
CS 758: Advanced Topics in
Computer Architecture

Lecture #14: Reuse

Professor Matthew D. Sinclair

Some of these slides were developed by Tushar Krishna at Georgia Tech

Slides enhanced by Matt Sinclair

Announcements

• Project Progress Report due next Tuesday at 9 AM

2

CNN Computation

3

Filters

R

S

C

Y

X

C

…

Y’

X’

K

K

…

R

S

C

Y

X

C

1

N

1

K

1

Input Activations Output Activations

…

Y’

X’

N

CNN Loop-nest

4

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y’=0; y’<Y’; y’++) { // Output feature map row
for(x’=0; x’<X’; x’++) { // Output feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column

O[k][y’][x’] += W[k][c][r][s] * I[c][y’+r][x’+s]}}}}}}}

for(k=0; k<K; k++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<Y; y++) { // Input feature map row
for(x=0; x<X; x++) { // Input feature map column
for(r=0; j<R; j++) { // Weight filter row
for(s=0; i<S; i++) { // Weight filter column

O[k][y-r][x-s] += W[k][c][r][s] * I[c][y][x]}}}}}}}

Output-Centric

Input-Centic

Data Reuse opportunities

• Dataflows
• Mapping

• Weight: aka weight stationary

• Input: aka input stationary

• Partial Sums: aka output stationary

• Loop Scheduling and Tiling

• Maximize on-chip buffers and reduce off-chip data transfers

• More Reuse Opportunities
• FusedCNN (MICRO 2016): Reuse outputs across layers

• UCNN (ISCA 2018): Reuse unique weights across filters

• DianNao (ASPLOS 2014): accumulate partial sums in registers (output stationary)

5

DianNao Summary (Best Paper, ASPLOS ‘14)

• Machine learning is becoming pervasive
• A couple of ML algorithms cover many applications

• Heterogeneous systems should include ML accelerators

• Previous work ignores memory constraints
• Memory must be a first-order design constraint

• Heavily optimized ML accelerator (DianNao)
• 3.02 mm2 at 65 nm, 485 mW footprint

• 452 GOP/s

• 117.9X faster, 21.1X more energy efficient

6

Attempt #1: Software NN
• Used to show the high amounts of memory traffic

• Motivates hardware design choices

• Classifier Layer:
• Each output has 10K – 100K of input neurons!

• Therefore cannot fit everything in the L1 cache

• Solution: tile loops to get better locality
• Synapses

8

Software NN: Classifier Layer

• Each output has 10K – 100K of input neurons!

• Therefore cannot fit everything in the L1 cache (Original)
• Solution: tile to get better locality and reduce mem B/W (Tiled)

• Synapses: reuse across invocations with larger L2 (Tiled+L2)

9

Software NN: Convolutional Layer

• Uses a sliding window to scan input layer (Original)

• Tiling helps here too but not as much (Tiled)

• Synapse weights can again be reused across iterations
• Solution: larger L2 (Tiled + L2) – but often synapses too big for L2

10

Software NN: Pooling Layer

• No synapse weights to store, so less opportunities for reuse

• Tiling still increases reuse for inputs (Tiled, Tiled+L2)
• Larger L2 cache helps because lots of input neurons

11

Software NN: Takeaways

• Lots of intra- and inter-layer memory traffic!
• Sometimes memory requirements exceed L1 or L2 size

• Solutions:
1. Tile loops to increase reuse of input neurons

2. Increase L2 cache size to create reuse of synapse weights

• Need better solution that focuses on memory requirements

• Can we do better with hardware NNs?

12

Attempt #2: Naïve Hardware NN

• Naïve (simple) hardware approach:
• Lay out all neurons and synapses for all layers

• Neurons: logic circuits

• Synapses: latches or RAMs

• Matches conceptual NN design

• Memory only used for input and storing results 13

Naïve Hardware NN: Results
• Advantages:

• Simple design

• Short distance between layers
(decreased energy)

• Fast!

• Disadvantages:
• Huge area requirements

• Limited number of neurons and
synapses can be used

14

Improves memory requirements but ignores area!

Attempt #3: Large Hardware NN

• Main components:
• Computational block for all calculations (NFU-*)

• Input buffer for input neurons (NBin)

• Output buffer for output neurons (NBout)

• Buffer for synapse weights (SB)
15

Large Hardware NN: Pipeline

• Decompose layers to reduce critical path delay

• Classifier (FC): multiply weights and inputs, sum, sigmoid

• Convolutional: multiply weights and inputs, sum, sigmoid

• Pooling: Combine using average or max
16

Large Hardware NN: Arithmetic

• NN pipeline heavily uses arithmetic
• Need to make these operations efficient!

• Optimizations:
• Adds, Multiplies:

• 16-bit operations instead of 32-bit operations

• Small quality degradation (NNs are robust, fault tolerant)

• Sigmoid (NFU-3): use linear interpolation
• Reduces to multiplies, additions, and SRAM lookups

17

Large Hardware NN: Storage

• Split buffers to use appropriate width, size for each

• Use scratchpads to store appropriate data
• Scratchpads are more energy efficient than caches
• Data guaranteed to be in scratchpad (more reuse)
• Have to manually re-write code to use scratchpads

18

Large Hardware NN: Locality

• Add DMAs to prefetch scratchpad data, exploit locality
• DMAs prefetch into separate FIFO for each scratchpad buffer

• Make NBin a circular buffer to reuse data across tiled chunks

• Dedicated registers to store partial sums

19

Conclusion

• Heterogeneous systems are becoming common
• Which accelerators they should include is an open question

• This paper: heterogeneous systems should include ML accelerators!

• A couple of ML algorithms cover many applications
• Memory must be a first-order design constraint

• Created a heavily optimized ML accelerator (DianNao)
• Somewhat like an ASIC

• Significantly improves performance and energy efficiency

24

Key Takeaways

Advantages

• Focuses on memory

• Step-by-step design walkthrough
• Explain what the key facets are

• Synthesized design, real #’s

• Exploits fact that CNNs and
DNNs work for many
applications
• Allows a single HW design

Disadvantages

• How reusable is their design?

• Not very programmable
• NPU work from Washington is

much better in this respect

• Requires significant baseline
understanding of concepts

25

Fused-CNN

• What is the basic idea?

• Trade-offs?
• What about weight or input reuse?

• Reuse vs Recompute

• Design Choices

26

When does it make sense?
• Large Output Sizes

• Early layers of CNNs

• Few inputs/weights and generating entire output pixel
• E.g., convolutions

27

BACKUP

28

Naïve Hardware NN: Takeaways

• Advantages:
• Simple design

• Short distance between layers (decreased energy)

• Fast!

• Disadvantages:
• Huge area requirements

• Limited number of neurons and synapses can be used

29

Results: SIMD Breakdown

30

Background: Layers

31

32

