CS 758: Advanced Topics in
Computer Architecture

Lecture #14: Reuse

Professor Matthew D. Sinclair

Some of these slides were developed by Tushar Krishna at Georgia Tech
Slides enhanced by Matt Sinclair

Announcements

* Project Progress Report due next Tuesday at 9 AM

CNN Computation

Input Activations Qutput Activations

. A
Filters s .
7 L=
/c 1
i rY v’ N
‘l’ 1 v 1 1
<~ S — < X — x—
A A .
c’ e K P
!
R ’
LK —t— - 7
<— g — N ik
N — XY—

CNN Loop-nest

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y’=0; y'<Y’; y'++) { // Output feature map row
for(x’=0; x’<X’; x’++) { // Output feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column
O[KIly’][x'] += WIk][c][r]l[s] * I[c]ly’+r][x"+s]}}}1HH}

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<Y; y++) { // Input feature map row
for(x=0; x<X; x++) { // Input feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column
O[K][y-rl[x-s] += W[k][c][r][s] * I[c][y][x]}}}}}}}

Output-Centric

Input-Centic

Data Reuse opportunities

e Dataflows
* Mapping
* Weight: aka weight stationary
* Input: aka input stationary
* Partial Sums: aka output stationary
e Loop Scheduling and Tiling
* Maximize on-chip buffers and reduce off-chip data transfers

* More Reuse Opportunities
* FusedCNN (MICRO 2016): Reuse outputs across layers
 UCNN (ISCA 2018): Reuse unique weights across filters
e DianNao (ASPLOS 2014): accumulate partial sums in registers (output stationary)

DianNao Summary (Best Paper, ASPLOS ‘14)

* Machine learning is becoming pervasive
* A couple of ML algorithms cover many applications
* Heterogeneous systems should include ML accelerators

* Previous work ignores memory constraints
* Memory must be a first-order design constraint

* Heavily optimized ML accelerator (DianNao)
e 3.02 mm? at 65 nm, 485 mW footprint
e 452 GOP/s
* 117.9X faster, 21.1X more energy efficient

Attempt #1: Software NN

e Used to show the high amounts of memory traffic
* Motivates hardware design choices

* Classifier Layer:
e Each output has 10K — 100K of input neurons!
* Therefore cannot fit everything in the L1 cache

* Solution: tile loops to get better locality
* Synapses

Software NN: Classifier Layer

Memoary bandwidth [GE's)

“ CONVZ © CONVS

* Each output has 10K — 100K of input neurons!

* Therefore cannot fit everything in the L1 cache (Original)
* Solution: tile to get better locality and reduce mem B/W (Tiled)
* Synapses: reuse across invocations with larger L2 (Tiled+L2)

Software NN: Convolutional Layer

120

100

B0

B0

40 |

Memoary bandwidth [GE's)

20 r

0

e Uses a sliding window to scan input layer (Original)
* Tiling helps here too but not as much (Tiled)

* Synapse weights can again be reused across iterations
 Solution: larger L2 (Tiled + L2) — but often synapses too big for L2

10

Software NN: Pooling Layer

120 /\

100

B0

B0

40 |

Memoary bandwidth [GE's)

20 r

A, .;;._:' q, % A A
%%% %%% %%% %%%
:l

E_ASE1 R GU‘W‘S) GGW:-

0

* No synapse weights to store, so less opportunities for reuse

* Tiling still increases reuse for inputs (Tiled, Tiled+L2)
* Larger L2 cache helps because lots of input neurons

11

Software NN: Takeaways

* Lots of intra- and inter-layer memory traffic!
* Sometimes memory requirements exceed L1 or L2 size

* Solutions:
1. Tile loops to increase reuse of input neurons
2. Increase L2 cache size to create reuse of synapse weights

* Need better solution that focuses on memory requirements
* Can we do better with hardware NNs?

Attempt #2: Naive Hardware NN

output 3 j output
layer
-
” a ((f _\I
"EI x- L 5 _-I' \
hidden F
layer
+
synapses '

input

MELInon table
X

synapse
* Naive (simple) hardware approach:
e Lay out all neurons and synapses for all layers

* Neurons: logic circuits
e Synapses: latches or RAMs

* Matches conceptual NN design
* Memory only used for input and storing results

Naive Hardware NN: Results

BxB 16x16 J2x32 J2xd BdxB 128x16

* Advantages:
e Simple design

* Short distance between layers
(decreased energy)

e Fast!

* Disadvantages:
 Huge area requirements

e Limited number of neurons and
synapses can be used

Improves memory requirements but ignores area!

14

Attempt #3: Large Hardware NN

Control Processar (CP)

NFU-2 NFU-3

'-_-J B o
| TN Inst.
“ 20 2

[ll
=

NBout

. NFU-1

BRI Ado By

* Main components:
 Computational block for all calculations (NFU-*)
* Input buffer for input neurons (NBin)
e Output buffer for output neurons (NBout)
» Buffer for synapse weights (SB)

15

Large Hardware NN: Pipeline

Control Processor (CP)
Inst.

WA

, IllHk NFU-1 NFU-2 NFU-3
-H-\-\-H-"-\.
NBin \ ?‘El 20 S
b E '{Ir" i _".
z D -\
3 - : -
= . - -
g] '
Fy)
3 g

 Decompose layers to reduce critical path delay
* Classifier (FC): multiply weights and inputs, sum, sigmoid
* Convolutional: multiply weights and inputs, sum, sigmoid

* Pooling: Combine using average or max

16

Large Hardware NN: Arithmetic

* NN pipeline heavily uses arithmetic
* Need to make these operations efficient!

* Optimizations:
* Adds, Multiplies:
e 16-bit operations instead of 32-bit operations
* Small quality degradation (NNs are robust, fault tolerant)

e Sigmoid (NFU-3): use linear interpolation
* Reduces to multiplies, additions, and SRAM lookups

Large Hardware NN: Storage

Control Processor (CP)

Instructions

NFU-2 NFU-3

NFU-1

BB LIFI| AJOW apy

* Split buffers to use appropriate width, size for each

e Use scratchpads to store appropriate data
* Scratchpads are more energy efficient than caches
e Data guaranteed to be in scratchpad (more reuse)
* Have to manually re-write code to use scratchpads

18

Large Hardware NN: Locality

NFU-2 NFU-3

. NFU-L

BB LIFI| AJOW apy

 Add DMAs to prefetch scratchpad data, exploit locality
 DMAs prefetch into separate FIFO for each scratchpad buffer

* Make NBin a circular buffer to reuse data across tiled chunks

* Dedicated registers to store partial sums

19

Conclusion

* Heterogeneous systems are becoming common
* Which accelerators they should include is an open question
* This paper: heterogeneous systems should include ML accelerators!

* A couple of ML algorithms cover many applications
* Memory must be a first-order design constraint

* Created a heavily optimized ML accelerator (DianNao)

* Somewhat like an ASIC
* Significantly improves performance and energy efficiency

Key Takeaways

Advantages
* Focuses on memory

 Step-by-step design walkthrough
* Explain what the key facets are
* Synthesized design, real #'s

* Exploits fact that CNNs and
DNNs work for many
applications

* Allows a single HW design

Disadvantages
* How reusable is their design?

* Not very programmable
 NPU work from Washington is
much better in this respect

* Requires significant baseline
understanding of concepts

Fused-CNN

e What is the basic idea?

* Trade-offs?

 What about weight or input reuse? i, O

* Reuse vs Recompute

* Design Choices

L1

L2

L3

L4

L

<
-
i

Input Feature Maps OlO|1O0101010 O—\\N
O10|0|0|0|10|10f |
file 1 O10|0101010 Oi __ new dala
» /@ O O O O O@i for tile 2
0)(0][0]0][®)(®)[®]y
O10]0]0]010]04]
JlelelEE)e)
[e | [T~ N
\| \\ I/ I/ - Layer 1
M ayer
OICIOJORS
OP[0I0[0)
overlapping 7_,_L_i— 'r\\,_,/: :1,_,); O Oi
computation ;i Q’\’ (\,)i(D_
UL IO)
| \\ f/ ’/
Output Feature Maps Q\f@ O ’\\P‘> Layer 2
output — | O
pixel 1 O O Q) output

pixel 2

Fig. 3. Example of fusing two convolutional layers.

26

When does it make sense?

* Large Output Sizes
e Early layers of CNNs

16
14
12
10

Data Size [MB]

O N B OO

B Input Size 0O OQutput Size U0OWeight Size

- I ﬂ 10l
1 2 3 4 5 6 7 8 9 10 11 12
Convolutional Layer Number

14

15

* Few inputs/weights and generating entire output pixel

* E.g., convolutions

16

BACKUP

Naive Hardware NN: Takeaways

* Advantages:
* Simple design
e Short distance between layers (decreased energy)
* Fast!

* Disadvantages:
* Huge area requirements
* Limited number of neurons and synapses can be used

Results: SIMD Breakdown

% Telal enery

B Computations B remory

- EEB

R e

30

Background: Layers

Convolutional

|]

i = ‘ ||—‘—|

FPooling Convolutional

Classifier

31

32

