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Abstract—GPUs have evolved from providing highly-con-

strained programmability for a single kernel to using pre-emption 

to ensure independent forward progress for concurrently execut-

ing kernels. However, modern GPUs do not ensure independent 

forward progress for kernels that use fine-grain synchronization 

to coordinate inter-work-group execution. Enabling independent 

forward progress among work-groups (WGs) is challenging as 

pre-empted kernels may be rescheduled with fewer hardware re-

sources. This can lead to oversubscribed execution scenarios that 

deadlock current hardware even for correctly written code. Prior 

work addresses this problem by requiring programmers to specify 

resource requirements and assuming static resource allocation, 

which adds scheduling constraints and reduces portability. 

We propose a family of novel hardware approaches — trading 

off hardware complexity for performance — that provide inde-

pendent forward progress in the presence of fine-grain inter-WG 

synchronization and dynamic resource allocation. Additionally, 

we propose new waiting atomic instructions compatible with pro-

posed C++20 extensions. Our final design, Autonomous Work-

Groups (AWG), uses hints from regular and waiting atomics to 

cooperatively schedule WGs within a kernel, improving efficiency 

and virtualizing hardware resources. In non-oversubscribed sce-

narios, AWG outperforms a busy-waiting baseline (which dead-

locks in oversubscribed scenarios) by 12x on average for bench-

marks that use different mutexes and barriers for fine-grained, 

WG granularity synchronization.  Furthermore, AWG outper-

forms other solutions that do not deadlock in the oversubscribed 

case, such as fixed-interval round-robin context switching or na-

ively extending monitor/mwait to GPUs, by 2.6x and 2.2x, respec-

tively. 

I. INTRODUCTION 

Graphics Processing Units (GPUs) are massively 

throughput-oriented processors with a hierarchy of execution 

abstractions that provide high performance acceleration for 

applications in a variety of fields: from high-performance 

computing [1]  to machine learning [2][3]. GPUs continue to 

scale to larger sizes with improvements in assembly and man-

ufacturing technology.  At the highest level of a GPU’s exe-

cution hierarchy, kernels are executed from memory-backed 

queues, and below that, work-groups (WGs), wavefronts, and 

work-items (WIs) make up the lower levels. Modern GPUs 

support the simultaneous execution of multiple different 

types of kernels, from different queues belonging to the same 

application or even different applications. 

In order to manage the simultaneous execution of these 

diverse kernels, GPUs allow higher priority kernels to pre-

empt lower priority kernels [4][5][6], without ensuring the 

same resources will be available to individual kernels upon 

resumption. The correctness of many GPU workloads, espe-

cially traditional streaming, data parallel workloads, is unaf-

fected by a potential loss of resources.  However, for emerg-

ing workloads that perform synchronization within a kernel 

[2][7][8], kernel-level pre-emptive scheduling can cause in-

ter-WG deadlock – even when the programmer has written 

correct code. For instance, Sorensen et al. showed that simple 

global barrier synchronization results in deadlock on current 

GPUs when the number of WGs within a kernel oversub-

scribe the available resources [9].   

More broadly, Independent Forward Progress (IFP) rules 

have been a predominant issue ever since software develop-

ers started to write general-purpose GPU (GPGPU) kernels. 

However, thus far, prior work has not addressed or only par-

tially addressed the IFP of WGs within a kernel.  Figure 1 

summarizes the appearance of IFP rules for a variety of 

GPGPU application programming interfaces (APIs). Initial 

APIs such as Sh [10], Cg [11], or BrookGPU [12] completely 

ignored IFP rules before CUDA and OpenCL [13][14] de-

fined IFP for wavefronts within a WG. Later OpenCL, 

CUDA, and HSA [15][16] defined IFP at the kernel granu-

larity by allowing kernels from different queues to synchro-

nize with each other. 

More recently, programming models have been address-

ing forward progress rules at the previously neglected inter-

mediate levels. For example, Sorensen et al. [9] avoided in-

ter-WG deadlocks by developing a software method that dy-

namically discovers resource availability. However, their 

mechanism cannot adjust to mid-execution resource reduc-

tions, as depicted in Figure 2, and has not yet been adopted 

by popular programming models.  A new execution abstrac-

tion, cooperative groups, has been introduced as an alterna-

tive to avoid mid-execution resource losses [17]. Cooperative 

 
Figure 1: A timeline of independent forward progress for 

GPUs, at different synchronization granularities. 
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groups provide IFP for WIs within a wavefront and a restric-

tive amount of IFP for WGs within a kernel. However, coop-

erative groups require programmers to explicitly define how 

many WIs may synchronize and ensure that kernels do not 

oversubscribe GPU resources.  Furthermore, cooperative 

group kernel dispatches must wait until enough resources be-

come available (i.e., no dynamic allocation of resources). 

Thus, when a cooperative group encompasses many WGs, 

the associated kernel launch can encounter significant sched-

uling delay, making them less attractive for synchronization 

across multiple WGs. 

In this work we propose Autonomous Work-Groups 

(AWG), a family of alternative hardware-centric approaches 

that provide IFP for an arbitrary number of WGs executing in 

dynamic resource environments. AWG introduces waiting 

atomic instructions for efficient GPU synchronization and 

scheduling. Waiting atomics are atomic instructions with an 

extra operand that indicates the expected value of the synch 

variable for the atomic to succeed. If the atomic fails, the syn-

chronization variable and the expected value form a condition 

for a WG to wait on before being resumed. These waiting 

atomics effectively provide hardware support for a recent 

C++20 extension proposal [18]. AWG adds specialized hard-

ware to the GPU last level cache (LLC) to efficiently monitor 

waiting conditions and relies on virtual memory when its in-

ternal hardware structures reach capacity.  Thus, AWG effec-

tively virtualizes the GPU execution resources such that in-

ter-WG IFP within a kernel is ensured. 

We evaluate AWG across a wide variety of fine-grained 

synchronization benchmarks. Our results show that AWG 

significantly outperforms existing solutions both when the 

GPU is oversubscribed (i.e., kernel’s WGs exceed available 

resources) and non-oversubscribed. In a non-oversubscribed 

scenario, AWG is 12x faster than a busy-waiting baseline for 

applications that utilize one synchronization variable for an 

entire WG. When the GPU is oversubscribed, compared with 

a simple fixed interval timeout mechanism, AWG is 2.6x 

faster on average. Furthermore, AWG outperforms hardware 

synchronization approaches similar to monitor/mwait by 2.2x 

on average. 

In summary, AWG addresses IFP of WGs within a kernel 

and provides the following contributions: 

• Portability. We extend existing GPU execution ab-

stractions to provide inter-WG IFP, improving portabil-

ity across different amounts of resources from GPUs of 

different sizes. 

• Kernel Scheduling. We relax constraints on kernel 

scheduling by assuming dynamic resource allocation.  

This opens the door to new GPU scheduling opportuni-

ties for low latency kernels. 

• WG Scheduling. We evaluate different WG scheduling 

policies and converge on using atomic operations to 

support cooperative WG scheduling. 

• Virtualization. We virtualize the number of synchroni-

zation variables, waiting values, and waiting WGs al-

lowed in inter-WG synchronization by extending the 

firmware of the programmable micro-controller already 

available in current GPUs. 

II. SYNCHRONIZATION AND SCHEDULING 

Multicore CPUs use atomic instructions to modify and 

poll synchronization variables and rely on the pre-emptive 

OS scheduler to ensure IFP. Waiting CPU threads can release 

resources using the yield system call, which has high over-

head, or busy-wait on the synchronization variable, which 

can be inefficient [19][20][21]. To address the latter, current 

x86 CPUs provide more efficient inter-thread synchroniza-

tion through special monitor and mwait [22] instructions. The 

monitor instruction specifies an address range for hardware 

monitoring. The mwait instruction causes the processor to 

wait, in an implementation specific power state, until a dif-

ferent processor writes the monitored address, or an un-

masked interrupt, reset, or far control transfer in between 

monitor and mwait occurs. CPUs support mwait by forward-

ing write invalidations to all sharers. Because mwait can re-

turn before the condition has been met, mwait provides re-

laxed support for Mesa semantics [23][24][25][26][27]. 

Mesa semantics allow the producer thread to continue execu-

tion after synchronization notifications and defines these no-

tifications as hints. As a result, the consumer cannot assume 

its waiting condition holds true when it resumes execution 

and must recheck its waiting condition. 

Synchronization and IFP are more complex on GPUs due 

to their massive parallelism and hierarchical execution 

model. The programmer specifies the number of WIs within 

a grid and the number of WIs within a WG. The grid is then 

split into WGs, which are comprised of one or more wave-

fronts. Wavefronts are the set of WIs executed on the GPU’s 

SIMD resources in lock-step fashion. Figure 3a) depicts the 

GPU architecture. Due to their hierarchical execution model, 

GPUs include multiple levels of synchronization and forward 

progress rules associated with each level. Figure 3 depicts 

synchronization of: WIs within a WF (Figure 3b), WFs 

within a WG (Figure 3c), kernels in different queues  (Figure 

3d), and WGs within a kernel (Figure 3e).  The following 

 
Figure 2: Inter-WG synchronization under dynamic allo-

cation of resources. 

 



 

 

 

 

 

 

subsections detail these rules and prior efforts to improve 

them. 

A. Intra-Wavefront Synchronization 

Recent GPUs have introduced new synchronization capa-

bilities within a wavefront to allow WIs to synchronize even 

in case of divergent control flow [17].  However, program-

mers may need to inform the compiler/hardware of inter-WI 

reconvergence points ‒ using a new synchronization function 

called__syncwarp() ‒ in order to achieve good performance. 

This new functionality allows WI-level IFP in the case of in-

tra-wavefront synchronization (Figure 3b), and therefore is 

orthogonal to inter-WG synchronization. 

B. Wavefronts within WG Synchronization 

GPUs use thread-level parallelism to tolerate long latency 

operations and need barrier instructions when synchronizing 

wavefronts, as shown in Figure 3c. GPUs assign all wave-

fronts within a WG to a single compute unit (CU) and local 

barriers are commonly used when data is shared through the 

CU’s scratchpad memory. Within a WG, wavefront IFP is 

commonly provided by scheduling wavefronts in a round-

robin fashion, allowing each wavefront fair access to execu-

tion resources [13][14]. Recent work has improved upon 

round-robin scheduling, without compromising inter-wave-

front IFP, by performing synchronization conscious schedul-

ing of wavefronts [28] or adding compiler support [29]. 

C. Inter-Kernel Synchronization 

Figure 3d illustrates that GPUs provide IFP for synchro-

nizing kernels by context switching all the resident WGs of 

kernels originating from different queues 

[13][14][15][30][31][32] [33]. Pre-emptive kernel schedul-

ing completely relinquishes all kernel-allocated hardware re-

sources and is commonly used to execute high priority jobs 

with real-time deadlines, such as a compute kernel, whose 

output is consumed by a graphics kernel, pre-empting back-

ground compute kernels [4].  Kernel pre-emption provides 

inter-kernel IFP in a similar fashion to OS-managed CPU 

threads. 

Prior work has also explored improving multi-tasking on 

GPUs [34][35][36][37][38][39][40][41]. For example, 

KLAP [36] uses kernel aggregation and kernel promotion in 

context of irregular applications that use CUDA Dynamic 

Parallelism. Kernel promotion amortizes kernel launch la-

tency by overlapping dependent kernels. Broadly, prior work 

utilizes a variety of techniques, including kernel aggregation, 

lightweight task spawning systems, compiler support, persis-

tent threads, idempotence, and WG context switching to bet-

ter utilize GPU resources and avoid inter-kernel synchroniza-

tion when possible. Although these approaches can signifi-

cantly improve performance by amortizing kernel launch la-

tency, they do not attempt to address inter-WG IFP. 

D. Limited Inter-WG Synchronization 

Historically, GPUs have benefited from limited WG-level 

scheduling. Figure 3e shows how WGs within a kernel are 

sequentially dispatched until execution resources (i.e., func-

tional units and registers) and memory resources (i.e., 

scratchpad) are saturated. Additional younger WGs are dis-

patched when execution resources become available, limiting 

inter-WG synchronization to just the currently executing 

WGs. 

Kernels that over-subscribe available GPU resources can 

deadlock when using inter-WG synchronization. Consider a 

program written as follows.  A shared variable is expected to 

be updated by a producer WG that is not yet scheduled for 

execution. An older consumer WG, which is already sched-

uled for execution (i.e., resident), is waiting for the producer 

to update the shared variable. However, the consumer WG 

will not be able to make forward progress and release its re-

sources until the waiting condition is satisfied and the waiting 

condition will not be satisfied if the producing WG cannot be 

scheduled for execution, because of lack of available re-

sources. Additionally, when pre-empted kernels are resched-

uled for execution, the scheduler may not provide the same 

execution resources as before, resulting in over-subscription. 

The AMD GCN ISA manual discusses a global data share 

(GDS) memory, shared among all resident WGs and accessi-

ble through special atomics [42]. The GDS supports inter-

WG synchronization through specialized ordered ap-

pend/consume operations, supporting a finite number of syn-

chronization events and synchronizing WGs at a time. Liu 

proposed EffiSync [43], an architecture designed for efficient 

synchronization that further generalizes inter-WG synchroni-

zation by virtualizing synchronization events. However, 

 
Figure 3: GPU Synchronization and Scheduling. 



 

 

 

 

 

 

these approaches do not consider an arbitrary number of syn-

chronization variables, waiting conditions, and waiting WGs. 

To prevent deadlock, CUDA 9 introduced a new execu-

tion abstraction, cooperative groups, which allows inter-WG 

synchronization. When using cooperative groups, the pro-

grammer has to use new API functions to launch a GPU ker-

nel and to manage WGs within a cooperative group. This 

adds programmability and portability costs. More impor-

tantly, the program must wait until the scheduler ensures that 

all WGs within a cooperative group can be resident, limiting 

the kernel scheduler to static resource assignment. 

Prior work has also looked into ways to provide inter-WG 

synchronization despite not ensuring IFP. First, several pa-

pers explored using persistent threads to avoid oversubscrip-

tion [44] and the overhead of launching multiple kernels 

[45][46].  Second, prior work created software implementa-

tions of a variety of synchronization primitives for GPUs in-

cluding various mutexes and barriers [9][47][48][49]. How-

ever, all these rely on persistent threads which assume static 

resource allocation across a kernel lifetime to ensure inter-

WG IFP. Finally, Wireframe [50] specifies dependencies be-

tween WGs statically and presents a dependency-aware WG 

scheduler. Although it is not the focus of this work, AWG 

does not burden the programmer with a specialized WG de-

pendency and can handle dynamic dependencies between 

WGs using atomic operations. 

III. METHODOLOGY 

We use a modified version of the gem5 simulator [51] to 

model a tightly-coupled GPU system (i.e., APU). Further-

more, we model in detail multiple WG scheduling policies 

described in the remainder of this paper, including memory 

operations for WG context saving and restoring, latencies for 

accessing new hardware structures, and periodic checking of 

conditions. Table 1 summarizes our baseline GPU model. 

Choosing benchmarks to assess the behaviour of AWG is 

challenging because few GPU benchmarks use inter-WG 

synchronization. As a result, prior work has often focused on 

microbenchmarks to evaluate the behaviour of their system 

[9][52][53][54]. We select the HeteroSync suite [55] to fur-

ther explore the design space of inter-WG synchronization. 

All benchmarks in HeteroSync require inter-WG fine-grained 

synchronization, use busy-waiting, and are representative of 

the most widely used forms of synchronization currently used 

on GPUs. In our experiments, we use both locally (L) and 

globally (G) scoped [53][56] synchronization variables. The 

selected benchmarks include multiple different centralized 

and decentralized mutexes and barriers, several performing 

exponential backoff in software. These benchmarks also 

cover a wide set of characteristics, as highlighted in Table 2. 

IV. AUTONOMOUS WORK-GROUPS 

We design AWG by proposing a family of novel autono-

mous architectures that provide inter-WG IFP, through coop-

erative scheduling of WGs, and evaluate their tradeoffs. Pre-

dominantly, these architectures rely on the set or a subset of 

the following four main components: 1) new waiting instruc-

tions that can be used by compilers, runtimes, libraries, or 

programmers to indicate opportunities for WGs to efficiently 

wait on synchronization operations, 2) a Synchronization 

Monitor (SyncMon) that observes accesses to monitored syn-

chronization variables, 3) firmware extensions to the existing 

Command Processor (CP) to track waiting WGs, coordinate 

context switching, and check conditions that cannot be mon-

itored by SyncMon, and 4) a virtualization interface between 

the SyncMon and the CP. Figure 4 presents a high-level over-

view of our family of architectures. 

Table 1: Baseline GPU model. 
8 Compute Units, each with the following configuration: 

Clock 2GHz 

SIMD units 2 

SIMD width 64 

Wavefronts per SIMD  20 

Memory Hierarchy (64 B block size): 

1 Instruction Cache / 4 CUs 32 KB, 8-way set assoc., 4 cycles  

1 Scalar Cache / 4 CUs or CP 16 KB, 8-way set assoc., 4 cycles 

L1 cache / CU 32 KB, 16-way set assoc., 30 cycles  

L2 cache shared 512 KB, 16-way set assoc., 50 cycles 

DRAM DDR3, 4 Channels, 1 GHz 

 

Table 2: Inter-WG synchronization benchmarks, constituting a busy-waiting Baseline: HeteroSync, Hash Table, and Bank Account 

[G = total number of WGs, L = number of WGs per CU, n = number of WIs per WG, d = size of shared data structure]. 

Benchmark Abbreviation Description 

Granularity 

(# WIs per 

sync var) 

# sync 

vars 

# of conds 

per sync 

vars 

# waiters 

per cond 

# updates per 

sync var until 

condition met 

SpinMutex SPM_G Test-and-set lock n 1 1 G 2 

FAMutex FAM_G Centralized ticket lock n 1 G 1 1 

SleepMutex SLM_G Decentralized ticket lock n G 1 1 1 

AtomicTreeBarr TB_LG Two-level tree barrier n G/L 1 L L 

LFTreeBarr LFTB_LG Decentralized two-level tree barrier n G 1 1 1 

SpinMutexLocal SPM_L Test-and-set lock local scope n G/L 1 L 2 

FAMutexLocal FAM_L Centralized ticket lock local scope n G/L L 1 1 

SleepMutexLocal SLM_L Decentralized ticket lock local scope n G 1 1 1 

AtomicTreeBarrLocalExch TBEX_LG Two-level tree barrier  n G/L 1 L L 

LFTreeBarrLocalExch LFTBEX_LG Decentralized two-level tree barrier  n G 1 1 1 

 



 

 

 

 

 

 

A. Challenges in Cooperative WG Scheduling 

Given the WG scheduling granularity considered by this 

work, there are some challenges in effectively addressing the 

problem of inter-WG IFP. 

Context switching overhead. GPUs have significantly 

larger contexts than CPUs, leading to higher overheads. WGs 

can have up to 1024 WIs, each with their own vector regis-

ters. In addition, WIs within a WG share Local Data Share 

(LDS) memory and wavefronts within a WG have their own 

scalar registers. Figure 5 shows that the WG context size 

ranges from 2 to 10 KB for our benchmarks [55] [57]. Thus, 

it is important to avoid context switches whenever possible.  

Virtualizing the number of waiting WGs and condi-

tions. Given the finite size of the SyncMon, a limited number 

of conditions can be simultaneously monitored by the Sync-

Mon. Additionally, a limited number of waiting WGs can 

also be stored on chip. Thus, to be able to synchronize WGs 

when GPU resources are oversubscribed, we need to over-

come limited monitoring capabilities of the SyncMon. 

Virtualizing the data structures used for scheduling. 

The CP requires additional data structures to hold waiting 

WGs, waiting conditions, and different queues that track the 

state of waiting WGs as they are stalled, context switching 

out, waiting, ready, or context switching in. Having finite 

hardware structures holding these data structures is challeng-

ing as they can easily overflow. 

Synchronization Contention. Some synchronization 

primitives exhibit performance-challenging behaviors by 

generating additional memory traffic, while trying to acquire 

a synchronization variable [58]. These types of synchroniza-

tion primitives are usually the simplest ones to program, 

therefore providing support for such primitives constitute an 

important programmability aspect. 

B. Our Approach 

Motivated to ensure inter-WG IFP, we take a systematic 

approach in overcoming previously mentioned challenges. 

First, we take a holistic approach to reduce unnecessary con-

text switches. After looking at the different scheduling poli-

cies, we identified cooperative scheduling as better suited for 

high throughput computing devices with large WG context 

size. To achieve cooperative scheduling, we use waiting in-

structions to provide hints at opportunities when WGs can 

yield their hardware resources and be context switched out. 

These instructions are necessary for IFP of WGs, and context 

switching may occur when they are executed to allow other 

WGs to proceed. Moreover, we context switch out a WG only 

if there are other WGs ready to be resumed or started, mean-

ing only if the kernel over-subscribes GPU resources. 

Furthermore, as depicted in Figure 4, we propose special-

ized hardware (i.e., SyncMon) to enhance cooperative WG 

scheduling by notifying when WGs can be resumed for exe-

cution. We overcome SyncMon’s limited monitoring abilities 

by defining a virtualization interface used to communicate to 

the CP of extra conditions and waiting WGs. 

Contention on synchronization variables has been a well-

studied phenomenon in computer architecture since the de-

sign of the first multi-processor computers [58][59]. We in-

vestigate contention mitigating resume policies. Addition-

ally, in case of latency sensitive or low-contention synchro-

nization, such as global barriers or spin mutexes with few 

contending WGs, context switching can incur a performance 

penalty. To solve this, before context switching a WG out, we 

stall waiting WGs for a predicted time period, and only con-

text switch out a WG if its condition has not been met when 

the period expires. AWG predicts the stall period by record-

ing the mean number of cycles at which conditions are met. 

Overall, we evaluate exponential backoff with sleep and 

propose autonomous architectures with different waiting and 

resume policies each varying in degree of necessary hardware 

support: simple timeout mechanism and different types of 

special instructions which arm a hardware monitor that can 

resume all or one waiting WG, when a condition is met. Fig-

ure 6 depicts the timelines for all these architectures. Further-

more, we analyze them by comparing with a Baseline config-

uration composed of software busy-waiting and hardware 

deadlocking in case of over-subscription. However, in this 

subsection we show quantitative results for non-over-sub-

scribed GPUs in order to build up the  trade-offs for each au-

tonomous architecture; we discuss the hardware necessary to 

implement our final solution, AWG, in Section V and we 

quantitatively compare these architectures to each other and 

to AWG for over-subscribed GPUs in Section VI. 

 
Figure 5: Work-group context size. 
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Figure 4: Autonomous Work-Groups Overview. 
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C. Waiting Policies 

i. Sleep and Exponential Backoff 

Current GPUs provide support for optimizing synchroni-

zation by waiting, through instructions such as s_sleep, which 

stalls a wavefront for a fixed number of cycles [42][60]. Sleep 

instructions have low hardware overhead and provide ease of 

programmability. However, they support limited timeout pe-

riods and do not wait for a specific event, making them less 

adaptable to system dynamics. 

 Figure 7 illustrates that exponential backoff—doubling 

the sleep time in software after each failed retry, up to a max-

imum backoff interval—improves performance for many 

workloads. Increasing the maximum backoff interval—X 

thousands cycles for the label Sleep-Xk—decreases conten-

tion on synchronization variables. This improves perfor-

mance to a point, but eventually becomes counterproductive 

because WGs that could make progress sleep too long. These 

results also show there is no one best static sleep configura-

tion across the different synchronization primitives. More im-

portantly, sleep instructions do not release hardware re-

sources while sleeping, failing to provide inter-WG IFP when 

the GPU is over-subscribed. 

ii. Simplistic Hardware Support: Fixed Timeout  

To provide IFP for over-subscribed kernels, we first in-

vestigate a Timeout architecture. In the non-oversubscribed 

case, Timeout stalls a WG for a fixed interval of time. Unlike 

Sleep, this interval does not represent a maximum backoff in-

terval. In the over-subscribed case, Timeout yields its re-

sources by context switching out for a fixed timeout interval. 

Figure 8 shows that there is no single best static timeout in-

terval: different synchronization primitives prefer different 

timeouts. More importantly, for some timeout intervals, 

Timeout performs much worse than the busy-waiting Base-

line for non-oversubscribed kernels. These results motivate 

additional hardware support for waiting. 

iii. Relaxed Hardware Support 

As discussed in Section II, modern CPUs implement mon-

itor and mwait instructions to detect when synchronization 

conditions (may) have been met. We extend this approach to 

 
Figure 8: Timeout interval runtime, normalized to the Base-

line. 
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Figure 7: Exponential backoff with s_sleep, normalized to the 

Baseline where s_sleep is not used. 
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Figure 6: Timeline signatures for different cooperative WG scheduling policies. 
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GPUs, by proposing MonRS-All, where waiting WGs can hint 

yielding of hardware resources with special wait instructions 

and notifications are supported through a simplistic hardware 

monitor (i.e., SyncMon). Unlike CPUs, which maintain own-

ership-based coherence across all caches, GPUs use write-

through caches and perform atomics at the shared last-level 

cache (e.g., L2) [54]. Because of these limitations, GPUs can-

not rely on coherence protocols to detect a write. In this case, 

the simplistic SyncMon observes memory accesses and if a 

monitored address is accessed it will notify corresponding 

waiting WGs to resume, without checking their waiting con-

dition. Therefore, we call these notifications sporadic. 

Compared to Timeout, this waiting policy better reacts to 

system dynamics by monitoring synchronization variables. 

However, such relaxed hardware support for synchronization 

on GPUs is dominated by unnecessary resuming of WGs. 

Although this works well for decentralized synchronization 

primitives, where there are few updates to a given variable, it 

is inefficient at waiting for all centralized synchronization 

primitives. Figure 9 shows the wait efficiency of MonRS-All, 

as the number of executed atomic instructions normalized to 

an oracular MinResume configuration which does not resume 

WGs unnecessarily. MinResume achieves this by spreading 

out when waiting WGs are resumed, such that WGs will not 

contend when retrying to acquire sync variables. MonRS-All 

executes up to two orders of magnitude more atomic instruc-

tions in some cases, because it unnecessarily resumes waiting 

WGs. 

iv. Enhanced Hardware Support 

To overcome the shortcomings of sporadic notifications, 

we enhance the hardware support for synchronization by pro-

posing MonR-All. MonR-All uses the same special wait in-

struction to hint a waiting WG can yield its hardware re-

sources, except it enhances SyncMon to check waiting con-

ditions as synchronization variables are being updated. The 

SyncMon registers waiting WGs, checks waiting conditions 

when monitored addresses are written, and resumes all wait-

ing WGs associated with a met condition. Figure 9 shows 

MonR-All to have better wait efficiency than MonRS-All. 

Decentralized synchronization primitives are unaffected be-

cause they can have at most one write operation per synchro-

nization variable. Nevertheless, providing enhanced hard-

ware support exhibits a clear performance advantage for cen-

tralized primitives due to reduced resuming of WG. 

However, this approach has a data race that causes a win-

dow of vulnerability when monitoring addresses. As shown 

in Figure 10, for a decentralized ticket mutex there is a data 

 

Figure 9: Wait efficiency, number of atomic instructions exe-

cuted normalized to MinResume. 
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1. __device__ void decentralizedTicketMutexLock(...) {         
2.   __shared__ bool acquired;       
3.   ...       
4.   if (isMasterThread) {       
5.     myQueueLoc = atomicAdd(queueTailPtr, 16);       
6.     atomicExch(&acquired, false);       
7.   }       
8.   __syncthreads();       
9.   while (!atomicLoad(&acquired)) {       
10.     if (isMasterThread) {       
11.       if (atomicLoad(myQueueLoc) == 1) {  //<- lock acquire     
12.         atomicExch(&acquired, true);     
13.       }     
14.     }                                     window of vulnerability     
15.     __syncthreads();       
16.     if (!atomicLoad(&acquired)) {       
17.         wait(myQueueLoc, 1);           //<- arming SyncMon   
18.     }       
19.   }       
20. }       
21. __device__ void decentralizedTicketMutexUnlock(...) {   
22.   ...   
23.   if (isMasterThread) {   
24.     atomicExch(myQueueLoc, -1);   
25.     atomicExch(nextQueueLoc, 1);           //<-  lock release     
26.   }   
27. }   

 

1. __device__ void decentralizedTicketMutexLock(...) {       
2.   __shared__ bool acquired;       
3.   ...       
4.   if (isMasterThread) {          
5.     myQueueLoc = atomicAdd(queueTailPtr, 16);        
6.     atomicExch(&acquired, false);       
7.   }       
8.    
9.   __syncthreads();       
10.        
11.   while (!atomicLoad(&acquired)) {                     
12.     if (isMasterThread) {                          expected value   
13.       if (atomicCmpWait(myQueueLoc, 1) == 1) { //<- lock acquire   
14.                            // arming SyncMon if comparison failed   
15.           atomicExch(&acquired, true);       
16.       }   
17.     }   
18.   }                                                 
19. }       
20.        
21. __device__ void decentralizedTicketMutexUnlock(...) {    
22.   ...         
23.   if (isMasterThread) {       
24.     atomicExch(myQueueLoc, -1);       
25.     atomicExch(nextQueueLoc, 1);               //<- lock release   
26.   }       
27. }      

 
Figure 10: Decentralized ticket lock implementations, with wait instructions and waiting atomic instructions. We are showing 

these new instructions as intrinsic functions. 



 

 

 

 

 

 

race between arming the monitor and the atomics updating 

synchronization variables. In this synchronization primitive 

each WG places itself in a queue by atomically incrementing 

the tail pointer and then polls its queue entry. A queue entry 

value of -1 indicates the mutex is locked and the value of 1 

indicates the mutex is unlocked. Initially, only the first queue 

entry is unlocked until the first WG locks the entry to begin 

its critical section. Then when the first critical section com-

pletes, the associated WG unlocks the next queue entry. Thus, 

the next WG in the queue can grab the lock and proceed exe-

cuting its critical section. Even though in program order wait 

precedes the atomic exchange operation, the SyncMon can 

observe the lock release first and the wait succeeding it. This 

makes the SyncMon unable to provide inter-WG IFP by it-

self, as deadlock arises when it misses updates to monitored 

addresses. We next show how to overcome this shortcoming. 

D. Waiting Atomics 

Rather than introducing new wait instructions, we identify 

the synchronization points where WGs can naturally yield 

their resources by enhancing atomic instructions. To remove 

the window of vulnerability we propose MonNR-All, which 

provides hardware support for sync variables through new 

waiting atomic instructions. This hardware support fully em-

braces the synchronization library extension recently pro-

posed to the C++20 standard [18]. 

All waiting atomics have an extra operand that specifies 

the expected value of the synchronization variable. If a wait-

ing atomic fails when comparing the acquired value with the 

expected value, the WG associated with that atomic enters in 

a waiting state. This means that updates will not be missed by 

the SyncMon and the associated WG can be context switched 

out at least until its waiting condition is met, ensuring inter-

WG IFP. For example, a compare-and-swap instruction is a 

perfect candidate for a waiting atomic, as it already has an 

operand for an expected value. However, there are synchro-

nization primitives which synchronize using atomic load op-

erations that do not have this information. Thus, we propose 

a new compare-and-wait atomic instruction that performs a 

load, compares the retrieved value with the expected value, 

and waits on the expected value if the comparison fails. Fig-

ure 10 demonstrates the use of the proposed compare-and-

wait instruction, when implementing a decentralized ticket 

lock, and exemplifies an implementation with wait instruc-

tions for comparison. 

E. Resume Policies 

Figure 9 shows that MonR-All and MonNR-All can fur-

ther improve their wait efficiency compared to a MinResume 

that avoids unnecessarily resuming waiting WGs. Waiting 

atomics can be slightly less inefficient at mitigating conten-

tion as they register waiting WGs earlier, which captures 

more waiting WGs per condition and therefore resumes more 

waiting WGs when their condition is met. This produces 

slightly higher contention for MonNR-All than MonR-All, 

which uses wait instructions. To address contention on syn-

chronization variables, we propose another resume policy, 

MonNR-One. In MonNR-One, the SyncMon observes atomic 

updates to monitored addresses, resumes only one waiting 

WG once a condition is met, and continues to monitor the 

same condition. The rest of the waiters are resumed when a 

different update to the monitored address meets the condition 

or after a fixed timeout interval. In Figure 11, we break-down 

the WG execution time based on the two states a WG can 

have in the non-over-subscribed case: running and waiting on 

synchronization. MonNR-One performs well in cases of high 

contention such as spin mutexes. However, it performs 

poorly for global barriers, where MonNR-All performs well 

because it wakes up all the waiters at the barrier at once. To 

address this imbalance between MonNR-All and MonNR-

One, we introduce another policy, AWG, to predict the num-

ber of WGs to resume. 

 
Figure 11: WG execution time break-down, normalized to Timeout. 
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V. AWG: DETAILED DESCRIPTION 

In this section, we detail AWG’s hardware implementa-

tion and walk through how AWG ensures WG IFP. 

A. Hardware Components 

AWG relies on current GPU abilities to perform atomic 

operations at its last level cache (i.e., L2) [42] and extends 

the atomic instructions to wait on certain conditions in case 

the atomic operation fails. As previously introduced, AWG 

relies on two hardware components (the SyncMon and the 

CP) to effectively support these waiting atomics. 

Figure 12 presents AWG’s detailed hardware implemen-

tation. The SyncMon is added to the L2 cache banks to mon-

itor sync variables for specific waiting conditions. The Sync-

Mon is a distributed design similar to current GPU L2 cache 

microarchitecture and can provide both scalable high 

throughput and enhanced hardware support for Mesa seman-

tics. However, only a finite number of waiting conditions and 

WGs can be cached in the SyncMon block.  

To extend beyond finite hardware resources and handle 

scenarios when the synchronization variable working set ex-

ceeds the L2 cache capacity, AWG supports a virtualization 

interface [61][62] composed of a Monitor Log and a protocol 

for reading and writing the Monitor Log. The Monitor Log is 

a circular buffer residing in global memory that stores entries 

composed of the monitored address, the waiting value, and 

the waiting WG ID. In the rare situation when the SyncMon 

reaches its capacity limit for storing either waiting conditions 

or waiting WGs, it writes additional entries to the Monitor 

Log. If the Monitor Log is full, the waiting atomic fails its 

comparison, however, the associated WG does not enter a 

waiting state as it normally does. Instead, the WG continues 

executing and retries its waiting atomic (i.e., Mesa program 

semantics) until the CP processes the Monitor Log and frees 

some entries. 

AWG relies on the CP to handle the Monitor Log entries 

and perform WG context switching. The CP is not involved 

in the common case when the kernel does not oversubscribe 

the GPU and WGs are simply stalled on the CUs.  Instead, 

the CP focuses on tracking context switched out WGs, and it 

detects spilled sync variables by parsing the Monitor Log 

written to by the SyncMon. To efficiently track waiting WGs, 

the CP uses an in-memory data structure and updates their 

status changes between stalled, context switched out, ready, 

or resuming.  The CP also periodically checks the waiting 

conditions of spilled sync variables. The Monitor Log may 

contain younger waiting conditions than the SyncMon Cache. 

This can lead to fairness issues that can be addressed with 

different replacement policies. We leave this study for future 

work. 

To improve the inefficiencies of MonNR-All and 

MonNR-One, detailed in previous section, AWG predicts the 

number of WGs to resume. The prediction mechanism counts 

the number of waiting WGs and uses one counting Bloom 

filter per monitored address to count the number unique up-

dates to the associated address. AWG will resume all waiters 

for global barriers, when it detects there are more than one 

waiting WGs per waiting condition and more than two unique 

updates to the sync variable. AWG will resume waiters one 

by one when it detects there are multiple waiting WGs per 

waiting condition and at most two unique updates. Once a 

condition has been met, all waiting WGs have resumed, and 

the address is not monitored, the associated Bloom filter is 

reset. If AWG’s prediction is incorrect, eventually the stalled 

WGs will time out and be activated. 

B. Detailed Mechanism 

The dispatcher is responsible for assigning a unique ID to 

each dispatched WG. This WG ID is used by AWG through-

out the entire cooperative scheduling process, from register-

ing waiting WGs and managing their waiting conditions and 

memory storage for their contexts, to communicating to the 

 
Figure 12: Autonomous Work-Groups micro-architecture. 
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CU and indicating what WGs should be context switched. 

The CP is involved only in high-latency operations (i.e., con-

text switching and Monitor Log operations) and is not on the 

critical path. 

Figure 12 walks through all major microarchitectural 

events when monitoring sync variable conditions and sched-

uling WGs. In the figure, the fast, common path for detecting 

when conditions are met is depicted in blue, while the slower, 

uncommon operations that occur when WGs are context 

switched out or sync variables are spilled to the Monitor Log 

is depicted in red. When a WG executes a waiting atomic in-

struction ❶, its generated memory access will include the 

operand for an expected value and the issuing WG ID. As-

suming all atomics are performed at the L2, AWG extends 

each L2 cache tag with one monitor bit, to indicate monitored 

addresses and pins monitored cachelines such that they are 

not evicted. 

Eventually the waiting atomic operation will arrive at the 

L2 cache ❷ along with its expected successful value. If the 

operation (e.g., comparison) fails ❸, then the executing WG 

is considered waiting on the specified condition. In this case, 

the monitored bit in the tag is set and the waiting WG ID will 

be stored in the SyncMon cache along with its waiting condi-

tion. The SyncMon communicates the desired WG’s waiting 

state back to the CU as part of the atomic operation response 

❹. The desired waiting state can have two values: stalled 

(i.e., not executing but still holding hardware resources), or 

context switched (i.e., not executing and not holding any 

hardware resources). 

Subsequent atomic operations check monitored bit and if 

it is set, they pass the updated value to the SyncMon ❸. If 

the SyncMon determines a condition is met, the monitored 

bit is cleared and the SyncMon informs the dispatcher to re-

sume the associated waiting WG(s) ❺. In the common case 

when the WGs are simply stalled and still consuming CU re-

sources, the dispatcher requests the CUs to resume the WGs 

❻. In the uncommon case where the waiting WGs are con-

text switched out, the dispatcher initiates context-switch-in 

operations through the CP ⑥, evaluates available resources 

and picks the CUs that can accommodate the WGs. 

The SyncMon is a finite hardware structure and AWG 

uses the CP to handle cases when the SyncMon is full and 

cannot monitor additional conditions. For instance, when a 

WG’s waiting condition or ID cannot be inserted into the 

SyncMon cache ❸, the WG’s information bypasses the 

SyncMon cache and is written to the tail of the Monitor Log 

④. When the SyncMon requests a WG context switch upon 

executing a waiting instruction, the CU informs the CP, via 

dispatcher, when the operation completes ⑦. The CP will 

then context switch in and resume, via dispatcher, ready WGs 

⑧. Periodically, the CP block removes the valid entries be-

tween the Monitor Log’s head and tail pointers and stores the 

associated waiting WG information into a more look-up effi-

cient data structure. The CP then uses that data structure to 

check conditions and determine which WGs must be 

swapped back in, when conditions are met ⑨.  

C. Hardware Overhead 

AWG extends the GPU CP with new firmware to perform 

WG scheduling. AWG’s SyncMon condition cache is logi-

cally 4-way set associative with 256 sets, it can hold a total 

of 1024 waiting conditions. Waiting conditions are calculated 

by hashing the monitored address and waiting value together. 

Specifically, the address is shifted left with log of number of 

cache entries, after subtracting log of cacheline size, and bit-

wise ORed with the waiting value. The result is further 

hashed with a universal hash function [63]. To identify the 

waiting WGs for each waiting condition, each SyncMon con-

dition cache entry holds two 9-bit pointers (head and tail) into 

a separate waiting WG list. This list holds up to 512 waiting 

WG IDs and collectively the condition cache and WG list 

have a total size of 26112 bits or 3.18 KB. To predict the 

number of WGs to resume, AWG adds 512 Bloom filters, 

each storing 24 bits and using 6 hash functions, with a total 

overhead of 12288 bits or 1.5 KB. We have configured the 

Bloom filters to have a small false positives probability 

(2.1%) when recording unique values observed to monitored 

addresses. Finally, AWG adds one monitored bit per L2 tag, 

which results in an additional 1 KB overhead to the overall 

L2 cache size.  It is important to note that all aspects of 

AWG’s hardware components can be addressed sliced and 

distributed across a large, high-bandwidth L2 cache design. 

Figure 13 displays the size of all the data structures used 

by the CP for scheduling. Here we show the maximum Mon-

itor Log size assuming no SyncMon Cache. In addition to 

data structures used for scheduling, the CP also allocates 

memory for holding WG contexts. This memory varies be-

tween 0.74 – 3.11 MB across all evaluated benchmarks. 

D. Benefits of Our Design 

Reducing interference with kernel scheduling. AWG 

decouples pre-emptive scheduling of kernels and concurrent 

multi-kernel execution from scheduling WGs within a kernel. 

In this way, AWG relaxes the pre-emption constraints of ker-

nel scheduling, which improves performance and allows the 

 

Figure 13: Size of data structures used by the Command Pro-

cessor for WG scheduling. 
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GPU to be more responsive to high priority kernels while, at 

the same time, ensuring the IFP of lower priority kernels. 

Employing WG context switching when necessary. 

Given that GPU kernels can be large, a pre-emptive WG 

scheduling approach can be poor performing and inefficient. 

AWG employs cooperative WG scheduling and tracks indi-

vidual WG’s waiting condition such that context switches are 

only performed when WGs are ready to execute. 

Virtualizing waiting conditions and WGs. A solution to 

WG IFP that is bounded by the size of hardware structures 

imposes serious challenges to programmers. AWG combines 

two methods for condition checking and leverages virtual 

memory to overcome hardware monitoring limitations. 

Effective contention mitigation. AWG reduces conten-

tion by predicting the number of waiting WGs needed to be 

resumed when a condition is met. 

VI. PERFORMANCE ANALYSIS 

In this section we evaluate AWG using two experiments, 

a non-oversubscribed experiment where resources are con-

stant throughout the entire kernel lifetime, and an oversub-

scribed experiment where resources vary during its lifetime. 

Specifically, our oversubscribed experiment starts with 8 

CUs and after 50 µs the WGs from one CU are context 

switched out. This emulates a kernel scheduling scenario 

where resource availability varies across kernel scheduling 

time slices, or a high-priority pre-emption scenario where a 

lower priority kernel dynamically loses resources. In these 

oversubscribed experiments, the baseline deadlocks when 

context-switched WGs (i.e., due to kernel level scheduling) 

fail to release a synchronization variable before being 

swapped out.  Moreover, these oversubscribed inter-WG syn-

chronization scenarios are not supported in current GPUs, in-

cluding the ones with CUDA cooperative groups. 

Figure 14 shows that when non-oversubscribed, AWG 

outperforms the Baseline with a geometric mean of 12x in 

speedup, across the HeteroSync benchmarks. It outperforms 

Sleep and Timeout because it better utilizes execution re-

sources and the memory hierarchy, whereas Sleep or Timeout 

use fixed time intervals that do not fit the dynamic behaviour 

of our benchmarks. Note that Sleep only appears for the 

benchmarks that have been modified to use exponential 

backoff with the sleep instruction (see Section IV.C). 

Both MonNR-All and MonNR-One perform poorly for 

certain benchmarks. MonNR-All is deficient on benchmarks 

where multiple waiters contend on synchronization variables 

where only one WG can enter a critical section at a time. In 

contrast, MonNR-One manages contention well for these 

benchmarks by resuming only one WG immediately and 

waiting for additional condition met events to resume other 

waiters. However, MonNR-One displays performance defi-

ciency in case of centralized tree barriers where there are 

multiple waiters per condition and all of them are expected to 

start immediately. Meanwhile AWG outperforms both by 

predicting when to resume one waiting WG versus multiple 

waiting WGs. 

Finally, Figure 15 shows AWG’s speedup across all 

benchmarks for the oversubscribed scenario.  Baseline tech-

niques, such as cooperative groups, do not support such a sce-

nario. AWG predicts the number of waiters to resume, 

whereas MonNR-All and MonNR-One have fixed strategies 

for selecting the number of WGs to resume. This proves par-

ticularly beneficial for centralized synchronization primi-

tives. For some tree barriers (i.e., TB_LG and LFTBEX_LG), 

AWG is slower because of the stall time prediction. Barriers 

are latency sensitive and predicting a too long stall time adds 

context switch overhead to the application’s critical path. 

 
Figure 14: Speedup normalized to Baseline in non-oversubscribed scenario. 
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Figure 15: Speedup normalized to Timeout in oversubscribed scenario. 
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Nevertheless, AWG has an average speed up of 2.5x over 

Timeout. 

VII. RELATED WORK 

In addition to the GPU synchronization and scheduling 

work discussed in Section II, other work virtualizes GPU re-

sources in attempt to escape the bound on occupancy imposed 

on kernels when scheduling WGs. Virtual Thread [64] allows 

more WGs in flight than the hardware limit and relies on con-

text switching to increase thread level parallelism. Jeon et al.  

decreased the number of physical registers while maintaining 

the number of architectural registers unchanged [65]. Zorua  

gives the appearance of higher hardware resource availability 

to account for different phases in the application, which have 

different requirements on resources and therefore can have a 

different number of resident WGs at each phase [66]. How-

ever, Zorua does not address inter-WG synchronization and 

context switches WGs at phase boundaries without regard to 

potential synchronization deadlock. 

VIII.  CONCLUSION 

In this paper, we proposed AWG, an architecture designed 

to provide WG IFP for arbitrarily sized kernels which use in-

ter-WG synchronization. AWG uniquely identifies synchro-

nization operations as opportunities for cooperative WG 

scheduling and uses enhanced hardware support for synchro-

nization at the last-level cache. We also demonstrated that 

WG scheduling policies can significantly impact perfor-

mance for kernels that use this type of synchronization and 

AWG uses this insight to select the appropriate number of 

WGs to resume.  

This work overcomes current challenges in virtualizing 

GPU hardware resources at the WG level by using the CP and 

virtual memory. In addition, our work provides a sense of au-

tonomy to the WG execution abstraction, freeing the GPU 

from additional constraints when scheduling kernels with in-

ter-WG synchronization. 
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