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Studying Warp Scheduling on GPUs

• Numerous works on manipulating different schedulers

• Most looking at the SM-side issue-level warp scheduler

• Some look at TB scheduling at the TB-core level

• Fetch scheduler and operand collector schedule less studied
• Fetch largely follows issue.

• Not clear what the opportunity in the operand collector is.
• Even an opportunity study here would be helpful.



Use Memory System Feedback
[MICRO 2012]
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Programmability case study [MICRO 2013]
Sparse Vector-Matrix Multiply

Simple Version

GPU-Optimized Version
SHOC Benchmark Suite

(Oakridge National Labs)
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Added 
Complication

Dependent on 
Warp Size

Parallel Reduction

Explicit Scratchpad Use
Divergence

Each thread 
has locality

Using DAWS scheduling

within 4% of optimized 
with no programmer input



Data CacheData Cache

Sources of Locality

Intra-wavefront locality Inter-wavefront locality

LD $line (X)

LD $line (X)

LD $line (X)

LD $line (X)

Wave0

Hit

Wave0 Wave1

Hit
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Scheduler affects access pattern

Memory 

System

Wavefront 

Scheduler

Wavefront 

Scheduler

Round Robin Scheduler

Memory 

System

Greedy then Oldest Scheduler 

ld A,B,C,D…

D
C
B
A

ld Z,Y,X,Wld A,B,C,D

W
X
Y
Z

... ...

ld Z,Y,X,W

D
C
B
A

D
C
B
A

ld A,B,C,D…

...

Wave0 Wave1 Wave0 Wave1

ld A,B,C,D…
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Use scheduler to shape access pattern 

Memory 

System

Wavefront 

Scheduler

Wavefront 

Scheduler

Greedy then Oldest Scheduler 

Memory 

System

Cache-Conscious Wavefront Scheduling
[MICRO 2012 best paper runner up, 

Top Picks 2013, CACM Research Highlight]

ld A,B,C,D

D
C
B
A

ld A,B,C,D

W
X
Y
Z

...

ld Z,Y,X,W

D
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B
A

D
C
B
A

ld A,B,C,D…

...

ld Z,Y,X,W…

Wave0 Wave1 Wave0 Wave1

ld A,B,C,D…
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Memory Unit

Cache

Victim Tags

Locality Scoring 

System
Wave 

Scheduler
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W2
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Time
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…
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…
W0: ld X

X 0

W0,X X
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Static Wavefront Limiting
[Rogers et al., MICRO 2012]

• Profiling an application we can find an optimal number of wavefronts
to execute

• Does a little better than CCWS.

• Limitations: Requires profiling, input dependent, does not exploit 
phase behavior.
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Improve upon CCWS?

• CCWS detects bad scheduling decisions and avoids them in future.

• Would be better if we could “think ahead” / “be proactive” instead of 
“being reactive”
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Divergence Aware Warp Scheduling  T. Rogers, M 

O’Conner, and T. Aamodt MICRO 2013 Goal

• Design a scheduler to match #scheduled wavefronts with the L1 cache 

size

❖ Working set of the wavefronts fits in the cache

❖ Emphasis on intra-wavefront locality

• Differs from CCWS in being proactive

❖ Deeper look at what happens inside loops

❖ Proactive

❖ Explicitly Handles Divergence (both memory and control flow)
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Key Idea

• Manage the relationship between control divergence, 
memory divergence and scheduling

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Key Idea (2)

while (i <C[tid+1])

warp 0

warp 1

Fill the cache with 
4 references –
delay warp 1Divergent 

branch

Intra-thread 
locality

Available room in 
the cache, 

schedule warp 1

Use warp 0 behavior 
to predict interference 
due to warp 1

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Goal

Simpler portable version GPU-Optimized Version

Make the 
performance 
equivalent

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Observation

• Bulk of the accesses in a loop come from a few static 

load instructions

• Bulk of the locality in (these) applications is intra-loop

Loops 
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Distribution of Locality

Bulk of the locality 
comes form  a few 
static loads  in loops

Hint: Can we keep data 
from last iteration?

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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A Solution

• Prediction mechanisms for 

locality across iterations of 

a loop

• Schedule such that data 

fetched in one iteration is 

still present at next 

iteration

• Combine with control flow 

divergence (how much of 

the footprint needs to be in 

the cache?)

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Classification of Dynamic Loads

• Group static loads into equivalence classes →

reference the same cache line

• Identify these groups by repetition ID

• Prediction for each load by compiler or hardware

converged

Diverged

Somewhat diverged

Control flow 
divergence

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Predicting a Warp’s Cache Footprint
• Entering loop body
• Create footprint prediction

Warp

• Exit loop
• Reinitialize prediction

• Some threads exit the loop
• Predicted footprint drops

Warp

• Predict locality usage of static loads

❖ Not all loads increase the footprint

• Combine with control divergence to predict footprint 

• Use footprint to throttle/not-throttle warp issue

Taken

Not Taken
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Principles of Operation

• Prefix sum of each warp’s cache footprint used to 

select warps that can be issued

EffCacheSize= kAssocFactor.TotalNumLines

• Scaling back from a fully associative cache
• Empirically determined

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Principles of Operation (2)

• Profile static load 

instructions

❖ Are they divergent?

❖ Loop repetition ID

o Assume all loads with 

same base address and 

offset within cache line 

access are repeated each 

iteration

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Prediction Mechanisms

• Profiled Divergence Aware Scheduling (DAWS)

❖ Used offline profile results to dynamically determine de-scheduling decisions

• Detected Divergence Aware Scheduling (DAWS)

❖ Behaviors derived at run-time to drive de-scheduling decisions

o Loops that exhibit intra-warp locality

o Static loads are characterized as divergent or convergent
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Extensions for DAWS
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Operation: Tracking

Basis for 
throttling

Profile-based 
information

One entry per 
warp issue 

slot

Created/re
moved at 

loop 
begin/end

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013

#Active Lanes
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Operation: Prediction

Sum results from static 
loads in this loop

- Add #active-lanes of cache lines 
for divergent loads

- Add 2 for converged loads
- Count loads in the same 

equivalence class only once 
(unless divergent)

• Generally only considering de-scheduling warps in loops

❖ Since most of the activity is here

• Can be extended to non-loop regions by associating non-loop 

code with next loop

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Operation: Nested Loops

for (i=0; i<limitx; i++)}{
..
..

for (j=0: j<limity; j++){
..
..
}

..

..
}

• On-entry update prediction 
to that of inner loop

• On re-entry predict based  
inner loop predictions

On-exit, do not 
clear prediction 

De-scheduling of 
warps determined 

by inner loop 
behaviors!

• Re-used predictions based on inner-most loops which 

is where most of the date re-use is found
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Detected DAWS: Prediction

Sampling warp for 
the loop (>2 

active threads)

• Detect both memory divergence and intra-loop 

repetition at run time

• Fill PCLoad entries based on run time information

if locality

enter load

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Detected DAWS: Classification

Increment or decrement the counter 
depending on #memory accesses for a load

Create equivalence classes of 
loads (checking the PCs)

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Performance

Little to no 
degradation 

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Performance

Significant intra-
warp locality

SPMV-scalar 
normalized to best 

SPMV-vector

Figure from T. Rogers, M. O/Connor, T. Aamodt, “Divergence-Aware Warp Scheduling,” MICRO 2013
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Summary

• If we can characterize warp level memory reference locality, we can use 

this information to minimize interference in the cache through scheduling 

constraints

• Proactive scheme outperforms reactive management 

• Understand interactions between memory divergence and control 

divergence



(34)

OWL: Cooperative Thread Array Aware Scheduling 

Techniques for Improving GPGPU Performance

A. Jog et. al ASPLOS 2013 Goal

• Understand memory effects of scheduling from deeper within the memory 

hierarchy

• Minimize idle cycles induced by stalling warps waiting on memory 

references



Off-chip Bandwidth is Critical!
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Percentage of total execution cycles wasted waiting for the 

data to come back from DRAM
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Source of Idle Cycles

• Warps stalled on waiting for memory reference

❖ Cache miss

❖ Service at the memory controller

❖ Row buffer miss in DRAM

❖ Latency in the network (not addressed in this paper)

• The last warp effect

• The last CTA effect

• Lack of multiprogrammed execution

❖ One (small) kernel at a time
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Impact of Idle Cycles

Figure from A. Jog et.al, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving 
GPGPU Performance, “ ASPLOS 2013



High-Level View of a GPU

DRAM

SIMT Cores

Scheduler

ALUsL1 Caches

Threads

WW W W W W

Warps

L2 cache

Interconnect

CTA CTA CTA CTA

Cooperative 

Thread 

Arrays 

(CTAs)

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



Warp Scheduler

ALUsL1 Caches

CTA-Assignment Policy (Example)
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Warp Scheduler

ALUsL1 Caches

Multi-threaded CUDA Kernel

SIMT Core-1 SIMT Core-2

CTA-1 CTA-2 CTA-3 CTA-4

CTA-2 CTA-4CTA-1 CTA-3

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013
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Organizing CTAs Into Groups

• Set minimum number of warps equal to #pipeline stages

❖ Same philosophy as the two-level warp scheduler

• Use same CTA grouping/numbering across SMs?

Warp Scheduler

ALUsL1 Caches

Warp Scheduler

ALUsL1 Caches

SIMT Core-1 SIMT Core-2

CTA-2 CTA-4CTA-1 CTA-3

Figure from A. Jog et.al, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving 
GPGPU Performance, “ ASPLOS 2013



Warp Scheduling Policy
◼ All launched warps on a SIMT core have equal priority 

❑ Round-Robin execution

◼ Problem:  Many warps stall at long latency operations 

roughly at the same time
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Solution
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• Form Warp-Groups 

(Narasiman  MICRO’11)

• CTA-Aware grouping

• Group Switch is Round-Robin

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013
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Two Level Round Robin Scheduler 

CTA0 CTA1

CTA3 CTA2

CTA4 CTA5

CTA7 CTA8

CTA12 CTA13

CTA15 CTA14

Group 0 Group 1

Group 3Group 2

RR

RR

Thread

Agnostic to when
pending misses 

are satisfied



Objective 1: Improve Cache Hit Rates
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CTA 1 CTA 3 CTA 5 CTA 7CTA 1 CTA 3 CTA 5 CTA 7

Data for CTA1 arrives.

No switching.

CTA 3 CTA 5 CTA 7CTA 1 CTA 3 C5 CTA 7CTA 1 C5

Data for CTA1 arrives.

T
No Switching:  4 CTAs in Time T

Switching:       3 CTAs in Time T

Fewer CTAs accessing the cache concurrently → Less cache contention

Time

Switch to CTA1.

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



Reduction in L1 Miss Rates
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◼ Limited benefits for cache insensitive applications 

◼ What is happening deeper in the memory system?
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The Off-Chip Memory Path

Off-chip 
GDDR5

Off-chip 
GDDR5

CU 0 

To

CU 15

CU 16 

To

CU 31

M
C

M
C

M
C

M
C

MC MC

Off-chip 
GDDR5

Off-chip 
GDDR5

Off-chip 
GDDR5

Off-chip 
GDDR5

Access patterns?

Ordering and 
buffering?
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Inter-CTA Locality

Warp Scheduler

ALUsL1 Caches

Warp Scheduler

ALUsL1 Caches

CTA-2 CTA-4CTA-1 CTA-3

DRAM DRAM DRAM DRAM

How do CTAs Interact at the MC and in DRAM?
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Impact of the Memory Controller

• Memory scheduling 

policies

❖ Optimize BW vs. memory 

latency

• Impact of row buffer 

access locality

• Cache lines?
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Row Buffer Locality



The DRAM Subsystem
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DRAM Subsystem Organization

• Channel

• DIMM

• Rank

• Chip

• Bank

• Row/Column

51
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Page Mode DRAM

• A DRAM bank is a 2D array of cells: rows x columns

• A “DRAM row” is also called a “DRAM page”

• “Sense amplifiers” also called “row buffer”

• Each address is a <row,column> pair

• Access to a “closed row”
❖ Activate command opens row (placed into row buffer)

❖ Read/write command reads/writes column in the row buffer

❖ Precharge command closes the row and prepares the bank for 
next access

• Access to an “open row”
❖ No need for activate command

52
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DRAM Bank Operation
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Row Buffer

(Row 0, Column 0)

R
o
w
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Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address: 
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The DRAM Chip

• Consists of multiple banks (2-16 in Synchronous DRAM)

• Banks share command/address/data buses

• The chip itself has a narrow interface (4-16 bits per read)

54



(55)

128M x 8-bit DRAM Chip

55
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DRAM Rank and Module

• Rank: Multiple chips operated together to form a wide 
interface

• All chips comprising a rank are controlled at the same time

❖ Respond to a single command

❖ Share address and command buses, but provide different data

❖ Like DRAM “SIMD”

• A DRAM module consists of one or more ranks

❖ E.g., DIMM (dual inline memory module)

❖ This is what you plug into your motherboard

• If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM

56
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A 64-bit Wide DIMM (One Rank)
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Multiple DIMMs

58

• Advantages:

❖ Enables even 
higher capacity

• Disadvantages:

❖ Interconnect 
complexity and 
energy 
consumption 
can be high
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DRAM Channels

• 2 Independent Channels: 2 Memory Controllers (Above)

• 2 Dependent/Lockstep Channels: 1 Memory Controller with 
wide interface (Not Shown above)59
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Generalized Memory Structure

60
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Generalized Memory Structure

61



The DRAM Subsystem

The Top Down View
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DRAM Subsystem Organization

• Channel

• DIMM

• Rank

• Chip

• Bank

• Row/Column

63
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The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”
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Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM
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Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel
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Breaking down a Rank
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Breaking down a Chip

C
h
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 0
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Bank 0

<0:7>

<0:7>
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Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-1

...

2kB

1B

1B (column)

1B

Row-buffer

1B

...

<0
:7

>
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DRAM Subsystem Organization

• Channel

• DIMM

• Rank

• Chip

• Bank

• Row/Column

71
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Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B 
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0
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Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.
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cache block

Physical memory space
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Chip 0 Chip 1 Chip 7
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>

Data <0:63>

. . .
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Example: Transferring a cache block

0xFFFF…F

0x00
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cache block

Physical memory space
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Example: Transferring a cache block
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Example: Transferring a cache block
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Example: Transferring a cache block
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Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B 
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
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Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .
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Latency Components: Basic DRAM Operation

• CPU → controller transfer time

• Controller latency

❖ Queuing & scheduling delay at the controller

❖ Access converted to basic commands

• Controller → DRAM transfer time

• DRAM bank latency

❖ Simple CAS if row is “open” OR

❖ RAS + CAS if array precharged OR

❖ PRE + RAS + CAS (worst case)

• DRAM → CPU transfer time (through controller)

79
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Multiple Banks (Interleaving) and Channels

• Multiple banks

❖ Enable concurrent DRAM accesses

❖ Bits in address determine which bank an address resides in

• Multiple independent channels serve the same purpose

❖ But they are even better because they have separate data buses

❖ Increased bus bandwidth

• Enabling more concurrency requires reducing

❖ Bank conflicts

❖ Channel conflicts

• How to select/randomize bank/channel indices in address?

❖ Lower order bits have more entropy

❖ Randomizing hash functions (XOR of different address bits)
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How Multiple Banks/Channels Help
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Multiple Channels

• Advantages

❖ Increased bandwidth

❖ Multiple concurrent accesses (if independent channels)

• Disadvantages

❖ Higher cost than a single channel

o More board wires

o More pins (if on-chip memory controller)

82
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Address Mapping (Single Channel)

• Single-channel system with 8-byte memory bus

❖ 2GB memory, 8 banks, 16K rows & 2K columns per bank

• Row interleaving

❖ Consecutive rows of memory in consecutive banks

• Cache block interleaving
o Consecutive cache block addresses in consecutive banks

o 64 byte cache blocks

o Accesses to consecutive cache blocks can be serviced in parallel

o How about random accesses? Strided accesses?
83

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits
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Bank Mapping Randomization

• DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

84

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index 

(3 bits)
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Address Mapping (Multiple Channels)

• Where are consecutive cache blocks?

85

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C
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Interaction with Virtual→Physical Mapping

• Operating System influences where an address maps to in 
DRAM

• Operating system can control which bank/channel/rank a 
virtual page is mapped to. 

• It can perform page coloring to minimize bank conflicts

• Or to minimize inter-application interference
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Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)
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DRAM Refresh (I)

• DRAM capacitor charge leaks over time

• The memory controller needs to read each row periodically to restore the 
charge

❖ Activate + precharge each row every N ms

❖ Typical N = 64 ms

• Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms the DRAM will be 
unavailable until refresh ends

• Burst refresh: All rows refreshed immediately after one another

• Distributed refresh: Each row refreshed at a different time, at regular 
intervals
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DRAM Refresh (II)

• Distributed refresh eliminates long pause times
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• Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

Downsides of DRAM Refresh
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Back to the paper…



CTA Data Layout (A Simple Example)

91

A(0,0) A(0,1) A(0,2) A(0,3)

:

:

DRAM Data Layout (Row Major)

Bank 1 Bank 2 Bank 

3

Bank 4

A(1,0) A(1,1) A(1,2) A(1,3)

:

:

A(2,0) A(2,1) A(2,2) A(2,3)

:

:

A(3,0) A(3,1) A(3,2) A(3,3)

:

:

Data Matrix

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

mapped to Bank 1

CTA 1 CTA 2

CTA 3 CTA 4

mapped to Bank 2

mapped to Bank 3

mapped to Bank 4

Average percentage of consecutive CTAs (out of 

total CTAs) accessing the same row = 64%   

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



L2 Cache

Implications of high CTA-row sharing

92

W

CTA-1

W

CTA-3

W

CTA-2

W

CTA-4

SIMT Core-1 SIMT Core-2

Bank-1 Bank-2 Bank-3 Bank-4

Row-1 Row-2 Row-3 Row-4

Idle 

Banks

W W W W

CTA Prioritization Order CTA Prioritization Order

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



High Row Locality

Low Bank Level Parallelism

Bank-1

Row-1

Bank-2

Row-2

Bank-1

Row-1

Bank-2

Row-2

Req

Req

Req

Req

Req

Req

Req

Req

Req

Req

Lower Row Locality

Higher Bank Level 

Parallelism

Req

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013
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Some Additional Details

• Spread reference from multiple CTAs (on multiple SMs) across row 

buffers in the distinct banks

• Do not use same CTA group prioritization across SMs

❖ Play  the odds

• What happens with applications with unstructured, irregular memory 

access patterns?



L2 Cache

Objective 2: Improving Bank Level Parallelism

W

CTA-1

W

CTA-3

W

CTA-2

W

CTA-4

SIMT Core-1 SIMT Core-2

Bank-1 Bank-2 Bank-3 Bank-4

Row-1 Row-2 Row-3 Row-4

W W W W

11% increase in bank-level parallelism

14% decrease in row buffer locality

CTA Prioritization OrderCTA Prioritization Order

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



L2 Cache

Objective 3: Recovering Row Locality

W

CTA-1

W

CTA-3

W

CTA-2

W

CTA-4

SIMT Core-2

Bank-1 Bank-2 Bank-3 Bank-4

Row-1 Row-2 Row-3 Row-4

W W W W

Memory Side 

Prefetching

L2 Hits!

SIMT Core-1

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



Memory Side Prefetching
◼ Prefetch the so-far-unfetched cache lines in an already open row into the L2 cache, just before it 

is closed

◼ What to prefetch?

❑ Sequentially prefetches the cache lines that were not accessed by demand requests

❑ Sophisticated schemes are left as future work

◼ When to prefetch?

❑ Opportunistic in Nature

❑ Option 1: Prefetching stops as soon as demand request comes for another row. (Demands are 

always critical)

❑ Option 2: Give more time for prefetching, make demands wait if there are not many. (Demands 

are NOT always critical)

Courtesy A. Jog, “OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU 
Performance, “ ASPLOS 2013



IPC results (Normalized to Round-Robin)
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Summary

• Coordinated scheduling across SMs, CTAs, and warps

• Consideration of effects deeper in the memory system

• Coordinating warp residence in the core with the presence of 

corresponding lines in the cache
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CAWA: Coordinated Warp Scheduling and Cache 

Prioritization for  Critical Warp Acceleration in GPGPU 

Workloads S. –Y Lee, A. A. Kumar and C. J Wu

ISCA 2015

Goal
• Reduce warp divergence and hence increase throughput

• The key is the identification of critical (lagging) warps

• Manage resources and scheduling decisions to speed up the execution of 

critical warps thereby reducing divergence
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Review: Resource Limits on Occupancy

SM 
Scheduler

Kernel 
Distributor

SM SM SM SM

DRAM

Limits the #threads

Limits the #thread 
blocks

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory
Limits the #thread 

blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

Locality effects
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Evolution of Warps in  TB

• Coupled lifetimes of warps in a TB

❖ Start at the same time

❖ Synchronization barriers

❖ Kernel exit (implicit synchronization barrier)

Completed warps

Figure from P. Xiang, Et. Al, “ Warp Level Divergence: Characterization, Impact, and Mitigation

Region where latency 
hiding is less effective
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Warp Criticality Problem
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The Warp Criticality Problem

• Significant warp execution disparity for warps in  the 
same thread block
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Research Questions

• What is the source of warp criticality?

• How can we effectively accelerate critical  
warp execution?

5/28
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Source of Warp Criticality

• Workload Imbalance

• Diverging Branch Behavior

• Memory Contention and Memory Access  
Latency

• Execution Order of Warp Scheduling

7/28
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Workload Imbalance & Diverging  Branch

8/28
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• Workload imbalance or diverging branch behavior makes warps 
have different number of dynamic instruction counts.
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Memory Contention

9/28
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• While warps experience different latency to access  
memory, memory contention can induce warp criticality.
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Warp Scheduling Order

10/28
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• The warp scheduler may introduce additional stall cycles 
for a ready warp, resulting in warp criticality
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CAWA: Criticality-Aware Warp Acceleration

Coordinated warp scheduling and cache prioritization design

• Criticality Prediction Logic (CPL)
– Predicting and identifying the critical warp at runtime

• greedy Criticality Aware Warp Scheduler (gCAWS)

– Prioritizing and accelerating the critical warp execution

• Criticality-‐Aware Cache Prioritization (CACP)
– Prioritizing and allocating cache lines for critical warp reuse
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CAWA: Criticality-Aware Warp Acceleration

• Criticality Prediction Logic (CPL)
– Predic6ng and iden6fying the cri6cal warp at run6me

• greedy Criticality Aware Warp Scheduler (gCAWS)

– Prioritizing and accelerating the critical warp execution

• Criticality-‐Aware Cache Prioritization (CACP)

– Prioritizing and allocating cache lines for critical warp reuse
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CAWACPL : Criticality Prediction Logic

14/28

• Evaluating number of additional cycles a warp may  
experience

• nInst is decremented whenever an instruction is executed

Criticality = nInst * w.CPIavg + nStall

instruction count disparity  
diverging branch

memory latency  
scheduling latency
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• Criticality Prediction Logic (CPL)
– Predicting and identifying the critical warp at runtime

• greedy Criticality Aware Warp Scheduler (gCAWS)
– Prioritizing and accelerating the critical warp execu6on

• Criticality-‐Aware Cache Prioritization (CACP)

– Prioritizing and allocating cache lines for critical warp reuse

CAWA: Criticality-Aware Warp  Acceleration

Reduce delay from the scheduler
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• • Prioritizing warps based on their criticality given by CPL

• • Executing warps in a greedy* manner

• – Select the most critical ready-‐warp

• – Keep on executing the select warp until it stalls

• Warp Scheduler Selec6on Sequence

• Traditional Approach (e.g. RR, 2L, GTO):

• W0→W1→W2→W3

• gCAWS:

• W1→W3→W0→W2

16/28

*Rogers et al., “Cache-‐Conscious  Wavefront Scheduler,” MICRO’12

Warp Pool Criticality

Warp 0 5

Warp 1 10

Warp 2 3

Warp 3 7

CAWAgCAWS : greedy Criticality-Aware Warp  

Scheduler



(115)

CAWA: Criticality-Aware Warp  Acceleration

• Criticality Prediction Logic (CPL)
– Predicting and identifying the critical warp at runtime

• greedy Criticality Aware Warp Scheduler (gCAWS)

– Prioritizing and accelerating the critical warp execution

• Cri6cality-‐Aware Cache Priori6za6on (CACP)
– Priori6zing and alloca6ng cache lines for cri6cal warp reuse

Reduce delay from the memory
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CAWACACP : Criticality-Aware Cache  Prioritization

*Wu et al., “SHiP: Signatured-‐based Hit Predictor for High Performance Caching,” MICRO’11
19/28



(117)
20/28

Cache Request

CAWACACP : Criticality-Aware Cache  

Prioritization
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23/28

CAWA aims to retain data for critical warps

Improving GPU performance via large warps and two-‐level warp scheduling. Narasiman et al. MICRO `11.  
Cache conscious wavefront scheduling. Rogers, O’Connor, and Aamodt. MICRO `12.
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Large memory footprint
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Performance Improvement with CAWACACP

25/28
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Summary

• Warp divergence leads to some lagging warps → critical warps

• Expose the performance impact of critical warps → throughput reduction

• Coordinate scheduler and cache management to reduce warp divergence


