
CS 758: Advanced Topics in
Computer Architecture

Lecture #6: GPU Microarchitecture 3 – Pipeline Operand Stage

Professor Matthew D. Sinclair

Some of these slides were developed by Tim Rogers at the Purdue
University and Tor Aamodt at the University of British Columbia

Slides enhanced by Matt Sinclair

Objectives

• A more detailed scheduler pipeline
• “Three loop approximation”

• Register file bank usage scheduler

SIMT Front End

Final stage of “how to build a GPU pipeline”
SIMD Datapath

ALUALUALU

I-Cache Decode

I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU

Fetch SIMT-Stack

Done (WID)

Valid[1:N]

Branch Target PC

Pred.Active
Mask

• Final scheduler used to arbitrate register file banks

Fetch Scheduler

Issue Scheduler

Register Read
Scheduler

3

Register File problem: Size

• All context needs to kept resident
• Some recent research on context switching, but still very expensive

• Modern GPUs: 256KB of register file

• Need to read multiple values from the register file every cycle to
maintain pipeline throughput (FMA instruction: 4 operands – need 4
ports).

• Dual issue to multiple pipelines: need even more ports.

• Big, multi-ported structures are expense in area and energy.

Banked Register File

Strawman microarchitecture:

5

Register layout:

Operand Collector

• Term “Operand Collector” appears in figure in NVIDIA Fermi Whitepaper

• Operand Collector Architecture (US Patent: 7834881)

– Interleave operand fetch from different threads to achieve full utilization

Bank 0 Bank 1 Bank 2 Bank 3

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

… … … …

add.s32 R3, R1, R2; No Conflict

mul.s32 R3, R0, R4; Conflict at bank 0

4a.6

Register Bank Conflicts

• warp 0, instruction 2 has two source operands in bank
1: takes two cycles to read.

• Also, warp 1 instruction 2 is same and is also stalled.

• Can use warp ID as part of register layout to help.
7

Operand Collector (1)

• Issue instruction to collector unit.

• Collector unit similar to reservation station in tomasulo’s algorithm.

• Stores source register identifiers.

• Arbiter selects operand accesses that do not conflict on a given cycle.

• Arbiter needs to also consider writeback (or need read+write port)

8

Operand Collector (2)

• Combining swizzling and
access scheduling can give
up to ~ 2x improvement in
throughput

9

