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Objectives

• A more detailed scheduler pipeline
• “Three loop approximation”

• Register file bank usage scheduler



SIMT Front End

Final stage of “how to build a GPU pipeline”
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• Final scheduler used to arbitrate register file banks
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Register File problem: Size

• All context needs to kept resident
• Some recent research on context switching, but still very expensive

• Modern GPUs: 256KB of register file

• Need to read multiple values from the register file every cycle to 
maintain pipeline throughput (FMA instruction: 4 operands – need 4 
ports).

• Dual issue to multiple pipelines: need even more ports.

• Big, multi-ported structures are expense in area and energy.



Banked Register File

Strawman microarchitecture:
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Register layout:



Operand Collector

• Term “Operand Collector” appears in figure in NVIDIA Fermi Whitepaper

• Operand Collector Architecture (US Patent: 7834881)

– Interleave operand fetch from different threads to achieve full utilization

Bank 0 Bank 1 Bank 2 Bank 3

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

… … … …

add.s32 R3, R1, R2; No Conflict

mul.s32 R3, R0, R4; Conflict at bank 0
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Register Bank Conflicts

• warp 0, instruction 2 has two source operands in bank 
1: takes two cycles to read.

• Also, warp 1 instruction 2 is same and is also stalled.

• Can use warp ID as part of register layout to help. 
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Operand Collector (1)

• Issue instruction to collector unit.  

• Collector unit similar to reservation station in tomasulo’s algorithm.

• Stores source register identifiers.  

• Arbiter selects operand accesses that do not conflict on a given cycle.

• Arbiter needs to also consider writeback (or need read+write port)
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Operand Collector (2)

• Combining swizzling and 
access scheduling can give 
up to ~ 2x improvement in 
throughput
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