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Announcements

* Project Progress Report due next Tuesday at 9 AM



CNN Computation
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CNN Loop-nest

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y’=0; y'<Y’; y'++) { // Output feature map row
for(x’=0; x’<X’; x’++) { // Output feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column
O[KIly’][x'] += WIk][c][r]l[s] * I[c]ly’+r][x"+s]}}}1HH}

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<Y; y++) { // Input feature map row
for(x=0; x<X; x++) { // Input feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column
O[K][y-rl[x-s] += W[k][c][r][s] * I[c][y][x]}}}}}}}

Output-Centric

Input-Centic



Data Reuse opportunities

e Dataflows
* Mapping
* Weight: aka weight stationary
* Input: aka input stationary
* Partial Sums: aka output stationary
e Loop Scheduling and Tiling
* Maximize on-chip buffers and reduce off-chip data transfers

* More Reuse Opportunities
* FusedCNN (MICRO 2016): Reuse outputs across layers
 UCNN (ISCA 2018): Reuse unique weights across filters
e DianNao (ASPLOS 2014): accumulate partial sums in registers (output stationary)



DianNao Summary (Best Paper, ASPLOS ‘14)

* Machine learning is becoming pervasive
* A couple of ML algorithms cover many applications
* Heterogeneous systems should include ML accelerators

* Previous work ignores memory constraints
* Memory must be a first-order design constraint

* Heavily optimized ML accelerator (DianNao)
e 3.02 mm? at 65 nm, 485 mW footprint
e 452 GOP/s
* 117.9X faster, 21.1X more energy efficient



Attempt #1: Software NN

e Used to show the high amounts of memory traffic
* Motivates hardware design choices

* Classifier Layer:
e Each output has 10K — 100K of input neurons!
* Therefore cannot fit everything in the L1 cache

* Solution: tile loops to get better locality
* Synapses



Software NN: Classifier Layer
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* Each output has 10K — 100K of input neurons!

* Therefore cannot fit everything in the L1 cache (Original)
* Solution: tile to get better locality and reduce mem B/W (Tiled)
* Synapses: reuse across invocations with larger L2 (Tiled+L2)



Software NN: Convolutional Layer
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e Uses a sliding window to scan input layer (Original)
* Tiling helps here too but not as much (Tiled)

* Synapse weights can again be reused across iterations
 Solution: larger L2 (Tiled + L2) — but often synapses too big for L2
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Software NN: Pooling Layer
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* No synapse weights to store, so less opportunities for reuse

* Tiling still increases reuse for inputs (Tiled, Tiled+L2)
* Larger L2 cache helps because lots of input neurons
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Software NN: Takeaways

* Lots of intra- and inter-layer memory traffic!
* Sometimes memory requirements exceed L1 or L2 size

* Solutions:
1. Tile loops to increase reuse of input neurons
2. Increase L2 cache size to create reuse of synapse weights

* Need better solution that focuses on memory requirements
* Can we do better with hardware NNs?



Attempt #2: Naive Hardware NN
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* Naive (simple) hardware approach:
e Lay out all neurons and synapses for all layers

* Neurons: logic circuits
e Synapses: latches or RAMs

* Matches conceptual NN design
* Memory only used for input and storing results



Naive Hardware NN: Results

BxB 16x16 J2x32 J2xd BdxB 128x16

* Advantages:
e Simple design

* Short distance between layers
(decreased energy)

e Fast!

* Disadvantages:
 Huge area requirements

e Limited number of neurons and
synapses can be used

Improves memory requirements but ignores area!
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Attempt #3: Large Hardware NN
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* Main components:
 Computational block for all calculations (NFU-*)
* Input buffer for input neurons (NBin)
e Output buffer for output neurons (NBout)
» Buffer for synapse weights (SB)
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Large Hardware NN: Pipeline
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 Decompose layers to reduce critical path delay
* Classifier (FC): multiply weights and inputs, sum, sigmoid
* Convolutional: multiply weights and inputs, sum, sigmoid

* Pooling: Combine using average or max
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Large Hardware NN: Arithmetic

* NN pipeline heavily uses arithmetic
* Need to make these operations efficient!

* Optimizations:
* Adds, Multiplies:
e 16-bit operations instead of 32-bit operations
* Small quality degradation (NNs are robust, fault tolerant)

e Sigmoid (NFU-3): use linear interpolation
* Reduces to multiplies, additions, and SRAM lookups



Large Hardware NN: Storage

Control Processor (CP)
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* Split buffers to use appropriate width, size for each

e Use scratchpads to store appropriate data
* Scratchpads are more energy efficient than caches
e Data guaranteed to be in scratchpad (more reuse)
* Have to manually re-write code to use scratchpads
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Large Hardware NN: Locality
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 Add DMAs to prefetch scratchpad data, exploit locality
 DMAs prefetch into separate FIFO for each scratchpad buffer

* Make NBin a circular buffer to reuse data across tiled chunks

* Dedicated registers to store partial sums
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Conclusion

* Heterogeneous systems are becoming common
* Which accelerators they should include is an open question
* This paper: heterogeneous systems should include ML accelerators!

* A couple of ML algorithms cover many applications
* Memory must be a first-order design constraint

* Created a heavily optimized ML accelerator (DianNao)

* Somewhat like an ASIC
* Significantly improves performance and energy efficiency



Key Takeaways

Advantages
* Focuses on memory

 Step-by-step design walkthrough
* Explain what the key facets are
* Synthesized design, real #'s

* Exploits fact that CNNs and
DNNs work for many
applications

* Allows a single HW design

Disadvantages
* How reusable is their design?

* Not very programmable
 NPU work from Washington is
much better in this respect

* Requires significant baseline
understanding of concepts



Fused-CNN

e What is the basic idea?

* Trade-offs?

 What about weight or input reuse? i, O

* Reuse vs Recompute

* Design Choices
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Fig. 3. Example of fusing two convolutional layers.
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When does it make sense?

* Large Output Sizes
e Early layers of CNNs
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* Few inputs/weights and generating entire output pixel

* E.g., convolutions
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BACKUP



Naive Hardware NN: Takeaways

* Advantages:
* Simple design
e Short distance between layers (decreased energy)
* Fast!

* Disadvantages:
* Huge area requirements
* Limited number of neurons and synapses can be used



Results: SIMD Breakdown
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Background: Layers
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