
CS 758: Advanced Topics in
Computer Architecture

Lecture #8: The GPU Memory System (Part 2)

Professor Matthew D. Sinclair

Backup of these slides were developed by Tim Rogers at the Purdue
University.

Slides enhanced by Matt Sinclair

1

In-Class Activity

• With a partner, work on the 3 problems for 5 minutes
• Problem 1: GPU MCM

• Problem 2: GPU MCM with scopes

• Problem 3: bugs with writing synchronization code on GPUs

• Then we’ll come together as a group and discuss

2

CPU Coherence: MESI

• Write miss: Get ownership, invalidate all sharers

• Read miss: Update sharers list

• Synchronization points are cheap

• BUT poor fit for GPUs: [Singh13, Hechtman14]
• Directory overhead, transient states, excessive traffic, indirection

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheObtain

ownership

Own Valid

Invalidate

all sharers

A
C

K

Dirty

// each thread
for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK

Valid

Complex coherence, simple consistency

Dir
V,CPU
O,GPU
O,GPU
V,GPU

3

Atomics Background
• Default: Data-race-free-0 (DRF0) [ISCA ‘90]

• Identify all races as synchronization accesses (C++: atomics)

• All atomics order data accesses

• Atomics order other atomics

Ensures SC semantics if no data races

4

// each thread
for i = 0:n
…
ADD R4, A[i], R1
ADD R5, B[i], R1
…

synch (atomic)

synch (atomic)

Atomics Background (Cont.)
• Default: Data-race-free-0 (DRF0) [ISCA ‘90]

• All atomics order data accesses

• Atomics order other atomics

Ensures SC semantics if no data races

• Data-race-free-1 (DRF1): unpaired atomics [TPDS ‘93]
+ Unpaired atomics do not order data accesses

• Atomics order other atomics

Ensures SC semantics if no data races

• Relaxed atomics [PLDI ‘08]
+ Do not order data or other atomics

But can violate SC and no formal specification

5

Traditional GPU Coherence

L2$
Bank

Interconnection n/w

GPU

L2$
Bank

CPU

CacheCacheValidDirty
Valid

Flush dirty

data

Invalidate

all data

// unique per thread
for i = start:end

LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST C[i], R3;

No data reuse or data sharing

Optimized for streaming, data parallel applications

Coarse-grained synchronization

Valid

Each thread accesses independent data (no races)

6

GPU Memory Consistency Model
• Active area of research

• Tightly tied in with coherence protocol

• Provides very weak guarantees
• Respect program order within a single thread
• Easy to design hardware
• Programmers add fences to provide extra guarantees

• Fence guarantee all previous accesses are visible before proceeding
• … usually

• Most GPUs use a scoped memory consistency model
• __threadfence_block – local synchronization (usually at L1)
• __threadfence – GPU global synchronization (usually at L2)
• __threadfence_system – CPU-GPU global synchronization (flush GPU)

7

GPU Coherence with DRF

• With data-race-free (DRF) memory model
• No data races; synchs must be explicitly distinguished

• Synchronization accesses (atomics) go to last level cache (LLC)

• Synchronization points are expensive, preclude reuse

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheValidDirty

Valid
Flush dirty

data

Invalidate

all data

// each thread
for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK

Simple but inefficient coherence, simple consistency
8

GPU Coherence with HRF

• New memory model: Heterogeneous-race-free (HRF) [ASPLOS ‘14]
• Adds scoped synchronization

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheValidDirty

Valid
Flush dirty

data

Invalidate

all data

// each thread
for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK global

global

9

GPU Coherence with HRF

• New memory model: Heterogeneous-race-free (HRF) [ASPLOS ‘14]
• Adds scoped synchronization

• No overhead for locally scoped synchronizations

• But higher programming complexity

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheDirty

Valid

// each thread
for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK global

global

local

local

Keep data

local

More efficient coherence, complex consistency
10

• With data-race-free (DRF) memory model
• No data races; synchs must be explicitly distinguished

• At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

• Synchronization accesses must go to last level cache (LLC)

• No overhead for locally scoped synchs

• But higher programming complexity

GPU Coherence with HRF

11

heterogeneous HRF
[ASPLOS ’14]

global

and their scopes

Global

heterogeneous

DeNovo Coherence with DRF

• Reuse dirty data across synch points – more data reuse

• Synchronization accesses can be performed at L1 – synch reuse

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheObtain

ownership

Invalidate

non-owned data
Dirty
Valid
Own

for i = r[tid]:r[tid+1]
LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK

Efficient coherence, simple consistency (except relaxed atomics)

3% area overhead vs. GPU Coherence + HRF

Dir
Reg
O,GPU

Only track 1

up-to-date copy

12

Additional Topics

• Extending Coherence across accelerators
• CCIX, ACE, Spandex, CXL,
• Challenge: Different accelerators have different coherence requirements

• E.g., different data widths

• Especially important as number of accelerators increases

• Multi-GPU/Multi-Chiplet Coherence
• Challenge: NUMA accesses (ala SMPs), page migration, partitioning
• Potentially can extend existing mechanisms

• DRFrlx [Sinclair ISCA ‘17]
• Extend MCM to provide sane semantics for relaxed atomics

• Timestamps
• Avoid traditional coherence overheads, but some bookkeeping/delay instead

13

Additional Topics (Cont.)

• Coherence Granularity
• HSC [Power MICRO ‘13] – large granularity for traditional GPGPU apps

• hUVM [Koukos TACO ‘16] – page granularity coherence
• Exploits traditional GPGPU apps nature

• Some relationship with subsequent work on ACE, CCIX, Spandex, etc.

• Coherent Scratchpads
• Best of both worlds!

• Remote Scopes [Orr ASPLOS ‘15]
• Dynamically vary scope granularity to reduce overhead

• hLRC [Alsop MICRO ‘17]

14

Conclusion

• GPU coherence and consistency are hot, recent topics
• Lots of ongoing research in the area

• Goal: avoid replicating 20-30 years of CPU MCM research

• Idea: evolve from that CPUs already have now
• Design Goal: keep GPU coherence protocols simple

• GPU apps don’t need more complex coherence protocols

• This has implications on MCM

• State-of-the-art (products): GPU + HRF
• CPU-GPU coherence in real products assumes this for the GPU component

15

Backup

16

Coherence & Consistency Qualitative Analysis

Coherence + Consistency
Reuse Data

Owned Valid

Do Synchs

at L1

X X X

local local local

✓ X ✓

✓ local ✓

(GD)

(GH)

(DD)

(DH)

(DD+RO) ✓ read-only ✓

GPU + DRF

GPU + HRF

DeNovo-RO + DRF

DeNovo + DRF

DeNovo + HRF

Incorporating Other Use Cases Into DRFrlx

18

SC

Final result always SC

SC-centric: non-SC parts isolated

Unpaired

Non-Ordering

Commutative

Speculative

Quantum

SemanticsCategoryUse Case

Work Queues

Flags

Seqlocks

Event Counters

Split Counters

Ref Counters

How to incorporate relaxed atomics that do not order data?
How to incorporate overlapped atomics that do not order?

How to incorporate violations of SC that do not affect final result?

How to incorporate SC violations in approximable applications?

Review: Cache Coherence Problem

• Processors see different values for u after event 3

• With write back caches, value written back to memory depends on order of
which cache writes back value first

• Unacceptable situation for programmers

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

19

Coherence Invariants

1. Single-Writer, Multiple-Reader (SWMR) Invariant

2. Data-Value Invariant. The value of the memory
location at the start of an epoch is the same as the
value of the memory location at the end of its last
read-write epoch.

20

read-write

Core 0
read-only

Core 0,2

C0: store A C2: load A C3: store A

read-write

Core 3

read-only

Core 0,3
read-only

Core 0,1,3

C0: load A
C1: load A

Coherence States

• How to design system satisfying invariants?

• Track “state” of memory block copies and ensure states
changes satisfy invariants.

• Typical states: “modified”, “shared”, “invalid”.

• Mechanism for updating block state called a coherence
protocol.

21

Intra-GPU Coherence

Coherent memory space
• Efficient critical sections

• Load balancing

Stencil computation

Threadblocks

lock shared structure
…
computation
…

unlock

[Singh et al., HPCA 2013, IEEE Micro Top Picks 2014]

22

C4

L1D

A B

C3

L1D

A B

C2

L1D

A B

GPU Coherence Challenges

• Challenge 1: Coherence traffic

Do not require
coherence

No coherence MESI

GPU-VI

0.5

1.0

1.5 2.2

In
te

rc
o

n
n

e
c
t

tr
a

ff
ic 1.3 Recalls

C1

L1D

A B

Load C

gets C

rcl A rcl A rcl A

rcl A

ack

ack
ack

ack

Load C
Load D
Load E
Load F
…

Load G
Load H
Load I
Load J
…

Load K
Load L
Load M
Load N
…

Load O
Load P
Load Q
Load R
…

A B

L2/Directory

23

L2 / Directory

MSHR

GPU Coherence Challenges

• Challenge 2: Tracking in-flight requests
• Significant % of L2

S
Shared

M
Modified

S_M

24

GPU Coherence Challenges

• Challenge 3: Complexity

Non-coherent L1

Non-coherent L2

MESI L1 States

MESI L2 States

States

Events

25

Coherence Challenges

• Challenges of introducing coherence messages on a GPU

1. Traffic: transferring messages

2. Storage: tracking message

3. Complexity: managing races between messages

• GPU cache coherence without coherence messages?

• YES – using global time

26

Core 1

L1D ▪▪▪

Temporal Coherence

Global time

Interconnect

▪▪▪
L2 Bank

A=00

A=00

Core 2

L1D

Local Timestamp

> Global Time → VALID

Global Timestamp

< Global Time →
NO L1 COPIES

Related: Library Cache Coherence

27

T=0T=11T=15

Core 1

L1D

Interconnect

L2 Bank

Core 2

L1D

Temporal Coherence Example

▪▪▪
A=00 A=010 A=010

A=010

A=1

A=010No coherence
messages

28

Inderpreet Singh Cache Coherence for GPU Architectures 29

Lifetime Predictor

• One prediction value per L2 bank

• Events local to L2 bank update prediction value

L2 Bank

T = 0

Prediction
Value

A10

Events Prediction

1. Expired load: ↑

2. Unexpired store: ↓

3. Unexpired eviction: ↓
prediction++

T = 20

A30prediction--

30

0.00

0.25

0.50

0.75

1.00

1.25

1.50
2.3

Interconnect Traffic

• Reduces traffic by 53% over
MESI and 23% over GPU-VI

for intra-workgroup
applications

• Lower traffic than 16x-sized
32-way directory

In
te

rc
o

n
n

e
c

t
T

ra
ff

ic

NO-COH

MESI GPU-VI TC-Weak

Do not require
coherence

Performance

• TC-Weak with simple
predictor performs 85%
better than disabling L1
caches

MESI GPU-VI TC-Weak

0.0

0.5

1.0

1.5

2.0

Require
coherence

NO-L1

Sp
e

e
d

u
p

+

CPU-GPU Coherence?

• Many vendors have introduced chips with both CPU
and GPU (e.g., AMD Fusion, Intel Core i7, NVIDIA
Tegra, etc…)

• What are the challenges with maintaining coherence
across CPU and GPU?

• One important one: GPU has higher cache miss rate
than CPU. Can place pressure on directory impacting
performance.

• Power et al., Heterogeneous System Coherence for
Integrated CPU-GPU Systems, MICRO 2013: Use
“region coherence” to reduce number of GPU
requests that need to access directory.

32

Synchronization

• Locks are not encouraged in current GPGPU programming
manuals.

• Interaction with SIMT stack can easily cause deadlocks:

while(atomicCAS(&lock[a[tid]],0,1) != 0)

; // deadlock here if a[i] = a[j] for any i,j = tid in
warp

// critical section goes here

atomicExch (&lock[a[tid]], 0) ;

33

Correct way to write critical section for GPGPU:

done = false;

while(!done) {

if(atomicCAS (&lock[a[tid]], 0 , 1)==0) {

// critical section goes here

atomicExch(&lock[a[tid]], 0) ;

}

}

Most current GPGPU programs use barriers within thread
blocks and/or lock-free data structures.

This leads to the following picture…
34

35

• Lifetime of GPU Application Development

Time

Functionality

Performance

Wilson Fung, Inderpeet Singh, Andrew
Brownsword, Tor Aamodt

?

Time

Fine-Grained Locking/Lock-Free

Time

Transactional Memory

E.g. N-Body with 5M bodies
CUDA SDK: O(n2) – 1640 s (barrier)
Barnes Hut: O(nLogn) – 5.2 s (locks)

