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Announcements

* HWO “due” today

e |ssues?
e Questions?

* HW1 will be posted today
* Moving exam after Affiliates meeting -- poll



Objectives

* A Simple GPU Pipeline
e “One Scheduler Approximation”

* The SIMT Stack
* Control Flow Divergence Mitigation in Hardware



Extra resources

GPGPU-Sim 3.x Manual http://gpgpu-
sim.org/manual/index.php/GPGPU-Sim 3.x Manual

General Purpose GPU Architecture (Aamodt, Fung and Rogers)


http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual

GPU Microarchitecture Overview
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GPU Microarchitecture

 Companies tight lipped about details of GPU microarchitecture.

e Several reasons:
* Competitive advantage
* Fear of being sued by “non-practicing entities”
* The people that know the details too busy building the next chip

* Model described next, embodied in GPGPU-Sim, developed from:
white papers, programming manuals, IEEE Micro articles, patents.



GPGPU-SIm v3.x w/ SASS
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GPU Microarchitecture Overview

SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster
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Inside a SIMT Core

v |
SIMT Reg
Front End =) File ) SIMD Datapath
Fetch
Decode t l
Schedule Memory Subsystem lent.
Branch SMem|| L1 DS || Tex S || ConstS$ Network
e SIMT front end / SIMD backend

* Fine-grained multithreading
* Interleave warp execution to hide latency
» Register values of all threads stays in core




SIMD width and warp size

v i
SIMT Reg
Front End = File SIMD Datapath
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Schedule Memory Subsystem lent.
Branch SMem|| L1 DS || Tex S || ConstS | Network

* The SIMD width may be smaller than the warp size
* |f the SIMD is smaller, it can be run at a higher clock
(potentially deeper pipeline).
e E.g. Fermi was SIMD 16, Volta is SIMD 32.

* Research has exploited this difference in SIMD width and warp
size to help mitigate control flow divergence



Research Aside: Exploiting SIMD width to
mitigate CF divergence

* SIMD Divergence Optimization through Intra-Warp Compaction [ISCA
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A “One loop” Approximation

e Simple model for the GPU.

* In the beginning, all warps are eligible for fetch

* One warp is selected, enters the pipe.

 While that warp is processing, another warp is selected and enters pipe

* Warps do not become eligible for fetch again until current instruction
completes. Only one instruction/warp in pipeline
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SIMT Using a Hardware Stack

Stack approach invented in early 1980’s
Version here from [Fung et al., MICRO 2007]
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SIMT = SIMD Execution of Scalar Threads 13



SIMT Notes

* Execution mask stack implemented with special instructions to
push/pop. Descriptions can be found in AMD ISA manual and NVIDIA
patents.

* In practice augment stack with predication (lower overhead).
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DWF Pathologies:

Extra Uncoalesced Accesses

* Coalesced Memory Access = Memory SIMD

e 15t Order CUDA Programmer Optimization

* Not preserved by DWF

E: B =C[tid.x] + K;

No DWF

With DWF

Wilson Fung, Tor Aamodt
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DWEF Pathologies: Implicit Warp Sync.

* Some CUDA applications depend on the lockstep execution of “static
warps”

Warp 0 Thread 0...31
Warp 1 Thread 32 ... 63
Warp 2 Thread 64 ... 95

e E.g. Task Queue in Ray Tracing
int wid = tid.x / 32;
if (tid.x $ 32 == 0) {
sharedTaskID[wid] = atomicAdd (g TaskID, 32);

Implicit  }
Warp "Wy TaskID = SharedTaskID[widl F tid x 3 32,
Sync. ProcessTask (my TaskID) ;

Wilson Fung, Tor Aamodt Thread Block Compaction



Observation

* Compute kernels usually contain
divergent and non-divergent
(coherent) code segments

* Coalesced memory access usually in
coherent code segments

e DWF no benefit there
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Thread Block Compaction

* Run a thread block like a warp
* Whole block move between coherent/divergent code
* Block-wide stack to track exec. paths reconvg.

* Barrier @ Branch/reconverge pt. \/ Implicit
e All avail. threads arrive at branch Warp Sync.
* Insensitive to warp scheduling

. i Extra Unco
Warp compaction ory Access

* Regrouping with all avail. threads
* |f no divergence, gives static warp arrangement

Wilson Fung, Tor Aamodt Thread Block Compaction
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Thread Block Compaction
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Recent work on warp divergence

Intel [MICRO 2011]: Thread Frontiers — early reconvergence for
unstructured control flow.

UT-Austin/NVIDIA [MICRO 2011]: Large Warps — similar to TBC
except decouple size of thread stack from thread block size.

NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving.
Enable SIMD to execute two paths at once.

NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and
in more detail in CGO 2013 paper]

UT Austin [HPCA 2013]: The dual-path execution model for
efficient GPU control flow

NVIDIA [ISCA 2015]: Variable Warp-Size Architecture — merge
small warps (4 threads) into “gangs”.



SIMT outside of GPUs?

* ARM Research looking at SIMT-ized ARM ISA.

* Intel MIC implements SIMT on top of vector hardware via compiler
(ISPC)

* Possibly other industry players in future



