
CS/ECE 752

Fall 2024

Homework 5

Due 11 AM Central Time on Saturday, October 26th, 2024

NAME:

You should do this assignment on your own (i.e., including separate from Chegg, CourseHero,

ChatGPT, Gemmini, or any other similar tools), although you are encouraged to talk with

classmates electronically or on Piazza about any issues you may have encountered. The standard

late assignment policy applies: you may submit up to 1 day late with a 10% penalty.

What to Hand In

To submit your assignment:

1. Type up your answers to the following questions and submit one PDF named HW5-

<netID>.pdf on Canvas. If you prefer writing your answers by hand, that is fine, but please scan

your solutions and submit them on Canvas. Please make sure to put your name in the above

prompt of the first page of the PDF. If at all possible, please retain the format of the provided

PDF/Word document. I am going to grade this homework using Gradescope, which relies on

answers being in set places.

2. Moreover, you should also create and turn in an archive (.zip, .gz., or .tgz) with the following

files:

• For each of the 6 policies:

o The output log that contains the hit, miss, and access information, with the

appropriate replacement policy name appended to it:
▪ log-lfu.txt

▪ log-lru.txt

▪ log-plru.txt

▪ log-sc.txt

▪ log-srrip.txt

▪ log-brrip.txt

o The stats file (normally stats.txt) for each replacement policy, with the appropriate

replacement policy name appended to it:
▪ stats-lfu.txt

▪ stats-lru.txt

▪ stats-plru.txt

▪ stats-sc.txt

▪ stats-srrip.txt

▪ stats-brrip.txt

o The trace you create for the access pattern for each replacement policy, with the

appropriate replacement policy name appended to it:
▪ trace-lfu.py

▪ trace-lru.py

▪ trace-plru.py

▪ trace-sc.py

▪ trace-srrip.py

▪ trace-brrip.py

• The completed outer Python files needed to run the traces:
o run_replacement_policy.py

o test_replacement_policy_hw4.py

o cache_hierarchies.py

Total Points: 45 (21 points for files (1 point each), 24 points for report – 6 points

per policy)

In this assignment we will be building directly off of HW4 – where we examined how different

cache replacement policies behave on relatively small, simple traces. However, this time we are

going to learn how to use gem5 to test the exact same traces you did by hand last week!

Assumptions

The assumptions are the same as last week, although you will need to update the scripts (discussed

below) to model the system accordingly.

• We have a single level of cache, which is 512B, has 64B blocks, and is 4-way set

associative.

• You can assume the cache is PIPT and the translation has already been done for you (Note:

we will not discuss virtual vs. physical addressing before this assignment is due –

essentially PIPT means you can assume the provided addresses (below) are the addresses

the cache uses for accesses).

• In gem5 the method we will use for specifying addresses is going to be agnostic to

this.

• All addresses are 64-bits.

• All of the requests are loads.

• There are no other cores, caches, etc. in the system, so these are the only memory accesses

(i.e., no interleaved memory requests from another core).

• We are using standard hexadecimal/binary notation. So 0xABCD = (1010 1011 1100

1101)2

• The data values you load are not important.

Access Pattern

For all cache replacement policies, you will create the following sequence of accesses (you can

assume all bits that are not shown are 0):

 LD 0x0 // Access #0

 LD 0x81 // Access #1

 LD 0x100 // Access #2

 LD 0x188 // Access #3

 LD 0x4 // Access #4

 LD 0x200 // Access #5

 LD 0x18C // Access #6

 LD 0x108 // Access #7

 LD 0x380 // Access #8

 LD 0x8 // Access #9

Running Access Pattern in gem5

Given the above information and access pattern, create a trace that will be passed into gem5’s

traffic generator to simulate the LFU, LRU, PseudoLRU (Tree-PLRU), SecondChance, SRRIP,

and BRRIP replacement policies’ behavior in gem5 for the above access pattern. To do this, we’ll

need several pieces:

• Traffic Generator

• Trace to Input to the Traffic Generator

• Configuring the Cache

• How to Run in gem5

• How to Update gem5 to get victim information

• Output Information (Log)

In the following paragraphs we explain how to use each of these pieces.

Traffic Generator

Modeling an entire system with a CPU, caches, main memory, network, etc. just to model the

above minor cache access pattern is possible, but would be extremely complex and wasteful.

Luckily, gem5 has support for a special type of configuration: a traffic generator. At a high level,

the traffic generator works by modeling a system (essentially) with just a traffic generator, the

cache(s), and a backing main memory. Essentially, this means our system is extremely simple and

we can just pass accesses directly from the traffic generator into the caches to study their behavior

– exactly what we want for this assignment! Some basic information about gem5’s traffic

generator is available here, if you want to read more about it.

Trace to Input to the Traffic Generator

In order to generate a sequence of memory accesses to send directly to the cache, the traffic

generator requires some sort of input stimuli. Although there are multiple ways to design traffic

https://doxygen.gem5.org/develop/classTrafficGen.html

generators, in this assignment we’ll focus on one specific format where we specify a sequence of

linear memory accesses. This input trace is written in Python and consists of a number of parts

including lines that specify the addresses to access and when to access them, the trace must also

specify some additional information such as what replacement policy it should be using, when the

trace should exit/complete, a line in the trace to synchronize all accesses, and where the accesses

should come from. In gem5, all trace accesses should be done inside a python_generator

generator function.

Each line of cache accesses in this trace looks as follows:

 yield generator.createLinear(duration, startAddr, endAddr, accessSize,

minPeriod, maxPeriod, percentReads, dataLimit)

Where:

• duration: how long the memory access should take (in ticks). I recommend picking a

consistent number (e.g., 60000) for all of your accesses.

• startAddr: the base address your request starts with

• endAddr: the end address your request ends with. If end – base spans multiple cache lines,

this will generate multiple requests.

• accessSize: the size of the access in bytes

• minPeriod: if you want the request to repeat over a period of time, this specifies when

that period should start. I recommend you set minPeriod = maxPeriod for this assignment,

but make them a non-0 value.

• maxPeriod: if you want the request to repeat over a period of time, this specifies when

that period should end. I recommend you set minPeriod = maxPeriod for this assignment,

but make them a non-0 value.

• percentReads: an integer value [0,100], where 0 means all stores, and 100 means all

reads.

• dataLimit: the data limit (in bytes). This can essentially be ignored for this assignment

(i.e., set to 0).

An example of this (for the FIFO replacement policy) is:

tell gem5 what replacement policy this trace is using

from m5.objects.ReplacementPolicies import FIFORP as rp

define the traffic generator pattern

def python_generator(generator):

 # All generated linear memory accesses go here (each access)

 # happens after the previous one

 yield generator.createLinear(60000, 0, 63, 64, 30000, 30000, 100, 0)

 yield generator.createLinear(60000, 128, 191, 64, 30000, 30000, 100,

0)

 …

 # After all memory accesses, synchronize all accesses with this access

 yield generator.createLinear(30000, 0, 0, 0, 30000, 30000, 100, 0)

 # Tell the traffic generator to exit

 yield generator.createExit(0)

Configuring the Cache

Now that we have written our trace to access the various memory locations in the specified pattern,

we need to setup the surrounding scripts to configure gem5 in the desired manner to run our tests.

For all of these, we’ll take advantage of gem5’s integration for the traffic generator and

replacement policy tests with its test library (testlib) – this minimizes the amount of boilerplate

code we need to develop. To start with, in your clone of gem5 you should access

cache_hierarchies.py (specifically this line within that file:

https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/configs/cache_hierar

chies.py#L41). What a coincidence, the size and associativity are already set to what you need!

But if you wanted to model a system with a different cache size or associativity, this is where

you’d change it. Also, note that the Ruby memory subsystem in gem5 (which we are using for

this assignment) assumes 64B cache line sizes by default – this is relatively hardcoded into Ruby.

Moreover, you may have noticed that is using the “MIExample” coherence protocol – for this

assignment you can ignore this (we’ll discuss coherence later in the semester). However, for future

reference note that this assignment has only been tested with Ruby’s MI_Example coherence

protocol – even though Ruby has many other coherence protocols, none of them have been tested

with this traffic generator assignment.

How to Run Traffic Generator in gem5

Finally, we need to run our traces in gem5. To do this, there are a few steps:

1. First we need to update the testlib to run your traces. Download

test_replacement_policies_hw4.py (I have posted this file on Canvas, as well as at

/u/s/i/sinclair/public/html-

s/courses/cs752/fall2024/handouts/hw/hw4/test_replacement_policies_hw4.py if you are

logged into a CSL machine. You will need to place this file in

$GEM5_HEAD/tests/gem5/replacement_policies/ in order for things to work. Leave

everything in this file as is except for the “traces” array (which starts on line 64). You

will need to update the traces array to include the list of all traces you want the testlib to

run with your traffic generator.

a. Note that the traces array assumes relative paths, and the traces should be comma

separated and use quotes (e.g., “hw4/trace1.py”, “hw4/trace2.py”).

2. The test_replacement_policies_hw4.py script needs a wrapper script to run the

tests, which already exists:

https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/run_replace

ment_policy.py. As the name implies, the script is responsible for running our traffic

generator tests. It handles setting up the system with the traffic generator, the cache, and

main memory. You should not need to change it.

3. Next we need to compile gem5. Specifically, we need to compile gem5 for the

MI_Example protocol mentioned above. To do this:
a. cd $GEM5_HEAD

b. python3 `which scons` build/X86_MI_example/gem5.opt -j9

https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/configs/cache_hierarchies.py#L41
https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/configs/cache_hierarchies.py#L41
https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/run_replacement_policy.py
https://github.com/gem5/gem5/blob/stable/tests/gem5/replacement_policies/run_replacement_policy.py

4. Next we need to build and run the tests in the testlib:
a. cd $GEM5_HEAD/tests/

b. ./main.py run -vvv -j9 --length=very-long -t 240

gem5/replacement_policies

i. Note: this might take a long time the first time

ii. After the first time: to save time (avoid rebuilding gem5) you should run

this instead: ./main.py run -j9 -vvv --length=very-long --
skip-build -t 240 gem5/replacement_policies

How to Update gem5 to get victim information (optional, but highly useful)

When trying to understand which entries are getting evicted from a given replacement policy in

gem5, it is often useful to instrument gem5 to print additional information about the options and

what is being evicted. Fortunately, all gem5 replacement policies use the same format – their

getVictim() function is responsible for deciding which way to evict. Unfortunately, by default

these policies do not print anything out by default.

Thus, below I’m including an example of how to update the FIFO replacement policies’ getVictim

function to print out information about which victim’s it is considering (“Candidate …”) and which

victim it ultimately picks. Both of these added prints are highlighted in blue. While optional, I

encourage you to add similar prints to gem5 for other replacement policies to get more information

about what is being considered/evicted.

ReplaceableEntry*

FIFO::getVictim(const ReplacementCandidates& candidates) const

{

 // There must be at least one replacement candidate

 assert(candidates.size() > 0);

 // Visit all candidates to find victim

 ReplaceableEntry* victim = candidates[0];

 for (const auto& candidate : candidates) {

 // Update victim entry if necessary

 if (std::static_pointer_cast<FIFOReplData>(

 candidate->replacementData)->tickInserted <

 std::static_pointer_cast<FIFOReplData>(

 victim->replacementData)->tickInserted) {

 printf("Candidate TickInsert: %ld, Victim TickInsert: %ld\n",

std::static_pointer_cast<FIFOReplData>(candidate->replacementData)-

>tickInserted, std::static_pointer_cast<FIFOReplData>(victim-

>replacementData)->tickInserted);

 victim = candidate;

 }

 }

 printf("replacement: %s\n", victim->print().c_str());

 return victim;

}

All replacement policies you’ll use are located in this folder:

https://github.com/gem5/gem5/tree/stable/src/mem/cache/replacement_policies. Note that the

https://github.com/gem5/gem5/tree/stable/src/mem/cache/replacement_policies

changes you might need to make to add these prints to a different replacement policy may be

slightly different from the changes to the FIFO replacement policy.

Output Information (Log)

If you run with the above setup, you will get output (e.g., to stdout) that looks like this:

…

Test: test-replacement-policy-traces/<traceName>-NULL-x86_64-opt-

MI_example Passed

…

(if it says your trace fails, please post on Piazza)

All of these your trace tests will write themselves to $GEM5_HEAD/tests/gem5/testing-

results/SuiteUID\:test-replacement-policy-traces/.

Note: your path for the output files may differ slightly depending on the name of the folder you

use for the traces.

Follow the path specified by the output and you’ll see the following contents in the log file

(simout):

…

Global frequency set at 1000000000000 ticks per second

Beginning simulation!

 74000: system.cache_hierarchy.ruby_system.controllers.sequencer:

Cache miss at [0x0, line 0x0]

 134000: system.cache_hierarchy.ruby_system.controllers.sequencer:

Cache miss at [0x80, line 0x80]

…

You should capture this log file as specified above in the hand-in information. Note how the

addresses here match with the above sample for the FIFO trace. For the address in the brackets,

the format is: [wordAddress, line lineAddress]. Moreover, note that the prints here tell you if an

access hits or misses. Finally, if you check the resultant stats.txt file, you should also see the

cache hits and misses there match the prints you see in the above output in simout.

What You Need to Do in gem5

Given all of this, you should write the trace(s) to pass the aforementioned memory access pattern into the

above ecosystem for each replacement policy (LFU, LRU, TreePLRU, SecondChance, SRRIP, and

BRRIP), then compare the results of gem5 (e.g., hits and misses) to those from HW4. For each policy

answer the following questions in your report:

• How many hits and misses did the replacement policy get for this access pattern in HW4?

• How many hits and misses did the replacement policy get for this access pattern in gem5?

• If they don’t match, where do they diverge?

Hint: for RRIP, gem5 uses a single implementation of SRRIP and BRRIP. You will need to change the

threshold that is passed into this class to properly model BRRIP per the HW4 specifications.

LFU

• How many hits and misses did LFU get for this access pattern in HW4?

• How many hits and misses did LFU get for this access pattern in gem5?

• If they don’t match, where do they diverge?

LRU

• How many hits and misses did LRU get for this access pattern in HW4?

• How many hits and misses did LRU get for this access pattern in gem5?

• If they don’t match, where do they diverge?

Tree PLRU

• How many hits and misses did PLRU get for this access pattern in HW4?

• How many hits and misses did PLRU get for this access pattern in gem5?

• If they don’t match, where do they diverge?

Second Chance

• How many hits and misses did Second Chance get for this access pattern in HW4?

• How many hits and misses did Second Chance get for this access pattern in gem5?

• If they don’t match, where do they diverge?

SRRIP

• How many hits and misses did SRRIP get for this access pattern in HW4?

• How many hits and misses did SRRIP get for this access pattern in gem5?

• If they don’t match, where do they diverge?

BRRIP

• How many hits and misses did BRRIP get for this access pattern in HW4?

• How many hits and misses did BRRIP get for this access pattern in gem5?

• If they don’t match, where do they diverge?

