
Slide History/Attribution Diagram:

UW Madison
Hill, Sohi,

Smith, Wood

UPenn
Amir Roth,

Milo Martin

UW Madison
Hill, Sohi, Wood,

Sankaralingam, Sinclair Various Universities
Asanovic, Falsafi, Hoe, Lipasti,

Shen, Smith, Vijaykumar

UCLA
Nowatzki

CS/ECE 752:
Advanced Computer Architecture I

Prof. Matthew D. Sinclair

Multithreading

2

Forms of Parallelism

• Instruction-level Parallelism (ILP): Instructions which are
proximate within program order executing together.

• Memory-level Parallelism (MLP): Memory requests which
are proximate within program order overlapped.

• Thread-level Parallelism (TLP): Independent threads (only
explicit ordering) running simultaneously.

• Task-level Parallelism: Collection of asynchronous tasks,
not started/stopped together, data is shared loosely,
dynamically.

• Data-level Parallelism (DLP): All tasks are similar –
basically doing the same thing to multiple data items.

3

This Unit: Multithreading (MT)

• Why multithreading (MT)?

• Utilization vs. performance

• Three implementations

• Coarse-grained MT

• Fine-grained MT

• Simultaneous MT (SMT)

• MT for reliability

• Redundant multithreading

• Multithreading for performance

• Speculative multithreading

Application

OS

FirmwareCompiler

Memory

Digital Circuits

Gates & Transistors

CPU

4

Performance And Utilization

• Performance (IPC) important

• Utilization (actual IPC / peak IPC) important too, why?

• Hardware costs

• Scalability to many cores

• Even moderate superscalars (e.g., 4-way) not fully utilized

• Average sustained IPC: 1.5–2 → <50% utilization

• Mis-predicted branches

• Cache misses, especially L2

• Data dependences

5

Insight 1: Processors have waste…

© “Multithreading Architecture” Mario Nemirovsky, Dean M. Tullsen

• Horizontal Waste:

• Low Utilization due to fine-
grain dependences. (e.g.,
dependences between
arithmetic instructions)

• Vertical Waste:

• Low Utilization due to long-
latency dependences (e.g.,
cache or memory events)

6

Insight 2: programs have unique bottlenecks

• Possible bottlenecks: Memory Latency, Fetch, FP unit
bound, branch mispredictions, too many program
dependences…

regfile

D$

I$

B

P

ROB

C R

LSQload/store

store data

addr

load data

7

Multi-threading

• Single-threaded machine

• Only one thread at a time per CPU, context switch between them

• Multi-threading (MT)

• Improve utilization by multiplexing multiple threads on single CPU

• One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can

© “Multithreading Architecture” Mario Nemirovsky, Dean M. Tullsen

Question: Which

state absolutely

must be replicated

for MT to work?

8

Latency vs Throughput

• MT trades (single-thread) latency for throughput
– Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads

+ Improves utilization

• Example
• Thread A: individual latency=10s, latency with thread B=15s

• Thread B: individual latency=20s, latency with thread A=25s

• Sequential latency (first A then B or vice versa): 30s

• Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

+ But improves total latency by 5s

• Different workloads have different parallelism
• SpecFP has lots of ILP (can use an 8-wide machine)

• Server workloads have TLP (can use multiple threads)

9

MT Implementations: Similarities

• How do multiple threads share a single processor?
• Different sharing mechanisms for different kinds of structures

• Depend on what kind of state structure stores

• Persistent hard state (aka “context”): PC, registers
• Replicated

• No state: ALUs
• Dynamically shared

• Persistent soft state: caches, bpred
• Dynamically partitioned

• TLBs need ASIDs, caches/bpred tables don’t (and BTB?)

• Exception: ordered “soft” state (BHR, RAS) is replicated

• Transient state: pipeline latches, ROB, RS

10

MT Implementations: Differences

• Main question: thread scheduling policy

• When to switch from one thread to another?

• Related question: pipeline partitioning

• How exactly do threads share the pipeline itself?

• Choice depends on

• What kind of latencies (specifically, length) you want to tolerate

• How much single thread performance you are willing to sacrifice

• Three designs

• Coarse-grain multithreading (CGMT)

• Fine-grain multithreading (FGMT)

• Simultaneous multithreading (SMT)

11

The Standard Multithreading Picture

• Time evolution
of issue slots

• Color = thread
(white is idle)

CGMT FGMT SMT

Coarse Grain

Multithreading

Fine Grain

Multithreading

Simultaneous

Multithreading

12

Coarse-Grain Multithreading (CGMT)

• Thread scheduling policy:
• Designate a “preferred” thread (e.g., thread A)
• Switch to thread B on thread A L2 miss
• Switch back to A when A L2 miss returns

• Pipeline partitioning
• None, flush on switch

– Can’t tolerate latencies shorter than twice
pipeline depth

• Need short in-order pipeline for good performance

• Tradeoffs:
+ Sacrifices very little single thread performance

(does it though?)
– Tolerates only long latencies (e.g., L2 misses)

• Example: IBM Northstar/Pulsar (1998)
• Switches on L1 cache miss

• Very uncommon now – why?

L2

Miss

13

CGMT

• Baseline Machine

• Extensions for CGMT (red: thread B)

regfile

D$
I$

B

P

regfile

regfile

thread scheduler

L2 miss?

I$

B

P

D$

14

Fine-Grain Multithreading (FGMT)

• Thread scheduling policy

• Switch threads every cycle (round-robin), L2 miss or no

• Pipeline partitioning

• Dynamic, no flushing

• Length of pipeline doesn’t matter

• Tradeoffs:

– Sacrifices significant single thread performance

+ Tolerates all latencies (e.g., L2 misses, mispred. branches..)

– Need a lot of threads (reg files size, #ports same though)

• Extreme example: Denelcor HEP (1981-1985)
• So many threads (100+), it didn’t even need caches

• Failed commercially (slightly ahead of its time,
cost/performance)

• Semi-success: Sun Niagara (aka Ultrasparc T1)
• Four threads x Register windows → lots of registers

FGMT

Fine Grain

Multithreading

15

Fine-Grain Multithreading

• FGMT

• (Many) more threads

• Multiple threads in pipeline at once

• Do we assume that we always have multiple threads?

• If yes: Get rid of bypass (get rid of branch prediction?) –

• Use this to increase frequency or more cores?

• If no: Must keep bypass/bpred etc.

regfile

regfile

regfile

regfile

thread

scheduler

D$
I$

B

P

16

Simultaneous Multithreading (SMT)

• Motivation: Multithread an out-of-order machine?

• Don’t want to give up performance benefits

• Don’t want to give up natural tolerance of D$ (L1) miss latency

• Simultaneous multithreading (SMT)

• Thread scheduling policy

• Round-robin (just like FGMT)

• Pipeline partitioning

• Dynamic, hmmm…

• Tradeoffs:

+ Tolerates all latencies (e.g., L2 misses, mispredicted branches)

±Sacrifices some single thread performance

• Example: Pentium4 (hyper-threading): 5-way issue, 2
threads (and every design afterwards)

• Another example: Alpha 21464: 8-way issue, 4 threads

17

Simultaneous Multithreading (SMT)

• SMT

• Replicate map table, share physical register file. ROB?, LSQ?

D$
I$

B

P

map table

map tables

I$

B

P

D$

thread scheduler

Phys regfile

Phys regfile

18

Implementation Issues for SMT

• Good: OOO is a great fit for SMT…
• Issue logic doesn’t change (surprising?)

• Reason: Once you rename registers, no reason to further
distinguish threads in issue…

• Bad:
• Large map table and physical register file

• #map-table-entries = (#threads * #arch-regs)

• #phys-regs = (#threads * #arch-regs) + #in-flight insns

• Per-thread pipeline-flush

• Upshot: Probably less % increase to implement SMT on
OOO (compared to FGMT on in-order)

19

SMT Resource Partitioning

• How are ROB/LSQ, RS partitioned in SMT?

• Depends on what you want to achieve

• Static partitioning

• Divide ROB/LSQ, RS into T static equal-sized partitions

+ Ensures that low-IPC threads don’t starve high-IPC ones

• Low-IPC threads stall and occupy ROB/LSQ, RS slots

– Low utilization

• Dynamic partitioning

• Divide ROB/LSQ, RS into dynamically resizing partitions

• Let threads fight amongst themselves

+ High utilization

– Possible starvation

20

Control Speculation Contention

• Bad:

• Must share total state between multiple threads

• Fetch from multiple threads at the same time -> multiple contexts
for branch prediction in the same cycle.

• Good:

• Less need for control speculation?

• Speculate less far in each thread

• Get ILP from threads rather than large instruction window

• (contrast with FGMT+inorder – might not need it at all)

21

Fetch Multiple Lines? [Tullsen 1996]

• Which threads to fetch from

• RR.1.8: One thread fetches up to 8
instructions at a time

• RR.2.4 (RR.4.2): Two (four) threads
each statically getting four (two)
instructions at a time

• RR.2.8: Fetch for two threads fetches
up to 8 instructions

Spec 92 Benchmarks! :)

22

How would you decide which thread?

• Assume:

• “1.8” scheme

• Dynamic resource partitioning

• Considerations:

• How speculative is the thread? (avoid over-fetching unlikely thread)

• How much does it cost to fetch from a thread? (avoid fetching for a
thread that is blocked for too long)

23

Thread Selection [Tullsen 1996]

• Which thread to give priority?

• BRCOUNT: Least likely to be on a
wrong path, for least waste (counting
branch instructions in flight), favoring
those with the fewest branches.

• MISSCOUNT: priority to those threads
that have the fewest outstanding D
cache misses (don’t want clogger-
threads)

• ICOUNT: Thread with fewest
instructions in decode, rename, and the
instruction queues. (prevents clogging,
favors high ILP threads)

• IQPOSN: Priority to threads with
youngest instruction in IQ (poor man’s
ICOUNT – no counter per thread).

24

Handling Long Latency Loads

• Long-latency (L2/L3 miss)
loads are a problem in a
single-threaded processor

• Block instruction/scheduling
windows and cause the
processor to stall

• In SMT, a long-latency load
instruction can block the
window for ALL threads

• i.e. reduce the memory
latency tolerance benefits
of SMT

Following two slides courtesy of Multithreading Lecture by Onur Mutlu

Brown and Tullsen, “Handling Long-latency

Loads in a Simultaneous Multithreading

Processor,” MICRO 2001.

25

Proposed Solutions to Long Latency Loads

• Idea: Flush the thread that incurs an L2 cache miss

• Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001.

• Idea: Predict load miss on fetch and do not insert following instructions
from that thread into the scheduler

• El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency
in SMT Processors,” HPCA 2003.

• Idea: Partition the shared resources among threads so that a thread’s
long latency load does not affect another

• Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT
Processors,” PACT 2003.

• Idea: Predict if (and how much) a thread has MLP when it incurs a
cache miss; flush the thread after its MLP is exploited

• Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy
for SMT Processors,” HPCA 2007.

26

Hybrid Models

• Something in between:
Balanced MT [2004]?

• Some number of
simultaneous threads +
some number of coarse
grain threads.

• Simultaneous threads
hide fine-grain latencies

• Coarse grain threads get
swapped in to hide long
latencies.

• Drawbacks: OS sees
lots of threads…

© “Multithreading Architecture”

Mario Nemirovsky, Dean M. Tullsen

27

Why not MT: Cache interference?

• Irony: Reason for doing MT was to increase memory level
parallelism to hide accesses to memory, but…
• Drawback of having multiple threads is that the working set size is

sum over all threads -> more contention -> more misses

• Best case for SMT: Working set does not fit in caches
• MT increases memory-level parallelism (MLP)

• Helps most for big “server” workloads

• Working set of at least one thread fits in caches
• Where to threads come from?

• Single-program multiple threads (threads work together)

• Maybe same insns & data?! (less contention)

• Multi-programmed (random unrelated applications)

• Different instructions & data! (bad for threads with locality)

28

Energy Implications of MT

• Is MT (of any kind) energy efficient?

• Static energy?

• Didn’t add too much hardware, better than adding more cores

• Higher utilization, so can “turn off” machine quicker

• Seems to be yes…

• Dynamic energy?

• Again, not to many additional structures, only small overhead

• But additional cache pressure… so some debate here

• Overall probably a win for energy

29

MT for Reliability?
• Can multithreading help with reliability?

• Design bugs/manufacturing defects? No

• Gradual defects, e.g., thermal wear? No

• Transient errors? Yes

• Caused by cosmic rays (e.g., neutrons)

• Leads to transient changes in wires and state (e.g., 0/1)

• Background: lock-step execution (DMR, TMR…)

• Two processors run same program and same time

• Compare cycle-by-cycle; flush both and restart on mismatch

• Staggered redundant multithreading (SRT)

• Run two copies of program at a slight stagger

• Compare results, difference? Flush both copies and restart

– Significant performance overhead

• Other ways of doing this (e.g., DIVA – inorder checker at commit)

30

MT for Prefetching?

• Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

• Only need to distill pieces that lead to cache misses

• Speculative thread: Pre-executed program piece can be
considered a “thread”

• Speculative thread can be executed

• On a separate processor/core

• On a separate hardware thread context

• On the same thread context in idle cycles (during cache misses)

31

Helper Threading for Prefetching

• How to construct the speculative thread:

• Software based pruning and “spawn” instructions

• Hardware based pruning and “spawn” instructions

• Use the original program (no construction), but

• Execute it faster without stalling and correctness constraints

• Speculative thread

• Needs to discover misses before the main program

• Avoid waiting/stalling and/or compute less

• Maybe with some combination of: Branch prediction, value
prediction, only address generation computation

32

Generalized Thread-Based Pre-Execution

• Also works for branch
prediction as well

• Slice the program so that
only instructions critical
for a hard-to-predict
branch are executed on a
separate thread.

• E.g., “Execution-based
Prediction Using
Speculative Slices”, Zilles
and Sohi, ISCA 2001

33

SMT vs. CMP

• If you wanted to run multiple threads would you build a…

• Chip multiprocessor (CMP): multiple separate pipelines?

• A multithreaded processor (SMT): a single larger pipeline?

• Both will get you throughput on multiple threads

• CMP will be simpler, possibly faster clock

• SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP

• CMP is mainly a TLP engine

• Again, do both

• Sun’s Niagara (UltraSPARC T1)

• 8 processors, each with 4-threads (fine-grained threading)

• 1Ghz clock, in-order, short pipeline (6 stages)

• Designed for power-efficient “throughput computing”

34

Niagara

35

36

Each stage uses different thread

37

Highlights

• Bypass: Still implemented, in case <4 threads (not sure
about branch prediction, but I assume its there)

• Long latency operations cause thread switch (thread
becomes descheduled), e.g., divide or cache miss

• Speculative thread selection: still schedule a thread before
its known whether it has a cache miss (flush if wrong)

• What about Floating Point?

• These are too big for their multicore!

• Just use one FP(!) and time share it, just in case they need it. :)

• (But don’t run TensorFlow on this)

38

Is FGMT popular today in server context?

• Intuition: Massive parallelism in server context coming
from many independent requests (think webserver)

• But Out-of-order cores still king… why?

• Single core performance matters, even in context of server
machines

• Request latency is hugely important!

39

Multithreading Summary

• Latency vs. throughput

• Partitioning different processor resources

• Three multithreading variants

• Coarse-grain: no single-thread degradation, but long latencies only

• Fine-grain: other end of the trade-off

• Simultaneous: fine-grain with out-of-order

• Multithreading vs. chip multiprocessing

42

Research: Speculative Multithreading

• Speculative multithreading

• Use multiple threads/processors for ILP

• Speculatively parallelize sequential loops

• CMP processing elements (called PE) arranged in logical ring

• Compiler or hardware assigns iterations to consecutive PEs

• Hardware tracks logical order to detect mis-parallelization

• Techniques for doing this on non-loop code too

• Effectively chains ROBs of different processors into one big ROB

• Global commit “head” travels from one PE to the next

• Mis-speculation flushes entire PEs

• Also known as split-window or “Multiscalar”

• Not commercially available yet…
(Farewell, Sun Rock, we hardly knew ye)

