
UW Madison
Hill, Sohi,

Smith, Wood

Slide History/Attribution Diagram:

UPenn
Amir Roth,

Milo Martin

UW Madison
Hill, Sohi, Wood,

Sankaralingam, Sinclair Various Universities
Asanovic, Falsafi, Hoe, Lipasti,

Shen, Smith, Vijaykumar

UCLA
Nowatzki

CS/ECE 752:
Advanced Computer Architecture I

Prof. Matthew D. Sinclair

Pipelining

2

Announcements

• Advanced Topics Lectures Selected

• Readings and Reviews Posted

• HW1 Due Friday

• See Piazza for some help with some CSL (PATH) issues

3

Computer System Layers

Application

OS

Compiler

CPU/Memory Microarch.

Digital Circuits

Gates & Transistors

Instruction Set Architecture (ISA)

Instructions

Cycles

Program

Instruction

Time

Cycle

X

X

4

This Unit: Pipelining

• Basic Pipelining

• Single, in-order issue

• Clock rate vs. IPC

• Data Hazards

• Hardware: stalling and bypassing

• Software: pipeline scheduling

• Control Hazards

• Branch prediction

• Precise state

5

Datapath and Control

• Datapath: implements execute portion of fetch/exec. loop
• Functional units (ALUs), registers, memory interface

• Control: implements decode portion of fetch/execute loop
• Mux selectors, write enable signals regulate flow of data in datapath

• Part of decode involves translating insn opcode into control signals

PC I$
Register

File

s1 s2 d
D$

+

4

control

Disclaimer:
RISC datapath

6

Single-Cycle Datapath

• Single-cycle datapath: true “atomic” fetch/execute loop
• Fetch, decode, execute one complete instruction every cycle

+ Takes 1 cycle to execution any instruction by definition (“CPI” is 1)

– Long clock period: to accommodate slowest instruction

(worst-case delay through circuit, must wait this long every time)

PC I$
Register

File

s1 s2 d
D$

+

4

7

Multi-Cycle Datapath

• Multi-cycle datapath: attacks slow clock
• Fetch, decode, execute one complete insn over multiple cycles

• Allows insns to take different number of cycles (main point)

+ Opposite of single-cycle: short clock period (less “work” per cycle)

– Multiple cycles per instruction (higher “CPI”)

PC I$
Register

File

s1 s2 d
D$

+

4

DO
B

A

8

Single-cycle vs. Multi-cycle Performance

• Single-cycle
• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Multi-cycle has opposite performance split of single-cycle

+ Shorter clock period

– Higher CPI

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)

• Clock period = 11ns,

• Why is clock period 11ns and not 10ns?

• CPI = (20%*3)+(20%*5)+(60%*4) = 4

• Performance = 44ns/insn

9

Single-cycle vs. Multi-cycle

• Single-cycle datapath:
• Fetch, decode, execute one complete instruction every cycle

+ Low CPI: 1 by definition

– Long clock period: to accommodate slowest instruction

• Multi-cycle datapath: attacks slow clock
• Fetch, decode, execute one complete insn over multiple cycles

+ Short clock period

– High CPI

• Can we have both low CPI and short clock period?
• Not if datapath executes only one instruction at a time

• No good way to make a single instruction go faster

insn0.fetch, dec, exec

Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

10

Pipelining

• Important performance technique

• Improves instruction throughput rather instruction latency

• Begin with multi-cycle design

• When instruction advances from stage 1 to 2

• Allow next instruction to enter stage 1

• Form of parallelism: “insn-stage parallelism”

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

insn0.decinsn0.fetch

insn1.decinsn1.fetchMulti-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

11

Five Stage Pipeline Performance

• Pipelining: cut datapath into N stages (here 5)
• One insn in each stage in each cycle

+ Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)

+ Base CPI = 1: insn enters and leaves every cycle

– Actual CPI > 1: pipeline must often stall

• Individual insn latency increases (pipeline overhead), not the point

PC I$

Register

File
s1 s2 d D$

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

12

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not latched after ALU stage (why not?)

PC I$
Register

File

s1 s2 d
D$

+

4

O

B

IR

O

D

IR

PC

A

B

IR

PC

IR

13

Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback
• Nothing magical about the number 5 (Pentium 4 has 22 stages)

• Latches (pipeline registers) named by stages they separate
• PC, F/D, D/X, X/M, M/W

PC I$
Register

File

s1 s2 d
D$

+

4

PC

F/D D/X X/M M/W

O

B

IR

O

D

IR

PC

A

B

IR

PC

IR

14

More Terminology & Foreshadowing

• Scalar pipeline: one insn per stage per cycle

• Alternative: “superscalar” (later)

• In-order pipeline: insns enter execute stage in order

• Alternative: “out-of-order” (later)

• Pipeline depth: number of pipeline stages

• Nothing magical about five

• Contemporary high-performance cores have ~15 stage pipelines

• (even Intel atom, an in-order core, uses 16 stages)

15

Pipeline Control

• One single-cycle controller, but pipeline the control signals

PC I$
Register

File

s1 s2 d
D$

+

4

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

CTRL

xC

mC

wC

mC

wC

wC

23

Pipeline Diagram

• Pipeline diagram

• Cycles across, insns down

• Convention: X means ld r4,0(r5) finishes execute stage and

writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9
add r3,r2,r1 F D X M W
ld r4,0(r5) F D X M W
st r6,4(r7) F D X M W

24

Abstract Pipeline

• This is an integer pipeline

• Execution stages are X,M,W

regfile

D$

PC F/D D/X X/M M/W

I$

+

4

25

Floating Point Pipelines

• Usually also one
or more
floating-point
(FP) pipelines

• Separate FP
register file

I$

I-regfile

D$

+

4

F-regfile

E/

E

+

E

+’

E* E*’ E*’’

26

Pipeline Performance Calculation

• Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Pipelined

• Clock period = 12ns (50ns / 5 stages) + overheads

• Optimistic Model:

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

• Performance = 12ns/insn

• Realistic Model: (adds pipeline penalty)

• CPI = 1.5 (on average insn completes every 1.5 cycles)

• Performance = 18ns/insn

• Much higher performance than single-cycle or multi-cycle

29

Data Dependences, Pipeline
Hazards, and Bypassing

30

Dependences and Hazards

• Dependence: relationship between two insns
• Data: two insns use same storage location

• Control: one insn affects whether another executes at all

• Programs differ depending on data/control dependences

• Enforced by making older insn go before younger one

• Happens naturally in single-/multi-cycle designs

• But not in a pipeline

• Hazard: dependence & possibility of wrong insn order
• Effects of wrong insn order cannot be externally visible

• Hazards are a bad thing: stalls reduce performance

31

Managing a Pipeline

• Proper flow requires two pipeline operations
• Mess with latch write-enable and clear signals to achieve

• Operation I: stall
• Effect: stops some insns in their current stages

• Use: make younger insns wait for older ones to complete

• Implementation: de-assert write-enable

• Operation II: flush
• Effect: removes insns from current stages

• Use: see later

• Implementation: assert clear signals

• Both stall and flush must be propagated to younger insns

32

Structural Hazards

• Structural hazard: resource needed twice in one cycle

• Example: shared I/D$

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
st r6,0(r1) F D X M W

33

Fixing Structural Hazards

• Can fix structural hazards by stalling
• * = structural stall

• Q: which one to stall: ld or and?

• Always safe to stall younger instruction (here and)

• Fetch stall logic: (X/M.op == ld || X/M.op == st)

• But not always the best thing to do performance wise (?)

+ Low cost, simple

– Decreases IPC

• Upshot: better to avoid by design than to fix by stalling

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
and r6,r1,r2 * F D X M W

34

Avoiding Structural Hazards

• Pipeline the contended resource

+ No IPC degradation, low area, power overheads

• For multi-cycle resources (e.g., multiplier)

‒ Doesn’t help for single-cycle resources…

• Replicate the contended resource

+ No IPC degradation

– Increased area, power, latency (interconnect delay?)

• For cheap, divisible, or highly contended resources (e.g., I$/D$)

• Schedule pipeline to reduce structural hazards (RISC)

• Design ISA so insn uses a resource at most once

• Eliminate same insn hazards

• Always in same pipe stage (hazards between two of same insn)

• Reason why integer operations forced to go through M stage

• And always for one cycle

35

Data Hazards

• Real insn sequences pass values via registers/memory

• Three kinds of data dependences (where’s the fourth?)

add r2,r3➔r1

sub r1,r4➔r2

or r6,r3➔r1

Read-after-write (RAW)

True-dependence

add r2,r3➔r1

sub r5,r4➔r2

or r6,r3➔r1

Write-after-read (WAR)

Anti-dependence

add r2,r3➔r1

sub r1,r4➔r2

or r6,r3➔r1

Write-after-write (WAW)

Output-dependence

• Only one dependence matters between any two insns (RAW has
priority)

• Dependence is property of the program and ISA

• Data hazards: function of data dependences and pipeline

• Potential for executing dependent insns in wrong order

• Require both insns to be in pipeline (“in flight”) simultaneously

36

RAW

• Read-after-write (RAW)

add r2,r3➔r1

sub r1,r4➔r2

or r6,r3➔r1

• Problem: swap would mean sub uses wrong value for r1

• True: value flows through this dependence

• Using different output register for add doesn’t help

38

Stall Timing

• Stall Types:
• data stall,

• propagated stall

• D and W stages share regfile

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
sub r1,r4➔r2 F D* D* D X M W
add r5,r6➔r7 F* F* F D X M W

(assumes RF bypassing: 1st half W writes, 2nd half D reads 2 cycle stall. Also, see backup slides for more on
this.)

39

Reducing RAW Stalls with Bypassing

• Why wait until W stage? Data available after X or M stage
• Bypass (aka forward) data directly to input of X or M

• X → X: from beginning of M (X output) to input of X

• M → X: from beginning of W (M output) to input of X

• M → M: from beginning of W (M output) to data input of M

• ”full bypassing”:

• Two each of X → X, M → X (figure shows 1) + M → M =

+ Reduces stalls in a big way

– Additional wires and muxes may increase clock cycle

regfile

D$

D/X X/M M/W

45

Multi Cycle/Pipelined
Functional Units

50

Multiplier Write Port Structural Hazard

• What about…

• Two instructions trying to write register file in same cycle?

• Structural hazard!

• Must prevent:

• Solution: stall the offending instruction:

1 2 3 4 5 6 7 8 9

mul r3,r5➔r4 F D P0 P1 P2 P3 W

addi r1,1➔r6 F D X M W

add r6,r10➔r7 F D X M W

1 2 3 4 5 6 7 8 9

mul r3,r5➔r4 F D P0 P1 P2 P3 W

addi r1,1➔r6 F D X M W

add r6,r10➔r7 F D D* X M W

51

WAW Hazards

• Write-after-write (WAW)
add r2,r3➔r1

sub r1,r4➔r2

or r6,r3➔r1

• Artificial: no value flows through dependence
• Eliminate using different output register name for or

• Compiler effects
• Scheduling problem: reordering would leave wrong value in r1

• Later instruction reading r1 would get wrong value

• Pipeline effects

• Doesn’t affect in-order pipeline with single-cycle operations

• One reason for making ALU operations go through M stage

• Can happen with multi-cycle operations (e.g., FP or cache misses)

53

WAW and Precise Interrupts

54

Optimizing WAW Hazards

• What to do?
• Option I: stall younger instruction (addf) at writeback

+ Intuitive, simple

– Lower performance, cascading W structural hazards

• Option II: cancel older instruction (divf) writeback

+ No performance loss

– What if divf or stf cause an exception (e.g., /0, page fault)?

1 2 3 4 5 6 7 8 9 10
divf f0,f1➔f2 F D E/ E/ E/ E/ E/ W
stf f2➔(r1) F D d* d* d* X M W
addf f0,f1➔f2 F D E+ E+ W

55

Handling Interrupts/Exceptions

• How are interrupts/exceptions handled in a pipeline?

• Interrupt: external, e.g., timer, I/O device requests

• Exception: internal, e.g., /0, page fault, illegal instruction

• We care about restartable interrupts (e.g. stf page fault)

1 2 3 4 5 6 7 8 9 10
divf f0,f1➔f2 F D E/ E/ E/ E/ E/ W
stf f2➔(r1) F D D* D* D* X M W
addf f0,f1➔f2 F D E+ E+ W

• Von Neumann says

• “Insn execution should appear sequential and atomic”

• Insn X should complete before instruction X+1 should begin

+ Doesn’t physically have to be this way (e.g., pipeline)

• But be ready to restore to this state at a moments notice

• Called precise state or precise interrupts

56

Handling Interrupts

• In this situation
• Make it appear as if divf finished and stf, addf haven’t started

• Allow divf to writeback

• Flush stf and addf (so that’s what a flush is for)

• But addf has already written back

– Keep an “undo” register file? Complicated

– Force in-order writebacks? Slow

• Invoke exception handler

• Restart stf

1 2 3 4 5 6 7 8 9 10
divf f0,f1➔f2 F D E/ E/ E/ E/ E/ W
stf f2➔(r1) F D D* D* D* X M W
addf f0,f1➔f2 F D E+ E+ W

57

More Interrupt Nastiness

• What about two simultaneous in-flight interrupts

• Example: stf page fault, divf /0

• Interrupts must be handled in program order (stf first)

• Handler for stf must see program as if divf hasn’t started

• Must defer interrupts until writeback and force in-order writeback

• In general: interrupts are really nasty

• Some processors (Alpha) only implement precise integer interrupts

• Easier because fewer WAW scenarios

• Most floating-point interrupts are non-restartable anyway

• divf /0 → rescale computation to prevent underflow

• Typically doesn’t restart computation at excepting instruction

1 2 3 4 5 6 7 8 9 10
divf f0,f1➔f2 F D E/ E/ E/ E/ E/ W
stf f2➔(r1) F D D* D* D* X M W
divf f0,f4➔f2 F D E/ E/ E/ E/ E/ W

58

WAR Hazards

• Write-after-read (WAR)
add r2,r3➔r1

sub r5,r4➔r2

or r6,r3➔r1

• Compiler effects
• Scheduling problem: reordering would mean add uses wrong value

for r2

• Artificial: solve using different output register name for sub

• Pipeline effects
• Can’t happen in simple in-order pipeline

• Can happen with out-of-order execution

59

Memory Data Hazards

• So far, have seen/dealt with register dependences

• Dependences also exist through memory

st r2➔(r1)

ld (r1)➔r4

st r5➔(r1)

Read-after-write (RAW)

st r2➔(r1)

ld (r1)➔r4

st r5➔(r1)

Write-after-read (WAR)

st r2➔(r1)

ld (r1)➔r4

st r5➔(r1)

Write-after-write (WAW)

• But in an in-order pipeline like ours, they do not become hazards

• Memory read and write happen at the same stage

• Register read happens three stages earlier than register write

• In general: memory dependences more difficult than register

1 2 3 4 5 6 7 8 9 10
st r2➔(r1) F D X M W
ld (r1)➔r4 F D X M W

60

Control Dependences and Branch
Prediction

61

What About Branches?

• Control hazards options

1. Could just stall to wait for branch outcome (two-cycle penalty)

2. Fetch past branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

PC
Insn

Mem

Register

File

s1 s2 d

+

4

<<

2
F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S

X

62

Branch Recovery

• Branch recovery: what to do when branch is actually taken

• Insns that will be written into F/D and D/X are wrong

• Flush them, i.e., replace them with nops

+ They haven’t had written permanent state yet (regfile, DMem)

– Two cycle penalty for taken branches

PC
Insn

Mem

Register

File

s1 s2 d

+

4

<<

2
F/D D/X

X/M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S

X

63

Control Hazards

• Control hazards
• Control hazards indicated with F* (or not at all)

• Taken branch penalty is 2 cycles

• Back of the envelope calculation
• Branch: 20%, other: 80%,

• Say, 75% of branches are taken

• CPIBASE = 1

• CPIBASE+BRANCH = 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

– Worse with deeper pipelines (higher misprediction penalty)

1 2 3 4 5 6 7 8 9
addi r1,1➔r3 F D X M W
bnez r3,targ F D X M W
st r6➔[r7+4] F* F* F D X M W

64

ISA Branch Techniques

• Fast branch: resolves at D, not X

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is 1

– Must bypass into decode now, too e.g., cmplt, slt

– Complex tests still 2-cycle delay? Or just split into compare + branch?

• Delayed branch: branch that takes effect one insn later

• Insert insns that are independent of branch into “branch delay slot”

• Preferably from before branch (always helps then)

• But from after branch OK too

• As long as no undoable effects (e.g., a store)

• Upshot: short-sighted feature (e.g., MIPS regrets it)

– Not a big win in today’s pipelines

– Complicates interrupt handling

65

Big Idea: Speculation

• Speculation

• “Engagement in risky transactions on the chance of profit”

• Speculative execution

• Execute before all parameters known with certainty

• Correct speculation

+ Avoid stall, improve performance

• Incorrect speculation (mis-speculation)

– Must abort/flush/squash incorrect instructions

– Must undo incorrect changes (recover pre-speculation state)

The “game”: [%correct * gain] > [(1–%correct) * penalty]

66

Control Hazards: Control Speculation

• Deal with control hazards with control speculation
• Unknown parameter: are these the correct insns to execute next?

• Mechanics
• Guess branch target, start fetching at guessed position

• Execute branch to verify (check) guess

• Correct speculation? keep going

• Mis-speculation? Flush mis-speculated insns

• Don’t write registers or memory until prediction verified

• Speculation game for in-order 5 stage pipeline
• Gain = 2 cycles

• Penalty = 0 cycles

• No penalty → mis-speculation no worse than stalling

• %correct = branch prediction

• Static (compiler) ~85%, dynamic (hardware) >95%

• Not much better? Static has 3X mispredicts!

67

Control Speculation and Recovery

• Mis-speculation recovery: what to do on wrong guess

• Not too painful in an in-order pipeline

• Branch resolves in X

+ Younger insns (in F, D) haven’t changed permanent state

• Flush insns currently in F/D and D/X (i.e., replace with nops)

1 2 3 4 5 6 7 8 9
addi r1,1➔r3 F D X M W
bnez r3,targ F D X M W
st r6➔(r7+4) F D X M W

targ:add r4,r5➔r4 F D X M W

1 2 3 4 5 6 7 8 9
addi r1,1➔r3 F D X M W
bnez r3,targ F D X M W
st r6➔(r7+4) F D -- -- --

targ:add r4,r5➔r4 F -- -- -- --
targ:add r4,r5➔r4 F D X M W

Correct:

Recovery:

speculative

68

Dynamic Branch Prediction

• BP part I: target predictor (if taken)
• Applies to all control transfers

• Supplies target PC, tells if insn is a branch prior to decode

+ Easy

• BP part II: direction predictor
• Applies to conditional branches only

• Predicts taken/not-taken

– Harder (or at least more options)

regfile

DI

B

P

69

Branch Target Buffer (BTB)

• A small cache: address = PC, data = target-PC

• Hit? This is a control insn and it’s going to target-PC (if “taken”)

• Miss? Not a control insn, or one I have never seen before

• Partial data/tags: full tag not necessary, target-PC is just a guess

• Aliasing: tag match, but not actual match (OK for BTB)

• Insert into BTB when (taken) branch is resolved

• Pentium4 BTB: 2K entries, 4-way set-associative

[9:2] 1:0[31:10]

[13:2][19:10]

PC

= [9:2] 1:0[31:13] [13:2]

target-PCbranch?

[13:2][19:10]

PC Tag PC Target

70

Why Does a BTB Work?

• Because control insn targets are stable

• Direct means constant target, indirect means register target

+ Direct conditional branches?

+ Direct calls?

+ Direct unconditional jumps?

+ Indirect conditional branches? Not that useful→not widely supported

• Indirect calls? Two idioms:

+ Dynamically linked functions (DLLs)?

+ Dynamically dispatched (virtual) functions?

• Indirect unconditional jumps? Two idioms

– Switches? but these are rare

– Returns? but… we should know based on the program
where we are returning!

71

Return Address Stack (RAS)

• Return addresses are easy to predict without a BTB
• Hardware return address stack (RAS) tracks call sequence

• Calls push PC+4 onto RAS

• Prediction for returns is RAS[TOS]

• Q: how can you tell if an insn is a return before decoding it?

• A1: Add tags to make RAS a cache (have to check it…)

• A2: (Better) attach pre-decode bits to I$

• Written after first time insn executes

• Two useful bits: return?, conditional-branch?

I$

PC

BTBDIRP

RAS

+4

instruction next-PC

72

Branch Direction Prediction

• Direction predictor (DIRP)
• Map conditional-branch PC to taken/not-taken (T/N) decision
• Can be based on additional information

• Branch history table (BHT): simplest predictor
• PC indexes table of bits (0 = N, 1 = T), no tags
• Essentially: branch will go same way it went last time

• What about aliasing?
• Two PC with the same lower bits?
• No problem, just a prediction!

• Why: Individual conditional branches often biased or weakly
biased
• 90%+ one way or the other considered “biased”
• Why? Loop back edges, checking for uncommon conditions

T or NT

[9:2] 1:0[31:10]

T or NT

PC BHT

Prediction (taken

or not taken)

73

Branch History Table (BHT)

• Problem: inner loop branch below
for (i=0; i<100; ++i)

for (j=0; j<3; ++j)

// whatever

– Two “built-in” mis-predictions per inner
loop iteration

– Branch predictor “changes its mind too
quickly”

T
im

e

S
ta

te

P
re

d
ictio

n

O
u
tco

m
e
 Result?

1 N N T Wrong

2 T T T Correct

3 T T T Correct

4 T T N Wrong

5 N N T Wrong

6 T T T Correct

7 T T T Correct

8 T T N Wrong

9 N N T Wrong

10 T T T Correct

11 T T T Correct

12 T T N Wrong

T
im

e

S
ta

te

P
re

d
ictio

n

O
u
tco

m
e
 Result?

1 N N T Wrong

2 T T T Correct

3 T T T Correct

4 T T N Wrong

5 N N T Wrong

6 T T T Correct

7 T T T Correct

8 T T N Wrong

9 N N T Wrong

10 T T T Correct

11 T T T Correct

12 T T N Wrong

74

Two-Bit Saturating Counters (2bc)

• Two-bit saturating counters (2bc) [Smith 1981]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Strong not-taken, weak not-taken, weak taken, strong taken

01 not taken (n)

00 Not Taken (N)

10 taken (t)

11 Taken (T)

Taken

75

Two-Bit Saturating Counters (2bc)

• Two-bit saturating counters (2bc)
[Smith 1981]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Adds “hysteresis”

• Force predictor to mis-predict twice
before “changing its mind”

• One mispredict each loop execution
(rather than two)

+ Fixes this pathology (which is not
contrived, by the way)

• Works well for biased branches

• Works well if branch occasionally changes
bias

• Can we do even better?

T
im

e

S
ta

te

P
re

d
ictio

n

O
u
tco

m
e
 Result?

1 N N T Wrong

2 n N T Wrong

3 t T T Correct

4 T T N Wrong

5 t T T Correct

6 T T T Correct

7 T T T Correct

8 T T N Wrong

9 t T T Correct

10 T T T Correct

11 T T T Correct

12 T T N Wrong

0-3 (N,n,t,T)

[9:2] 1:0[31:10]

0-3 (N,n,t,T)

PC BHT

76

Two-level Predictor

T,N,T,T,T,N,T,T

[9:2] 1:0[31:10]

T,N,N,N,T,N,N,T

PC

History table

• Correlated (two-level) predictor [Patt 1991]

• Exploits observation that branch outcomes are correlated

• Branch history table stores past branches

0-3 (N,n,t,T)

0-3 (N,n,t,T)

Prediction Table

77

Correlated Predictor –
3 Bit History

Tim
e

“Pattern
”

State

P
red

ictio
n

O
u

tco
m

e Result?NNN NNT NTN NTT TNN TNT TTN TTT

1 NNN N N N N N N N N N T Wrong

2 NNT T N N N N N N N N T Wrong

3 NTT T T N N N N N N N T Wrong

4 TTT T T N T N N N N N N Correct

5 TTN T T N T N N N N N T Wrong

6 TNT T T N T N N T N N T Wrong

7 NTT T T N T N T T N T T Correct

8 TTT T T N T N T T N N N Correct

9 TTN T T N T N T T N T T Correct

10 TNT T T N T N T T N T T Correct

11 NTT T T N T N T T N T T Correct

12 TTT T T N T N T T N N N Correct

• Actual Pattern:

T,T,T,N,T,T,T,N,T
…

• Want:

• T,T,T -> N

• N,T,T -> T

• T,N,T -> T

• T,T,N -> T

for (i=0;i<100;i++)
for (j=0;j<3;j++)

// whatever

T,T,N

[9:2] 1:0[31:10]

N,N,N

PC
History table

0-1 (N,T)

0-1 (N,T)

Prediction Table

+ No mis-predictions after predictor
learns all the relevant patterns!

79

Correlated Predictor Design

• Design choice I: one global BHR or one per PC (local)?
• Each one captures different kinds of patterns

• Global captures local patterns for tight loop branches

• Design choice II: how many history bits (BHR size)?
• Tricky one

+ Given unlimited resources, longer BHRs are better, but…

– BHT utilization decreases

– Many history patterns are never seen

– Many branches are history independent (don’t care)

• PC xor BHR allows multiple PCs to dynamically share BHT

• BHR length < log2(BHT size)

– Predictor takes longer to train

• Typical length: 8–12

80

(m,n) Correlated Predictor

• Generalizing, an (m,n) predictor is:

• N = n-bit saturating counter

• 2n counters that can be indexed

• M = m-bit global history register

• 2m locations per PC (e.g., in BHT)

Branch History Register

…

Prediction

(Taken/

Not Taken)

m bits

n bits

2m-1

0

(last m dynamic branches,

shift left on each branch)

81

Branch Prediction Performance

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Branches predicted with 95% accuracy

• CPI = 1 + 0.20*0.05*2 = 1.02

• So are we done with branch prediction?

• No, not yet … penalties for out-of-order core are VERY
HIGH even with 5% mispredictions

82

Pipeline Performance Summary

• Base CPI is 1, but hazards increase it

• Nothing magical about a 5 stage pipeline

• Pentium4 has 22 stage pipeline

• Increasing pipeline depth

+ Increases clock frequency (that’s why companies used to do it)

– But decreases IPC

• Branch mis-prediction penalty becomes longer

• More stages between fetch and whenever branch computes

• Non-bypassed data hazard stalls become longer

• More stages between register read and write

• Ultimate metric is IPC * frequency

• At some point, CPI losses offset clock gains

84

Dynamic Pipeline Power

• Remember control-speculation game

• [2 cycles * %correct] – [0 cycles * (1–%correct)]

• No penalty → mis-speculation no worse than stalling

• This is a performance-only view

• From a power standpoint, mis-speculation is worse than stalling

• Power control-speculation game

• [0 nJ * %correct] – [X nJ * (1–%correct)]

• No benefit → correct speculation no better than stalling

• Not exactly, increased execution time increases static power

• How to balance the two?

85

Trends…

• Trend has been for deeper pipelines

• Intel example:

• 486: 5 stages (50+ gate delays / clock)

• Pentium: 7 stages

• Pentium II/III: 12 stages

• Pentium 4: 22 stages (10 gate delays / clock)

• 800 MHz Pentium III was faster than 1 GHz Pentium4

• Intel Core2: 14 stages, less than Pentium 4

• Nehalem (2008): 20-24 Stages

• Haswell (2013): 14-19 Stages

• Skylake (2017): 14-19 Stages

• Cooper Lake (2019): 14-19 Stages

86

Summary

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards

• Branch prediction

• Power techniques

• Dynamic power: speculation gating

• Static and dynamic power: razor latches

87

Hidden Bonus Slides

88

Research: Razor

• Razor [Uht, Ernst+]
• Identify pipeline stages with narrow signal margins (e.g., X)

• Add “Razor” X/M latch: relatches X/M input signals after safe delay

• Compare X/M latch with “safe” razor X/M latch, different?

• Flush F,D,X & M

• Restart M using X/M razor latch, restart F using D/X latch

+ Pipeline will not “break” → reduce VDD until flush rate too high

+ Alternatively: “over-clock” until flush rate too high

regfile

DI

B

P

==

89

When to Perform Branch Prediction?

• Option #1: During Decode
• Look at instruction opcode to determine branch instructions

• Can calculate next PC from instruction (for PC-relative branches)

– One cycle “mis-fetch” penalty even if branch predictor is correct

• Option #2: During Fetch?
• How do we do that?

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4,r5,r4 F D X M W

90

Hybrid Predictor

• Hybrid (tournament) predictor [McFarling 1993]

• Attacks correlated predictor BHT capacity problem

• Idea: combine two predictors

• Simple BHT predicts history independent branches

• Correlated predictor predicts only branches that need history

• Chooser assigns branches to one predictor or the other

• Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches

+ 90–95% accuracy

PC

BHR
B

H
T

B
H

T

c
h

o
o
s
e
r

91

Research: Perceptron Predictor

• Perceptron predictor [Jimenez]
• Attacks BHR size problem using machine learning approach

• BHT replaced by table of function coefficients Fi (signed)

• Predict taken if ∑(BHRi*Fi)> threshold

+ Table size #PC*|BHR|*|F| (can use long BHR: ~60 bits)

– Equivalent correlated predictor would be #PC*2|BHR|

• How does it learn? Update Fi when branch is taken

• BHRi == 1 ? Fi++ : Fi– –;

• “don’t care” Fi bits stay near 0, important Fi bits saturate

+ Hybrid BHT/perceptron accuracy: 95–98%

PC

BHR

F

∑ Fi*BHRi > thresh

92

Research: Speculation Gating

• Speculation gating [Manne+]

• Extend branch predictor to give prediction + confidence

• Speculate on high-confidence (mis-prediction unlikely) branches

• Stall (save energy) on low-confidence branches

• Confidence estimation

• What kind of hardware circuit estimates confidence?

• Hard in absolute sense, but easy relative to given threshold

• Counter-scheme similar to %miss threshold for cache resizing

• Example: assume 90% accuracy is high confidence

• PC-indexed table of confidence-estimation counters

• Correct prediction? table[PC]+=1 : table[PC]–=9;

• Prediction for PC is confident if table[PC] > 0;

93

Research: Runahead Execution

• In-order writebacks essentially imply stalls on D$ misses
• Can save power … or use idle time for performance

• Runahead execution [Dundas+ 97]
• Shadow regfile kept in sync with main regfile (write to both)

• D$ miss: continue executing using shadow regfile (disable stores)

• D$ miss returns: flush pipe and restart with stalled PC

+ Acts like a smart prefetch engine

+ Performs better as cache tmiss grows (relative to clock period)

regfile

DI

+

4

S-regfile

94

Example: Integer Multiplier

16x16 combinational multiplier

[Source: J. Hayes, Univ. of Michigan]

mi

mi+1 mi+2 mi+3

mi+4

mi+5

mi+6

mi+7

95

Dependences and Loops

• Data dependences in loops

• Intra-loop: within same iteration

• Inter-loop: across iterations

• Example: DAXPY (Double precision A X Plus Y)

for (i=0;i<100;i++)

Z[i]=A*X[i]+Y[i];

0: ldf f2,X(r1)

1: mulf f2,f0,f4

2: ldf f6,Y(r1)

3: addf f4,f6,f8

4: stf f8,Z(r1)

5: addi r1,8,r1

6: cmplti r1,800,r2

7: beq r2,Loop

• RAW intra: 0→1(f2), 1→3(f4),
2→3(f6), 3→4(f8), 5→6(r1), 6→7(r2)

• RAW inter: 5→0(r1), 5→2(r1),
5→4(r1), 5→5(r1)

• WAR intra: 0→5(r1), 2→5(r1), 4→5(r1)

• WAR inter: 1→0(f2), 3→1(f4),
3→2(f6), 4→3(f8), 6→5(r1), 7→6(r2)

• WAW intra: none

• WAW inter: 0→0(f2), 1→1(f4),
2→2(f6), 3→3(f8), 6→6(r2)

96

Why Does Every Insn Take 5 Cycles?

• Could/should we allow add to skip M and go to W? No

– It wouldn’t help: peak fetch still only 1 insn per cycle

– Structural hazards: imagine add follows lw

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

97

Simple Analytical Pipeline Model

• Let: insn execution require N stages, each takes tn time

• Single-cycle execution
• L1 (1-insn latency) = ∑tn
• T (throughput) = 1/L1

• LM (M-insn latency, where M>>1) = M*L1

• Now: N-stage pipeline
• L1+P = L1

• T+P = 1/max(tn) ≤ N/L1

• If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1

• LM+P = M*max(tn) ≥ M*L1/N

• S+P (speedup) = [M*L1 / (≥ M*L1/N)] = ≤ N

• Q: for arbitrarily high speedup, use arbitrarily high N?

98

N-stages != ∞ due to Pipeline Overhead

• Let: O be extra delay per pipeline stage

• Latch overhead: pipeline latches take time

• Clock/data skew

• Now: N-stage pipeline with overhead

• Assume max(tn) = L1/N

• L1+P+O = L1 + N*O

• T+P+O = 1/(L1/N + O) = 1/(1/T + O) ≤ T, ≤ T/O

• LM+P+O = M*L1/N + M*O = LM+P + M*O

• S+P+O = [M*L1 / (M*L1/N + M*O)] = ≤ N = S+P, ≤ L1/O

• O limits throughput and speedup → useful N

99

N-stages != due to Hazards

• Dependence: relationship that serializes two insns
• Data: two insns use the same value or storage location

• Control: one instruction affects whether another executes at all

• Maybe: two insns may have a dependence

• Hazard: dependence causes potential incorrect execution
• Possibility of using or corrupting data or execution flow

• Structural: two insns want to use same structure, one must wait

• Often fixed with stalls: insn stays in same stage for multiple cycles

• Let: H be average number of hazard stall cycles per instruction
• L1+P+H = L1+P (no hazards for one instruction)

• T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P

• LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P

• S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P

• H also limit throughput, speedup → useful N
• N→ H (more insns “in flight” → more dependences become hazards)

• Exact H depends on program, requires detailed simulation/model

100

Compiler Scheduling

• Compiler can schedule (move) insns to reduce stalls

• Basic pipeline scheduling: eliminate back-to-back load-use pairs

• Example code sequence: a = b + c; d = f – e;

• MIPS Notation:

• “ld r2,4(sp)” is “ld [sp+4]➔r2” “st r1, 0(sp)” is “st r1➔[sp+0]”

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

ld r5,16(sp)

ld r6,20(sp)

sub r5,r6,r4 //stall

st r4,12(sp)

After

ld r2,4(sp)

ld r3,8(sp)

ld r5,16(sp)

add r3,r2,r1 //no stall

ld r6,20(sp)

st r1,0(sp)

sub r5,r6,r4 //no stall

st r4,12(sp)

101

Compiler Scheduling Requires

• Large scheduling scope

• Independent instruction to put between load-use pairs

+ Original example: large scope, two independent computations

– This example: small scope, one computation

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

After

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

102

Compiler Scheduling Requires

• Enough registers

• To hold additional “live” values

• Example code contains 7 different values (including sp)

• Before: max 3 values live at any time → 3 registers enough

• After: max 4 values live → 3 registers not enough → WAR violations

Original

ld r2,4(sp)

ld r1,8(sp)

add r1,r2,r1 //stall

st r1,0(sp)

ld r2,16(sp)

ld r1,20(sp)

sub r2,r1,r1 //stall

st r1,12(sp)

Wrong!

ld r2,4(sp)

ld r1,8(sp)

ld r2,16(sp)

add r1,r2,r1 //WAR

ld r1,20(sp)

st r1,0(sp) //WAR

sub r2,r1,r1

st r1,12(sp)

103

Compiler Scheduling Requires

• Alias analysis

• Ability to tell whether load/store reference same memory locations

• Effectively, whether load/store can be rearranged

• Example code: easy, all loads/stores use same base register (sp)

• New example: can compiler tell that r8 = sp?

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

ld r5,0(r8)

ld r6,4(r8)

sub r5,r6,r4 //stall

st r4,8(r8)

Wrong(?)

ld r2,4(sp)

ld r3,8(sp)

ld r5,0(r8)

add r3,r2,r1

ld r6,4(r8)

st r1,0(sp)

sub r5,r6,r4

st r4,8(r8)

104

• Reverse stream analogy

• “Downstream”: earlier stages, younger insns

• “Upstream”: later stages, older insns

• Reverse? instruction stream fixed, pipeline flows over it

• Architects see instruction stream as fixed by program/compiler

105

Two Stall Timings (without bypassing)

• Depend on how D and W stages share regfile
• Each gets regfile for half a cycle

– 1st half D reads, 2nd half W writes 3 cycle stall

• d* = data stall, p* = propagated stall

+ 1st half W writes, 2nd half D reads 2 cycle stall

• How does the stall logic change here?

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
sub r1,r4➔r2 F d* d* d* D X M W
add r5,r6➔r7 p* p* p* F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
sub r1,r4➔r2 F d* d* D X M W
add r5,r6➔r7 p* p* F D X M W

