CS 758: Advanced Topics in
Computer Architecture

Lecture #5: Introduction to GPU Microarchitecture

Professor Matthew D. Sinclair

Some of these slides were developed by Tim Rogers at the Purdue
University and Tor Aamodt at the University of British Columbia

Slides enhanced by Matt Sinclair

Announcements

* HWO “due” today

e |ssues?
e Questions?

* HW1 will be posted today
* Moving exam after Affiliates meeting -- poll

Objectives

* A Simple GPU Pipeline
e “One Scheduler Approximation”

* The SIMT Stack
* Control Flow Divergence Mitigation in Hardware

Extra resources

GPGPU-Sim 3.x Manual http://gpgpu-
sim.org/manual/index.php/GPGPU-Sim 3.x Manual

General Purpose GPU Architecture (Aamodt, Fung and Rogers)

http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual

GPU Microarchitecture Overview

Single-Instruction, Multiple-Threads

1 GPU |
| |
1 | SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster |
| |
I SIMT SIMT SIMT SIMT SIMT SIMT :
: Core Core Core Core Core Core .
[I
: 1 1 1 !
| Interconnection Network :
|
| ! ! ! |
: Memory Memory Memory :
: Partition Partition Partition I
|

GDDR5 GDDR5 Off-chip DRAM GDDR5

GPU Microarchitecture

 Companies tight lipped about details of GPU microarchitecture.

e Several reasons:
* Competitive advantage
* Fear of being sued by “non-practicing entities”
* The people that know the details too busy building the next chip

* Model described next, embodied in GPGPU-Sim, developed from:
white papers, programming manuals, IEEE Micro articles, patents.

GPGPU-SIm v3.x w/ SASS

HW - GPGPU-Sim Comparison

250.00

200,00 Correlation
~0.976

Si

O
o
ElS0.00

100.00

GPGPU

50.00

0.00
0.00 50.00 100.00 150.00 200.00 250.00

Quadro FX5800 IPC

GPU Microarchitecture Overview

SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster

f f f

Inside a SIMT Core

v |
SIMT Reg
Front End =) File) SIMD Datapath
Fetch
Decode t l
Schedule Memory Subsystem lent.
Branch SMem|| L1 DS || Tex S || ConstS$ Network
e SIMT front end / SIMD backend

* Fine-grained multithreading
* Interleave warp execution to hide latency
» Register values of all threads stays in core

SIMD width and warp size

v i
SIMT Reg
Front End = File SIMD Datapath

Fetch _
Decode 3 v
Schedule Memory Subsystem lent.
Branch SMem|| L1 DS || Tex S || ConstS | Network

* The SIMD width may be smaller than the warp size
* |f the SIMD is smaller, it can be run at a higher clock
(potentially deeper pipeline).
e E.g. Fermi was SIMD 16, Volta is SIMD 32.

* Research has exploited this difference in SIMD width and warp
size to help mitigate control flow divergence

Research Aside: Exploiting SIMD width to
mitigate CF divergence

* SIMD Divergence Optimization through Intra-Warp Compaction [ISCA

2013] ——
RIS EEEERE-

¢ Key |dea: Sklp CYCleS where the EEEECAEEFACFRCFFEFEE F Ees
whole SIMD is masked off

CIEIEIE] o
AEEE =
EEEE ""”"‘“}im""
. = B E E o~ e
EIEIEIE] emess” socnmy
R e o
E]E Cyele-f+6) Cyde (1+2)

@ E’ Cysle-fiadi Cyde (1)

A “One loop” Approximation

e Simple model for the GPU.

* In the beginning, all warps are eligible for fetch

* One warp is selected, enters the pipe.

 While that warp is processing, another warp is selected and enters pipe

* Warps do not become eligible for fetch again until current instruction
completes. Only one instruction/warp in pipeline

v

SIMT
Front End

Fetch

Decode

Reg

> File

{

SIMD Datapath

'

Schedule

Memory Subsystem

Branch

SMem

L1 DS

Tex S

ConstS

Icnt.
Network

SIMT Using a Hardware Stack

Stack approach invented in early 1980’s
Version here from [Fung et al., MICRO 2007]

Stack
A/1111 Reconv. PC Next PC Active Mask

TOS — - E 1111
TOS — E D 0110
B/1111 TOS — E E 1001

C/1001| |D/0110] |F

\/ Warp Common PC

E/1111 Thread | Thread | Thread | Thread

1 2 3 4
G/1111
B C D E G
= i it =4 —> {1 —> |
oooo: | |: I I |: : : I : >
|—>: —>:| : —>:|—>|—> |—>:
[>T|me

SIMT = SIMD Execution of Scalar Threads 13

SIMT Notes

* Execution mask stack implemented with special instructions to
push/pop. Descriptions can be found in AMD ISA manual and NVIDIA
patents.

* In practice augment stack with predication (lower overhead).

awi|

Dynamic Warp Formation

Pack

SIMD Efficiency 2> 88%

Reissue/Memory
Latency

C

12738

» | C

5--1112

(Fung MICRO’07)
Warp 0 Warp 1 Warp 2
lal 2234 | A
A 5678
S 9101112
B 1234
B 5678
9101112
C 12----
C 5--78
---1112
D ---34
D -6 ----
910 -- --
E 1234
E 5678
9101112

15

DWF Pathologies:

Extra Uncoalesced Accesses

* Coalesced Memory Access = Memory SIMD

e 15t Order CUDA Programmer Optimization

* Not preserved by DWF

E: B =C[tid.x] + K;

No DWF

With DWF

Wilson Fung, Tor Aamodt

E 12314
E 5678
E|l 9101112
E 12712
E 9638
E 510114

#Acc=3

—> 0x100

—
—

#Acc=9

=

0x140
0x180

0x100
0x140
0x180

Thread Block Compaction

L1 Cache Absorbs
Redundant
Memory Traffic

| L1$ Port Conflict |

16

DWEF Pathologies: Implicit Warp Sync.

* Some CUDA applications depend on the lockstep execution of “static
warps”

Warp 0 Thread 0...31
Warp 1 Thread 32 ... 63
Warp 2 Thread 64 ... 95

e E.g. Task Queue in Ray Tracing
int wid = tid.x / 32;
if (tid.x $ 32 == 0) {
sharedTaskID[wid] = atomicAdd (g TaskID, 32);

Implicit }
Warp "Wy TaskID = SharedTaskID[widl F tid x 3 32,
Sync. ProcessTask (my TaskID) ;

Wilson Fung, Tor Aamodt Thread Block Compaction

Observation

* Compute kernels usually contain
divergent and non-divergent
(coherent) code segments

* Coalesced memory access usually in
coherent code segments

e DWF no benefit there

Static
Coherent Warp
Divergence
: Dynamic
Divergent T
Reset Warps
Coales. LD/ST :
Coherent Static
Warp

Recvg
Pt.

Thread Block Compaction

* Run a thread block like a warp
* Whole block move between coherent/divergent code
* Block-wide stack to track exec. paths reconvg.

* Barrier @ Branch/reconverge pt. \/ Implicit
e All avail. threads arrive at branch Warp Sync.
* Insensitive to warp scheduling

. i Extra Unco
Warp compaction ory Access

* Regrouping with all avail. threads
* |f no divergence, gives static warp arrangement

Wilson Fung, Tor Aamodt Thread Block Compaction

19

Thread Block Compaction

PC RPC Active Threads A 12 3 4 A 1234
E| -|1(/2|3|4|5|6|7|8|9/10{11|12 N 56 7 8 A 5678
D e e e e e e e e e I A| 9101112 A| 9101112

® o

° °
A: K = A[tid.x]; e Lerk €l 12--
C 5--1112 C 5--78

B: if (K > 10
() = 9634 C| ---1112
C: K = 10; D| --10---- D| ----34
else E| 1234 D —-6-—--
D: K= 0; i SEOR 0 23—
_ E| 9101112 E 1278
E: B = C[tid.x] + K; E 5678
E| 9101112
Time

Wilson Fung, Tor Aamodt

Thread Block Compaction

20

Recent work on warp divergence

Intel [MICRO 2011]: Thread Frontiers — early reconvergence for
unstructured control flow.

UT-Austin/NVIDIA [MICRO 2011]: Large Warps — similar to TBC
except decouple size of thread stack from thread block size.

NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving.
Enable SIMD to execute two paths at once.

NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and
in more detail in CGO 2013 paper]

UT Austin [HPCA 2013]: The dual-path execution model for
efficient GPU control flow

NVIDIA [ISCA 2015]: Variable Warp-Size Architecture — merge
small warps (4 threads) into “gangs”.

SIMT outside of GPUs?

* ARM Research looking at SIMT-ized ARM ISA.

* Intel MIC implements SIMT on top of vector hardware via compiler
(ISPC)

* Possibly other industry players in future

