CS 758: Advanced Topics in
Computer Architecture

Lecture #1/7: ML: RNNSs
Professor Matthew D. Sinclair

Some of these slides were developed by Tushar Krishna at Georgia
Tech

Slides enhanced by Matt Sinclair

Recurrent Neural Network (RNN) Use Cases

 RNNs heavily used in several important applications
 RNN architecture different than CNN
 Existing CNN optimizations are not very effective for RNNs

V

q
3
0000 >0 =

"

'

4
=
0000 >0 =
"
o

q
.
o> 0000 -0 2
"

o

=

3

o+ eece/-0 2
"

¢ =]

3

o> 00000 2
i

=

3

o> 00000 °

:

:

RNN Use Cases (Cont.)

 RNNs are widely used in machine translation and speech recognition

 The memory cells of RNNs help to infer the sequence of inputs
* Goal: understand long-term dependencies between multiple inputs

Encoder € |/ 61 |/| e2 |—/)| €3 |/ 84 |/| €5 |/ | ©g

Decoder do ———/ di — ds — ds

[Source: https.//github.com/google/seq2seq]

RNN execution model

0 One RNN
V: the weight we multiply O Task O 9, 0441
the output o_t by
U: the weight we multiply v W 4] ¥ . 1%
the input x_t by sO [: W Ot—f Or Osm
W: the weight we multiply Unfold W W 7%
the p’reV|ous hidden U TU TU TU
state’s value s_t-7 by

X x!—f xr x:+1‘

Source: Nature

4 Each RNN task passes through multiple time steps (t)
4 Each time step is dependent on the previous one (e.g., t-1 and t)

4 The hidden state size determines the degree of parallelism
—Large hidden state sizes increase parallelism but may lead to overfitting

RNN Background

 RNNSs used to recognize and predict sequences

o

O Ot-1 Or Ot+1
v TV \' \'
W St- s St+
t-1 t t+1
SOO !) w w w w
| b o e
U
Xt-1 Xt Xt+1
X
x = input U = input weight
s = hidden state W = recurrent weight t = timestep
0 = output V = output weight

 They need to remember previous inputs
* Have real-time deployment constraints

RNN Terminology (for next few Figures)

O —>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Source: [Olah '15]

RNN Variant #1: Vanilla

3 main RNN variants: Vanilla, LSTM, and GRU

* Vanilla
* “Traditional” RNN — chain of repeating modules
» Key distinguishing feature: no “memory” unit
* Issue: hard to retain long-term dependencies because no “memory”

4 T\ 1 T
e N)
—> (> —>
A | B A

@ ® @ Source: [Olah '15]

RNN Variant #2: LSTM

* Long Short-Term Memory (LSTM)

* Most widely used today
« 4X more computationally intensive than Vanilla (4 interacting layers)

),

T

N pE N

e e X () T > —>
Lobs l &

PR4N V4N o

)

&)

Hidden slides have more details on each layer

Source: [Olah '15]

RNN Variant #3: GRU

« Gated Recurrence Unit (GRU)

« ~1/2 computational intensity of LSTM/~2X computation of Vanilla
« Combines first two layers of LSTM into a single layer
 Partially combines third and fourth layers of LSTM

* Was popular, but LSTMs again more widely used

* Which is best very case-by-case dependent

hy
s \L 2= 0 (W - (b, 2)

% $ re =0 (Wy - [hi—1,24])
Tto Zto tanr?t Et — tanh (W . [’f’t X ht—la mt])

) ht:(l—Zt)*ht—l‘l‘Zt*ilt

Tt

Factors that impact RNN performance

« Sequence length
* Input/problem dependent
« Varies from RNN job to RNN job
« Hidden state size
* Impacts the accuracy of training data
« Usually a small hidden state is sufficient to achieve good training accuracy (still true?)
* Arrival time of RNN jobs
« Impacts the response time of all RNN jobs in a single batch
« Can be sporadic
« The batch size of RNN jobs
« May require additional padding if the RNN jobs have different sequence lengths

Why doesn't batching help RNN inference performance?

e |ssues:
 Implicit barrier of the batch operation = delays all RNN jobs in a batch
« Jobs unlikely to arrive simultaneously = postpones start of all jobs in batch
« Padding leads to unnecessary computation

Length

Sequence

Job2 Job3

Job1 Job2 Job3

Challenges

O Ot-1 Ot Ot+1

dw v

Y St- 1 St St+1
SO w0~ O

A

X Xt-1 Xt Xt+1

« Contain loops to remember information
» sequential dependencies limits parallelism

« Batching difficult due to strict service level agreements (SLAs)
« poor data reuse - high memory bandwidth

« Read and write activations between timesteps
* requires high memory bandwidth

The Future

« Attention models/Transformer networks slowly replacing RNNs [NeurlPS ‘17]
« Removes all convolutional and recurrent calculations
 Just keeps the “attention” mechanism from RNNs

« Advantages: less serial dependencies, faster training convergence, potentially less
training data

 Likely the next “big” ML application

== Microsoft

Serving

DNNSs In Rea

E. Chung* et al., Hot Chips 2018, ISCA 2018

*Microsoft

Time at

Datacenter Scale with Project
srainwave

/a/i
/BN

[1] 1l

111 177111177
1771711171777 77117/777

The Rise of Deep Learning in ML

Deep neural networks have enabled major
advances in machine learning and Al
Computer vision
Language translation
Speech recognition
Question answering
And more...

Problem: DNNs are challenging to serve and
deploy in large-scale online services
Heavily constrained by latency, cost, and power

Size and complexity of DNNs outpacing growth of
commodity CPUs

Recurrent Neural Networks

20

Silicon alternatives for DNNs

T

Neural Processing Units

Soft NPU Hard

Frea I || I
HE ER

BrainWave Cerebras
Baidu SDA Google TPU
Deephi Tech Graphcore

ESE

Groq

Teradeep Intel Nervana

Etc.

Movidius
Wave Computing
Etc.

ASICs
111iLnl

21

The power of Deep Learning on FPGA

Excellent inference performance at low batch sizes
Ultra-low latency serving on modern DNNs

>10X lower than CPUs and GPUs
Scale to many FPGAs in single DNN service

Performance

FPGAs ideal for adapting to rapidly evolving ML

CNNs, LSTMs, MLPs, reinforcement learning, feature extraction, decision trees, etc.
Inference-optimized numerical precision

Exploit sparsity, deep compression for larger, faster models

Flexibility

Microsoft has the world'’s largest cloud investment in FPGAs
Scale Multiple Exa-Ops of aggregate Al capacity
BrainWave runs on Microsoft's scale infrastructure

Project BrainWave

A Scalable FPGA-powered DNN Serving Platform

Fast: ultra-low latency, high-throughput serving of DNN models at low batch sizes
Flexible: adaptive numerical precision and custom operators
Friendly: turnkey deployment of CNTK/Caffe/TF/etc

L1 Network switches
LO oo LO
FPGAs
o0

Pretrained DNN Model Scalable DNN Hardware BrainWave
in CNTK, etc. Microservice Soft NPU

23

Deployed in Production Datacenters

Microseconds

2000 ——

E
|
I

|

Sub-millisecond FPGA compute
latencies at batch 1

15:00

Deployment of LSTM-based
NLP model (tens of millions
of parameters)

Takes tens of milliseconds to
serve on well-tuned CPU
Implementations

Tail latencies in BrainWave-powered DNN models

appear negligible in E2E software pipelines

25

How It Works: The BrainWave Stack

Compiler & Runtime
Architecture
BrainWave
System
Microarchitecture
Persistency at Scale
HW Microservices General
on Intel FPGAs Infrastructure

26

How It Works: The BrainWave Stack

A framework-neutral federated compiler and runtime for
compiling pretrained DNN models to soft NPUs

Compiler & Runtime
Architecture
Microarchitecture

Persistency at Scale

HW Microservices
on Intel FPGAs

27

How It Works: The BrainWave Stack

A framework-neutral federated compiler and runtime for
compiling pretrained DNN models to soft NPUs

Compiler & Runtime

Adaptive ISA for narrow precision DNN inference

Archi : i ' '
renitecture Flexible and extensible to support fast-changing Al algorithms

Microarchitecture

Persistency at Scale

HW Microservices

on Intel FPGAs

28

How It Works: The BrainWave Stack

Compiler & Runtime

Architecture

Microarchitecture

Persistency at Scale

HW Microservices

on Intel FPGAs

A framework-neutral federated compiler and runtime for
compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference
Flexible and extensible to support fast-changing Al algorithms

BrainWave Soft NPU microarchitecture
Highly optimized for narrow precision and low batch

29

How It Works: The BrainWave Stack

Compiler & Runtime

Architecture

Microarchitecture

Persistency at Scale

HW Microservices

on Intel FPGAs

A framework-neutral federated compiler and runtime for
compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference
Flexible and extensible to support fast-changing Al algorithms

BrainWave Soft NPU microarchitecture
Highly optimized for narrow precision and low batch

Persist model parameters entirely in FPGA on-chip memories
Support large models by scaling across many FPGAs

30

How It Works: The BrainWave Stack

Compiler & Runtime

Architecture

Microarchitecture

Persistency at Scale

HW Microservices

on Intel FPGAs

A framework-neutral federated compiler and runtime for
compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference
Flexible and extensible to support fast-changing Al algorithms

BrainWave Soft NPU microarchitecture
Highly optimized for narrow precision and low batch

Persist model parameters entirely in FPGA on-chip memories
Support large models by scaling across many FPGAs

Intel FPGAs deployed at scale with HW microservices
[MICRO"16]

31

The BrainWave Stack

Compiler & Runtime
Architecture

Microarchitecture

Persistency at Scale

HW Microservices
on Intel FPGAs

32

FPGAs Are Deployed in MSFT Servers Worldwide

WCS 2.0 Server Blade Catapult V2

A Cloud-Scale Acceleration Architecture [MICRO'16]

33

FPGAs Are Deployed in MSFT Servers Worldwide

WCS 2.0 Server Blade Catapult V2

“oram

L 40Gb/
S
H |
QPI Gen3 2x8 : Q{& B qsrp Switch
— FPGA |-
HE BN

Gen3 x8 o

7
o

[ISCA'14, HotChips'14, MICRO'16] 34

Hardware Microservices on FPGAs [MICRO16]

Interconnected FPGAs form a
separate plane of computation

o Can be managed and used
independently from the CPU

Hardware acceleration plane

Web search
ranking

Traditional software (CPU) server plane

-~ [ase)

Gen3 x8

DRAM

Gen3 2x8

40Gb/s

[QSFP|—{QSFP |

40Gb/s

ToR

35

The BrainWave Stack

Compiler & Runtime
Architecture

Microarchitecture

Persistency at Scale

HW Microservices
on Intel FPGAs

36

BrainWave Compiler & Runtime

Caffe CNTK Tensorflow
Model Model Model

Frontends

Portable IR

Graph Splitter and Optimizer

Transformed IRs

Target Target Target
compiler compiler compiler

CPU-CNTK FPGA CPU-Caffe
h 4

Deployment Package

FPGA HW Microservice

37

Common Scenarios

N weight kernels

NxNxN . B NxNxN
Input : ‘ Output pre-
Activation activation

O(N3) data
O(N4K?) compute

Convolutional Neural Network (CNN)

High Compute-to-Data Ratio

Output pre-activation
Input activation

NxN

Weight =
Matrix

O(N?) data
O(N?) compute

MLPs, LSTMs, GRUs
Low compute-to-data ratio

38

Common Scenarios

Output pre-activation
Input activation

NxN

Weight =
Matrix

O(N?) data
O(N?) compute

MLPs, LSTMs, GRUs

Low compute-to-data ratio

39

Improving HW utilization with batching

Hardware
Utilization
(%)

Batch Size

Improving HW utilization with batching

Maximum
Hé?l‘.dW? re Latency Allowed
Utilization Latency
at 99th
(%)

Batch Size Batch Size

Batching improves HW utilization but increases latency

Improving HW utilization with batching

O |
Maxtimum
Ha.r.dw.a re Latency Allowed
Utilization Latency
at 99th
(%)

Batch Size Batch Size

Batching improves HW utilization but increases latency

Ideally want high HW utilization at low batch sizes

44

Alternative: "Persistent” Neural Nets

N E

Alternative: "Persistent” Neural Nets

Observations
State-of-art FPGAs have O(10K)
distributed Block RAMs O(10MB)
=» Tens of TB/sec of memory BW

Large-scale cloud services and
DNN models run persistently

Solution: persist all model
parameters in FPGA on-chip
memory during service lifetime

46

Alternative: "Persistent” Neural Nets

Alternative: "Persistent” Neural Nets

When single request arrives, all chip resources (on-
chip memories and compute units) are used to
process a single query (no batching required)

48

What it model doesn't fit in single FPGA?

Solution: Persistency at

Datacenter Scale

Multiple FPGAs at datacenter scale can form a persistent DNN

HW microservice, enabling scale-out of models at ultra-low latencies

50

The BrainWave Stack

Compiler & Runtime
Architecture

Microarchitecture

Persistency at Scale

HW Microservices
on Intel FPGAs

56

BrainWave Soft NPU Architecture

Core Features

Single-threaded C programming model (no RTL)
ISA with specialized instructions: dense matmul,
convolutions, non-linear activations, vector
operations, embeddings

Proprietary parameterizable narrow precision
format wrapped in float16 interfaces
Parameterizable microarchitecture and scalable
to large FPGAs (~1TM ALMs)

Fully integrated with HW microservices
(network-attached)

P2P protocol to CPU hosts and FPGAs

Easy to extend ISA with custom operators

Network IFC

Control Processor

Matrix
Vector
Unit

Func Func

57

rainWave Soft NPU Microarchitecture
S —— T ﬁewmmtiona'um

9 v A
Matrix RF VRF Matrix RF VRF Matrix RFE ~ VRF

Kernel Kernel Kernel

Instruction Control
Decoder Processor

Matrix Vector Matrix Vector Matrix Vector
Multiply Multiply Multiply

Convert to floatlé - . Tensor Manager Input Message
’ Matrix Memory Processor
TA < 4 : Manager
“ Vector Memory
; Manager -~ Output Message

Multifunction =
<_m Processor
= : —

Network IFC

Unit

:) : Legend
Multifunction
<—mumt <+—Tensor data ° Activation
<4— |nstructions ° Multiply
< A
f <~ Commands ’ Add/Sub
- Memory TA | Tensor Arbiter

Matrix Vector Unit

Featu res Matrix Row 1 ¥\ Product Unit
« Optimized for batch 1 matrix-vector
Multi-lane Dot :&7

multiplication

- Matrices distributed row-wise across MatriRowe - R e
1K-10K banks of BRAM, up to 20 TB/s

« (Can scale to use all available on-chip
BRAMSs, DSPs, and soft logic

« In-situ conversion of float16 weights
and activations to internal format

« Dense dot product units map Matrix Row N [N Product Unit
efficiently to soft logic and DSPs

Multi-lane Dot

) Ingress Egress
Float16 Input SRl o LTt Broadcast Collection

Tensor fo Tree Network

Convert to Float16 QOutput
float16 Tensor

Matrix Vector Unit

FPGA

NNNEEEEEEEEEEE
NENEEEEEEEEEEE
WO 6 R A
NENEEEEEEEEEEE
OO AT
W0 6 6 00 0 0 06 6 S A
NEENEEEEnN

W0 0 0 S

O O e T e
O T
OO oot
0 A A R R
OO O AT
e OO

ppnEEnnnnn
vRF e TH TN O O A A O O A 1

Multifunction Multifunction Instruction Tensor
NOC

Unit Unit

I VRF
DR

T T T T T T T] Proacicast
nupnENnNBEEnERnn
nupENnNpEEnERnn
nupENnNDpEENBRENn
nupENnNpEEnnERnn
nupERnIpEEnNBERNn

Decoder Manager

VRF el I I T T
M pnpnnnnpne
B8 TR R R RN N
BRI R AR R R
O T
A O A AT
A O T
EENNEENEEEENNE

MVU Kernel

Multi-lane Dot
Product Unit

Multi-lane Dot
Product Unit

Multi-lane Dot

Product Unit

60

BrainWave Soft

100
90
80
70
60
50
40
30
20
10

Peak Throughput (Tera-Operations/sec)

Arria 10 1150 (20nm)

Single FPGA BrainWave Soft DPU Performance

15T

Arria 10 1150
ms-fp9

ms-fp9
316K ALMs (74%)
1442 DSPs (95%)
2,564 M20Ks (95%)
160 GOPS/W

40T

Stratix 10 280
Early Silicon
ms-fp9

90T
65T I

Stratix 10 280 Stratix 10 280
Production Silicon Production Silicon
ms-fp9 ms-fp8

Stratix 10 280 Early Silicon (14nm)
ms-fp9
858K ALMs (92%)
5,760 DSPs (100%)
8,151 M20Ks (70%)
320 GOPS/W - 720 GOPS/W (production)

DPU Performance

-
—i

Distributed
MVU Tile
Arrays

BrainWave Soft DPU
Floorplan on Stratix 10 280

68

Conclusion

Project BrainWave is a powerful platform
for an accelerated Al cloud

Runs on Microsoft's hyperscale infrastructure with FPGAs

Achieves excellent performance at low batch sizes via
persistency and narrow precision

Adaptable to precision and changes in future Al algorithms

BrainWave running on Hardware

Microservices will push the boundary of

what is possible to deploy in the cloud
Deeper/larger CNNs for more accurate computer vision

Higher dimensional RNNs toward human-like natural
language processing

State-of-the-art speech

And much more...

©

Stay tuned for
announcements about
external availability.

Thank you!

