
UW Madison
Hill, Sohi,

Smith, Wood

Slide History/Attribution Diagram:

UPenn
Amir Roth,

Milo Martin

UW Madison
Hill, Sohi, Wood,

Sankaralingam, Sinclair Various Universities
Asanovic, Falsafi, Hoe, Lipasti,

Shen, Smith, Vijaykumar

UCLA
Nowatzki

CS/ECE 752:
Advanced Computer Architecture I

Lecture 1. Introduction

Professor Matthew D. Sinclair

2

Learning During the Pandemic

• Mixture of lectures and in-class exercises

• Goal of ICEs is practice problems relevant to that day’s material

• All lectures will be recorded and posted on course website

• See Course Schedule

• Plan is to use BBCollaborate Ultra for lectures

• Automatically integrated with Canvas

• Single session for all lectures

• See Piazza for backup plans

• Note: this semester is more challenging than any other

• We are scattered around the world

• We are dealing with many different stresses

3

Welcome!

• About Me:

• Prof. @Wisconsin since August 2018

• Research focuses on accelerators/specialization/heterogeneous
computers

• Some additional constraints during pandemic

• Course website:

• http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/

http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/

4

CS/ECE 752 Course Overview

5

Why Study Computer Architecture?

• Understand where computers are going

• Future capabilities drive the computing world

• Forced to think 5+ years into the future

• Exposure to high-level design

• Less about “design” than “what to design”

• Engineering, science, art

• Architects paint with broad strokes

• The best architects understand all the levels

• Devices, circuits, architecture, compilers, applications

• Understand hardware for software tuning

• Real-world impact

• No computer architecture → no computers!

• Get a job (design or research)

6

Some Course Goals

• Exposure to “big ideas” in computer architecture

• Pipelining, parallelism, caching, locality, abstraction, etc.

• Exposure to examples of good (and some bad) engineering

• Understanding computer performance and metrics

• Empirical evaluation

• Understanding quantitative data and experiments

• “Research” exposure

• Read research literature (i.e., papers)

• Research-quality software

• Course project

• Cutting edge proposals

7

Course Prerequisites

• Basic Computer Organization (e.g., CS/ECE 552)
• Logic: gates, Boolean functions, latches, memories

• Datapath: ALU, register file, muxes

• Control: single-cycle control, micro-code

• Caches & pipelining (will go into these in more detail here)

• Some familiarity with assembly language

• Hennessy & Patterson’s “Computer Organization and Design”

• Operating Systems (processes, threads, & virtual memory, e.g., CS 537)

• Significant programming experience
• Why? assignments require writing code to simulate hardware

• Not difficult if competent programmer; extremely difficult if not

• This class will have a gentle ramp, so don’t worry.

8

Course Components

• Reviews:
• ~15 research papers from literature, including classic and modern works

• You will write a short review, to be submitted over Canvas, for 1-2 papers per week.

• Homeworks:
• There will be ~5 homeworks during the semester

• Goals:

• Apply your knowledge to real-world architecture evaluation (e.g., gem5)

• Practice problems for exams

• Exams:
• Two electronic midterm exams, non-cumulative.

• No final exam.

• Project:
• Option 1: Literature survey (higher expectations).

• Option 2: Open ended project of your choice.

9

Paper Readings/Reviews

• Expected to complete the assigned readings before class

• Goal: actively participate in discussions

• Tempered somewhat this semester

• Reviews on (most) class days helps incentivize this.

• Reviews -- three short paragraphs: (max 3200 characters)

• summarize the problem/goal/intended contributions

• summarize the paper’s methods and results

• give your opinion of the paper (strengths, weaknesses)

• Scale:

• 3: Excellent, 2: Satisfactory, 1: Unsatisfactory, 0: No submission

• Rules:

• Submit on Canvas by 9AM the day of class

• Welcome to discuss readings on Piazza or ask questions before
class (I will monitor/participate)

10

Required Texts

• No required traditional textbook for this course.

• Required reading will include:

• Morgan Claypool Synthesis Lectures

• Published papers (available on campus network through ACM and
IEEE libraries).

• Also posted on Canvas.

• Optional Textbooks:

• John Shen and Mikko Lipasti, Modern Processor Design:
Fundamentals of Superscalar Processors, McGraw-Hill, 2005.

• John L. Hennessy and David A. Patterson, Computer Architecture:
A Quantitative Approach Morgan Kaufmann Publishers, Sixth
Edition.

11

Homeworks

• ~5 Homeworks during the first 2/3rds of the course.

• Should be done individually

• Intention behind homeworks:
• Practice problems for exams.

• Teach basics about simulation.

• Get experience in architecture analysis.

• Get everyone familiar with a set of tools, so that you can
cooperatively work together in the project later on…

• Not to cover all principles discussed in class.

• HW0: Introduction, posted already

• HW1: Do Parts 1 and 2 from “learning gem5” online
course. “http://learning.gem5.org/book/index.html”

12

Exams

• Electronic exams on Canvas
• Focusing on thinking more deeply about the questions, and put

together well thought-out responses.

• Emphasizes reasoning/argumentation over memorization.

• Exam Content:
• Will be similar to prior exams: mix of essays and problem solving.

• Topic fair game: anything discussed in class or in readings.

• Questions may be about a new aspect of a relevant subject.

• Exam Rules:
• You may use any paper/textbook resources

• You may not discuss with anyone about the questions, including in
person or on Piazza, etc.

• Advice:
• Practice exams from previous years available online now

• Two exams (no final), testing ~1/3 of material each

13

Project

• In lieu of final exam, we will have a course project.

• Start before the Exam2, but most of work can be done afterwards

• Work in teams of 2 (preferably not 1 or 3).

• Why Project?

• Give you a chance to put into practice some of the ideas

• Give you freedom to work on something you like

• Learn tools/approach that can be useful later

• What is a project? Options:

1. Literature survey

2. Open-ended: Propose a research idea and evaluate it using any
means (okay to combine with ongoing/concurrent work)

• Deliverables: report (+ source code if applicable)

• Report should be similar to research papers (but shorter)

• Guidelines online.

14

Grading

• Grade Breakdown:

• Reviews: 10%

• Homeworks: 20%

• Exams: 30% (15% each)

• Project: 40%

15

Logistics

• Canvas:

• Turning things in and reporting grades

• Webpage:
http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/

• Post homeworks, course schedule, project description, etc…

• Will post presentation pdfs on course schedule, but probably not
until just before or just after class

• Piazza:
(piazza.com/wisc/fall2020/fa20compsci752001/home)

• This link is on the course webpage

• Discussions & announcements

• You should all be enrolled already on Piazza

http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/
file:///C:/Users/Matt/Box/Teaching/CS752/Fall2020/Admin/piazza.com/wisc/fall2020/fa20compsci752001/home

16

Contact Me

• Email:
• sinclair@cs.wisc.edu

• Please put [CS752] in subject line

• Office Hours:
• Will be electronic

• Will also use BBColloborate Ultra

• Actual hours TBA – please fill out WhenIsGood poll by Friday

• See Piazza

mailto:sinclair@cs.wisc.edu

17

Announcements

• Advanced Topics for last 2 lectures – you decide!

• Vote on Piazza

• Poll closes on Friday, 9/11/20 at 11:59 PM Central

• Will update Course Schedule with readings and reviews afterwards

• Fill out WhenIsGood poll for my office hours

• See Piazza for link

• Closes on Friday, 9/4/20 at 11:59 PM Central

• Virtual Computer Architecture Seminar this semester

• See Piazza for details, but most are Tuesdays at 4 PM

18

Introduction

19

Warmup 1

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

• Which of these is faster?

Version 1 Version 2

source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/01-overview.pdf

20

Warmup 2

for (unsigned c = 0; c < n; ++c)
data[c] = std::rand() % 256;

//std::sort(data, data + n);

// BEGIN TIMER
for (int i = 0; i < 100000; ++i) {
for (int c = 0; c < n; ++c) {
if (data[c] >= 128)
sum += data[c]*2;

}
}
// END TIMER

for (unsigned c = 0; c < n; ++c)
data[c] = std::rand() % 256;

std::sort(data, data + n);

// BEGIN TIMER
for (int i = 0; i < 100000; ++i) {
for (int c = 0; c < n; ++c) {
if (data[c] >= 128)
sum += data[c]*2;

}
}
// END TIMER

• Which of these is faster?

Version 1 Version 2

source: stackoverflow.com/questions/11227809

21

What is computer architecture?

22

Example Architectures

23

Role of an Computer Architect?

Plans
Materials

Steel

Concrete

Brick

Wood

Glass

Goals

Function

Cost

Safety

Ease of Construction

Energy Efficiency

Fast Build Time

Aesthetics

Buildings

Houses

Offices

Apartments

Stadiums

Museums

Design

Construction

Components

Windows

Walls

Doors

Flooring

Water Pipes

Air Conditioners/Ducts

24

Role of a Computer Architect

“Technology”

Logic Gates

SRAM, DRAM Cells

Circuit Techniques

Packaging

NV Memory

Goals

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Computers

Desktops

Servers

Mobile Phones

Supercomputers

Game Consoles

Embedded

Plans
Design

“Components”

Pipeline Register

Functional Units

Multi-ported Memory

Network Router

Cache

Manufacturing

25

Analogy Breakdown

• Age of discipline
• 60 years (vs. five thousand years)

• Fungibility
• No intrinsic value to a particular instance (or aesthetic value)
• Don’t care where my program lives

• Durability
• Every two years you throw away your personal out-of-order multicore

chip and buy a new one.
• Compute devices will anyways become obsolete due to technology

• Manufacturing Tradeoffs
• Nth+1 chip costs ~$0

• Boot-strapping
• Computers design Computers (especially with ML)

26

Design Goals / Constraints

• Functional
• Needs to be correct

• And unlike software, difficult to update once deployed
• Security: Should provide guarantees to software

• Reliable
• Does it continue to perform correctly?
• Hard fault vs transient fault
• Space satellites vs desktop vs server reliability

• High performance
• Not just “Gigahertz” – truck vs sports car analogy

• Generality
• “Fast” is only meaningful in the context of a set of important tasks
• Impossible goal: fastest possible design for all programs

27

Design Goals / Constraints

• Low cost
• Per unit manufacturing cost (wafer cost)

• Cost of making first chip after design (mask cost)

• Design cost (huge design teams, why? Two reasons…)

• Low power/energy
• Energy in (battery life, cost of electricity)

• Energy out (cooling and related costs)

• Cyclic problem, very much a problem today

• Challenge: balancing the relative importance of these goals
• And the balance is constantly changing

• No goal is absolutely important at expense of all others

• Our focus: performance, only touch on cost, power, reliability

28

Constant Change: Technology
“Technology”

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Storage

Components

Applications/Domains

Desktop

Servers

Mobile Phones

Supercomputers

Game Consoles

Embedded

• Absolute improvement, different rates of change
• New application domains enabled by technology advances

Goals

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

29

Rapid Change

Exciting: perhaps the fastest moving field ... ever

Processors vs. cars

• 1985: processors = 1 MIPS, cars = 60 MPH

• 2000: processors = 500 MIPS, cars = 30,000 MPH?

30

Layers of Abstraction

• Architects need to understand computers at many levels

• Applications

• Operating Systems

• Compilers

• Instruction Set Architecture

• Microarchitecture

• Circuits

• Technology

• Good architects are “Jacks of most trades”

31

Layers of Abstraction

Applications

ISA: Hardware/

Software Interface

Microarchitecture

Technology

ComputeCo
nt

ro
l

add

ld

br

sub

+

ф

-

ld

Architects’

Domain

(Traditionally)

32

Instruction Set Architecture

• Hardware/Software interface
• Software impact

• support OS functions
• restartable instructions

• memory relocation and protection

• a good compiler target
• simple

• orthogonal

• Dense
• Improve memory performance

• Hardware impact

• admits efficient implementation
• across generations

• Allow/enable parallelism
• no ‘serial’ bottlenecks

• Abstraction without interpretation

OP R1 R2 R3 Imm

M3 R3 Imm2

M2 R2 Imm2M1 R1OP

33

Microarchitecture

• Emphasis is on overcoming
sequential nature of programs

• Deep pipelining
• Multiple issue
• Dynamic scheduling
• Branch prediction/speculation

• Up-the-stack
• Implement instruction set --

• constrained by the ISA
• Application behaviors make themselves

apparent in microarchitecture

• Down-the-stack
• Exploit circuit technology
• Be aware of physical constraints (power,

area, communication)
• Register-transfer-level (RTL) design

• Iterative process
• Generate proposed architecture
• Estimate cost
• Measure performance

A

B

C

IR

P
C

Regs

Instr.

Cache

34

System-Level Design

• Design at the level of processors,
memories, and interconnect

• More important to application
performance, cost, and power
than CPU design

• Feeds and speeds

• Constrained by IC pin count,
module pin count, and signaling
rates

• System balance

• For a particular application

• Driven by

• Performance/cost gains

• Available components (cost/perf)

• Technology constraints

400 MHz

Dual Issue

16Bytes x

200MHz

SW

P

I/O

M M M M

Net

Display

Disk

36

Layers of Abstraction

Applications

ISA: Hardware/

Software Interface

Microarchitecture

Technology

ComputeCo
nt

ro
l

add

ld

br

sub

+

ф

-

ld

Architects’

Domain

Major Driver

Going forward?

Major Driver

for 50+ years

Technology as a Driver

38

“Technology”

• Basic element
• Solid-state transistor (i.e., electrical switch)
• Building block of integrated circuits (ICs)

• What’s so great about ICs? Everything
+ High performance, high reliability, low cost, low power
+ Lever of mass production

• Several kinds of IC families
• SRAM/logic: optimized for speed (used for processors)
• DRAM: optimized for density, cost, power (used for memory)
• Flash: optimized for density, cost (used for storage)
• Increasing opportunities for integrating multiple technologies

• Chiplets and Die Stacking

• Non-transistor storage and inter-connection technologies
• Disk, ethernet, fiber optics, wireless

channel

source drain

gate

39

Moore’s Law -- 1965

40

AMD EPYC

ROME

2
0
1
9

235

240
Cerebras

41

Technology Trends

• Moore’s Law

• Continued (up until now, at least) transistor miniaturization

• Some technology-based ramifications

• Absolute improvements in density, speed, power, costs

• SRAM/logic: density: ~30% (annual), speed: ~20%

• DRAM: density: ~60%, speed: ~4%

• Disk: density: ~60%, speed: ~10% (non-transistor)

• Big improvements in flash memory and network bandwidth, too

• Changing quickly and with respect to each other!!

• Example: density increases faster than speed

• Trade-offs are constantly changing

• Re-evaluate/re-design for each technology generation

42

Technology Change Drives Everything

• Computers get 10x faster, smaller, cheaper every 5-10 years!

• A 10x quantitative change is qualitative change

• Plane is 10x faster than car, and fundamentally different travel mode

• New applications become self-sustaining market segments

• Examples: laptops, mobile phones, virtual/augmented reality,
autonomous vehicles, etc.

• Low-level improvements appear as discrete high-level jumps

• Capabilities cross thresholds, enabling new applications and uses

43

Revolution I: The Microprocessor

• Microprocessor revolution

• One significant technology threshold was crossed in 1970s

• Enough transistors (~25K) to put a 16-bit processor on one chip

• Huge performance advantages: fewer slow chip-crossings

• Even bigger cost advantages: one “stamped-out” component

• Microprocessors have allowed new market segments

• Desktops, CD/DVD players, laptops, game consoles, set-top boxes,
digital camera, mp3 players, GPS, mobile phones

• And replaced incumbents in existing segments

• Microprocessor-based system replaced
“mainframes”, “minicomputers”, etc.

44

First Microprocessor

• Intel 4004 (1971)

• Application: calculators

• Technology: 10000 nm

• 2300 transistors

• 13 mm2

• 108 KHz

• 12 Volts

• 4-bit data

• Single-cycle datapath

45

Revolution II: Implicit Parallelism

• Then to extract implicit instruction-level parallelism
• Hardware provides parallel resources, figures out how to use them
• Software is oblivious

• Initially using pipelining …
• Which also enabled increased clock frequency

• … caches …
• Which became necessary as processor clock frequency increased

• … and integrated floating-point
• Then deeper pipelines and branch speculation
• Then multiple instructions per cycle (superscalar)
• Then dynamic scheduling (out-of-order execution)

• We will talk about these things

46

Not-so-recent Microprocessors

• Intel Pentium4 (2003)
• Application: desktop/server

• Technology: 90nm (1/100x)

• 55M transistors (20,000x)

• 101 mm2 (10x)

• 3.4 GHz (10,000x)

• 1.2 Volts (1/10x)

• 32/64-bit data (16x)

• 22-stage pipelined datapath (22x)

• 3 instructions per cycle (superscalar)

• Two levels of on-chip cache

• data-parallel vector (SIMD) instructions, hyperthreading

• Pinnacle of single-core microprocessors

47

By the end of the course, this will make sense!

• Pentium 4 specifications:
• Technology:

• 55M transistors, 0.90 μm CMOS, 101 mm2, 3.4 GHz, 1.2 V

• Performance

• 1705 SPECint, 2200 SPECfp

• ISA

• X86+MMX/SSE/SSE2/SSE3 (X86 translated to RISC uops inside)

• Memory hierarchy

• 64KB 2-way insn trace cache, 16KB D$, 512KB–2MB L2

• MESI-protocol coherence controller, processor consistency

• Pipeline

• 22-stages, dynamic scheduling/load speculation, MIPS renaming

• 1K-entry BTB, 8Kb hybrid direction predictor, 16-entry RAS

• 2-way hyper-threading

48

49

Revolution III: Explicit Parallelism

• Support explicit data & thread level parallelism
• Hardware provides parallel resources, software specifies usage
• Why? diminishing returns on instruction-level-parallelism

• First using (subword) vector instructions…, Intel’s SSE
• One instruction does four parallel multiplies

• … and general support for multi-threaded programs
• Coherent caches, hardware synchronization primitives

• Then using support for multiple concurrent threads on chip
• First with single-core multi-threading, now with multi-core

50

“Modern” Multicore Processor

• Intel Core i7 (2009)
• Application: desktop/server
• Technology: 45nm (1/2x)

• 774M transistors (12x)
• 296 mm2 (3x)
• 3.2 GHz to 3.6 Ghz (~1x)
• 0.7 to 1.4 Volts (~1x)

• 128-bit data (2x)
• 14-stage pipelined datapath (0.5x)
• 4 instructions per cycle (~1x)
• Three levels of on-chip cache
• data-parallel vector (SIMD) instructions, hyperthreading
• Four-core multicore (4x)

51

General Purpose
6 Years Ago 2014

Intel Haswell

52

General Purpose
(2020)

Ice Lake

Intel Ice Lake

~20% Speedup

Now with more
Spectre bugs!

53

Revolution IV: Specialization

• Combine implicit/explicit parallelism with a focus on a
particular domain
• Scope can be very different: GPGPUs are quite broad, while

TPUs are not…

• Tradeoff the overheads of supporting “general purpose”
workloads for efficiency on a smaller set of workloads.

• But why is this happening now?
• Dark silicon – not all components of a chip can be kept active

simultaneously

54

Machine learning in Industry

Startup Funding (M)

GraphCore 300

Cambricon 200

Wave 200

SambaNova 150

Cerebras 112

Horizon Rob. 100 (for ml)

Habana 75

ThinCI 65

Groq 62

Mythic 55

ETA Compute 8

…

Google

TPU

GraphCore

Colossus

Cambricon

MLU-100

Microsoft

Brainwave

NVIDIA

T4

55

Specialization Spectrum

CPU
(“Ordinary” Apps)

Graphics Proc.

Unit (GPU)

Google TPU:

(Deep Learning)

Digital Signal

Proc. (DSP)

Filed Prog.

Gate Array

(FPGA)

General Purpose Application Specific

56

Layers of Abstraction

Applications

ISA: Hardware/

Software Interface

Microarchitecture

Technology

ComputeCo
nt

ro
l

add

ld

br

sub

+

ф

-

ld

Architects’

Domain

Major Driver

Going forward?

Major Driver

for 50+ years

Applications as a Driver

58

Applications Views

• Many ways to view distinction between application
settings:

• Deployment-centric view:

• Where the machine is deployed affects the set of applications

• Domain-centric view:

• Set applications from a similar background

• Property-centric view:

• Set of applications with different properties

59

Deployment Centric View

• Desktop: home office, multimedia, games
• Need: integer, memory bandwidth, integrated graphics/network?

• Examples: Intel Core 2, Core i7, AMD Athlon

• Mobile: laptops, mobile phones
• Need: low power, heat, integer performance, integrated wireless

• Laptops: Intel Core 2 Mobile, Atom, AMD Turion

• Smaller devices: ARM chips by Samsung and others, Intel Atom

• Over 1 billion ARM cores sold in 2006 (at least one per phone)

• Embedded: microcontrollers in automobiles, door knobs
• Need: low power, low cost

• Examples: ARM chips, dedicated digital signal processors (DSPs)

• Deeply Embedded: disposable “smart dust” sensors
• Need: extremely low power, extremely low cost

60

Domain-centric View

• Old Dichotomy:

• Scientific: weather prediction, genome sequencing

• First computing application domain: naval ballistics firing table

• Need: large memory, heavy-duty floating point

• Examples: CRAY T3E, IBM BlueGene

• Commercial: database/web serving, e-commerce

• Need: data movement, high memory + I/O bandwidth

• Examples: Sun Enterprise Server, AMD Opteron, Intel Xeon, IBM
Power 7

• Recently – finer grain domains:

• Deep learning, Digital Signal Processing, Graphics, Genomics,
Database Processing, Compression/Decompression

61

Property-centric View

C
o
n
tr

o
l

More regularity → Less dependences

Less dependences → Easier exploitation

(h/w or s/w)

Dimensions of

Application

“Regularity”

62

Control Regularity

• No Control (or non critical)

• Data-Independent

• Data-Dependent, Predictable

• Data-Dependent, Unpredictable

In
c
re

a
s
in

g
 “

Ir
re

g
u

la
ri

ty
”

for i
... = a[i]

for i
if(i%2)
... = a[i]

for i
if(age[i]>2)

... = a[i]

for i
if(age[i]>22)
... = a[i]

(also, indirect branches)

63

Memory Regularity

• Data dependence

• Alias freedom

• Locality

for i=0 to n
... = a[i]

while(node)
... = *node
node = node->next

for i=0 to n
... = a[i]

for i=0 to n ... =
a[index[i]]++

for i=0 to n
for j=0 to n
... = a[j]

for i=0 to n
for j=0 to n
... = a[i][j]

for i=0 to n
for j=0 to n
... = a[j][i]

Increasing “Irregularity”

Ponder this: why does low-locality introduce dependences?

spatial & temporal neitherjust spatial

64

Parallelism Regularity
• Types of Parallelism

• Instruction-level Parallelism (ILP): Nearby instructions running
together

• Memory-level Parallelism (MLP): Same as ILP, but specifically cache
misses.

• Thread-level Parallelism (TLP): Independent threads (at least to some
extent) running simultaneously.

• Task-level Parallelism: Same as above, but implies dependences.
• Data-level Parallelism (DLP): Do same thing to many pieces of data.

• Which is the most regular: (one perspective)
• DLP: more regular
• ILP: less regular
• TLP: least regular

• Dimensions of Regularity
• Granularity: Fine vs Coarse Grain
• Data-dependence: Static vs Dynamic

• Complexity Ahead:
• DLP implies ILP… (but not other way around)
• DLP implies TLP … (but not other way around)

65

Even lower-level properties…

• Instruction Locality
• Temporal:

• Do instructions repeat within some time?

• Loopy vs function-call code

• Spatial:

• Branch Density vs Computation

• Datatype Regularity?
• Integer vs Floating Point

• Small vs Large Bitwidth

• (Ratio of resources + conversion overheads)

• Probably many other important properties, depending on
the context and architecture…

66

A naïve property-based classification

CPU
(“Ordinary” Apps)

GPU

(Graphics, Data-proc.)

Google TPU:

(Deep Learning)

DSP (signal proc.)

+ Irregular

Control/Memory

+ Fine-grain Instruction

Level Parallelism

+Thread-level and Data-level

Parallelism

+Medium Control/Memory

+Extremely Regular

Data Parallelism

+Extreme Control/Memory

Regularity

+Fine-grain ILP

+Highly-regular Memory

67

Course Themes

Applications

ISA: Hardware/

Software Interface

Microarchitecture

Technology

ComputeCo
nt

ro
l

add

ld

br

sub

+

ф

-

ld

68

Layers of Abstraction

• Levels:
• Applications

• Operating Systems

• Compilers

• Instruction Set Architecture

• Microarchitecture

• Circuits

• Technology

• Goal: Make our CPU better at machine learning?

• What can we do at different levels?

