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LARGE SCALE 

COMPUTING
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What is 

large-scale computing?

larger than ‘desktop’
(in memory, data, processors)
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Problem:

running many 

computations

takes a long time
(running on one processor)
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So how do you 

speed things up?
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Break up the work!

Use more processors! (parallelize)

n processors
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n processors

High throughput computing
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n processors

High performance computing
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An HTC Analogy

11
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HTC and the World’s Largest Cake

12
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HTC Examples

13

text analysis (most genomics …)
parameter sweeps

statistical model optimization

(MCMC, numerical methods, etc.)

multi-start simulations

(multi-)image and 

sample analysis
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HIGH THROUGHPUT 

COMPUTING
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High Throughput Examples

• Test many parameter combinations

• Analyze multiple images or datasets

• Do a replicate/randomized analysis

• Align genome/RNA sequence data
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The Philosophy of HTC

• Break work into many ‘smaller’ jobs

• single or few CPUs, short run times, smaller 
input and output per job

• Run on as many processors as possible

• smaller and shorter jobs are best

• take dependencies with you (like R)

• Automate as much as you can

• black box programs that use various input files

• numbered files

• Scale up gradually
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CENTER FOR HIGH 

THROUGHPUT COMPUTING



18

ti
m

e

n processors

High throughput computing
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WHAT WE NEED

Lots of computers, to run multiple 

independent computations
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CHTC Services

Center for High Throughput Computing, est. 2006

• Large-scale, campus-shared computing systems
• high-throughput computing (HTC) and 

high-performance computing (HPC) systems

• all standard services 
provided free-of-charge

• hardware buy-in options 

• support and training for 

using our systems

• proposal assistance

• chtc.cs.wisc.edu
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CHTC

time limit: <72 hrs/job

10,000+ CPU hrs/day

S

CHTC Accessible Computing
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UW Grid
up to ~8 hrs/job

~20,000 CPU hrs/day

CHTC
<72 hrs/job

10,000 hrs/day

S

CHTC Accessible Computing
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Open Science Grid
up to ~4 hrs/job

~200,000 CPU hrs/day

UW Grid
up to ~8 hrs/job

~20,000 CPU hrs/day

CHTC
<72 hrs/job

10,000 hrs/day

S

CHTC Accessible Computing
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Researchers who use the CHTC are located all over campus (red buildings)

http://chtc.cs.wisc.edu

Jul'15-
Jun'16

Jul'16-
Jun'17

Jul'17-
Jun'18

Quick Facts

325 383 408 Million Hours Served

205 255 287 Research Projects
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Researchers who use the CHTC are located all over campus (red buildings)

http://chtc.cs.wisc.edu

Jul'15-
Jun'16

Jul'16-
Jun'17

Jul'17-
Jun'18

Quick Facts

325 383 408 Million Hours Served

205 255 287 Research Projects

Individual researchers:

30 years of computing 
per day
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What else?

• Software

• We can support most unlicensed/open source 
software (R, Python, other projects)

• Can also support Matlab

• For this class, we’ve helped to put together a 
‘starter version’ of GPGPU-Sim.

• Data

• CHTC cannot *store* data

• However, you can work with up to several TB of 
data on our system
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How it works
• Job submission

• Instead of running programs on your own 

computer, log in and submit jobs

• Job = single independent calculation

• Can run hundreds of jobs at once (or more)

• HTCondor

• Computer program that controls and runs jobs 

on CHTC’s computers
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Getting Started
• Facilitators

• Help researchers get started

• Advise on best approach and resources for your 

research problem

• How do I get an account?

• Temporary accounts created for this class on 

learn.chtc.wisc.edu. 

• If you want to use CHTC beyond this class for 

research, fill out our account request form: 

http://chtc.cs.wisc.edu/form

http://chtc.cs.wisc.edu/form
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Take a second – login!

• Today we will use the 
learn.chtc.wisc.edu submit host.

• Your username has already been created and is 

your NetID.

• Your password is your NetID password.

• Take a second to login via SSH now!

• Whenever you’re off-campus, you’ll need to 

use the VPN to login. See 

https://it.wisc.edu/services/wiscvpn/

http://chtc.cs.wisc.edu/connecting.shtml
https://it.wisc.edu/services/wiscvpn/
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RUNNING A JOB ON CHTC’S 

HIGH THROUGHPUT SYSTEM 

WITH HTCONDOR
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How It Works (in CHTC)

• Submit jobs to a queue (on a submit server)

• HTCondor schedules them to run on 

computers that belong to CHTC (execute 

servers)

submit
execute

execute

execute
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HTCONDOR

What is HTCondor?

• Software that schedules and runs 

computing tasks on computers
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Job Example

• Consider an imaginary program called 
“compare_states”, which compares two 

data files and produces a single output file.

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out
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Submit File

• List your 
executable and 
any arguments it 
takes.

• Arguments are  
any options 
passed to the 
executable from 
the command line.

compare_

states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• Indicate your 

input files.

wi.dat

us.dat

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• HTCondor will 

transfer back 

all new and 

changed files 

(usually output) 

from the job.

wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• log: file 

created by 

HTCondor to 

track job 

progress

• output/erro

r: captures 

stdout and 

stderr

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• Request the 
appropriate 
resources for 
your job to 
run.

•queue: 
keyword 
indicating 
“create a 
job.”

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submitting and Monitoring

• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use: 

condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER  BATCH_NAME            SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS

alice ID: 128               5/9  11:09 _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/current/condor_q.html
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More about condor_q

• By default condor_q shows:

• user’s job only (as of 8.6)

• jobs summarized in “batches” (as of 8.6)

• Constrain with username, ClusterId or 

full JobId, which will be denoted          

[U/C/J] in the following slides
$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/17 11:35:54

OWNER  BATCH_NAME            SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS

alice ID: 128               5/9  11:09 _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId
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More about condor_q

• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the 

following slides to see extra detail about 

what is happening with a job

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended
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Job Idle

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node
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Job Starts

compare_states

wi.dat

us.dat

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 <  0    0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node

(execute_dir)/

Execute Node
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Job Running

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER       SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:01:08 R  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

Execute Node
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Job Completes

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

stderr

stdout

wi.dat.out

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128          alice 5/9  11:09   0+00:02:02 >  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node
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Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

wi.dat.out

Submit Node
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TRY IT OUT
https://github.com/bbockelm/gpgpu-sim_htcondor

https://github.com/bbockelm/gpgpu-sim_htcondor
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Submitting Multiple Jobs

Replacing 

single job 

inputs

with a 

variable of 

choice

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states

arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...
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multiple 

“queue” 

statements

matching ... 

pattern

in ... list

from ... file

Possible Queue Statements

infile = wi.dat

queue 1

infile = ca.dat

queue 1

infile = ia.dat

queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

Not Recommended

state_list.txt

Recommended
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USER EXPECTATIONS
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Be responsible!  

• These resources are shared and you get to 

use them for free -- be a good citizen.  

• Ask questions if you aren’t sure about 

something.  

• Don’t run programs directly on the submit 

server.

• Data files should be small.  Talk to us if you 

want to submit jobs with big (> 1GB) of 

data.
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Resource Request

• Jobs are nearly always using a part of a 

computer, not the whole thing

• Very important to request appropriate 

resources (memory, cpus, disk) for a job

whole 

computer

your request
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Resource Assumptions

• Even if your system has default CPU, 

memory and disk requests, these may be too 

small!

• Important to run test jobs and use the log file 

to request the right amount of resources: 

• requesting too little: causes problems for your and 

other jobs; jobs might by held by HTCondor

• requesting too much: jobs will match to fewer 

“slots”
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Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: 

<128.104.101.92&sock=6423_b881_3>

...

001 (128.000.000) 05/09 11:10:46 Job executing on host: 

<128.104.101.128:9618&sock=5053_3126_3>

...

006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1  - MemoryUsage of job (MB)

220  - ResidentSetSize of job (KB)

...

005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00  - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Total Local Usage

0  - Run Bytes Sent By Job

33  - Run Bytes Received By Job

0  - Total Bytes Sent By Job

33  - Total Bytes Received By Job

Partitionable Resources :    Usage  Request Allocated

Cpus                 :                 1         1

Disk (KB)            :       14    20480  17203728

Memory (MB)          :        1       20        20
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TESTING IS KEY!

ALWAYS run test jobs before 

submitting many jobs at once.  
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Getting Help

• Christina Koch and Lauren Michael work for CHTC 
as Research Computing Facilitators.  

• It’s the facilitator’s job to answer questions and help 
people get started with computing at CHTC.

• General CHTC questions:
• Email us!  chtc@cs.wisc.edu

• Or come to office hours in the WID: 
• Tues/Thurs, 3:00 - 4:30

• Wed, 9:30 - 11:30

• http://chtc.cs.wisc.edu/get-help

• Questions about today’s homework?  Easiest to 
start off with contacting Prof. Sinclair or attend 
office hours.

mailto:chtc@cs.wisc.edu
http://chtc.cs.wisc.edu/get-help
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NEXT STEPS
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Building up a workflow

• Try to get ONE job running

• Follow steps outlined in the git repository.

• Troubleshoot

• Check memory/disk requirements

• Do a small scale test of 5-10 jobs

• Check memory + disk requirements *again*

• Run full-scale set of jobs
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Homework for Today

• Again, the GitHub repository for a few 
simple tutorials is at 
https://github.com/bbockelm/gpgpu-
sim_htcondor

• These have been tested on learn.chtc.wisc.edu; 
please do your class work there for now.

• If you want to continue growing your use of 
CHTC after this class, we will allocate your 
account onto a larger machine.

• HW2 is posted on the class website.

https://github.com/bbockelm/gpgpu-sim_htcondor

