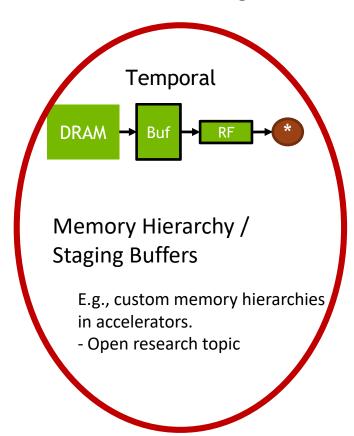
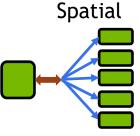
CS 758: Advanced Topics in Computer Architecture

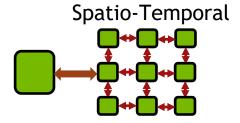
Lecture #16: ML: Memory


Professor Matthew D. Sinclair

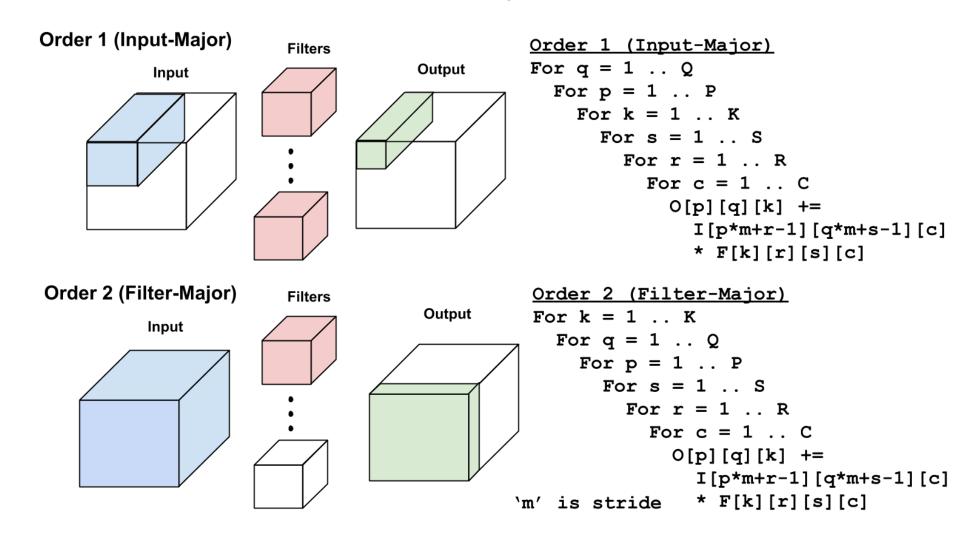

Some of these slides were developed by Tushar Krishna at Georgia Tech Slides enhanced by Matt Sinclair


Hardware structures to exploit reuse

Goal of a good dataflow:


Algorithmic Data Reuse → Hardware Reuse

E.g., Hierarchical Bus in Eyeriss (ISCA 2016), Tree in MAERI (ASPLOS 2018)


Direct Neighbor-to-**Neighbor Connections**

E.g., TPU, local network in Eyeriss

Why is it important? Percentage of area devoted to on-chip buffers:

DaDianNao [5]:	48%	Eyeriss [6]:	40%-93%
EIE [18]:	93%	SCNN [35]:	57%
TPU [22]	35%	PuDianNao [27]	63%

What dataflows did they consider? [Siu 2018]

Data Movement Order

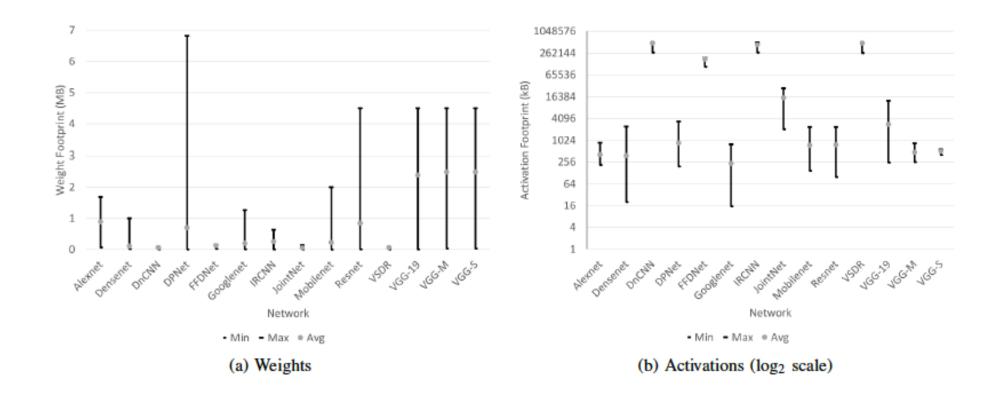
Heuristics for memory BW reduction

Data Mapping ("Stationary") Behavior at Shared (L2) Buffer

What about at L1?

Results

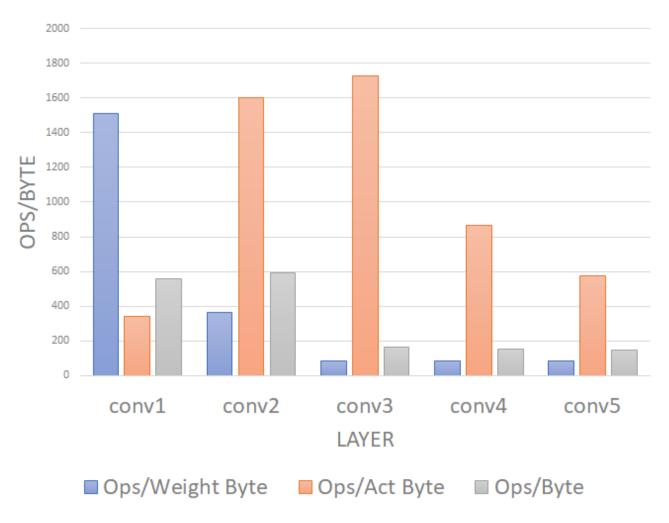
TABLE III: AM and WM sizes for Scheme 1. Double buffering is assumed for activations.

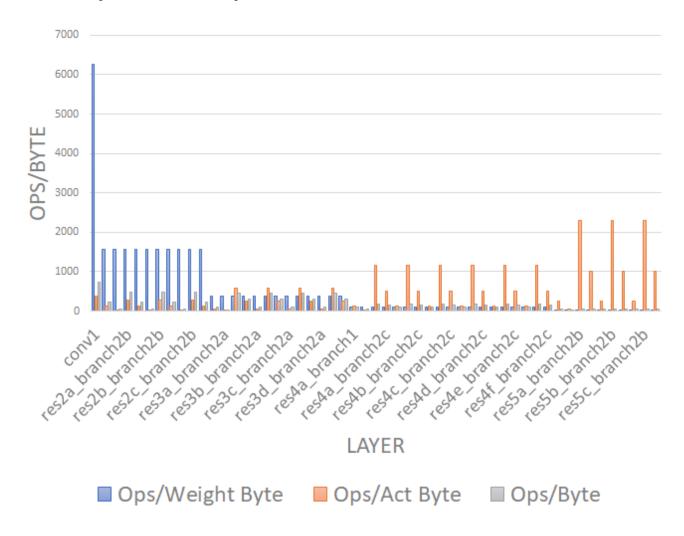

		ze (MB)	AM Size (MB)		
	Conv	FC	Double		
AlexNet	4.45	111.81	0.85		
GoogleNet	11.38	1.95	0.77		
VGG-M	12.45	163.91	0.82		
VGG-S	12.45	183.81	0.56		
VGG-19	38.18	235.81	12.25		
MobileNet	6.08	1.95	2.30		
DenseNet-121	13.10	1.95	2.38		
DPNet-92	66.48	5.13	3.27		
ResNet-50	44.74	3.91	2.30		
DnCNN	1.27	-	506.25		
FFDNet	1.31	-	189.84		
IRCNN	1.80	-	506.25		
JointNet	1.07	-	27.06		
VDSR	1.27	-	506.25		

Results

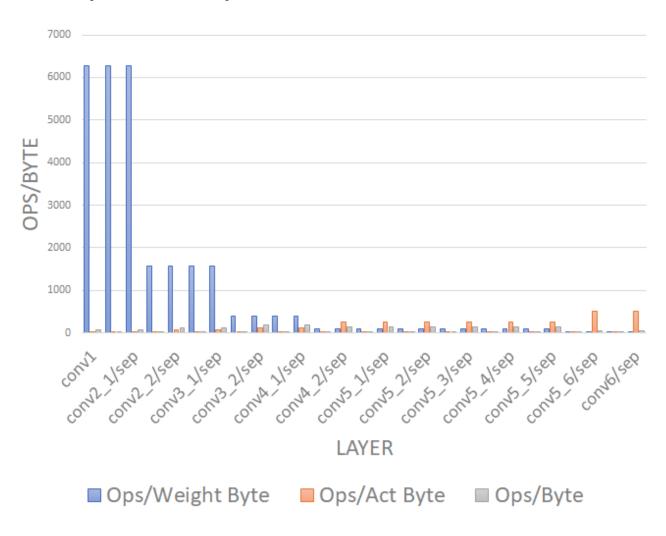
TABLE VI: Total memory requirements for Schemes 2–4. Double buffering is assumed, wherever possible. All values are in MB. The grayed out configurations violate our single, per value off-chip access invariant.

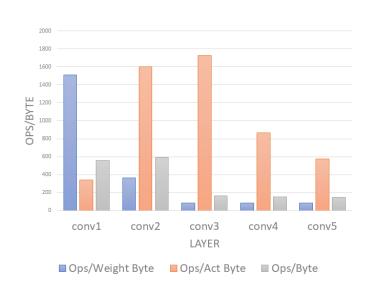
	Sche	eme 2	Scheme 3				Scheme 4				
	Conv	FC	Working Set Size				Working Set Size				
Network	Conv	FC	Full Layer	64 Filters	16 Filters	1 Filter	Full Layer	64 Filters	16 Filters	1 Filter	
AlexNet	4.507	111.867	3.8	1.41	0.99	0.8588	3.007	0.617	0.197	0.0658	
GoogleNet	11.421	1.991	2.91	1.19	0.88	0.7766	2.181	0.461	0.151	0.0476	
VGG-M	12.549	164.009	9.82	1.95	1.1	0.838	9.099	1.229	0.379	0.117	
VGG-S	12.55	183.91	9.56	1.69	0.84	0.578	9.1	1.23	0.38	0.118	
VGG-19	38.34	235.97	21.25	13.38	12.53	12.268	9.16	1.29	0.44	0.178	
MobileNet	6.162	2.032	4.32	2.55	2.363	2.3039	2.102	0.332	0.145	0.0859	
DenseNet-121	13.183	2.033	3.51	2.63	2.45	2.3844	1.213	0.333	0.153	0.0874	
DPNet-92	66.61	5.26	12.36	3.9	3.43	3.2798	9.22	0.76	0.29	0.1398	
ResNet-50	44.795	3.965	8.8	3.43	2.58	2.318	6.555	1.185	0.335	0.073	
DnCNN	2.67	-	506.39	506.32	506.285	506.2522	1.54	1.47	1.435	1.4022	
FFDNet	2.41	-	190.16	190	189.893	189.8433	1.42	1.26	1.153	1.1033	
IRCNN	6.02	-	507.27	506.88	506.57	506.268	5.24	4.85	4.54	4.238	
JointNet	1.26	-	27.27	27.2	27.095	27.0622	0.4	0.33	0.225	0.1922	
VDSR	2.67	-	506.39	506.32	506.285	506.2522	1.54	1.47	1.435	1.4022	

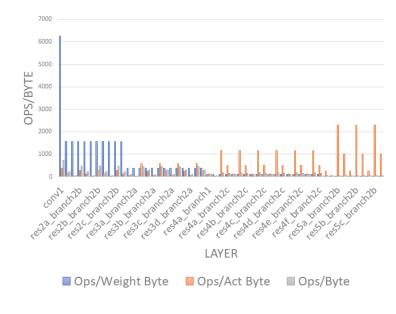

Per layer results

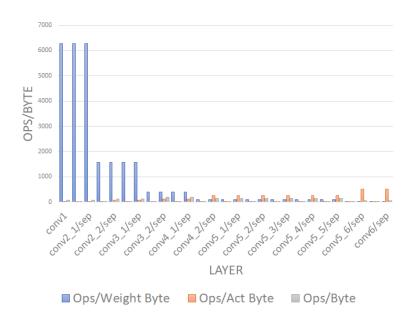

BW Requirements

Network	Scheme 1	Scheme 2			Scheme 3			Scheme 4		
	Mem	Avg BW	Peak BW	Mem	Avg BW	Peak BW	Mem	Avg BW	Peak BW	Mem
AlexNet	5.30	1.22	3.00	4.48	7.18	12.12	2.54	35.07	50.11	0.03
GoogleNet	12.15	7.75	128.00	11.40	9.91	41.78	2.03	78.70	356.57	0.02
VGG-M	13.27	1.16	7.49	12.50	11.71	12.12	5.32	59.72	126.30	0.06
VGG-S	13.01	0.70	15.96	12.50	7.03	7.09	5.06	42.08	63.83	0.06
VGG-19	50.43	1.42	7.11	38.27	2.73	41.80	16.75	24.74	168.71	0.09
MobileNet	8.37	18.55	912.29	6.12	11.49	41.89	4.30	148.01	971.76	0.04
DenseNet	15.48	10.88	16.00	13.15	4.60	32.00	3.38	70.56	272.00	0.04
DPNet	69.75	6.08	146.52	66.54	9.67	32.00	10.09	142.02	483.13	0.07
ResNet	47.03	5.38	64.00	44.76	12.46	41.80	6.80	112.02	601.14	0.04
DnCNN	507.52	3.74	75.85	1.98	0.001	0.001	506.32	4.10	76.21	0.70
FFDNet	191.15	2.62	18.96	1.84	0.004	0.004	190.00	3.33	19.67	0.53
IRCNN	508.05	0.84	75.85	3.91	0.001	0.001	506.88	1.00	76.21	2.12
JointNet	28.13	4.45	682.68	1.17	0.035	0.04	27.20	7.31	687.23	0.09
VDSR	507.52	3.75	227.56	1.97	0.001	0.001	506.32	4.10	227.56	0.70


Reuse per layer – AlexNet (2012)


Reuse per layer: ResNet-50 (2015)




Reuse per layer: MobileNet (2018)

Reuse per layer

AlexNet (2012)

ResNet-50 (2015)

MobileNet (2018)