here.

Single-Cycle Processor Memory Specification

Since your single-cycle design must fetch instructions as well as read or write data in the

same cycle, you will want to use two instances of this memory -- one for data, and one for

instructions.

Note: You should instantiate this memory module twice. One instance will serve as

the instruction memory while the other will serve as the data memory. Note that the

program binary should be loaded into both instances. This will automatically be done

(without any additional effort on your part) if you use the same module definition for

both instances

 +-------------+

data_in[15:0] >-------| |--------> data_out[15:0]

 addr[15:0] >-------| 65536 word |

 enable >-------| by 8 bit |

 wr >-------| memory |

 clk >-------| |

 rst >-------| |

 createdump >-------| |

 +-------------+

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html

Spring 2022 – Sinclair

During each cycle, the "enable" and "wr" inputs determine what function the memory

will perform:

Enable Wr Function data_out

0 X No operation 0

1 0 Read M[addr]

1 1 Write data_in 0

During a read cycle, the data output will immediately reflect the contents of the address

input and will change in a flow-through fashion if the address changes. For writes, the

"wr", "addr", and "data_in" signals must be stable at the rising edge of the clock ("clk").

The memory is initialized from a file. The file name is "loadfile_all.img", but you may

change that in the Verilog source to any file name you prefer. The file is loaded at the

first rising edge of the clock during reset. The simulator will look for the file in the same

location as your .v files (or the directory from which you run wsrun.pl. The file format

is:

@0

12

12

12

12

where "@0" specifies a starting address of zero, and "12" represents any 2-digit hex

number. Any number of lines may be specified, up to the size of the memory. The

assembler will produce files in this format.

At the end of the simulation, the memory can produce a dumpfile so that you may

determine what has been written to the memory. When "createdump" is asserted at the

rising edge of the clock, the memory will create a file named "dumpfile" in the mentor

directory. You may want to use the decode of the "halt" instruction to assert

"createdump" for a single cycle.

When a dumpfile is created, it will contain locations zero through the highest address that

has been modified with a write cycle (not the highest address loaded from the loadfile).

The format is:

0000 1234

0001 1234

0002 1234

Examining the source file memory2c.v, several possible changes should be obvious. The

names of the files may be changed. The format of the dumpfile may be changed by

Spring 2022 – Sinclair

modifying the $fdisplay statement; the syntax is very similar to C's fprintf statement. The

starting and ending addresses to dump may be modified in the "for" statement. The only

thing that cannot be modified is the format of the loadfile; that is built-in.

When you have two copies of the memory, for instructions and data, you may want to let

both memories load the same loadfile, but only have the data memory generate a

dumpfile.

The way to load programs for your processor is to use the assembler, create the memory

dump. Name the memory dump, loadfile_all.img and copy this into the directory where

memory2c.v is present.

C. Phase #2 – Pipelined Design with Perfect Memory (30% of project grade)

At this point, the pipelined version of your design needs to be running correctly, but no

optimizations are needed yet. Correctly means that it must detect and do the right thing on

pipeline hazards (e.g., stall). You will still use the single-cycle memory model. We will

follow similar protocol as demo1. We will run your tests and ask teams with any failures

to sign up for a demo with us.

You must write at least two additional hand tests to test pipelining. Writing more will help

simplify debugging. If you write additional tests, include them in verification/mytests/.

You must create and submit a document which should explain the behavior of your

processor for the perf-test-dep-ldst.asm test. Please use the following format:

Cycle Instruction Retired Reason

1

2

Etc.

The instruction retired (we will discuss what retired means in class, but essentially for our

5-stage in-order processor it means what is in Write Back that cycle) would either be one

of the instructions from the test program or a "NOP" if dependencies necessitate any stall

cycles. The reason column would explain why a stall was needed in that instance. Please

include this information in a PDF file titled instruction_timeline.pdf. Alternatively, you

may submit the instruction timeline electronically on Canvas using the Phase 2

Instruction Timeline “quiz.” Regardless of which mechanism you use, you will get credit.

Everything due at 11:59 PM Central time on April 3rd.

Electronic submission instructions

Spring 2022 – Sinclair

Submit your demo2.tgz file on Canvas containing the following directories [tar -czvf

demo2.tgz demo2] where demo2 is the directory containing the verification and Verilog

sub-directories. These sub-directories will already exist if you do your work in the demo2

directory from the original tar that was provided.

1. verilog/ containing all Verilog and Vcheck files. Please copy over ALL necessary

files, your processor should be able compile and run with files from this directory

alone.

2. verification/mytests/ The assembly (.asm) files that you have written.

3. verification/results/ Run all the categories and rename the summary.log files as

shown below:

1. Simple instruction tests: inst_tests.summary.log

2. Complex tests from demo1: complex_demo1.summary.log

3. Random tests for demo1

1. rand_simple: rand_simple.summary.log

2. rand_complex: rand_complex.summary.log

3. rand_ctrl: rand_ctrl.summary.log

4. rand_mem: rand_mem.summary.log

4. Random tests for demo2: complex_demo2.summary.log

5. Your code results: mytests.summary.log

4. verification/instruction_timeline.pdf - The timeline you have created for the retiring

instructions of perf-test-dep-ldst.asm. Note: if you chose to submit the timeline

electronically via the “quiz” on Piazza, you will not lose points for not having

this as part of your submission.

You can use the script run-phase2-almostAll.sh to run almost all the required tests. It

will create all these summary.log files except for the mytests.summary.log summary file

(hence “almost all”). A brief note of caution: if your all.list has > 1000 failures, wsrun will

stop running tests from that list – please make sure to check your logs if you have many

failures.

Running all the tests will take 10-15 minutes. So plan ahead!

The log files MUST have the exact name. These are the log files produced by running

wsrun.pl -list with the all.list file for each of those sets of benchmarks. You will have

to rename summary.log manually into these names. If your handed in code does not

follow this convention, it will not be accepted and you will receive a zero for this demo.

If in doubt about what to submit, email the TAs *before* the deadline and double-

check.

Verifying Your Phase 2 Handin

You should also verify your submission has the correct files by running the verification

script:

Spring 2022 – Sinclair

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handou

ts/scripts/project/phase2/verify_submission_format.sh

demo2.tgz

Additional details, including a demo of this script are available here.

The next few deadlines are minor changes to your processor and you should plan on doing

them very quickly. They are optional. No print or electronic submissions required. The

due dates are simply suggestions. Make sure all demo2 tests pass at these phases.

D. Phase #2.1 – Pipelined Design with Aligned Memory (0% of project grade)

No Submission required. This is optional.

At this step, replace the original single-cycle memory with the Aligned single cycle

memory. This is a very similar module, but it has an "err" output that is generated on

unaligned memory accesses. Your processor should halt when an error occurs. Verify

your design. If you want to test, you can test with:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handou

ts/testprograms/public/unaligned.list

Aligned Single-Cycle Memory Specification

Before building your cache, you should use this memory to update and test your processor's

interface to properly handle unaligned accesses. Many processors (e.g., MIPS) are byte

addressable, but require that all accesses be aligned to their natural size (i.e., byte loads and

stores can access any individual byte, but word loads and stores must access aligned

words). Since your processor only has word loads and stores, this is pretty simple (to

support byte stores, the memory would need byte write enable signals; to support byte

loads, either the memory or the processor needs a mux to select the right byte). Notice that

the memory always returns aligned data even on a misaligned load, and memory does not

store anything on a misaligned store.

The Verilog source (memory2c_align.v) was included in the project tar.

Since your single-cycle design must fetch instructions as well as read or write data in the

same cycle, you will want to use two instances of this memory -- one for data, and one for

instructions.

 +-------------+

data_in[15:0] >-------| |--------> data_out[15:0]

 addr[15:0] >-------| 65536 word |

 enable >-------| by 16 bit |--------> err

 wr >-------| memory |

 clk >-------| |

 rst >-------| |

 createdump >-------| |

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/alignedSingleCycleMem.html
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/alignedSingleCycleMem.html

Spring 2022 – Sinclair

 +-------------+

During each cycle, the "enable" and "wr" inputs determine what function the memory

will perform. On an unaligned access err is set.

enable Wr Function data_out err

0 X No operation 0 0

1 0 Read M[addr] 0

1 1 Write Write data_in 0

1 X X if (addr[0]) set 1

E. Phase # 2.2 – Pipelined Design with Stalling Memory: 1 week after Phase #2

(0% of project grade)

 No Submission required. This is optional.

At this step, replace the single cycle memory with the Stalling memory. This is a very

similar module, but has stall and done signals similar to the cache you will build. Your

pipeline will need to stall to handle these conditions. Verify your design.

• Instruction memory: First replace your instruction memory module with this

stalling memory, keep your data memory module the same (i.e. aligned perfect

memory from previous step). Verify your design. This will be easier to debug, as

only module's behavior has changed.

• Data memory: Now, replace your data memory module alone with this stalling

memory, revert your instruction memory module back to the aligned perfect

memory. Verify your design. This will be easier to debug, as only module's

behavior has changed.

• Instruction and Data memory: Now change both instruction and data memories

to the stalling memory design. Verify your design.

Stalling Memory Specification

This module has an interface identical to the cache interface in mem_system_hier.v.

Examining the source file stallmem.v, you will see "rand_pat", a shift register which

controls the "ready" output. This is a random 32-bit number. You can change its value by

changing the seed used for random number of generation. You can do this by passing in "-

seed" to wsrun.pl. For example:

 wsrun.pl -pipe -seed 45 -prog foo.asm proc_hier_pbench *.v

If you are executing from inside ModelSim with run -all or using a testbench of your own

for preliminary testing, you can pass in the seed, by adding the string "+seed=<value>" to

the vsim command. Or simply edit stallmem.v and set the seed to a different value.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/stallMem.html

Spring 2022 – Sinclair

F. Cache Demo - Working two-way set-associative cache (10% of project grade)

All information on the cache design, including submission instructions is posted on the

cache design page.

Due April 24th at 11:59 PM on Canvas, no exceptions (except for late days).

G. Demo #3 (final demo) - Pipelined Multi-cycle Memory with Optimizations (30%

of project grade)

Due May 3rd at 11:59 PM on Canvas, no exceptions (except for late days).

At this final demo teams are expected to demonstrate the complete design to all

specifications. This includes the following required items:

• Two-way set-associative caches with multi-cycle memory

• Register file bypassing

• Forwarding from beginning of the MEM stage to beginning of EX stage (EX →

EX forwarding)

• Forwarding from beginning of the WB stage to the beginning of the EX stage

(MEM → EX forwarding)

• Branches predicted not taken

When implementing your forwarding remember to not implement it in such a way that the

work of multiple pipeline stages occurs along a single combinational path or you will lose

credit for violating the pipelining. The IPC of your processor will also account for a small

portion of this demo grade so you should try to eliminate excess stall cycles where ever

present.

Hand in format will be similar to demo 1 and 2.

Electronic submission instructions Submit a single demo3.tgz file containing the

following directories [tar -czvf demo3.tgz demo3] where demo3 is the directory that

contains the verification and verilog sub-directories. These sub-directories will already

exist if you do your work in the demo3 directory from the original tar file that was provided.

1. verilog/ containing all Verilog and Vcheck files. Please copy over ALL

necessary files, your processor should be able compile and run with files

from this directory alone.

2. verification/mytests/ The assembly (.asm) files that you have written. (at

least two tests)

3. verification/results/ Run all test programs and rename the summary.log

files as listed below:

1. perf.summary.log

2. complex_demofinal.summary.log

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/cacheDesign.html

Spring 2022 – Sinclair

3. rand_final.summary.log

4. rand_ldst.summary.log

5. rand_idcache.summary.log

6. rand_icache.summary.log

7. rand_dcache.summary.log

8. complex_demo1.summary.log

9. complex_demo2.summary.log

10. rand_complex.summary.log

11. rand_ctrl.summary.log

12. inst_tests.summary.log

You can use the script run-final-all.sh to run all the required tests. It will create all

these summary.log files. A brief note of caution: if your all.list has > 1000 failures, wsrun

will stop running tests from that list – please make sure to check your logs if you have

many failures.

Running all the tests will take about 40 minutes. So plan ahead!

We will electronically grade this submission, similar to the prior phases. TAs will be

holding extra office hours on May 2nd (time TBA) for any teams that have failures and need

to meet about partial credit. If this time does not work for a team, please send us an email

in advance to set up an alternative time.

As mentioned previously, you can submit each phase up to 2 days late with a 10%

penalty per day, along with having 5 “free” late days for the project across the

semester. If we meet you for a demo, we will use files that you submitted at or before

1159PM on the 29th of April (or the appropriate day if you are using late days).

• If your design has known failures, then bring to the demo a written short

explanation for as many failures as you can track down. This will exponentially

increase the points you will get, compared to simply showing up and saying we

don't know the reason for the failures.

• If your entire design does not work, then you may show us a demo of a partially

complete processor. So, in your best interest, snapshot working parts of your design

as you add more functionality (or, if you are using git, I strongly recommend make

commits and/or branches for each phase). For example, you may show us any one

of the following, if your full pipeline+cache does not work.

o Stalling instruction memory alone

o Stalling data memory alone

o Stalling inst+data memory

o Direct-mapped instruction memory alone

o Direct-mapped data memory alone

o Direct-mapped inst+data memory

o 2-way instruction memory alone

o 2-way data memory alone

o 2-way inst+data memory

Spring 2022 – Sinclair

You must be present and are expected to explain and answer questions about the

whole design. Answering a question with: "I have no idea" is a failing answer. You

must (at least) be able to answer: "I think it works in the following way....".

Verifying Your Phase 3 Handin

You should also verify your submission has the correct files by running the verification

script:

/u/s/i/sinclair/public/html/courses/cs552/spring2022/handout

s/scripts/project/phase3/verify_submission_format.sh

demo3.tgz

Additional details, including a demo of this script are available here.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2022/handinVerification.html

