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Abstract—GPUs have evolved from providing highly-con-
strained programmability for a single kernel to using pre-emption
to ensure independent forward progress for concurrently execut-
ing kernels. However, modern GPUs do not ensure independent
forward progress for kernels that use fine-grain synchronization
to coordinate inter-work-group execution. Enabling independent
forward progress among work-groups (WGs) is challenging as
pre-empted kernels may be rescheduled with fewer hardware re-
sources. This can lead to oversubscribed execution scenarios that
deadlock current hardware even for correctly written code. Prior
work addresses this problem by requiring programmers to specify
resource requirements and assuming static resource allocation,
which adds scheduling constraints and reduces portability.

We propose a family of novel hardware approaches — trading
off hardware complexity for performance — that provide inde-
pendent forward progress in the presence of fine-grain inter-WG
synchronization and dynamic resource allocation. Additionally,
we propose new waiting atomic instructions compatible with pro-
posed C++20 extensions. Our final design, Autonomous Work-
Groups (AWG), uses hints from regular and waiting atomics to
cooperatively schedule WGs within a kernel, improving efficiency
and virtualizing hardware resources. In non-oversubscribed sce-
narios, AWG outperforms a busy-waiting baseline (which dead-
locks in oversubscribed scenarios) by 12x on average for bench-
marks that use different mutexes and barriers for fine-grained,
WG granularity synchronization. Furthermore, AWG outper-
forms other solutions that do not deadlock in the oversubscribed
case, such as fixed-interval round-robin context switching or na-
ively extending monitor/mwait to GPUs, by 2.6x and 2.2x, respec-
tively.

I. INTRODUCTION

Graphics Processing Units (GPUs) are massively
throughput-oriented processors with a hierarchy of execution
abstractions that provide high performance acceleration for
applications in a variety of fields: from high-performance
computing [1] to machine learning [2][3]. GPUs continue to
scale to larger sizes with improvements in assembly and man-
ufacturing technology. At the highest level of a GPU’s exe-
cution hierarchy, kernels are executed from memory-backed
queues, and below that, work-groups (WGs), wavefronts, and
work-items (WIs) make up the lower levels. Modern GPUs
support the simultaneous execution of multiple different
types of kernels, from different queues belonging to the same
application or even different applications.

In order to manage the simultaneous execution of these
diverse kernels, GPUs allow higher priority kernels to pre-
empt lower priority kernels [4][5][6], without ensuring the
same resources will be available to individual kernels upon
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Figure 1: A timeline of independent forward progress for
GPUs, at different synchronization granularities.
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resumption. The correctness of many GPU workloads, espe-
cially traditional streaming, data parallel workloads, is unaf-
fected by a potential loss of resources. However, for emerg-
ing workloads that perform synchronization within a kernel
[2]1[71[8], kernel-level pre-emptive scheduling can cause in-
ter-WG deadlock — even when the programmer has written
correct code. For instance, Sorensen et al. showed that simple
global barrier synchronization results in deadlock on current
GPUs when the number of WGs within a kernel oversub-
scribe the available resources [9].

More broadly, Independent Forward Progress (IFP) rules
have been a predominant issue ever since software develop-
ers started to write general-purpose GPU (GPGPU) kernels.
However, thus far, prior work has not addressed or only par-
tially addressed the IFP of WGs within a kernel. Figure 1
summarizes the appearance of IFP rules for a variety of
GPGPU application programming interfaces (APIs). Initial
APIs such as Sh [10], Cg [11], or BrookGPU [12] completely
ignored IFP rules before CUDA and OpenCL [13][14] de-
fined IFP for wavefronts within a WG. Later OpenCL,
CUDA, and HSA [15][16] defined IFP at the kernel granu-
larity by allowing kernels from different queues to synchro-
nize with each other.

More recently, programming models have been address-
ing forward progress rules at the previously neglected inter-
mediate levels. For example, Sorensen et al. [9] avoided in-
ter-WG deadlocks by developing a software method that dy-
namically discovers resource availability. However, their
mechanism cannot adjust to mid-execution resource reduc-
tions, as depicted in Figure 2, and has not yet been adopted
by popular programming models. A new execution abstrac-
tion, cooperative groups, has been introduced as an alterna-
tive to avoid mid-execution resource losses [17]. Cooperative
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Figure 2: Inter-WG synchronization under dynamic allo-
cation of resources.

groups provide IFP for WIs within a wavefront and a restric-
tive amount of IFP for WGs within a kernel. However, coop-
erative groups require programmers to explicitly define how
many WIs may synchronize and ensure that kernels do not
oversubscribe GPU resources. Furthermore, cooperative
group kernel dispatches must wait until enough resources be-
come available (i.e., no dynamic allocation of resources).
Thus, when a cooperative group encompasses many WGs,
the associated kernel launch can encounter significant sched-
uling delay, making them less attractive for synchronization
across multiple WGs.

In this work we propose Autonomous Work-Groups
(AWG), a family of alternative hardware-centric approaches
that provide IFP for an arbitrary number of WGs executing in
dynamic resource environments. AWG introduces waiting
atomic instructions for efficient GPU synchronization and
scheduling. Waiting atomics are atomic instructions with an
extra operand that indicates the expected value of the synch
variable for the atomic to succeed. If the atomic fails, the syn-
chronization variable and the expected value form a condition
for a WG to wait on before being resumed. These waiting
atomics effectively provide hardware support for a recent
C++20 extension proposal [18]. AWG adds specialized hard-
ware to the GPU last level cache (LLC) to efficiently monitor
waiting conditions and relies on virtual memory when its in-
ternal hardware structures reach capacity. Thus, AWG effec-
tively virtualizes the GPU execution resources such that in-
ter-WG IFP within a kernel is ensured.

We evaluate AWG across a wide variety of fine-grained
synchronization benchmarks. Our results show that AWG
significantly outperforms existing solutions both when the
GPU is oversubscribed (i.e., kernel’s WGs exceed available
resources) and non-oversubscribed. In a non-oversubscribed
scenario, AWG is 12x faster than a busy-waiting baseline for
applications that utilize one synchronization variable for an
entire WG. When the GPU is oversubscribed, compared with
a simple fixed interval timeout mechanism, AWG is 2.6x
faster on average. Furthermore, AWG outperforms hardware
synchronization approaches similar to monitor/mwait by 2.2x
on average.

In summary, AWG addresses IFP of WGs within a kernel
and provides the following contributions:

o Portability. We extend existing GPU execution ab-
stractions to provide inter-WG IFP, improving portabil-
ity across different amounts of resources from GPUs of
different sizes.

e Kernel Scheduling. We relax constraints on kernel
scheduling by assuming dynamic resource allocation.
This opens the door to new GPU scheduling opportuni-
ties for low latency kernels.

e WG Scheduling. We evaluate different WG scheduling
policies and converge on using atomic operations to
support cooperative WG scheduling.

o Virtualization. We virtualize the number of synchroni-
zation variables, waiting values, and waiting WGs al-
lowed in inter-WG synchronization by extending the
firmware of the programmable micro-controller already
available in current GPUs.

Il. SYNCHRONIZATION AND SCHEDULING

Multicore CPUs use atomic instructions to modify and
poll synchronization variables and rely on the pre-emptive
OS scheduler to ensure IFP. Waiting CPU threads can release
resources using the yield system call, which has high over-
head, or busy-wait on the synchronization variable, which
can be inefficient [19][20][21]. To address the latter, current
x86 CPUs provide more efficient inter-thread synchroniza-
tion through special monitor and mwait [22] instructions. The
monitor instruction specifies an address range for hardware
monitoring. The mwait instruction causes the processor to
wait, in an implementation specific power state, until a dif-
ferent processor writes the monitored address, or an un-
masked interrupt, reset, or far control transfer in between
monitor and mwait occurs. CPUs support mwait by forward-
ing write invalidations to all sharers. Because mwait can re-
turn before the condition has been met, mwait provides re-
laxed support for Mesa semantics [23][24][25][26][27].
Mesa semantics allow the producer thread to continue execu-
tion after synchronization notifications and defines these no-
tifications as hints. As a result, the consumer cannot assume
its waiting condition holds true when it resumes execution
and must recheck its waiting condition.

Synchronization and IFP are more complex on GPUs due
to their massive parallelism and hierarchical execution
model. The programmer specifies the number of WIs within
a grid and the number of WIs within a WG. The grid is then
split into WGs, which are comprised of one or more wave-
fronts. Wavefronts are the set of WIs executed on the GPU’s
SIMD resources in lock-step fashion. Figure 3a) depicts the
GPU architecture. Due to their hierarchical execution model,
GPUs include multiple levels of synchronization and forward
progress rules associated with each level. Figure 3 depicts
synchronization of: WIs within a WF (Figure 3b), WFs
within a WG (Figure 3c), kernels in different queues (Figure
3d), and WGs within a kernel (Figure 3e). The following
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Figure 3: GPU Synchronization and Scheduling.

subsections detail these rules and prior efforts to improve
them.

A. Intra-Wavefront Synchronization

Recent GPUs have introduced new synchronization capa-
bilities within a wavefront to allow WIs to synchronize even
in case of divergent control flow [17]. However, program-
mers may need to inform the compiler/hardware of inter-Wi
reconvergence points — using a new synchronization function
called__syncwarp() — in order to achieve good performance.
This new functionality allows WI-level IFP in the case of in-
tra-wavefront synchronization (Figure 3b), and therefore is
orthogonal to inter-WG synchronization.

B. Wavefronts within WG Synchronization

GPUs use thread-level parallelism to tolerate long latency
operations and need barrier instructions when synchronizing
wavefronts, as shown in Figure 3c. GPUs assign all wave-
fronts within a WG to a single compute unit (CU) and local
barriers are commonly used when data is shared through the
CU’s scratchpad memory. Within a WG, wavefront IFP is
commonly provided by scheduling wavefronts in a round-
robin fashion, allowing each wavefront fair access to execu-
tion resources [13][14]. Recent work has improved upon
round-robin scheduling, without compromising inter-wave-
front IFP, by performing synchronization conscious schedul-
ing of wavefronts [28] or adding compiler support [29].

C. Inter-Kernel Synchronization

Figure 3d illustrates that GPUs provide IFP for synchro-
nizing kernels by context switching all the resident WGs of
kernels originating from different queues
[13][14][15][30][31][32] [33]. Pre-emptive kernel schedul-
ing completely relinquishes all kernel-allocated hardware re-
sources and is commonly used to execute high priority jobs
with real-time deadlines, such as a compute kernel, whose
output is consumed by a graphics kernel, pre-empting back-
ground compute kernels [4]. Kernel pre-emption provides
inter-kernel IFP in a similar fashion to OS-managed CPU
threads.

Prior work has also explored improving multi-tasking on
GPUs [34][35][36][37][38][39][40][41]. For example,
KLAP [36] uses kernel aggregation and kernel promotion in

context of irregular applications that use CUDA Dynamic
Parallelism. Kernel promotion amortizes kernel launch la-
tency by overlapping dependent kernels. Broadly, prior work
utilizes a variety of techniques, including kernel aggregation,
lightweight task spawning systems, compiler support, persis-
tent threads, idempotence, and WG context switching to bet-
ter utilize GPU resources and avoid inter-kernel synchroniza-
tion when possible. Although these approaches can signifi-
cantly improve performance by amortizing kernel launch la-
tency, they do not attempt to address inter-WG IFP.

D. Limited Inter-WG Synchronization

Historically, GPUs have benefited from limited WG-level
scheduling. Figure 3e shows how WGs within a kernel are
sequentially dispatched until execution resources (i.e., func-
tional units and registers) and memory resources (i.e.,
scratchpad) are saturated. Additional younger WGs are dis-
patched when execution resources become available, limiting
inter-WG synchronization to just the currently executing
WGs.

Kernels that over-subscribe available GPU resources can
deadlock when using inter-WG synchronization. Consider a
program written as follows. A shared variable is expected to
be updated by a producer WG that is not yet scheduled for
execution. An older consumer WG, which is already sched-
uled for execution (i.e., resident), is waiting for the producer
to update the shared variable. However, the consumer WG
will not be able to make forward progress and release its re-
sources until the waiting condition is satisfied and the waiting
condition will not be satisfied if the producing WG cannot be
scheduled for execution, because of lack of available re-
sources. Additionally, when pre-empted kernels are resched-
uled for execution, the scheduler may not provide the same
execution resources as before, resulting in over-subscription.

The AMD GCN ISA manual discusses a global data share
(GDS) memory, shared among all resident WGs and accessi-
ble through special atomics [42]. The GDS supports inter-
WG synchronization through specialized ordered ap-
pend/consume operations, supporting a finite number of syn-
chronization events and synchronizing WGs at a time. Liu
proposed EffiSync [43], an architecture designed for efficient
synchronization that further generalizes inter-WG synchroni-
zation by virtualizing synchronization events. However,



Table 1: Baseline GPU model.

8 Compute Units, each with the following configuration:

Clock 2GHz
SIMD units 2
SIMD width 64
Wavefronts per SIMD 20

Memory Hierarchy (64 B block size):

1 Instruction Cache / 4 CUs 32 KB, 8-way set assoc., 4 cycles

1 Scalar Cache /4 CUs or CP 16 KB, 8-way set assoc., 4 cycles

L1 cache/CU 32 KB, 16-way set assoc., 30 cycles
L2 cache shared 512 KB, 16-way set assoc., 50 cycles
DRAM DDR3, 4 Channels, 1 GHz

these approaches do not consider an arbitrary number of syn-
chronization variables, waiting conditions, and waiting WGs.

To prevent deadlock, CUDA 9 introduced a new execu-
tion abstraction, cooperative groups, which allows inter-WG
synchronization. When using cooperative groups, the pro-
grammer has to use new API functions to launch a GPU ker-
nel and to manage WGs within a cooperative group. This
adds programmability and portability costs. More impor-
tantly, the program must wait until the scheduler ensures that
all WGs within a cooperative group can be resident, limiting
the kernel scheduler to static resource assignment.

Prior work has also looked into ways to provide inter-WG
synchronization despite not ensuring IFP. First, several pa-
pers explored using persistent threads to avoid oversubscrip-
tion [44] and the overhead of launching multiple kernels
[45][46]. Second, prior work created software implementa-
tions of a variety of synchronization primitives for GPUs in-
cluding various mutexes and barriers [9][47][48][49]. How-
ever, all these rely on persistent threads which assume static
resource allocation across a kernel lifetime to ensure inter-
WG IFP. Finally, Wireframe [50] specifies dependencies be-
tween WGs statically and presents a dependency-aware WG
scheduler. Although it is not the focus of this work, AWG
does not burden the programmer with a specialized WG de-
pendency and can handle dynamic dependencies between
WGs using atomic operations.

1. METHODOLOGY

We use a modified version of the gem5 simulator [51] to
model a tightly-coupled GPU system (i.e., APU). Further-
more, we model in detail multiple WG scheduling policies
described in the remainder of this paper, including memory
operations for WG context saving and restoring, latencies for
accessing new hardware structures, and periodic checking of
conditions. Table 1 summarizes our baseline GPU model.

Choosing benchmarks to assess the behaviour of AWG is
challenging because few GPU benchmarks use inter-WG
synchronization. As a result, prior work has often focused on
microbenchmarks to evaluate the behaviour of their system
[91[52][53][54]. We select the HeteroSync suite [55] to fur-
ther explore the design space of inter-WG synchronization.
All benchmarks in HeteroSync require inter-WG fine-grained
synchronization, use busy-waiting, and are representative of
the most widely used forms of synchronization currently used
on GPUs. In our experiments, we use both locally (L) and
globally (G) scoped [53][56] synchronization variables. The
selected benchmarks include multiple different centralized
and decentralized mutexes and barriers, several performing
exponential backoff in software. These benchmarks also
cover a wide set of characteristics, as highlighted in Table 2.

IvV. AuTONOMOUS WORK-GROUPS

We design AWG by proposing a family of novel autono-
mous architectures that provide inter-WG IFP, through coop-
erative scheduling of WGs, and evaluate their tradeoffs. Pre-
dominantly, these architectures rely on the set or a subset of
the following four main components: 1) new waiting instruc-
tions that can be used by compilers, runtimes, libraries, or
programmers to indicate opportunities for WGs to efficiently
wait on synchronization operations, 2) a Synchronization
Monitor (SyncMon) that observes accesses to monitored syn-
chronization variables, 3) firmware extensions to the existing
Command Processor (CP) to track waiting WGs, coordinate
context switching, and check conditions that cannot be mon-
itored by SyncMon, and 4) a virtualization interface between
the SyncMon and the CP. Figure 4 presents a high-level over-
view of our family of architectures.

Table 2: Inter-WG synchronization benchmarks, constituting a busy-waiting Baseline: HeteroSync, Hash Table, and Bank Account
[G = total number of WGs, L = number of WGs per CU, n = number of WIs per WG, d = size of shared data structure].

Granularity |#sync |#of conds |# waiters |# updates per

Benchmark Abbreviation Description (#WiIsper |vars |persync  |percond (syncvar until

sync var) vars condition met
SpinMutex SPM G Test-and-set lock n 1 1 G 2
FAMutex FAM_G Centralized ticket lock n 1 G 1 1
SleepMutex SLM_G Decentralized ticket lock n G 1 1 1
AtomicTreeBarr TB LG Two-level tree barrier n G/L 1 L L
LFTreeBarr LFTB LG Decentralized two-level tree barrier n G 1 1 1
SpinMutexLocal SPM L Test-and-set lock local scope n G/L 1 L 2
FAMutexLocal FAM_L Centralized ticket lock local scope n G/L L 1 1
SleepMutexLocal SLM_L Decentralized ticket lock local scope n G 1 1 1
AtomicTreeBarrLocalExch |TBEX LG Two-level tree barrier n G/L 1 L L
LFTreeBarrLocalExch LFTBEX LG Decentralized two-level tree barrier n G 1 1 1




A. Challenges in Cooperative WG Scheduling

Given the WG scheduling granularity considered by this
work, there are some challenges in effectively addressing the
problem of inter-WG IFP.

Context switching overhead. GPUs have significantly
larger contexts than CPUs, leading to higher overheads. WGs
can have up to 1024 WIs, each with their own vector regis-
ters. In addition, WIs within a WG share Local Data Share
(LDS) memory and wavefronts within a WG have their own
scalar registers. Figure 5 shows that the WG context size
ranges from 2 to 10 KB for our benchmarks [55] [57]. Thus,
it is important to avoid context switches whenever possible.

Virtualizing the number of waiting WGs and condi-
tions. Given the finite size of the SyncMon, a limited number
of conditions can be simultaneously monitored by the Sync-
Mon. Additionally, a limited number of waiting WGs can
also be stored on chip. Thus, to be able to synchronize WGs
when GPU resources are oversubscribed, we need to over-
come limited monitoring capabilities of the SyncMon.

Virtualizing the data structures used for scheduling.
The CP requires additional data structures to hold waiting
WGs, waiting conditions, and different queues that track the
state of waiting WGs as they are stalled, context switching
out, waiting, ready, or context switching in. Having finite
hardware structures holding these data structures is challeng-
ing as they can easily overflow.

Synchronization Contention. Some synchronization
primitives exhibit performance-challenging behaviors by
generating additional memory traffic, while trying to acquire
a synchronization variable [58]. These types of synchroniza-
tion primitives are usually the simplest ones to program,
therefore providing support for such primitives constitute an
important programmability aspect.

B. Our Approach

Motivated to ensure inter-WG IFP, we take a systematic
approach in overcoming previously mentioned challenges.
First, we take a holistic approach to reduce unnecessary con-
text switches. After looking at the different scheduling poli-
cies, we identified cooperative scheduling as better suited for
high throughput computing devices with large WG context
size. To achieve cooperative scheduling, we use waiting in-
structions to provide hints at opportunities when WGs can
yield their hardware resources and be context switched out.
These instructions are necessary for IFP of WGs, and context
switching may occur when they are executed to allow other
WGs to proceed. Moreover, we context switch outa WG only
if there are other WGs ready to be resumed or started, mean-
ing only if the kernel over-subscribes GPU resources.

Furthermore, as depicted in Figure 4, we propose special-
ized hardware (i.e., SyncMon) to enhance cooperative WG
scheduling by notifying when WGs can be resumed for exe-
cution. We overcome SyncMon’s limited monitoring abilities
by defining a virtualization interface used to communicate to
the CP of extra conditions and waiting WGs.

c : | VG |@ Command
I Compute Units (CUs) »ll Disp Processor (CP)

$ ] ¢
| Sync Monitor (SyncMon) | L2

l Waiting Waiting Running

Sync Valyes Work-groups
Variables
=t
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Monitor Log
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Figure 4: Autonomous Work-Groups Overview.

Contention on synchronization variables has been a well-
studied phenomenon in computer architecture since the de-
sign of the first multi-processor computers [58][59]. We in-
vestigate contention mitigating resume policies. Addition-
ally, in case of latency sensitive or low-contention synchro-
nization, such as global barriers or spin mutexes with few
contending WGs, context switching can incur a performance
penalty. To solve this, before context switching a WG out, we
stall waiting WGs for a predicted time period, and only con-
text switch out a WG if its condition has not been met when
the period expires. AWG predicts the stall period by record-
ing the mean number of cycles at which conditions are met.

Overall, we evaluate exponential backoff with sleep and
propose autonomous architectures with different waiting and
resume policies each varying in degree of necessary hardware
support: simple timeout mechanism and different types of
special instructions which arm a hardware monitor that can
resume all or one waiting WG, when a condition is met. Fig-
ure 6 depicts the timelines for all these architectures. Further-
more, we analyze them by comparing with a Baseline config-
uration composed of software busy-waiting and hardware
deadlocking in case of over-subscription. However, in this
subsection we show quantitative results for non-over-sub-
scribed GPUs in order to build up the trade-offs for each au-
tonomous architecture; we discuss the hardware necessary to
implement our final solution, AWG, in Section V and we
quantitatively compare these architectures to each other and
to AWG for over-subscribed GPUs in Section V1.
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Figure 6: Timeline signatures for different cooperative WG scheduling policies.

C. Waiting Policies

i. Sleep and Exponential Backoff

Current GPUs provide support for optimizing synchroni-
zation by waiting, through instructions such as s_sleep, which
stalls a wavefront for a fixed number of cycles [42][60]. Sleep
instructions have low hardware overhead and provide ease of
programmability. However, they support limited timeout pe-
riods and do not wait for a specific event, making them less
adaptable to system dynamics.

Figure 7 illustrates that exponential backoff—doubling
the sleep time in software after each failed retry, up to a max-
imum backoff interval—improves performance for many
workloads. Increasing the maximum backoff interval—X
thousands cycles for the label Sleep-Xk—decreases conten-
tion on synchronization variables. This improves perfor-
mance to a point, but eventually becomes counterproductive
because WGs that could make progress sleep too long. These
results also show there is no one best static sleep configura-
tion across the different synchronization primitives. More im-
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Figure 7: Exponential backoff with s_sleep, normalized to the
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portantly, sleep instructions do not release hardware re-
sources while sleeping, failing to provide inter-WG IFP when
the GPU is over-subscribed.

ii. Simplistic Hardware Support: Fixed Timeout

To provide IFP for over-subscribed kernels, we first in-
vestigate a Timeout architecture. In the non-oversubscribed
case, Timeout stalls a WG for a fixed interval of time. Unlike
Sleep, this interval does not represent a maximum backoff in-
terval. In the over-subscribed case, Timeout yields its re-
sources by context switching out for a fixed timeout interval.
Figure 8 shows that there is no single best static timeout in-
terval: different synchronization primitives prefer different
timeouts. More importantly, for some timeout intervals,
Timeout performs much worse than the busy-waiting Base-
line for non-oversubscribed kernels. These results motivate
additional hardware support for waiting.

iii. Relaxed Hardware Support
As discussed in Section 11, modern CPUs implement mon-
itor and mwait instructions to detect when synchronization
conditions (may) have been met. We extend this approach to

I3Baseline Timeout-10k M Timeout-20k M Timeout-50k M Timeout-100k
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Figure 8: Timeout interval runtime, normalized to the Base-
line.
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GPUs, by proposing MonRS-All, where waiting WGs can hint
yielding of hardware resources with special wait instructions
and notifications are supported through a simplistic hardware
monitor (i.e., SyncMon). Unlike CPUs, which maintain own-
ership-based coherence across all caches, GPUs use write-
through caches and perform atomics at the shared last-level
cache (e.g., L2) [54]. Because of these limitations, GPUs can-
not rely on coherence protocols to detect a write. In this case,
the simplistic SyncMon observes memory accesses and if a
monitored address is accessed it will notify corresponding
waiting WGs to resume, without checking their waiting con-
dition. Therefore, we call these notifications sporadic.

Compared to Timeout, this waiting policy better reacts to
system dynamics by monitoring synchronization variables.
However, such relaxed hardware support for synchronization
on GPUs is dominated by unnecessary resuming of WGs.
Although this works well for decentralized synchronization
primitives, where there are few updates to a given variable, it
is inefficient at waiting for all centralized synchronization
primitives. Figure 9 shows the wait efficiency of MonRS-All,
as the number of executed atomic instructions normalized to
an oracular MinResume configuration which does not resume
WGs unnecessarily. MinResume achieves this by spreading
out when waiting WGs are resumed, such that WGs will not
contend when retrying to acquire sync variables. MonRS-All
executes up to two orders of magnitude more atomic instruc-
tions in some cases, because it unnecessarily resumes waiting
WGs.

iv. Enhanced Hardware Support

To overcome the shortcomings of sporadic notifications,
we enhance the hardware support for synchronization by pro-

1. _ device__ void decentralizedTicketMutexLock(...) {

2. __shared__ bool acquired;

3.

4. if (isMasterThread) {

5. myQueuelLoc = atomicAdd(queueTailPtr, 16);

6. atomicExch(&acquired, false);

7.}

8. __syncthreads();

9. while (!atomicLoad(&acquired)) {

10. if (isMasterThread) {

11. if (atomicLoad(myQueuelLoc) == 1) { //<- lock acquire
12. atomicExch(&acquired, true);

13. }

14. 3} window of vulnerability
15. __syncthreads();

16. if (latomicLoad(&acquired)) {

17. wait(myQueueloc, 1); //<- arming SyncMon
18. }

19. 3}

20. }

21. _ device__ void decentralizedTicketMutexUnlock(...) {

o coo

23. if (isMasterThread) {

24. atomicExch(myQueueLoc, -1);

25. atomicExch(nextQueueloc, 1); //<- lock release
26. }

27. }

MinResume MonRS-All MonR-All MonNR-All

1000

100

10

Normalized Dynamic Atomic Insts
Count (logarithmic scale)

Figure 9: Wait efficiency, number of atomic instructions exe-
cuted normalized to MinResume.

posing MonR-All. MonR-All uses the same special wait in-
struction to hint a waiting WG can vyield its hardware re-
sources, except it enhances SyncMon to check waiting con-
ditions as synchronization variables are being updated. The
SyncMon registers waiting WGs, checks waiting conditions
when monitored addresses are written, and resumes all wait-
ing WGs associated with a met condition. Figure 9 shows
MonR-All to have better wait efficiency than MonRS-All.
Decentralized synchronization primitives are unaffected be-
cause they can have at most one write operation per synchro-
nization variable. Nevertheless, providing enhanced hard-
ware support exhibits a clear performance advantage for cen-
tralized primitives due to reduced resuming of WG.
However, this approach has a data race that causes a win-
dow of vulnerability when monitoring addresses. As shown
in Figure 10, for a decentralized ticket mutex there is a data

1. _ device__ void decentralizedTicketMutexLock(...) {

2. __shared__ bool acquired;

3. ...

4. if (isMasterThread) {

5. myQueuelLoc = atomicAdd(queueTailPtr, 16);

6. atomicExch(&acquired, false);

7. }

8.

9. __syncthreads();

10.

11. while (!atomicLoad(&acquired)) {

12. if (isMasterThread) { expected value
13. if (atomicCmpWait(myQueueloc, 1)™== 1) { //<- lock acquire
14. // arming SyncMon if comparison failed
15. atomicExch(&acquired, true);

16. }

17. }

18. 1}

19. }

20.

21. __device__ void decentralizedTicketMutexUnlock(...) {

o coo

23. if (isMasterThread) {

24. atomicExch(myQueuelLoc, -1);

25. atomicExch(nextQueueloc, 1); //<- lock release
26. }

27.}

Figure 10: Decentralized ticket lock implementations, with wait instructions and waiting atomic instructions. We are showing
these new instructions as intrinsic functions.
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Figure 11: WG execution time break-down, normalized to Timeout.

race between arming the monitor and the atomics updating
synchronization variables. In this synchronization primitive
each WG places itself in a queue by atomically incrementing
the tail pointer and then polls its queue entry. A queue entry
value of -1 indicates the mutex is locked and the value of 1
indicates the mutex is unlocked. Initially, only the first queue
entry is unlocked until the first WG locks the entry to begin
its critical section. Then when the first critical section com-
pletes, the associated WG unlocks the next queue entry. Thus,
the next WG in the queue can grab the lock and proceed exe-
cuting its critical section. Even though in program order wait
precedes the atomic exchange operation, the SyncMon can
observe the lock release first and the wait succeeding it. This
makes the SyncMon unable to provide inter-WG IFP by it-
self, as deadlock arises when it misses updates to monitored
addresses. We next show how to overcome this shortcoming.

D. Waiting Atomics

Rather than introducing new wait instructions, we identify
the synchronization points where WGs can naturally yield
their resources by enhancing atomic instructions. To remove
the window of vulnerability we propose MonNR-All, which
provides hardware support for sync variables through new
waiting atomic instructions. This hardware support fully em-
braces the synchronization library extension recently pro-
posed to the C++20 standard [18].

All waiting atomics have an extra operand that specifies
the expected value of the synchronization variable. If a wait-
ing atomic fails when comparing the acquired value with the
expected value, the WG associated with that atomic enters in
a waiting state. This means that updates will not be missed by
the SyncMon and the associated WG can be context switched
out at least until its waiting condition is met, ensuring inter-
WG IFP. For example, a compare-and-swap instruction is a
perfect candidate for a waiting atomic, as it already has an
operand for an expected value. However, there are synchro-
nization primitives which synchronize using atomic load op-
erations that do not have this information. Thus, we propose

a new compare-and-wait atomic instruction that performs a
load, compares the retrieved value with the expected value,
and waits on the expected value if the comparison fails. Fig-
ure 10 demonstrates the use of the proposed compare-and-
wait instruction, when implementing a decentralized ticket
lock, and exemplifies an implementation with wait instruc-
tions for comparison.

E. Resume Policies

Figure 9 shows that MonR-All and MonNR-All can fur-
ther improve their wait efficiency compared to a MinResume
that avoids unnecessarily resuming waiting WGs. Waiting
atomics can be slightly less inefficient at mitigating conten-
tion as they register waiting WGs earlier, which captures
more waiting WGs per condition and therefore resumes more
waiting WGs when their condition is met. This produces
slightly higher contention for MonNR-All than MonR-All,
which uses wait instructions. To address contention on syn-
chronization variables, we propose another resume policy,
MonNR-One. In MonNR-One, the SyncMon observes atomic
updates to monitored addresses, resumes only one waiting
WG once a condition is met, and continues to monitor the
same condition. The rest of the waiters are resumed when a
different update to the monitored address meets the condition
or after a fixed timeout interval. In Figure 11, we break-down
the WG execution time based on the two states a WG can
have in the non-over-subscribed case: running and waiting on
synchronization. MonNR-One performs well in cases of high
contention such as spin mutexes. However, it performs
poorly for global barriers, where MonNR-All performs well
because it wakes up all the waiters at the barrier at once. To
address this imbalance between MonNR-All and MonNR-
One, we introduce another policy, AWG, to predict the num-
ber of WGs to resume.
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Figure 12: Autonomous Work-Groups micro-architecture.

V. AWG: DETAILED DESCRIPTION

In this section, we detail AWG’s hardware implementa-
tion and walk through how AWG ensures WG IFP.

A. Hardware Components

AWG relies on current GPU abilities to perform atomic
operations at its last level cache (i.e., L2) [42] and extends
the atomic instructions to wait on certain conditions in case
the atomic operation fails. As previously introduced, AWG
relies on two hardware components (the SyncMon and the
CP) to effectively support these waiting atomics.

Figure 12 presents AWG’s detailed hardware implemen-
tation. The SyncMon is added to the L2 cache banks to mon-
itor sync variables for specific waiting conditions. The Sync-
Mon is a distributed design similar to current GPU L2 cache
microarchitecture and can provide both scalable high
throughput and enhanced hardware support for Mesa seman-
tics. However, only a finite number of waiting conditions and
WGs can be cached in the SyncMon block.

To extend beyond finite hardware resources and handle
scenarios when the synchronization variable working set ex-
ceeds the L2 cache capacity, AWG supports a virtualization
interface [61][62] composed of a Monitor Log and a protocol
for reading and writing the Monitor Log. The Monitor Log is
a circular buffer residing in global memory that stores entries
composed of the monitored address, the waiting value, and
the waiting WG ID. In the rare situation when the SyncMon
reaches its capacity limit for storing either waiting conditions
or waiting WGs, it writes additional entries to the Monitor
Log. If the Monitor Log is full, the waiting atomic fails its
comparison, however, the associated WG does not enter a
waiting state as it normally does. Instead, the WG continues
executing and retries its waiting atomic (i.e., Mesa program
semantics) until the CP processes the Monitor Log and frees
some entries.

AWG relies on the CP to handle the Monitor Log entries
and perform WG context switching. The CP is not involved
in the common case when the kernel does not oversubscribe
the GPU and WGs are simply stalled on the CUs. Instead,
the CP focuses on tracking context switched out WGs, and it
detects spilled sync variables by parsing the Monitor Log
written to by the SyncMon. To efficiently track waiting WGs,
the CP uses an in-memory data structure and updates their
status changes between stalled, context switched out, ready,
or resuming. The CP also periodically checks the waiting
conditions of spilled sync variables. The Monitor Log may
contain younger waiting conditions than the SyncMon Cache.
This can lead to fairness issues that can be addressed with
different replacement policies. We leave this study for future
work.

To improve the inefficiencies of MonNR-All and
MonNR-One, detailed in previous section, AWG predicts the
number of WGs to resume. The prediction mechanism counts
the number of waiting WGs and uses one counting Bloom
filter per monitored address to count the number unique up-
dates to the associated address. AWG will resume all waiters
for global barriers, when it detects there are more than one
waiting WGs per waiting condition and more than two unique
updates to the sync variable. AWG will resume waiters one
by one when it detects there are multiple waiting WGs per
waiting condition and at most two unique updates. Once a
condition has been met, all waiting WGs have resumed, and
the address is not monitored, the associated Bloom filter is
reset. If AWG’s prediction is incorrect, eventually the stalled
WGs will time out and be activated.

B. Detailed Mechanism

The dispatcher is responsible for assigning a unique 1D to
each dispatched WG. This WG ID is used by AWG through-
out the entire cooperative scheduling process, from register-
ing waiting WGs and managing their waiting conditions and
memory storage for their contexts, to communicating to the



CU and indicating what WGs should be context switched.
The CP is involved only in high-latency operations (i.e., con-
text switching and Monitor Log operations) and is not on the
critical path.

Figure 12 walks through all major microarchitectural
events when monitoring sync variable conditions and sched-
uling WGs. In the figure, the fast, common path for detecting
when conditions are met is depicted in blue, while the slower,
uncommon operations that occur when WGs are context
switched out or sync variables are spilled to the Monitor Log
is depicted in red. When a WG executes a waiting atomic in-
struction @, its generated memory access will include the
operand for an expected value and the issuing WG ID. As-
suming all atomics are performed at the L2, AWG extends
each L2 cache tag with one monitor bit, to indicate monitored
addresses and pins monitored cachelines such that they are
not evicted.

Eventually the waiting atomic operation will arrive at the
L2 cache @ along with its expected successful value. If the
operation (e.g., comparison) fails @), then the executing WG
is considered waiting on the specified condition. In this case,
the monitored bit in the tag is set and the waiting WG 1D will
be stored in the SyncMon cache along with its waiting condi-
tion. The SyncMon communicates the desired WG’s waiting
state back to the CU as part of the atomic operation response
@. The desired waiting state can have two values: stalled
(i.e., not executing but still holding hardware resources), or
context switched (i.e., not executing and not holding any
hardware resources).

Subsequent atomic operations check monitored bit and if
it is set, they pass the updated value to the SyncMon @. If
the SyncMon determines a condition is met, the monitored
bit is cleared and the SyncMon informs the dispatcher to re-
sume the associated waiting WG(s) @. In the common case
when the WGs are simply stalled and still consuming CU re-
sources, the dispatcher requests the CUs to resume the WGs
0. In the uncommon case where the waiting WGs are con-
text switched out, the dispatcher initiates context-switch-in
operations through the CP (6), evaluates available resources
and picks the CUs that can accommodate the WGs.

The SyncMon is a finite hardware structure and AWG
uses the CP to handle cases when the SyncMon is full and
cannot monitor additional conditions. For instance, when a
WG’s waiting condition or ID cannot be inserted into the
SyncMon cache @), the WG’s information bypasses the
SyncMon cache and is written to the tail of the Monitor Log
(4). When the SyncMon requests a WG context switch upon
executing a waiting instruction, the CU informs the CP, via
dispatcher, when the operation completes (7). The CP will
then context switch in and resume, via dispatcher, ready WGs
(8). Periodically, the CP block removes the valid entries be-
tween the Monitor Log’s head and tail pointers and stores the
associated waiting WG information into a more look-up effi-
cient data structure. The CP then uses that data structure to
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Figure 13: Size of data structures used by the Command Pro-
cessor for WG scheduling.

check conditions and determine which WGs must be
swapped back in, when conditions are met (9).

C. Hardware Overhead

AWG extends the GPU CP with new firmware to perform
WG scheduling. AWG’s SyncMon condition cache is logi-
cally 4-way set associative with 256 sets, it can hold a total
of 1024 waiting conditions. Waiting conditions are calculated
by hashing the monitored address and waiting value together.
Specifically, the address is shifted left with log of number of
cache entries, after subtracting log of cacheline size, and bit-
wise ORed with the waiting value. The result is further
hashed with a universal hash function [63]. To identify the
waiting WGs for each waiting condition, each SyncMon con-
dition cache entry holds two 9-bit pointers (head and tail) into
a separate waiting WG list. This list holds up to 512 waiting
WG IDs and collectively the condition cache and WG list
have a total size of 26112 bits or 3.18 KB. To predict the
number of WGs to resume, AWG adds 512 Bloom filters,
each storing 24 bits and using 6 hash functions, with a total
overhead of 12288 bits or 1.5 KB. We have configured the
Bloom filters to have a small false positives probability
(2.1%) when recording unique values observed to monitored
addresses. Finally, AWG adds one monitored bit per L2 tag,
which results in an additional 1 KB overhead to the overall
L2 cache size. It is important to note that all aspects of
AWG’s hardware components can be addressed sliced and
distributed across a large, high-bandwidth L2 cache design.

Figure 13 displays the size of all the data structures used
by the CP for scheduling. Here we show the maximum Mon-
itor Log size assuming no SyncMon Cache. In addition to
data structures used for scheduling, the CP also allocates
memory for holding WG contexts. This memory varies be-
tween 0.74 — 3.11 MB across all evaluated benchmarks.

D. Benefits of Our Design

Reducing interference with kernel scheduling. AWG
decouples pre-emptive scheduling of kernels and concurrent
multi-kernel execution from scheduling WGs within a kernel.
In this way, AWG relaxes the pre-emption constraints of ker-
nel scheduling, which improves performance and allows the
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Figure 15: Speedup normalized to Timeout in oversubscribed scenario.

GPU to be more responsive to high priority kernels while, at
the same time, ensuring the IFP of lower priority kernels.

Employing WG context switching when necessary.
Given that GPU kernels can be large, a pre-emptive WG
scheduling approach can be poor performing and inefficient.
AWG employs cooperative WG scheduling and tracks indi-
vidual WG’s waiting condition such that context switches are
only performed when WGs are ready to execute.

Virtualizing waiting conditions and WGs. A solution to
WG IFP that is bounded by the size of hardware structures
imposes serious challenges to programmers. AWG combines
two methods for condition checking and leverages virtual
memory to overcome hardware monitoring limitations.

Effective contention mitigation. AWG reduces conten-
tion by predicting the number of waiting WGs needed to be
resumed when a condition is met.

VI. PERFORMANCE ANALYSIS

In this section we evaluate AWG using two experiments,
a non-oversubscribed experiment where resources are con-
stant throughout the entire kernel lifetime, and an oversub-
scribed experiment where resources vary during its lifetime.
Specifically, our oversubscribed experiment starts with 8
CUs and after 50 ps the WGs from one CU are context
switched out. This emulates a kernel scheduling scenario
where resource availability varies across kernel scheduling
time slices, or a high-priority pre-emption scenario where a
lower priority kernel dynamically loses resources. In these
oversubscribed experiments, the baseline deadlocks when
context-switched WGs (i.e., due to kernel level scheduling)
fail to release a synchronization variable before being
swapped out. Moreover, these oversubscribed inter-WG syn-
chronization scenarios are not supported in current GPUSs, in-
cluding the ones with CUDA cooperative groups.

Figure 14 shows that when non-oversubscribed, AWG
outperforms the Baseline with a geometric mean of 12x in
speedup, across the HeteroSync benchmarks. It outperforms
Sleep and Timeout because it better utilizes execution re-
sources and the memory hierarchy, whereas Sleep or Timeout
use fixed time intervals that do not fit the dynamic behaviour
of our benchmarks. Note that Sleep only appears for the
benchmarks that have been modified to use exponential
backoff with the sleep instruction (see Section IV.C).

Both MonNR-All and MonNR-One perform poorly for
certain benchmarks. MonNR-All is deficient on benchmarks
where multiple waiters contend on synchronization variables
where only one WG can enter a critical section at a time. In
contrast, MonNR-One manages contention well for these
benchmarks by resuming only one WG immediately and
waiting for additional condition met events to resume other
waiters. However, MonNR-One displays performance defi-
ciency in case of centralized tree barriers where there are
multiple waiters per condition and all of them are expected to
start immediately. Meanwhile AWG outperforms both by
predicting when to resume one waiting WG versus multiple
waiting WGs.

Finally, Figure 15 shows AWG’s speedup across all
benchmarks for the oversubscribed scenario. Baseline tech-
niques, such as cooperative groups, do not support such a sce-
nario. AWG predicts the number of waiters to resume,
whereas MonNR-All and MonNR-One have fixed strategies
for selecting the number of WGs to resume. This proves par-
ticularly beneficial for centralized synchronization primi-
tives. For some tree barriers (i.e., TB_LG and LFTBEX_LG),
AWG is slower because of the stall time prediction. Barriers
are latency sensitive and predicting a too long stall time adds
context switch overhead to the application’s critical path.



Nevertheless, AWG has an average speed up of 2.5x over
Timeout.

VIl. RELATED WORK

In addition to the GPU synchronization and scheduling
work discussed in Section |1, other work virtualizes GPU re-
sources in attempt to escape the bound on occupancy imposed
on kernels when scheduling WGs. Virtual Thread [64] allows
more WGs in flight than the hardware limit and relies on con-
text switching to increase thread level parallelism. Jeon et al.
decreased the number of physical registers while maintaining
the number of architectural registers unchanged [65]. Zorua
gives the appearance of higher hardware resource availability
to account for different phases in the application, which have
different requirements on resources and therefore can have a
different number of resident WGs at each phase [66]. How-
ever, Zorua does not address inter-WG synchronization and
context switches WGs at phase boundaries without regard to
potential synchronization deadlock.

VIIl. CONCLUSION

In this paper, we proposed AWG, an architecture designed
to provide WG IFP for arbitrarily sized kernels which use in-
ter-WG synchronization. AWG uniquely identifies synchro-
nization operations as opportunities for cooperative WG
scheduling and uses enhanced hardware support for synchro-
nization at the last-level cache. We also demonstrated that
WG scheduling policies can significantly impact perfor-
mance for kernels that use this type of synchronization and
AWG uses this insight to select the appropriate number of
WGs to resume.

This work overcomes current challenges in virtualizing
GPU hardware resources at the WG level by using the CP and
virtual memory. In addition, our work provides a sense of au-
tonomy to the WG execution abstraction, freeing the GPU
from additional constraints when scheduling kernels with in-
ter-WG synchronization.
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