
CS 758: Advanced Topics in
Computer Architecture

Lecture #4: Grid-Based Programming, Basic Thread Scheduling, & Simulators

Professor Matthew D. Sinclair

Some of these slides were developed by Tim Rogers at the Purdue
University, Tor Aamodt at the University of British Columbia, and Wen-
mei Hwu & David Kirk at the University of Illinois at Urbana-Champaign.

Slides enhanced by Matt Sinclair

Announcements

• Updates to schedule per HW0
• See course schedule

• Euler access
• Some issues with creating new accounts over the weekend

• Fixed now

Today’s Objectives

• Some more complex kernels
• Grid-based programming

• More on the memory model

• Basic thread scheduling

• GPU simulators

Back to CUDA

• Multi-dimensional kernels
• Our first kernel was a linear vectorAdd

• Threads can be arranged in multiple dimension

First Multi-Dimensional Kernel:
Conversion to grey-scale
• Every pixel has 3 values to determine the color (R,G,B)

• Compute the Luminance value of the pixel
• Embarrassingly data-parallel operation

• Same operation on every pixel, all independent

• Parallelism scales 1:1 with input data Example of data parallelism

A 2-D Grid configuration

Threadblock:
256 Threads

Grid:
20 TB, (80x64) 5120 threads

Image
76x62

Threads at the edges
should do nothing…

Row-Major Memory Layout (C/C++/CUDA)
M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

M2,1 → Row*Width+Col = 2*4+1 = 9

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__
void colorToGreyscaleConvertion(unsigned char * Pout, unsigned char * Pin,

int width, int height) {

int Col = threadIdx.x + blockIdx.x * blockDim.x;
int Row = threadIdx.y + blockIdx.y * blockDim.y;

if (Col < width && Row < height) {
// get 1D coordinate for the grayscale image
int greyOffset = Row*width + Col;
// one can think of the RGB image having
// CHANNEL times columns of the gray scale image
int rgbOffset = greyOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

Kernel with 2D
thread mapping
to data

Another 2-D Kernel

• Image Blurring
• Slightly more complicated: Need data from surrounding pixels – not just 1.

Row

Each output pixel is the average of
pixels around it (BLRU_SIZE = 1)

Must handle pixels not computed + edge
pixels

1

2

3

4

5

Image Blur
Kernel

__global__

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;

int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {

1. int pixVal = 0;

2. int pixels = 0;

// Get the average of the surrounding BLUR_SIZE x BLUR_SIZE box

3. for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

4. for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

5. int curRow = Row + blurRow;

6. int curCol = Col + blurCol;

// Verify we have a valid image pixel

7. if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

8. pixVal += in[curRow * w + curCol];

9. pixels++; // Keep track of number of pixels in the avg

}

}

}

// Write our new pixel value out

10 out[Row * w + Col] = (unsigned char)(pixVal / pixels);

}

}

Doubly Nested
Loop

Protection
against edges

Note: There is shared data amongst threads
that is not exploited in this simple kernel

Full Programmer Memory Model

• Each thread can:
• Read/write per-thread registers

(~1 cycle)

• Read/write per-block shared
memory (~5 cycles)

• Read/write per-grid global
memory (~500 cycles)

• Read/only per-grid constant
memory (~5 cycles with
caching)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Note: Both global and constant
memory have a cache hierarchy

High-level Architecture of the GPU (Turing)

GPU

Threadblocks / GPU resources usage

• Threads are assigned to Streaming
Multiprocessors in block granularity
• Up to 32 blocks to each SM as resource

allows

• Maxwell SM can take up to 2048 threads

• Threads run concurrently
• SM maintains thread/block id #s

• SM manages/schedules thread execution

SM 0 SM N-1

…
TB0 TBN-1

TBN TB2N-1

There is no guaranteed
scheduling of TB to SM

What is inside
an SM?
(Pascal)

Reg file/Shared memory
are statically partitioned

between threads

Finite number of
threads/warps/threadblocks

can be managed at once

What’s inside an SM? (Turing)

More units, larger memory/RF, HW RT support, TensorCores, ...

TensorCores

• Observation:
• Machine learning applications (and some others) can use reduced precision

• Matrix multiplication operations (e.g., FMA) are common

• Solution:
• Add specialized ALUs to SMs

• Turing: FP16, INT8, INT4

• Volta: FP16

Lots of extra FLOPs for apps that can use them

Volta SM Sub-Core [Choquette 2018]

GPU ISA

• NVIDIA and AMD usually have a “virtual” assembly ISA – PTX, HSAIL
• PTX == Parallel Thread Execution

• HSAIL == HSA Intermediate Language
• AMD recently deprecated HSAIL [Gutierrez 2018]

• Idea: portability across different devices (from the same company)
• Compiler can generate PTX/HSAIL once (stable platform)

• Later device will “finalize” PTX/HSAIL to lower-level assembly
• Idea: lower-level assembly can change from GPU to GPU

• NVIDIA: SASS

• SASS details not publicly disclosed

In most cases, you won’t need to write code below the CUDA level

GPU ISA (Cont.)

• Example: [NVIDIA PTX Guide]

.reg .b32 r1, r2;

.global .f32 array[N];

start:

mov.b32 r1, %tid.x;

shl.b32 r1, r1, 2; // shift thread id by 2 bits

ld.global.b32 r2, array[r1]; // thread[tid] gets array[tid]

add.f32 r2, r2, 0.5; // add 1/2

What CUDA code does this correspond to?

GPU Simulators
• 3 widely used (open-source) GPU simulators:

• GPGPU-Sim
• Focuses on (discrete) NVIDIA GPUs -- CUDA and OpenCL support

• Significant detail, but a little less than gem5

• Mostly simulates NVIDIA’s PTX ISA (some SASS-like support with PTXPlus mode)

• gem5 (gem5-gpu)
• Focuses on (integrated) AMD GPUs -- HIP and OpenCL support

• Lots of detail: models low-level GCN3 ISA, basically all components

• Lots of extensions: e.g., multiple distributed devices, graphics, NVIDIA GPUs

• See separate slide deck

• Multi2Sim (mGPUSim)
• In between GPGPU-Sim and gem5

• Recently added Multi-GPU support (in Go!)

AMD GPU Tutorial
• See separate slide deck

• Details not discussed today:
• Lots of details on how kernels are launched

• HSA Signals

• HSA Queues

• Command and Dispatch

• Command Queues

• Doorbell and Event Pages

• hUMA (Unified Memory)

• Ruby

• …

For Next Class

• HW0 Due

• HW1 Assigned

• Read Rogers 2015

• Read GPGPA Chapter 3

Parting Thought

• Can GPUs afford to simultaneously power both TensorCores and
traditional cores (e.g., CUDA Cores) in their compute units?

