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RNN Use Cases (Cont.)

• RNNs are widely used in machine translation and speech recognition

• The memory cells of RNNs help to infer the sequence of inputs
• Goal: understand long-term dependencies between multiple inputs

[Source: https://github.com/google/seq2seq]



RNN execution model

 Each RNN task passes through multiple time steps (t)

 Each time step is dependent on the previous one (e.g., t-1 and t)

 The hidden state size determines the degree of parallelism 
‒ Large hidden state sizes increase parallelism but may lead to overfitting

 V: the weight we multiply 

the output o_t by

 U: the weight we multiply 

the input x_t by

 W: the weight we multiply 

the previous hidden 

state’s value s_t-1 by

One RNN 

Task

Source: Nature
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• They need to remember previous inputs

• Have real-time deployment constraints 
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Source: [Olah ’15]
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Source: [Olah ’15]
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Source: [Olah ’15]

Hidden slides have more details on each layer
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Factors that impact RNN performance

• Sequence length
• Input/problem dependent

• Varies from RNN job to RNN job

• Hidden state size
• Impacts the accuracy of training data

• Usually a small hidden state is sufficient to achieve good training accuracy (still true?)

• Arrival time of RNN jobs
• Impacts the response time of all RNN jobs in a single batch 

• Can be sporadic

• The batch size of RNN jobs
• May require additional padding if the RNN jobs have different sequence lengths



Why doesn’t batching help RNN inference performance?

• Issues:

• Implicit barrier of the batch operation → delays all RNN jobs in a batch

• Jobs unlikely to arrive simultaneously → postpones start of all jobs in batch

• Padding leads to unnecessary computation
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Deep neural networks have enabled major 
advances in machine learning and AI

Computer vision

Language translation 

Speech recognition

Question answering

And more…

Problem: DNNs are challenging to serve and 
deploy in large-scale online services

Convolutional Neural Networks
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Neural Processing Units

EFFICIENCY
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FPGAs ideal for adapting to rapidly evolving ML

CNNs, LSTMs, MLPs, reinforcement learning, feature extraction, decision trees, etc.

Inference-optimized numerical precision

Exploit sparsity, deep compression for larger, faster models

Excellent inference performance at low batch sizes

Ultra-low latency serving on modern DNNs

>10X lower than CPUs and GPUs

Scale to many FPGAs in single DNN service

Performance

Flexibility

Scale

Microsoft has the world’s largest cloud investment in FPGAs

Multiple Exa-Ops of aggregate AI capacity

BrainWave runs on Microsoft’s scale infrastructure
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A Scalable FPGA-powered DNN Serving Platform
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Network switches

FPGAs



Sub-millisecond FPGA compute 
latencies at batch 1
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A framework-neutral federated compiler and runtime for 

compiling pretrained DNN models to soft NPUs
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A framework-neutral federated compiler and runtime for 

compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference

Flexible and extensible to support fast-changing AI algorithms
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A framework-neutral federated compiler and runtime for 

compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference

Flexible and extensible to support fast-changing AI algorithms

BrainWave Soft NPU microarchitecture

Highly optimized for narrow precision and low batch
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A framework-neutral federated compiler and runtime for 

compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference

Flexible and extensible to support fast-changing AI algorithms

BrainWave Soft NPU microarchitecture

Highly optimized for narrow precision and low batch

Persist model parameters entirely in FPGA on-chip memories 

Support large models by scaling across many FPGAs
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A framework-neutral federated compiler and runtime for 

compiling pretrained DNN models to soft NPUs

Adaptive ISA for narrow precision DNN inference

Flexible and extensible to support fast-changing AI algorithms

BrainWave Soft NPU microarchitecture

Highly optimized for narrow precision and low batch

Persist model parameters entirely in FPGA on-chip memories 

Support large models by scaling across many FPGAs

Intel FPGAs deployed at scale with HW microservices

[MICRO’16]
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33A Cloud-Scale Acceleration Architecture [MICRO’16]



WCS Gen4.1 Blade with NIC and Catapult FPGA

Catapult v2 Mezzanine card

34[ISCA’14, HotChips’14, MICRO’16]
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Batching improves HW utilization but increases latency
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Batching improves HW utilization but increases latency



FPGA2xCPU
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2xCPU

Observations
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2xCPU
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2xCPU
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Core Features

• Proprietary parameterizable narrow precision 

format wrapped in float16 interfaces

FPGA

Matrix

Vector

Unit
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Features Matrix Row 1

Matrix Row 2

Matrix Row N

Float16 Input 

Tensor

+

+

×

×
+

×

×
+

+

×

×
+

×

×
+

59

Float16 Output 

Tensor



FPGA MVU Kernel
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Arria 10 1150 (20nm)

ms-fp9

316K ALMs (74%)

1442 DSPs (95%)

2,564 M20Ks (95%)

160 GOPS/W

Stratix 10 280 Early Silicon (14nm)

ms-fp9

858K ALMs (92%)

5,760 DSPs (100%)

8,151 M20Ks (70%)

320 GOPS/W → 720 GOPS/W (production)



Stay tuned for 

announcements about 

external availability.

→

Project BrainWave is a powerful platform 
for an accelerated AI cloud

Runs on Microsoft’s hyperscale infrastructure with FPGAs

Achieves excellent performance at low batch sizes via 
persistency and narrow precision

Adaptable to precision and changes in future AI algorithms

BrainWave running on Hardware 
Microservices will push the boundary of 
what is possible to deploy in the cloud

Deeper/larger CNNs for more accurate computer vision

Higher dimensional RNNs toward human-like natural 
language processing

State-of-the-art speech

And much more…
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