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Announcements

* HW2 Due Friday (tomorrow)
* None of jobs should run for more than ~2 hours in baseline GPGPU-Sim

* See Piazza for various suggestions

e Especially: | suggest setting “stream_output” flag in your sub files so you can see output
(e.g., stdout) as job progresses

* Alternatives (e.g., condor_tail) on Piazza

* Doug Berger Talk 3 PM on Friday (tomorrow)



Question for Today

* Why Systolic Arrays for GEMM / CNN?
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Google TPU

 Why ASIC chip?

* Specs

e 256x256 = 64K 8-bit MAC
e Peak throughput: 92 TOPS
* Software Managed On-Chip Memory: 28 MB

* Highlights

e 15-30X faster than K80 GPU for Inference
 Bandwidth limited for 6 out of 8 workloads

Layers Nonlinear ) TPU Ops / |TPU Batch| % of Deployed
Name | LOC FC |Conv V}ector Pool |Total|  function Weights Weight gyte Size P Usj;n Ji/yJZOJ 6
MLPO | 100 5 5 RelLLU 20M 200 200 61%
MLP1 [1000]| 4 4 RelLU SM 168 168
LSTMO | 1000 | 24 34 58 | sigmoid, tanh | 52M 64 64 299,
LSTMI1 | 1500 | 37 19 56 |sigmoid, tanh | 34M 96 96
CNNO | 1000 16 16 RelLU 8SM 2888 8 50,
CNN1 [1000]| 4 72 13 | 89 RelLU 100M 1750 32

Table 1. Six NN applications (two per NN type) that represent 95% of the TPU’s workload. The columns are the NN name; the number of
lines of code; the types and number of layers in the NN (FC is fully connected, Conv is convolution, Vector 1s self-explanatory, Pool is
pooling, which does nonlinear downsizing on the TPU; and TPU application popularity in July 2016. One DNN is RankBrain [Clal5]; one
LSTM is a subset of GNM Translate [Wul6]; one CNN is Inception; and the other CNN is DeepMind AlphaGo [Sil16][Joul5].




Google TPU Summary

* Focus: supervised learning

e <10 CISC instructions!

e Lots and lots of MACs
* Reduced precision (8/16 bits)
e Common for ML workloads

* Large memories

* Bandwidth is the key limiter
* MACs only saturated with > 1000 batch size
* Accumulators locally collect values
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TPU Microarchitecture
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Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the 1llusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.
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Why systolic arrays?

 Compute vs /0O

* How many computations are
required to compute each

matrix element?
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Figure 1. Basic principle of a systolic system.

Source: HT Kung, 1982
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How does a systolic array work?
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Design 1

e weights stationary, broadcast inputs, move results
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Design 2

* Inputs stationary, broadcast weights, move results
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Design 3

e Qutputs stationary, broadcast weights, broadcast inputs
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What about MLP and LSTMs?
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TPU Performance

TPU Log-Log
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TPU Performance

Application MLPO MLPI | LSTMO LSTMI |CNNO CNNI |Mean| Row

Array active cycles 12.7% 10.6% 82%  10.5%|78.2% 46.2% | 28%| 1

Useful MACs in 64K matrix (% peak) 12.5%  9.4% 8.2% 6.3%|78.2% 22.5%| 23%| 2

Unused MACs 0.3% 1.2% 0.0% 4.2%| 0.0% 23.7% 5%| 3
Weight stall cycles 53.9% 442%]| 58.1% 62.1%]| 0.0% 28.1%| 43%| 4
Weight shift cycles 15.9% 13.4%| 158% 17.1%]| 0.0% 7.0%]| 12%| 5
Non-matrix cycles 17.5% 31.9%| 17.9% 10.3%]21.8% 18.7%| 20%| 6
RAW stalls 33% 84%| 14.6% 10.6%]| 3.5% 22.8%| 11%| 7
Input data stalls 6.1% 8.8% 5.1% 2.4%| 3.4% 0.6%]| 4%| 8
TeraOps/sec (92 Peak) 12.3 9.7 3.7 2.8 86.0 14.1 (214 ]| 9

Table 3. Factors limiting TPU performance of the NN workload based on hardware performance counters. Rows 1, 4, 5, and 6 total 100%
and are based on measurements of activity of the matrix unit. Rows 2 and 3 further break down the fraction of 64K weights in the matrix
unit that hold useful weights on active cycles. Our counters cannot exactly explain the time when the matrix unit is idle in row 6; rows 7 and
8 show counters for two possible reasons, including RAW pipeline hazards and PCle input stalls. Row 9 (TOPS) 1s based on measurements
of production code while the other rows are based on performance-counter measurements, so they are not perfectly consistent. Host server
overhead is excluded here. The MLPs and LSTMs are memory-bandwidth limited but CNNs are not. CNN1 results are explained in the text.
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Performance/Watt
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NVIDIA’s response: TensorCores!

TPU

2015

K80

2012

Inferences/Sec 12X

<10ms latency 13

Training TOPS 6 FP32
Inference TOPS 6 FP32
On-chip Memory 16 MB
Power 300W

Bandwidth 320 GB/S

1X

NA
90 INT8
24 MB
/5W

34 GB/S

2X

12 FP32
48 INT8
11 MB
250W

350 GB/S
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NVIDIA Volta — TensorCores

-

FP16 or FP32 FP16

FP16 or FP32
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Google response to NVIDIA's response!

* TPU v2

* Some apps needed more precision — 16 bits instead of 8 bits
Added training
Slightly more general purpose

Can connect multiple TPUs together to form larger cluster
* “pod” — supercomputer class machine

HBM memory — 30X improvement

* TPU v3 - liquid cooled

* Enables even more scaling

* All in the name of running larger and larger ML workloads



TPU Next Steps

* Open research questions
* Compress ML models to fit on a smaller devices
e Current hot area of research

* Find alternatives to backprop (important for training)
* “Brains don’t do backprop”

* Look at other kinds of ML beyond CNNs
e Unsupervised learning

* Remove barriers between CPUs and TPUs
 CPU-GPU redux?



