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Announcements

• HW2 Due Friday (tomorrow)
• None of jobs should run for more than ~2 hours in baseline GPGPU-Sim

• See Piazza for various suggestions
• Especially: I suggest setting “stream_output” flag in your sub files so you can see output 

(e.g., stdout) as job progresses
• Alternatives (e.g., condor_tail) on Piazza

• Doug Berger Talk 3 PM on Friday (tomorrow)
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Question for Today

• Why Systolic Arrays for GEMM / CNN?
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CONV Layer Tensor Computation
Input fmaps (I) 

Filter weights (W)

Output fmaps (O)

Biases (B)
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Google TPU

• Why ASIC chip?

• Specs
• 256x256 = 64K 8-bit MAC

• Peak throughput: 92 TOPS

• Software Managed On-Chip Memory: 28 MB

• Highlights
• 15-30X faster than K80 GPU for Inference

• Bandwidth limited for 6 out of 8 workloads
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Google TPU Summary
• Focus: supervised learning

• <10 CISC instructions!

• Lots and lots of MACs
• Reduced precision (8/16 bits)

• Common for ML workloads

• Large memories
• Bandwidth is the key limiter

• MACs only saturated with > 1000 batch size

• Accumulators locally collect values
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TPU Microarchitecture
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Why systolic arrays?

• Compute vs I/O

• How many computations are 
required to compute each 
matrix element?
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Source: HT Kung, 1982



How does a systolic array work?
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Design 1
• weights stationary, broadcast inputs, move results
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Design 2
• Inputs stationary, broadcast weights, move results
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Design 3

• Outputs stationary, broadcast weights, broadcast inputs
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What about MLP and LSTMs?
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TPU Microarchitecture
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TPU Performance
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What are Roofline Plots?



TPU Performance
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Performance/Watt
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NVIDIA’s response: TensorCores!
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NVIDIA Volta – TensorCores
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Google response to NVIDIA’s response!

• TPU v2
• Some apps needed more precision – 16 bits instead of 8 bits
• Added training
• Slightly more general purpose
• Can connect multiple TPUs together to form larger cluster

• “pod” – supercomputer class machine
• HBM memory – 30X improvement

• TPU v3 – liquid cooled
• Enables even more scaling

• All in the name of running larger and larger ML workloads
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TPU Next Steps

• Open research questions
• Compress ML models to fit on a smaller devices

• Current hot area of research

• Find alternatives to backprop (important for training)
• “Brains don’t do backprop”

• Look at other kinds of ML beyond CNNs
• Unsupervised learning

• Remove barriers between CPUs and TPUs
• CPU-GPU redux?
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