
1

HIGH-THROUGHPUT COMPUTING

AND YOUR RESEARCH

Brian Bockelman, Associate Scientist

Morgridge Institute for Research

October 17, 2019
Based on slides from Christina Koch, CHTC

4

LARGE SCALE

COMPUTING

5

What is

large-scale computing?

larger than ‘desktop’
(in memory, data, processors)

6

Problem:

running many

computations

takes a long time
(running on one processor)

ti
m

e

7

ti
m

e

So how do you

speed things up?

8

ti
m

e
Break up the work!

Use more processors! (parallelize)

n processors

9

ti
m

e

n processors

High throughput computing

10

ti
m

e

n processors

High performance computing

11

An HTC Analogy

11

12

HTC and the World’s Largest Cake

12

13

HTC Examples

13

text analysis (most genomics …)
parameter sweeps

statistical model optimization

(MCMC, numerical methods, etc.)

multi-start simulations

(multi-)image and

sample analysis

14

HIGH THROUGHPUT

COMPUTING

15

High Throughput Examples

• Test many parameter combinations

• Analyze multiple images or datasets

• Do a replicate/randomized analysis

• Align genome/RNA sequence data

16

The Philosophy of HTC

• Break work into many ‘smaller’ jobs

• single or few CPUs, short run times, smaller
input and output per job

• Run on as many processors as possible

• smaller and shorter jobs are best

• take dependencies with you (like R)

• Automate as much as you can

• black box programs that use various input files

• numbered files

• Scale up gradually

17

CENTER FOR HIGH

THROUGHPUT COMPUTING

18

ti
m

e

n processors

High throughput computing

19

WHAT WE NEED

Lots of computers, to run multiple

independent computations

20

CHTC Services

Center for High Throughput Computing, est. 2006

• Large-scale, campus-shared computing systems
• high-throughput computing (HTC) and

high-performance computing (HPC) systems

• all standard services
provided free-of-charge

• hardware buy-in options

• support and training for

using our systems

• proposal assistance

• chtc.cs.wisc.edu

21

CHTC

time limit: <72 hrs/job

10,000+ CPU hrs/day

S

CHTC Accessible Computing

22

UW Grid
up to ~8 hrs/job

~20,000 CPU hrs/day

CHTC
<72 hrs/job

10,000 hrs/day

S

CHTC Accessible Computing

23

Open Science Grid
up to ~4 hrs/job

~200,000 CPU hrs/day

UW Grid
up to ~8 hrs/job

~20,000 CPU hrs/day

CHTC
<72 hrs/job

10,000 hrs/day

S

CHTC Accessible Computing

24
Researchers who use the CHTC are located all over campus (red buildings)

http://chtc.cs.wisc.edu

Jul'15-
Jun'16

Jul'16-
Jun'17

Jul'17-
Jun'18

Quick Facts

325 383 408 Million Hours Served

205 255 287 Research Projects

25
Researchers who use the CHTC are located all over campus (red buildings)

http://chtc.cs.wisc.edu

Jul'15-
Jun'16

Jul'16-
Jun'17

Jul'17-
Jun'18

Quick Facts

325 383 408 Million Hours Served

205 255 287 Research Projects

Individual researchers:

30 years of computing
per day

26

What else?

• Software

• We can support most unlicensed/open source
software (R, Python, other projects)

• Can also support Matlab

• For this class, we’ve helped to put together a
‘starter version’ of GPGPU-Sim.

• Data

• CHTC cannot *store* data

• However, you can work with up to several TB of
data on our system

27

How it works
• Job submission

• Instead of running programs on your own

computer, log in and submit jobs

• Job = single independent calculation

• Can run hundreds of jobs at once (or more)

• HTCondor

• Computer program that controls and runs jobs

on CHTC’s computers

28

Getting Started
• Facilitators

• Help researchers get started

• Advise on best approach and resources for your

research problem

• How do I get an account?

• Temporary accounts created for this class on

learn.chtc.wisc.edu.

• If you want to use CHTC beyond this class for

research, fill out our account request form:

http://chtc.cs.wisc.edu/form

http://chtc.cs.wisc.edu/form

29

Take a second – login!

• Today we will use the
learn.chtc.wisc.edu submit host.

• Your username has already been created and is

your NetID.

• Your password is your NetID password.

• Take a second to login via SSH now!

• Whenever you’re off-campus, you’ll need to

use the VPN to login. See

https://it.wisc.edu/services/wiscvpn/

http://chtc.cs.wisc.edu/connecting.shtml
https://it.wisc.edu/services/wiscvpn/

30

RUNNING A JOB ON CHTC’S

HIGH THROUGHPUT SYSTEM

WITH HTCONDOR

31

How It Works (in CHTC)

• Submit jobs to a queue (on a submit server)

• HTCondor schedules them to run on

computers that belong to CHTC (execute

servers)

submit
execute

execute

execute

32

HTCONDOR

What is HTCondor?

• Software that schedules and runs

computing tasks on computers

33

Job Example

• Consider an imaginary program called
“compare_states”, which compares two

data files and produces a single output file.

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

34

Submit File

• List your
executable and
any arguments it
takes.

• Arguments are
any options
passed to the
executable from
the command line.

compare_

states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

35

Submit File

• Indicate your

input files.

wi.dat

us.dat

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

36

Submit File

• HTCondor will

transfer back

all new and

changed files

(usually output)

from the job.

wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

37

Submit File

• log: file

created by

HTCondor to

track job

progress

• output/erro

r: captures

stdout and

stderr

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

38

Submit File

• Request the
appropriate
resources for
your job to
run.

•queue:
keyword
indicating
“create a
job.”

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

39

Submitting and Monitoring

• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use:

condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice ID: 128 5/9 11:09 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/current/condor_q.html

40

More about condor_q

• By default condor_q shows:

• user’s job only (as of 8.6)

• jobs summarized in “batches” (as of 8.6)

• Constrain with username, ClusterId or

full JobId, which will be denoted

[U/C/J] in the following slides
$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/17 11:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice ID: 128 5/9 11:09 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId

41

More about condor_q

• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the

following slides to see extra detail about

what is happening with a job

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

42

Job Idle

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

43

Job Starts

compare_states

wi.dat

us.dat

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node

(execute_dir)/

Execute Node

44

Job Running

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

Execute Node

45

Job Completes

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

stderr

stdout

wi.dat.out

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

Submit Node

46

Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

wi.dat.out

Submit Node

47

TRY IT OUT
https://github.com/bbockelm/gpgpu-sim_htcondor

https://github.com/bbockelm/gpgpu-sim_htcondor

48

Submitting Multiple Jobs

Replacing

single job

inputs

with a

variable of

choice

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states

arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

49

multiple

“queue”

statements

matching ...

pattern

in ... list

from ... file

Possible Queue Statements

infile = wi.dat

queue 1

infile = ca.dat

queue 1

infile = ia.dat

queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

Not Recommended

state_list.txt

Recommended

50

USER EXPECTATIONS

51

Be responsible!

• These resources are shared and you get to

use them for free -- be a good citizen.

• Ask questions if you aren’t sure about

something.

• Don’t run programs directly on the submit

server.

• Data files should be small. Talk to us if you

want to submit jobs with big (> 1GB) of

data.

52

Resource Request

• Jobs are nearly always using a part of a

computer, not the whole thing

• Very important to request appropriate

resources (memory, cpus, disk) for a job

whole

computer

your request

53

Resource Assumptions

• Even if your system has default CPU,

memory and disk requests, these may be too

small!

• Important to run test jobs and use the log file

to request the right amount of resources:

• requesting too little: causes problems for your and

other jobs; jobs might by held by HTCondor

• requesting too much: jobs will match to fewer

“slots”

54

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host:

<128.104.101.92&sock=6423_b881_3>

...

001 (128.000.000) 05/09 11:10:46 Job executing on host:

<128.104.101.128:9618&sock=5053_3126_3>

...

006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)

220 - ResidentSetSize of job (KB)

...

005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job

33 - Run Bytes Received By Job

0 - Total Bytes Sent By Job

33 - Total Bytes Received By Job

Partitionable Resources : Usage Request Allocated

Cpus : 1 1

Disk (KB) : 14 20480 17203728

Memory (MB) : 1 20 20

55

TESTING IS KEY!

ALWAYS run test jobs before

submitting many jobs at once.

56

Getting Help

• Christina Koch and Lauren Michael work for CHTC
as Research Computing Facilitators.

• It’s the facilitator’s job to answer questions and help
people get started with computing at CHTC.

• General CHTC questions:
• Email us! chtc@cs.wisc.edu

• Or come to office hours in the WID:
• Tues/Thurs, 3:00 - 4:30

• Wed, 9:30 - 11:30

• http://chtc.cs.wisc.edu/get-help

• Questions about today’s homework? Easiest to
start off with contacting Prof. Sinclair or attend
office hours.

mailto:chtc@cs.wisc.edu
http://chtc.cs.wisc.edu/get-help

57

NEXT STEPS

58

Building up a workflow

• Try to get ONE job running

• Follow steps outlined in the git repository.

• Troubleshoot

• Check memory/disk requirements

• Do a small scale test of 5-10 jobs

• Check memory + disk requirements *again*

• Run full-scale set of jobs

59

Homework for Today

• Again, the GitHub repository for a few
simple tutorials is at
https://github.com/bbockelm/gpgpu-
sim_htcondor

• These have been tested on learn.chtc.wisc.edu;
please do your class work there for now.

• If you want to continue growing your use of
CHTC after this class, we will allocate your
account onto a larger machine.

• HW2 is posted on the class website.

https://github.com/bbockelm/gpgpu-sim_htcondor

