
CS 758: Advanced Topics in
Computer Architecture

Lecture #2: Dark Silicon & Intro to GPUs

Professor Matthew D. Sinclair

Some of these slides were developed by Tim Rogers at the Purdue
University, Tor Aamodt at the University of British Columbia, and Wen-
mei Hwu & David Kirk at the University of Illinois at Urbana-Champaign.

Slides enhanced by Matt Sinclair

Moore’s Law

Silver Bullet for Moore’s Law?

Parallelism Specialization

Updated Moore’s Law Plot

Dark Silicon Key Takeaways

• Can’t rely on multi-core parallelism to save us
• Many “real” applications don’t have enough parallelism

• Even if they do, power limits them

• GPUs help …
• … but only to a point

• Eventually power or parallelism limits them

Can’t reach Moore’s Law scaling

Tremendous opportunity for innovation

What was a GPU?

• GPU = Graphics Processing Unit
• Accelerator for raster-based graphics (OpenGL, DirectX, Vulkan)

• Highly programmable

• Commodity hardware

• 100’s of ALUs; 10000’s of concurrent threads

1.6

Today the name GPU is not really meaningful.
In reality they are highly parallel, highly programmable vector supercomputers.

Modern GPUs: Good at drawing triangles

7

Highly Parallel Operation

Requires Significant Memory
Bandwidth

8

pixel color result of running “shader” program +

9

GPU: The Life of a Triangle

Texture

Host / Front End / Vertex Fetch

F
r a

m
e

B
u

ff
e

r
C

o
n

tr
o

l l
e
r

Vertex Processing

Primitive Assembly, Setup

Rasterize & Zcull

Pixel Shader

Pixel Engines (ROP)

process commands

transform vertices
to screen-space

generate per-

triangle equations

generate pixels, delete pixels
that cannot be seen

determine the colors, transparencies
and depth of the pixel

do final hidden surface test,blend
and write out color and new depth

[David Kirk / Wen-mei Hwu]

+

Today: GPUs are Ubiquitous

10[APU13 keynote]

+

Flynn’s Taxonomy

• Focus: Data parallel workloads
• Independent, identical computation on multiple data inputs

• MIMD (Multiple Instruction, Multiple Data):
• Split independent work over multiple processors
• Subcategory: SPMD (Single Program, Multiple Data)

• Only if work is identical (same program)

• SIMD (Single Instruction, Multiple Data):
• Split identical, independent work over multiple execution units
• More efficient: eliminate redundant fetch/decode vs. SPMD/MIMD
• Use single PC and single register file

Flynn’s Taxonomy (Cont.)

• SIMD’s cousin: SIMT (Single Instruction, Multiple Thread)
• Split identical, independent work over multiple lockstep threads

• One PC for group of lockstep threads, but multiple register files

• This is what GPUs do today

• Work well for streaming applications

• Sidenote:
• People use SIMT and SIMD somewhat interchangeably

• They do have differences though

Why use a GPU for computing?

• GPU uses larger fraction of silicon for computation than CPU.

• At peak performance GPU uses order of magnitude less energy per operation than CPU.

13

CPU
2nJ/op

GPU
200pJ/op

Rewrite Application

Order of Magnitude More
Energy Efficient

However….
Application must perform well

GPU uses larger fraction of silicon for computation than CPU?

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

14[NVIDIA]

Growing Interest in GPGPU

• Supercomputing – Green500.org Nov 2014
“the top three slots of the Green500 were powered by three different
accelerators with number one, L-CSC, being powered by AMD FirePro™ S9150
GPUs, powered by NVIDIA K20x GPUs. Beyond these top three, the next 20
supercomputers were also accelerator-based.”

• Deep Belief Networks map very well to GPUs (e.g., Google keynote at
2015 GPU Tech Conf.)

http://blogs.nvidia.com/blog/2015/03/18/google-gpu/

http://www.ustream.tv/recorded/60071572

15

“Machine learning is the manna sent to GPUs from heaven”
- Industry Researcher

GPGPUs vs. Vector Processors

• Similarities at hardware level between GPU and vector processors.

• (Arguably) SIMT programming model moves hardest parallelism
detection problem from compiler to programmer.

16

Execution Model Comparison
MIMD/SPMD SIMD/Vector SIMT

x86 SSE/AVX GPUsMulticore CPUsExample

Pros

Cons

More general: better

support for TLP

Able to mix serial

and parallel code

Easier to program,

Scatter & Gather

operations

Inefficient for data

parallelism

Gather/Scatter

implementations

more complicated

Divergence kills

performance

GPU Compute Programming Model

CPU GPU

1.18

How is this system programmed (today)?

GPGPU Programming Model

CPU
spawn

done

GPU

CPU

Time

CPU
spawn

GPU

19

• CPU “Off-load” parallel kernels to GPU

• Transfer data to GPU memory

• GPU HW spawns threads

• Need to transfer result data back to CPU main memory

SIMT Execution Model
• Group SIMT “threads” together on a GPU “core”

• SIMT threads are grouped together for efficiency
• Loose analogy: SIMT thread group ≈ one CPU SMT thread

• Difference: GPU threads are exposed to the programmer

• Execute different SIMT thread groups simultaneously
• On a single GPU “core” per-cycle SIMT thread groups swaps

• Execute different SIMT thread groups on different GPU “cores”

GPU “Core”GPU “Core”

…

GPU

SIMT Execution Model (Cont.)

• Programmers sees MIMD threads (scalar)

• GPU bundles threads into warps (wavefronts) and runs them in lockstep on SIMD
hardware

• An NVIDIA warp groups 32 consecutive threads together (AMD wavefronts group 64
threads together)

1.21

• Aside: Why “Warp”? In the textile industry,
the term “warp” refers to “the threads
stretched lengthwise in a loom to be
crossed by the weft” [Oxford Dictionary].

[https://en.wikipedia.org/wiki/Warp_and_woof]

For Next Class

• Read GPGPA Chapters 1-2

Final Thought

• Who has heard of Spectre and Meltdown?

• Are GPUs affected by these?

