

Independent Forward Progress of Work-groups
Alexandru Duțu*, Matthew D. Sinclair*†, Bradford M. Beckmann*, David A. Wood*†, Marcus Chow*‡

*AMD Research, †University of Wisconsin – Madison, ‡University of California – Riverside

Abstract—GPUs have evolved from providing highly-con-

strained programmability for a single kernel to using pre-emption

to ensure independent forward progress for concurrently execut-

ing kernels. However, modern GPUs do not ensure independent

forward progress for kernels that use fine-grain synchronization

to coordinate inter-work-group execution. Enabling independent

forward progress among work-groups (WGs) is challenging as

pre-empted kernels may be rescheduled with fewer hardware re-

sources. This can lead to oversubscribed execution scenarios that

deadlock current hardware even for correctly written code. Prior

work addresses this problem by requiring programmers to specify

resource requirements and assuming static resource allocation,

which adds scheduling constraints and reduces portability.

We propose a family of novel hardware approaches — trading

off hardware complexity for performance — that provide inde-

pendent forward progress in the presence of fine-grain inter-WG

synchronization and dynamic resource allocation. Additionally,

we propose new waiting atomic instructions compatible with pro-

posed C++20 extensions. Our final design, Autonomous Work-

Groups (AWG), uses hints from regular and waiting atomics to

cooperatively schedule WGs within a kernel, improving efficiency

and virtualizing hardware resources. In non-oversubscribed sce-

narios, AWG outperforms a busy-waiting baseline (which dead-

locks in oversubscribed scenarios) by 12x on average for bench-

marks that use different mutexes and barriers for fine-grained,

WG granularity synchronization. Furthermore, AWG outper-

forms other solutions that do not deadlock in the oversubscribed

case, such as fixed-interval round-robin context switching or na-

ively extending monitor/mwait to GPUs, by 2.6x and 2.2x, respec-

tively.

I. INTRODUCTION

Graphics Processing Units (GPUs) are massively

throughput-oriented processors with a hierarchy of execution

abstractions that provide high performance acceleration for

applications in a variety of fields: from high-performance

computing [1] to machine learning [2][3]. GPUs continue to

scale to larger sizes with improvements in assembly and man-

ufacturing technology. At the highest level of a GPU’s exe-

cution hierarchy, kernels are executed from memory-backed

queues, and below that, work-groups (WGs), wavefronts, and

work-items (WIs) make up the lower levels. Modern GPUs

support the simultaneous execution of multiple different

types of kernels, from different queues belonging to the same

application or even different applications.

In order to manage the simultaneous execution of these

diverse kernels, GPUs allow higher priority kernels to pre-

empt lower priority kernels [4][5][6], without ensuring the

same resources will be available to individual kernels upon

resumption. The correctness of many GPU workloads, espe-

cially traditional streaming, data parallel workloads, is unaf-

fected by a potential loss of resources. However, for emerg-

ing workloads that perform synchronization within a kernel

[2][7][8], kernel-level pre-emptive scheduling can cause in-

ter-WG deadlock – even when the programmer has written

correct code. For instance, Sorensen et al. showed that simple

global barrier synchronization results in deadlock on current

GPUs when the number of WGs within a kernel oversub-

scribe the available resources [9].

More broadly, Independent Forward Progress (IFP) rules

have been a predominant issue ever since software develop-

ers started to write general-purpose GPU (GPGPU) kernels.

However, thus far, prior work has not addressed or only par-

tially addressed the IFP of WGs within a kernel. Figure 1

summarizes the appearance of IFP rules for a variety of

GPGPU application programming interfaces (APIs). Initial

APIs such as Sh [10], Cg [11], or BrookGPU [12] completely

ignored IFP rules before CUDA and OpenCL [13][14] de-

fined IFP for wavefronts within a WG. Later OpenCL,

CUDA, and HSA [15][16] defined IFP at the kernel granu-

larity by allowing kernels from different queues to synchro-

nize with each other.

More recently, programming models have been address-

ing forward progress rules at the previously neglected inter-

mediate levels. For example, Sorensen et al. [9] avoided in-

ter-WG deadlocks by developing a software method that dy-

namically discovers resource availability. However, their

mechanism cannot adjust to mid-execution resource reduc-

tions, as depicted in Figure 2, and has not yet been adopted

by popular programming models. A new execution abstrac-

tion, cooperative groups, has been introduced as an alterna-

tive to avoid mid-execution resource losses [17]. Cooperative

Figure 1: A timeline of independent forward progress for

GPUs, at different synchronization granularities.

Sh Cg BrookGPU
Close to Metal

CUDA
Cooperative

Threads

CUDA OpenCL HSA

AWG
OpenCL
Queues

CUDA Streams
Asynchronous

Shaders
HSA Queues

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Sy
n

ch
ro

n
iz

at
io

n
 G

ra
n

u
la

ri
ty

None Work-items w/i wavefronts
Wavefronts w/i work-groups Work-groups w/i kernels
Kernels in different queues

groups provide IFP for WIs within a wavefront and a restric-

tive amount of IFP for WGs within a kernel. However, coop-

erative groups require programmers to explicitly define how

many WIs may synchronize and ensure that kernels do not

oversubscribe GPU resources. Furthermore, cooperative

group kernel dispatches must wait until enough resources be-

come available (i.e., no dynamic allocation of resources).

Thus, when a cooperative group encompasses many WGs,

the associated kernel launch can encounter significant sched-

uling delay, making them less attractive for synchronization

across multiple WGs.

In this work we propose Autonomous Work-Groups

(AWG), a family of alternative hardware-centric approaches

that provide IFP for an arbitrary number of WGs executing in

dynamic resource environments. AWG introduces waiting

atomic instructions for efficient GPU synchronization and

scheduling. Waiting atomics are atomic instructions with an

extra operand that indicates the expected value of the synch

variable for the atomic to succeed. If the atomic fails, the syn-

chronization variable and the expected value form a condition

for a WG to wait on before being resumed. These waiting

atomics effectively provide hardware support for a recent

C++20 extension proposal [18]. AWG adds specialized hard-

ware to the GPU last level cache (LLC) to efficiently monitor

waiting conditions and relies on virtual memory when its in-

ternal hardware structures reach capacity. Thus, AWG effec-

tively virtualizes the GPU execution resources such that in-

ter-WG IFP within a kernel is ensured.

We evaluate AWG across a wide variety of fine-grained

synchronization benchmarks. Our results show that AWG

significantly outperforms existing solutions both when the

GPU is oversubscribed (i.e., kernel’s WGs exceed available

resources) and non-oversubscribed. In a non-oversubscribed

scenario, AWG is 12x faster than a busy-waiting baseline for

applications that utilize one synchronization variable for an

entire WG. When the GPU is oversubscribed, compared with

a simple fixed interval timeout mechanism, AWG is 2.6x

faster on average. Furthermore, AWG outperforms hardware

synchronization approaches similar to monitor/mwait by 2.2x

on average.

In summary, AWG addresses IFP of WGs within a kernel

and provides the following contributions:

• Portability. We extend existing GPU execution ab-

stractions to provide inter-WG IFP, improving portabil-

ity across different amounts of resources from GPUs of

different sizes.

• Kernel Scheduling. We relax constraints on kernel

scheduling by assuming dynamic resource allocation.

This opens the door to new GPU scheduling opportuni-

ties for low latency kernels.

• WG Scheduling. We evaluate different WG scheduling

policies and converge on using atomic operations to

support cooperative WG scheduling.

• Virtualization. We virtualize the number of synchroni-

zation variables, waiting values, and waiting WGs al-

lowed in inter-WG synchronization by extending the

firmware of the programmable micro-controller already

available in current GPUs.

II. SYNCHRONIZATION AND SCHEDULING

Multicore CPUs use atomic instructions to modify and

poll synchronization variables and rely on the pre-emptive

OS scheduler to ensure IFP. Waiting CPU threads can release

resources using the yield system call, which has high over-

head, or busy-wait on the synchronization variable, which

can be inefficient [19][20][21]. To address the latter, current

x86 CPUs provide more efficient inter-thread synchroniza-

tion through special monitor and mwait [22] instructions. The

monitor instruction specifies an address range for hardware

monitoring. The mwait instruction causes the processor to

wait, in an implementation specific power state, until a dif-

ferent processor writes the monitored address, or an un-

masked interrupt, reset, or far control transfer in between

monitor and mwait occurs. CPUs support mwait by forward-

ing write invalidations to all sharers. Because mwait can re-

turn before the condition has been met, mwait provides re-

laxed support for Mesa semantics [23][24][25][26][27].

Mesa semantics allow the producer thread to continue execu-

tion after synchronization notifications and defines these no-

tifications as hints. As a result, the consumer cannot assume

its waiting condition holds true when it resumes execution

and must recheck its waiting condition.

Synchronization and IFP are more complex on GPUs due

to their massive parallelism and hierarchical execution

model. The programmer specifies the number of WIs within

a grid and the number of WIs within a WG. The grid is then

split into WGs, which are comprised of one or more wave-

fronts. Wavefronts are the set of WIs executed on the GPU’s

SIMD resources in lock-step fashion. Figure 3a) depicts the

GPU architecture. Due to their hierarchical execution model,

GPUs include multiple levels of synchronization and forward

progress rules associated with each level. Figure 3 depicts

synchronization of: WIs within a WF (Figure 3b), WFs

within a WG (Figure 3c), kernels in different queues (Figure

3d), and WGs within a kernel (Figure 3e). The following

Figure 2: Inter-WG synchronization under dynamic allo-

cation of resources.

subsections detail these rules and prior efforts to improve

them.

A. Intra-Wavefront Synchronization

Recent GPUs have introduced new synchronization capa-

bilities within a wavefront to allow WIs to synchronize even

in case of divergent control flow [17]. However, program-

mers may need to inform the compiler/hardware of inter-WI

reconvergence points ‒ using a new synchronization function

called__syncwarp() ‒ in order to achieve good performance.

This new functionality allows WI-level IFP in the case of in-

tra-wavefront synchronization (Figure 3b), and therefore is

orthogonal to inter-WG synchronization.

B. Wavefronts within WG Synchronization

GPUs use thread-level parallelism to tolerate long latency

operations and need barrier instructions when synchronizing

wavefronts, as shown in Figure 3c. GPUs assign all wave-

fronts within a WG to a single compute unit (CU) and local

barriers are commonly used when data is shared through the

CU’s scratchpad memory. Within a WG, wavefront IFP is

commonly provided by scheduling wavefronts in a round-

robin fashion, allowing each wavefront fair access to execu-

tion resources [13][14]. Recent work has improved upon

round-robin scheduling, without compromising inter-wave-

front IFP, by performing synchronization conscious schedul-

ing of wavefronts [28] or adding compiler support [29].

C. Inter-Kernel Synchronization

Figure 3d illustrates that GPUs provide IFP for synchro-

nizing kernels by context switching all the resident WGs of

kernels originating from different queues

[13][14][15][30][31][32] [33]. Pre-emptive kernel schedul-

ing completely relinquishes all kernel-allocated hardware re-

sources and is commonly used to execute high priority jobs

with real-time deadlines, such as a compute kernel, whose

output is consumed by a graphics kernel, pre-empting back-

ground compute kernels [4]. Kernel pre-emption provides

inter-kernel IFP in a similar fashion to OS-managed CPU

threads.

Prior work has also explored improving multi-tasking on

GPUs [34][35][36][37][38][39][40][41]. For example,

KLAP [36] uses kernel aggregation and kernel promotion in

context of irregular applications that use CUDA Dynamic

Parallelism. Kernel promotion amortizes kernel launch la-

tency by overlapping dependent kernels. Broadly, prior work

utilizes a variety of techniques, including kernel aggregation,

lightweight task spawning systems, compiler support, persis-

tent threads, idempotence, and WG context switching to bet-

ter utilize GPU resources and avoid inter-kernel synchroniza-

tion when possible. Although these approaches can signifi-

cantly improve performance by amortizing kernel launch la-

tency, they do not attempt to address inter-WG IFP.

D. Limited Inter-WG Synchronization

Historically, GPUs have benefited from limited WG-level

scheduling. Figure 3e shows how WGs within a kernel are

sequentially dispatched until execution resources (i.e., func-

tional units and registers) and memory resources (i.e.,

scratchpad) are saturated. Additional younger WGs are dis-

patched when execution resources become available, limiting

inter-WG synchronization to just the currently executing

WGs.

Kernels that over-subscribe available GPU resources can

deadlock when using inter-WG synchronization. Consider a

program written as follows. A shared variable is expected to

be updated by a producer WG that is not yet scheduled for

execution. An older consumer WG, which is already sched-

uled for execution (i.e., resident), is waiting for the producer

to update the shared variable. However, the consumer WG

will not be able to make forward progress and release its re-

sources until the waiting condition is satisfied and the waiting

condition will not be satisfied if the producing WG cannot be

scheduled for execution, because of lack of available re-

sources. Additionally, when pre-empted kernels are resched-

uled for execution, the scheduler may not provide the same

execution resources as before, resulting in over-subscription.

The AMD GCN ISA manual discusses a global data share

(GDS) memory, shared among all resident WGs and accessi-

ble through special atomics [42]. The GDS supports inter-

WG synchronization through specialized ordered ap-

pend/consume operations, supporting a finite number of syn-

chronization events and synchronizing WGs at a time. Liu

proposed EffiSync [43], an architecture designed for efficient

synchronization that further generalizes inter-WG synchroni-

zation by virtualizing synchronization events. However,

Figure 3: GPU Synchronization and Scheduling.

these approaches do not consider an arbitrary number of syn-

chronization variables, waiting conditions, and waiting WGs.

To prevent deadlock, CUDA 9 introduced a new execu-

tion abstraction, cooperative groups, which allows inter-WG

synchronization. When using cooperative groups, the pro-

grammer has to use new API functions to launch a GPU ker-

nel and to manage WGs within a cooperative group. This

adds programmability and portability costs. More impor-

tantly, the program must wait until the scheduler ensures that

all WGs within a cooperative group can be resident, limiting

the kernel scheduler to static resource assignment.

Prior work has also looked into ways to provide inter-WG

synchronization despite not ensuring IFP. First, several pa-

pers explored using persistent threads to avoid oversubscrip-

tion [44] and the overhead of launching multiple kernels

[45][46]. Second, prior work created software implementa-

tions of a variety of synchronization primitives for GPUs in-

cluding various mutexes and barriers [9][47][48][49]. How-

ever, all these rely on persistent threads which assume static

resource allocation across a kernel lifetime to ensure inter-

WG IFP. Finally, Wireframe [50] specifies dependencies be-

tween WGs statically and presents a dependency-aware WG

scheduler. Although it is not the focus of this work, AWG

does not burden the programmer with a specialized WG de-

pendency and can handle dynamic dependencies between

WGs using atomic operations.

III. METHODOLOGY

We use a modified version of the gem5 simulator [51] to

model a tightly-coupled GPU system (i.e., APU). Further-

more, we model in detail multiple WG scheduling policies

described in the remainder of this paper, including memory

operations for WG context saving and restoring, latencies for

accessing new hardware structures, and periodic checking of

conditions. Table 1 summarizes our baseline GPU model.

Choosing benchmarks to assess the behaviour of AWG is

challenging because few GPU benchmarks use inter-WG

synchronization. As a result, prior work has often focused on

microbenchmarks to evaluate the behaviour of their system

[9][52][53][54]. We select the HeteroSync suite [55] to fur-

ther explore the design space of inter-WG synchronization.

All benchmarks in HeteroSync require inter-WG fine-grained

synchronization, use busy-waiting, and are representative of

the most widely used forms of synchronization currently used

on GPUs. In our experiments, we use both locally (L) and

globally (G) scoped [53][56] synchronization variables. The

selected benchmarks include multiple different centralized

and decentralized mutexes and barriers, several performing

exponential backoff in software. These benchmarks also

cover a wide set of characteristics, as highlighted in Table 2.

IV. AUTONOMOUS WORK-GROUPS

We design AWG by proposing a family of novel autono-

mous architectures that provide inter-WG IFP, through coop-

erative scheduling of WGs, and evaluate their tradeoffs. Pre-

dominantly, these architectures rely on the set or a subset of

the following four main components: 1) new waiting instruc-

tions that can be used by compilers, runtimes, libraries, or

programmers to indicate opportunities for WGs to efficiently

wait on synchronization operations, 2) a Synchronization

Monitor (SyncMon) that observes accesses to monitored syn-

chronization variables, 3) firmware extensions to the existing

Command Processor (CP) to track waiting WGs, coordinate

context switching, and check conditions that cannot be mon-

itored by SyncMon, and 4) a virtualization interface between

the SyncMon and the CP. Figure 4 presents a high-level over-

view of our family of architectures.

Table 1: Baseline GPU model.
8 Compute Units, each with the following configuration:

Clock 2GHz

SIMD units 2

SIMD width 64

Wavefronts per SIMD 20

Memory Hierarchy (64 B block size):

1 Instruction Cache / 4 CUs 32 KB, 8-way set assoc., 4 cycles

1 Scalar Cache / 4 CUs or CP 16 KB, 8-way set assoc., 4 cycles

L1 cache / CU 32 KB, 16-way set assoc., 30 cycles

L2 cache shared 512 KB, 16-way set assoc., 50 cycles

DRAM DDR3, 4 Channels, 1 GHz

Table 2: Inter-WG synchronization benchmarks, constituting a busy-waiting Baseline: HeteroSync, Hash Table, and Bank Account

[G = total number of WGs, L = number of WGs per CU, n = number of WIs per WG, d = size of shared data structure].

Benchmark Abbreviation Description

Granularity

(# WIs per

sync var)

sync

vars

of conds

per sync

vars

waiters

per cond

updates per

sync var until

condition met

SpinMutex SPM_G Test-and-set lock n 1 1 G 2

FAMutex FAM_G Centralized ticket lock n 1 G 1 1

SleepMutex SLM_G Decentralized ticket lock n G 1 1 1

AtomicTreeBarr TB_LG Two-level tree barrier n G/L 1 L L

LFTreeBarr LFTB_LG Decentralized two-level tree barrier n G 1 1 1

SpinMutexLocal SPM_L Test-and-set lock local scope n G/L 1 L 2

FAMutexLocal FAM_L Centralized ticket lock local scope n G/L L 1 1

SleepMutexLocal SLM_L Decentralized ticket lock local scope n G 1 1 1

AtomicTreeBarrLocalExch TBEX_LG Two-level tree barrier n G/L 1 L L

LFTreeBarrLocalExch LFTBEX_LG Decentralized two-level tree barrier n G 1 1 1

A. Challenges in Cooperative WG Scheduling

Given the WG scheduling granularity considered by this

work, there are some challenges in effectively addressing the

problem of inter-WG IFP.

Context switching overhead. GPUs have significantly

larger contexts than CPUs, leading to higher overheads. WGs

can have up to 1024 WIs, each with their own vector regis-

ters. In addition, WIs within a WG share Local Data Share

(LDS) memory and wavefronts within a WG have their own

scalar registers. Figure 5 shows that the WG context size

ranges from 2 to 10 KB for our benchmarks [55] [57]. Thus,

it is important to avoid context switches whenever possible.

Virtualizing the number of waiting WGs and condi-

tions. Given the finite size of the SyncMon, a limited number

of conditions can be simultaneously monitored by the Sync-

Mon. Additionally, a limited number of waiting WGs can

also be stored on chip. Thus, to be able to synchronize WGs

when GPU resources are oversubscribed, we need to over-

come limited monitoring capabilities of the SyncMon.

Virtualizing the data structures used for scheduling.

The CP requires additional data structures to hold waiting

WGs, waiting conditions, and different queues that track the

state of waiting WGs as they are stalled, context switching

out, waiting, ready, or context switching in. Having finite

hardware structures holding these data structures is challeng-

ing as they can easily overflow.

Synchronization Contention. Some synchronization

primitives exhibit performance-challenging behaviors by

generating additional memory traffic, while trying to acquire

a synchronization variable [58]. These types of synchroniza-

tion primitives are usually the simplest ones to program,

therefore providing support for such primitives constitute an

important programmability aspect.

B. Our Approach

Motivated to ensure inter-WG IFP, we take a systematic

approach in overcoming previously mentioned challenges.

First, we take a holistic approach to reduce unnecessary con-

text switches. After looking at the different scheduling poli-

cies, we identified cooperative scheduling as better suited for

high throughput computing devices with large WG context

size. To achieve cooperative scheduling, we use waiting in-

structions to provide hints at opportunities when WGs can

yield their hardware resources and be context switched out.

These instructions are necessary for IFP of WGs, and context

switching may occur when they are executed to allow other

WGs to proceed. Moreover, we context switch out a WG only

if there are other WGs ready to be resumed or started, mean-

ing only if the kernel over-subscribes GPU resources.

Furthermore, as depicted in Figure 4, we propose special-

ized hardware (i.e., SyncMon) to enhance cooperative WG

scheduling by notifying when WGs can be resumed for exe-

cution. We overcome SyncMon’s limited monitoring abilities

by defining a virtualization interface used to communicate to

the CP of extra conditions and waiting WGs.

Contention on synchronization variables has been a well-

studied phenomenon in computer architecture since the de-

sign of the first multi-processor computers [58][59]. We in-

vestigate contention mitigating resume policies. Addition-

ally, in case of latency sensitive or low-contention synchro-

nization, such as global barriers or spin mutexes with few

contending WGs, context switching can incur a performance

penalty. To solve this, before context switching a WG out, we

stall waiting WGs for a predicted time period, and only con-

text switch out a WG if its condition has not been met when

the period expires. AWG predicts the stall period by record-

ing the mean number of cycles at which conditions are met.

Overall, we evaluate exponential backoff with sleep and

propose autonomous architectures with different waiting and

resume policies each varying in degree of necessary hardware

support: simple timeout mechanism and different types of

special instructions which arm a hardware monitor that can

resume all or one waiting WG, when a condition is met. Fig-

ure 6 depicts the timelines for all these architectures. Further-

more, we analyze them by comparing with a Baseline config-

uration composed of software busy-waiting and hardware

deadlocking in case of over-subscription. However, in this

subsection we show quantitative results for non-over-sub-

scribed GPUs in order to build up the trade-offs for each au-

tonomous architecture; we discuss the hardware necessary to

implement our final solution, AWG, in Section V and we

quantitatively compare these architectures to each other and

to AWG for over-subscribed GPUs in Section VI.

Figure 5: Work-group context size.

0

2

4

6

8

10

12

W
o

rk
-g

ro
u

p
 C

o
n

te
xt

 S
iz

e
(K

B
)

Figure 4: Autonomous Work-Groups Overview.

L2Sync Monitor (SyncMon)

Command
Processor (CP)

Shader (CUs)Shader (CUs)Compute Units (CUs)

Memory

Waiting
Work-groups

Ready
Work-groups

Running
Work-groups

Waiting
ValuesSync

Variables
Monitor Log

WG
Disp

C. Waiting Policies

i. Sleep and Exponential Backoff

Current GPUs provide support for optimizing synchroni-

zation by waiting, through instructions such as s_sleep, which

stalls a wavefront for a fixed number of cycles [42][60]. Sleep

instructions have low hardware overhead and provide ease of

programmability. However, they support limited timeout pe-

riods and do not wait for a specific event, making them less

adaptable to system dynamics.

 Figure 7 illustrates that exponential backoff—doubling

the sleep time in software after each failed retry, up to a max-

imum backoff interval—improves performance for many

workloads. Increasing the maximum backoff interval—X

thousands cycles for the label Sleep-Xk—decreases conten-

tion on synchronization variables. This improves perfor-

mance to a point, but eventually becomes counterproductive

because WGs that could make progress sleep too long. These

results also show there is no one best static sleep configura-

tion across the different synchronization primitives. More im-

portantly, sleep instructions do not release hardware re-

sources while sleeping, failing to provide inter-WG IFP when

the GPU is over-subscribed.

ii. Simplistic Hardware Support: Fixed Timeout

To provide IFP for over-subscribed kernels, we first in-

vestigate a Timeout architecture. In the non-oversubscribed

case, Timeout stalls a WG for a fixed interval of time. Unlike

Sleep, this interval does not represent a maximum backoff in-

terval. In the over-subscribed case, Timeout yields its re-

sources by context switching out for a fixed timeout interval.

Figure 8 shows that there is no single best static timeout in-

terval: different synchronization primitives prefer different

timeouts. More importantly, for some timeout intervals,

Timeout performs much worse than the busy-waiting Base-

line for non-oversubscribed kernels. These results motivate

additional hardware support for waiting.

iii. Relaxed Hardware Support

As discussed in Section II, modern CPUs implement mon-

itor and mwait instructions to detect when synchronization

conditions (may) have been met. We extend this approach to

Figure 8: Timeout interval runtime, normalized to the Base-

line.

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Baseline Timeout-10k Timeout-20k Timeout-50k Timeout-100k

Figure 7: Exponential backoff with s_sleep, normalized to the

Baseline where s_sleep is not used.

0.0

0.2

0.4

0.6

0.8

1.0

SPM_G FAM_G SPM_L FAM_L TB_LG TBEX_LG

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Baseline Sleep-1k Sleep-2k Sleep-4k Sleep-8k

Sleep-16k Sleep-32k Sleep-64k Sleep-128k Sleep-256k

Figure 6: Timeline signatures for different cooperative WG scheduling policies.

Timeout

MonNR-All

MonNR-One

AWG

MonR-All

MonRS-All

Sleep
Sleep instruction ResumeStall with Exponential Backoff

ResumeOversubscribed ? Context Switch : StallAtomic w/ timeout

Resume Allwait Update + Cond CheckOversubscribed ? Context Switch : StallAtomic

Resume AllAccessOversubscribed ? Context Switch : StallwaitAtomic

Resume OneWaiting Atomic Update + Cond Check Update + Cond CheckResume OneOversubscribed ? Context Switch : Stall

Waiting Atomic Predict Resume All or Resume OneUpdate + Cond CheckOversubscribed ? Context Switch : StallStall

Autonomous Work-Groups

Resume AllWaiting Atomic Oversubscribed ? Context Switch : Stall Update + Cond Check

Window of vulnerability

Window of vulnerability

Monitor No-Race, resume One

Monitor Race, Sporadic condition met, resume All

Monitor Race, resume All

Monitor No-Race, resume All

Atomic

GPUs, by proposing MonRS-All, where waiting WGs can hint

yielding of hardware resources with special wait instructions

and notifications are supported through a simplistic hardware

monitor (i.e., SyncMon). Unlike CPUs, which maintain own-

ership-based coherence across all caches, GPUs use write-

through caches and perform atomics at the shared last-level

cache (e.g., L2) [54]. Because of these limitations, GPUs can-

not rely on coherence protocols to detect a write. In this case,

the simplistic SyncMon observes memory accesses and if a

monitored address is accessed it will notify corresponding

waiting WGs to resume, without checking their waiting con-

dition. Therefore, we call these notifications sporadic.

Compared to Timeout, this waiting policy better reacts to

system dynamics by monitoring synchronization variables.

However, such relaxed hardware support for synchronization

on GPUs is dominated by unnecessary resuming of WGs.

Although this works well for decentralized synchronization

primitives, where there are few updates to a given variable, it

is inefficient at waiting for all centralized synchronization

primitives. Figure 9 shows the wait efficiency of MonRS-All,

as the number of executed atomic instructions normalized to

an oracular MinResume configuration which does not resume

WGs unnecessarily. MinResume achieves this by spreading

out when waiting WGs are resumed, such that WGs will not

contend when retrying to acquire sync variables. MonRS-All

executes up to two orders of magnitude more atomic instruc-

tions in some cases, because it unnecessarily resumes waiting

WGs.

iv. Enhanced Hardware Support

To overcome the shortcomings of sporadic notifications,

we enhance the hardware support for synchronization by pro-

posing MonR-All. MonR-All uses the same special wait in-

struction to hint a waiting WG can yield its hardware re-

sources, except it enhances SyncMon to check waiting con-

ditions as synchronization variables are being updated. The

SyncMon registers waiting WGs, checks waiting conditions

when monitored addresses are written, and resumes all wait-

ing WGs associated with a met condition. Figure 9 shows

MonR-All to have better wait efficiency than MonRS-All.

Decentralized synchronization primitives are unaffected be-

cause they can have at most one write operation per synchro-

nization variable. Nevertheless, providing enhanced hard-

ware support exhibits a clear performance advantage for cen-

tralized primitives due to reduced resuming of WG.

However, this approach has a data race that causes a win-

dow of vulnerability when monitoring addresses. As shown

in Figure 10, for a decentralized ticket mutex there is a data

Figure 9: Wait efficiency, number of atomic instructions exe-

cuted normalized to MinResume.

0.1

1

10

100

1000

N
o

rm
al

iz
ed

 D
yn

am
ic

 A
to

m
ic

 In
st

s
C

o
u

n
t

(l
o

ga
ri

th
m

ic
 s

ca
le

)

MinResume MonRS-All MonR-All MonNR-All

1. __device__ void decentralizedTicketMutexLock(...) {
2. __shared__ bool acquired;
3. ...
4. if (isMasterThread) {
5. myQueueLoc = atomicAdd(queueTailPtr, 16);
6. atomicExch(&acquired, false);
7. }
8. __syncthreads();
9. while (!atomicLoad(&acquired)) {
10. if (isMasterThread) {
11. if (atomicLoad(myQueueLoc) == 1) { //<- lock acquire
12. atomicExch(&acquired, true);
13. }
14. } window of vulnerability
15. __syncthreads();
16. if (!atomicLoad(&acquired)) {
17. wait(myQueueLoc, 1); //<- arming SyncMon
18. }
19. }
20. }
21. __device__ void decentralizedTicketMutexUnlock(...) {
22. ...
23. if (isMasterThread) {
24. atomicExch(myQueueLoc, -1);
25. atomicExch(nextQueueLoc, 1); //<- lock release
26. }
27. }

1. __device__ void decentralizedTicketMutexLock(...) {
2. __shared__ bool acquired;
3. ...
4. if (isMasterThread) {
5. myQueueLoc = atomicAdd(queueTailPtr, 16);
6. atomicExch(&acquired, false);
7. }
8.
9. __syncthreads();
10.
11. while (!atomicLoad(&acquired)) {
12. if (isMasterThread) { expected value
13. if (atomicCmpWait(myQueueLoc, 1) == 1) { //<- lock acquire
14. // arming SyncMon if comparison failed
15. atomicExch(&acquired, true);
16. }
17. }
18. }
19. }
20.
21. __device__ void decentralizedTicketMutexUnlock(...) {
22. ...
23. if (isMasterThread) {
24. atomicExch(myQueueLoc, -1);
25. atomicExch(nextQueueLoc, 1); //<- lock release
26. }
27. }

Figure 10: Decentralized ticket lock implementations, with wait instructions and waiting atomic instructions. We are showing

these new instructions as intrinsic functions.

race between arming the monitor and the atomics updating

synchronization variables. In this synchronization primitive

each WG places itself in a queue by atomically incrementing

the tail pointer and then polls its queue entry. A queue entry

value of -1 indicates the mutex is locked and the value of 1

indicates the mutex is unlocked. Initially, only the first queue

entry is unlocked until the first WG locks the entry to begin

its critical section. Then when the first critical section com-

pletes, the associated WG unlocks the next queue entry. Thus,

the next WG in the queue can grab the lock and proceed exe-

cuting its critical section. Even though in program order wait

precedes the atomic exchange operation, the SyncMon can

observe the lock release first and the wait succeeding it. This

makes the SyncMon unable to provide inter-WG IFP by it-

self, as deadlock arises when it misses updates to monitored

addresses. We next show how to overcome this shortcoming.

D. Waiting Atomics

Rather than introducing new wait instructions, we identify

the synchronization points where WGs can naturally yield

their resources by enhancing atomic instructions. To remove

the window of vulnerability we propose MonNR-All, which

provides hardware support for sync variables through new

waiting atomic instructions. This hardware support fully em-

braces the synchronization library extension recently pro-

posed to the C++20 standard [18].

All waiting atomics have an extra operand that specifies

the expected value of the synchronization variable. If a wait-

ing atomic fails when comparing the acquired value with the

expected value, the WG associated with that atomic enters in

a waiting state. This means that updates will not be missed by

the SyncMon and the associated WG can be context switched

out at least until its waiting condition is met, ensuring inter-

WG IFP. For example, a compare-and-swap instruction is a

perfect candidate for a waiting atomic, as it already has an

operand for an expected value. However, there are synchro-

nization primitives which synchronize using atomic load op-

erations that do not have this information. Thus, we propose

a new compare-and-wait atomic instruction that performs a

load, compares the retrieved value with the expected value,

and waits on the expected value if the comparison fails. Fig-

ure 10 demonstrates the use of the proposed compare-and-

wait instruction, when implementing a decentralized ticket

lock, and exemplifies an implementation with wait instruc-

tions for comparison.

E. Resume Policies

Figure 9 shows that MonR-All and MonNR-All can fur-

ther improve their wait efficiency compared to a MinResume

that avoids unnecessarily resuming waiting WGs. Waiting

atomics can be slightly less inefficient at mitigating conten-

tion as they register waiting WGs earlier, which captures

more waiting WGs per condition and therefore resumes more

waiting WGs when their condition is met. This produces

slightly higher contention for MonNR-All than MonR-All,

which uses wait instructions. To address contention on syn-

chronization variables, we propose another resume policy,

MonNR-One. In MonNR-One, the SyncMon observes atomic

updates to monitored addresses, resumes only one waiting

WG once a condition is met, and continues to monitor the

same condition. The rest of the waiters are resumed when a

different update to the monitored address meets the condition

or after a fixed timeout interval. In Figure 11, we break-down

the WG execution time based on the two states a WG can

have in the non-over-subscribed case: running and waiting on

synchronization. MonNR-One performs well in cases of high

contention such as spin mutexes. However, it performs

poorly for global barriers, where MonNR-All performs well

because it wakes up all the waiters at the barrier at once. To

address this imbalance between MonNR-All and MonNR-

One, we introduce another policy, AWG, to predict the num-

ber of WGs to resume.

Figure 11: WG execution time break-down, normalized to Timeout.

0.1

1

10

100

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

Ti
m

eo
u

t

M
o

n
N

R
-A

ll

M
o

n
N

R
-O

n
e

SPM_G FAM_G SLM_G SPM_L FAM_L SLM_L TB_LG LFTB_LG TBEX_LG LFTBEX_LG

N
o

rm
al

iz
ed

 W
G

 E
xe

c
B

re
ak

-d
o

w
n

Running Waiting

V. AWG: DETAILED DESCRIPTION

In this section, we detail AWG’s hardware implementa-

tion and walk through how AWG ensures WG IFP.

A. Hardware Components

AWG relies on current GPU abilities to perform atomic

operations at its last level cache (i.e., L2) [42] and extends

the atomic instructions to wait on certain conditions in case

the atomic operation fails. As previously introduced, AWG

relies on two hardware components (the SyncMon and the

CP) to effectively support these waiting atomics.

Figure 12 presents AWG’s detailed hardware implemen-

tation. The SyncMon is added to the L2 cache banks to mon-

itor sync variables for specific waiting conditions. The Sync-

Mon is a distributed design similar to current GPU L2 cache

microarchitecture and can provide both scalable high

throughput and enhanced hardware support for Mesa seman-

tics. However, only a finite number of waiting conditions and

WGs can be cached in the SyncMon block.

To extend beyond finite hardware resources and handle

scenarios when the synchronization variable working set ex-

ceeds the L2 cache capacity, AWG supports a virtualization

interface [61][62] composed of a Monitor Log and a protocol

for reading and writing the Monitor Log. The Monitor Log is

a circular buffer residing in global memory that stores entries

composed of the monitored address, the waiting value, and

the waiting WG ID. In the rare situation when the SyncMon

reaches its capacity limit for storing either waiting conditions

or waiting WGs, it writes additional entries to the Monitor

Log. If the Monitor Log is full, the waiting atomic fails its

comparison, however, the associated WG does not enter a

waiting state as it normally does. Instead, the WG continues

executing and retries its waiting atomic (i.e., Mesa program

semantics) until the CP processes the Monitor Log and frees

some entries.

AWG relies on the CP to handle the Monitor Log entries

and perform WG context switching. The CP is not involved

in the common case when the kernel does not oversubscribe

the GPU and WGs are simply stalled on the CUs. Instead,

the CP focuses on tracking context switched out WGs, and it

detects spilled sync variables by parsing the Monitor Log

written to by the SyncMon. To efficiently track waiting WGs,

the CP uses an in-memory data structure and updates their

status changes between stalled, context switched out, ready,

or resuming. The CP also periodically checks the waiting

conditions of spilled sync variables. The Monitor Log may

contain younger waiting conditions than the SyncMon Cache.

This can lead to fairness issues that can be addressed with

different replacement policies. We leave this study for future

work.

To improve the inefficiencies of MonNR-All and

MonNR-One, detailed in previous section, AWG predicts the

number of WGs to resume. The prediction mechanism counts

the number of waiting WGs and uses one counting Bloom

filter per monitored address to count the number unique up-

dates to the associated address. AWG will resume all waiters

for global barriers, when it detects there are more than one

waiting WGs per waiting condition and more than two unique

updates to the sync variable. AWG will resume waiters one

by one when it detects there are multiple waiting WGs per

waiting condition and at most two unique updates. Once a

condition has been met, all waiting WGs have resumed, and

the address is not monitored, the associated Bloom filter is

reset. If AWG’s prediction is incorrect, eventually the stalled

WGs will time out and be activated.

B. Detailed Mechanism

The dispatcher is responsible for assigning a unique ID to

each dispatched WG. This WG ID is used by AWG through-

out the entire cooperative scheduling process, from register-

ing waiting WGs and managing their waiting conditions and

memory storage for their contexts, to communicating to the

Figure 12: Autonomous Work-Groups micro-architecture.

WG Dispatcher

CU

MemoryL2 Cache
Sync Monitor (SyncMon)

CUCU
Command Processor (CP)

Data Array

ALUTag Array

Condition Cache

Compute Unit (CU)

Atomic Inst Operand Addr Value Waiting WG

waiting atomic or

regular atomic
1

4

2

3

2

5

6

response for atomic

[waiting atomic may context

switch out or stall WG] asynchronous periodic condition check - read

write

monitored

condition

Monitored Bit
sync var.

address

Tail

Waiting
WGs

Ready
WGs

Waiting
Values

Sync
Variables

Head

4

resume WG

7
WG swap out
completed

9

resume WG

M
o

n
it

o
r L

o
g

SyncMon
Controller

multiple waiting

conditions per

sync var.

6
WG swap in
request

88

Waiting WG List

Bloom Filters

WG swap in

WG CU

Running
WGs

7
WG space
available

resume WG

CU and indicating what WGs should be context switched.

The CP is involved only in high-latency operations (i.e., con-

text switching and Monitor Log operations) and is not on the

critical path.

Figure 12 walks through all major microarchitectural

events when monitoring sync variable conditions and sched-

uling WGs. In the figure, the fast, common path for detecting

when conditions are met is depicted in blue, while the slower,

uncommon operations that occur when WGs are context

switched out or sync variables are spilled to the Monitor Log

is depicted in red. When a WG executes a waiting atomic in-

struction ❶, its generated memory access will include the

operand for an expected value and the issuing WG ID. As-

suming all atomics are performed at the L2, AWG extends

each L2 cache tag with one monitor bit, to indicate monitored

addresses and pins monitored cachelines such that they are

not evicted.

Eventually the waiting atomic operation will arrive at the

L2 cache ❷ along with its expected successful value. If the

operation (e.g., comparison) fails ❸, then the executing WG

is considered waiting on the specified condition. In this case,

the monitored bit in the tag is set and the waiting WG ID will

be stored in the SyncMon cache along with its waiting condi-

tion. The SyncMon communicates the desired WG’s waiting

state back to the CU as part of the atomic operation response

❹. The desired waiting state can have two values: stalled

(i.e., not executing but still holding hardware resources), or

context switched (i.e., not executing and not holding any

hardware resources).

Subsequent atomic operations check monitored bit and if

it is set, they pass the updated value to the SyncMon ❸. If

the SyncMon determines a condition is met, the monitored

bit is cleared and the SyncMon informs the dispatcher to re-

sume the associated waiting WG(s) ❺. In the common case

when the WGs are simply stalled and still consuming CU re-

sources, the dispatcher requests the CUs to resume the WGs

❻. In the uncommon case where the waiting WGs are con-

text switched out, the dispatcher initiates context-switch-in

operations through the CP ⑥, evaluates available resources

and picks the CUs that can accommodate the WGs.

The SyncMon is a finite hardware structure and AWG

uses the CP to handle cases when the SyncMon is full and

cannot monitor additional conditions. For instance, when a

WG’s waiting condition or ID cannot be inserted into the

SyncMon cache ❸, the WG’s information bypasses the

SyncMon cache and is written to the tail of the Monitor Log

④. When the SyncMon requests a WG context switch upon

executing a waiting instruction, the CU informs the CP, via

dispatcher, when the operation completes ⑦. The CP will

then context switch in and resume, via dispatcher, ready WGs

⑧. Periodically, the CP block removes the valid entries be-

tween the Monitor Log’s head and tail pointers and stores the

associated waiting WG information into a more look-up effi-

cient data structure. The CP then uses that data structure to

check conditions and determine which WGs must be

swapped back in, when conditions are met ⑨.

C. Hardware Overhead

AWG extends the GPU CP with new firmware to perform

WG scheduling. AWG’s SyncMon condition cache is logi-

cally 4-way set associative with 256 sets, it can hold a total

of 1024 waiting conditions. Waiting conditions are calculated

by hashing the monitored address and waiting value together.

Specifically, the address is shifted left with log of number of

cache entries, after subtracting log of cacheline size, and bit-

wise ORed with the waiting value. The result is further

hashed with a universal hash function [63]. To identify the

waiting WGs for each waiting condition, each SyncMon con-

dition cache entry holds two 9-bit pointers (head and tail) into

a separate waiting WG list. This list holds up to 512 waiting

WG IDs and collectively the condition cache and WG list

have a total size of 26112 bits or 3.18 KB. To predict the

number of WGs to resume, AWG adds 512 Bloom filters,

each storing 24 bits and using 6 hash functions, with a total

overhead of 12288 bits or 1.5 KB. We have configured the

Bloom filters to have a small false positives probability

(2.1%) when recording unique values observed to monitored

addresses. Finally, AWG adds one monitored bit per L2 tag,

which results in an additional 1 KB overhead to the overall

L2 cache size. It is important to note that all aspects of

AWG’s hardware components can be addressed sliced and

distributed across a large, high-bandwidth L2 cache design.

Figure 13 displays the size of all the data structures used

by the CP for scheduling. Here we show the maximum Mon-

itor Log size assuming no SyncMon Cache. In addition to

data structures used for scheduling, the CP also allocates

memory for holding WG contexts. This memory varies be-

tween 0.74 – 3.11 MB across all evaluated benchmarks.

D. Benefits of Our Design

Reducing interference with kernel scheduling. AWG

decouples pre-emptive scheduling of kernels and concurrent

multi-kernel execution from scheduling WGs within a kernel.

In this way, AWG relaxes the pre-emption constraints of ker-

nel scheduling, which improves performance and allows the

Figure 13: Size of data structures used by the Command Pro-

cessor for WG scheduling.

0

5

10

15

20

K
ilo

B
yt

es

Waiting Conditions Monitored Addresses Waiting WGs Monitor Table

GPU to be more responsive to high priority kernels while, at

the same time, ensuring the IFP of lower priority kernels.

Employing WG context switching when necessary.

Given that GPU kernels can be large, a pre-emptive WG

scheduling approach can be poor performing and inefficient.

AWG employs cooperative WG scheduling and tracks indi-

vidual WG’s waiting condition such that context switches are

only performed when WGs are ready to execute.

Virtualizing waiting conditions and WGs. A solution to

WG IFP that is bounded by the size of hardware structures

imposes serious challenges to programmers. AWG combines

two methods for condition checking and leverages virtual

memory to overcome hardware monitoring limitations.

Effective contention mitigation. AWG reduces conten-

tion by predicting the number of waiting WGs needed to be

resumed when a condition is met.

VI. PERFORMANCE ANALYSIS

In this section we evaluate AWG using two experiments,

a non-oversubscribed experiment where resources are con-

stant throughout the entire kernel lifetime, and an oversub-

scribed experiment where resources vary during its lifetime.

Specifically, our oversubscribed experiment starts with 8

CUs and after 50 µs the WGs from one CU are context

switched out. This emulates a kernel scheduling scenario

where resource availability varies across kernel scheduling

time slices, or a high-priority pre-emption scenario where a

lower priority kernel dynamically loses resources. In these

oversubscribed experiments, the baseline deadlocks when

context-switched WGs (i.e., due to kernel level scheduling)

fail to release a synchronization variable before being

swapped out. Moreover, these oversubscribed inter-WG syn-

chronization scenarios are not supported in current GPUs, in-

cluding the ones with CUDA cooperative groups.

Figure 14 shows that when non-oversubscribed, AWG

outperforms the Baseline with a geometric mean of 12x in

speedup, across the HeteroSync benchmarks. It outperforms

Sleep and Timeout because it better utilizes execution re-

sources and the memory hierarchy, whereas Sleep or Timeout

use fixed time intervals that do not fit the dynamic behaviour

of our benchmarks. Note that Sleep only appears for the

benchmarks that have been modified to use exponential

backoff with the sleep instruction (see Section IV.C).

Both MonNR-All and MonNR-One perform poorly for

certain benchmarks. MonNR-All is deficient on benchmarks

where multiple waiters contend on synchronization variables

where only one WG can enter a critical section at a time. In

contrast, MonNR-One manages contention well for these

benchmarks by resuming only one WG immediately and

waiting for additional condition met events to resume other

waiters. However, MonNR-One displays performance defi-

ciency in case of centralized tree barriers where there are

multiple waiters per condition and all of them are expected to

start immediately. Meanwhile AWG outperforms both by

predicting when to resume one waiting WG versus multiple

waiting WGs.

Finally, Figure 15 shows AWG’s speedup across all

benchmarks for the oversubscribed scenario. Baseline tech-

niques, such as cooperative groups, do not support such a sce-

nario. AWG predicts the number of waiters to resume,

whereas MonNR-All and MonNR-One have fixed strategies

for selecting the number of WGs to resume. This proves par-

ticularly beneficial for centralized synchronization primi-

tives. For some tree barriers (i.e., TB_LG and LFTBEX_LG),

AWG is slower because of the stall time prediction. Barriers

are latency sensitive and predicting a too long stall time adds

context switch overhead to the application’s critical path.

Figure 14: Speedup normalized to Baseline in non-oversubscribed scenario.

0.1

1

10

100

SPM_G SPMBO_G FAM_G SLM_G SPM_L SPMBO_L FAM_L SLM_L TB_LG LFTB_LG TBEX_LG LFTBEX_LG GeoMean

Sp
ee

d
u

p

Baseline Sleep Timeout MonNR-All MonNR-One AWG

Figure 15: Speedup normalized to Timeout in oversubscribed scenario.

0

2

4

6

8

SPM_G SPMBO_G FAM_G SLM_G SPM_L SPMBO_L FAM_L SLM_L TB_LG LFTB_LG TBEX_LG LFTBEX_LG GeoMean

Sp
ee

d
u

p

Baseline Sleep Timeout MonNR-All MonNR-One AWG

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

D
E

A
D

L
O

C
K

Nevertheless, AWG has an average speed up of 2.5x over

Timeout.

VII. RELATED WORK

In addition to the GPU synchronization and scheduling

work discussed in Section II, other work virtualizes GPU re-

sources in attempt to escape the bound on occupancy imposed

on kernels when scheduling WGs. Virtual Thread [64] allows

more WGs in flight than the hardware limit and relies on con-

text switching to increase thread level parallelism. Jeon et al.

decreased the number of physical registers while maintaining

the number of architectural registers unchanged [65]. Zorua

gives the appearance of higher hardware resource availability

to account for different phases in the application, which have

different requirements on resources and therefore can have a

different number of resident WGs at each phase [66]. How-

ever, Zorua does not address inter-WG synchronization and

context switches WGs at phase boundaries without regard to

potential synchronization deadlock.

VIII. CONCLUSION

In this paper, we proposed AWG, an architecture designed

to provide WG IFP for arbitrarily sized kernels which use in-

ter-WG synchronization. AWG uniquely identifies synchro-

nization operations as opportunities for cooperative WG

scheduling and uses enhanced hardware support for synchro-

nization at the last-level cache. We also demonstrated that

WG scheduling policies can significantly impact perfor-

mance for kernels that use this type of synchronization and

AWG uses this insight to select the appropriate number of

WGs to resume.

This work overcomes current challenges in virtualizing

GPU hardware resources at the WG level by using the CP and

virtual memory. In addition, our work provides a sense of au-

tonomy to the WG execution abstraction, freeing the GPU

from additional constraints when scheduling kernels with in-

ter-WG synchronization.

ACKNOWLEDGEMENT

The authors would like to thank Marc Orr, Tanmay

Gangwani, Tony Gutierrez, Tony Tye, Brian Sumner, Mike

Mantor, Mark Fowler, Steve Reinhardt, Mark Hill, and the

anonymous reviewers for their feedback during various

stages of the project.

AMD, the AMD Arrow logo, and combinations thereof

are trademarks of Advanced Micro Devices, Inc. Other prod-

uct names used in this publication are for identification pur-

poses only and may be trademarks of their respective compa-

nies.

REFERENCES

[1] Thiruvengadam Vijayaraghavany, Yasuko Eckert, Gabriel H. Loh,

Michael J. Schulte, Mike Ignatowski, Bradford M. Beckmann,

William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun

Karunanithi, Onur Kayiran, Mitesh Meswani, Indrani Paul,

Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg

Sadowski, and Vilas Sridharan, “Design and Analysis of an APU
for Exascale Computing,” in Proceedings - International

Symposium on High-Performance Computer Architecture, 2017,

pp. 85–96.

[2] Gregory Diamos, Shubho Sengupta, Bryan Catanzaro, Mike
Chrzanowski, Adam Coates, Erich Elsen, Jesse Engel, Awni

Hannun, and Sanjeev Satheesh, “Persistent RNNs : Stashing

Recurrent Weights On-Chip,” in International Conference on

Machine Learning, 2016.

[3] Mohammad Shoeybi Sercan Arık, Mike Chrzanowskii, Adam

Coates, Gregory Diamos, Andrew Gibiansky, Yongguo Kang,

Xian Li, John Miller, Andrew Ng, Jonathan Raiman, Shubho
Sengupta, “Deep Voice: Real-time Neural Text-to-Speech

Sercan,” in Computers and Mathematics with Applications, 2013,

vol. 65, no. 10, pp. 1471–1482.

[4] Advanced Micro Devices, “Asynchronous Shaders Whitepaper,”

2015, p. 9.

[5] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho

Navarro, and Mateo Valero, “Enabling Preemptive

Multiprogramming on GPUs,” in ACM SIGARCH Computer

Architecture News, 2014, vol. 42, no. 3, pp. 193–204.

[6] Guoyang Chen, Yue Zhao, and Xipeng Shen, “EffiSha : A

Software Framework for Enabling Efficient Preemptive
Scheduling of GPU,” in Proceedings of the 22nd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

2017, pp. 3–16.

[7] Sercan Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos,
Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew

Ng, Jonathan Raiman, Shubho Sengupta, and Mohammad

Shoeybi, “Deep voice: Real-time neural text-to-speech,” in 34th
International Conference on Machine Learning, ICML 2017,

2017, vol. 1, no. Icml, pp. 264–273.

[8] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and

Fung Xie, “Sparse Persistent RNNs: Squeezing Large Recurrent

Networks On-Chip,” in arXiv preprint arXiv:1804.10223, 2018.

[9] Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh

Gopalakrishnan, and Zvonimir Rakamarić, “Portable Inter-

workgroup Barrier Synchronisation for GPUs,” in OOPSLA: ACM
SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, 2016, pp.

39–58.

[10] Michael D. Mccool, Zheng Qin, and Tiberiu S. Popa, “Shader

Metaprogramming,” 2002, pp. 57–68.

[11] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J.

Kilgard, “Cg: a system for programming graphics hardware in a

C-like language,” in ACM Transactions on Graphics, 2003, vol.

22, no. 3, p. 896.

[12] Mike Houston, “Brook for GPUs : Stream Computing on Graphics

Hardware,” 2001.

[13] CUDA Nvidia, “Compute unified device architecture

programming guide,” 2007.

[14] Aaftab Munshi, “The opencl specification,” in Hot Chips 21

Symposium (HCS), 2009 IEEE, 2009, pp. 1–314.

[15] AMD, “HSA Programmer’s Reference Manual: HSAIL Virtual

ISA and Programming Model, Compiler Writer, and Object

Format (BRIG),” 2019. [Online]. Available:
http://www.hsafoundation.com/standards/. [Accessed: 16-Aug-

2019].

[16] AMD, “HSA Platform System Architecture Specification,” 2019.

[Online]. Available: http://www.hsafoundation.com/standards/.

[Accessed: 16-Aug-2019].

[17] NVIDIA, “Nvidia Tesla V100 Gpu Architecture,” 2017.

[18] Bryce A. Lelbach, Olivier Giroux, and JF Bastien, “The C++20
Synchronization Library,” 2018. [Online]. Available:

https://isocpp.org/files/papers/p1135r1.html. [Accessed: 16-Aug-

2019].

[19] Henry Wong, Anne Bracy, Ethan Schuchman, Tor M. Aamodt,
Jamison D. Collins, Perry H. Wang, Gautham Chinya, Ankur

Khandelwal Groen, Hong Jiang, and Hong Wang, “Pangaea : A

Tightly-Coupled IA32 Heterogeneous Chip Multiprocessor
Categories and Subject Descriptors,” in 2008 International

Conference on Parallel Architectures and Compilation

Techniques (PACT), 2008, pp. 52–61.

[20] Sameer Kumar, Yanhua Sun, and Laximant V. Kalé,
“Acceleration of an asynchronous message driven programming

paradigm on IBM Blue Gene/Q,” in Proceedings - IEEE 27th

International Parallel and Distributed Processing Symposium,

IPDPS 2013, 2013, pp. 689–699.

[21] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy,

“Supporting fine-grained synchronization on a simultaneous

multithreading processor,” in Proceedings Fifth International
Symposium on High-Performance Computer Architecture, 1999,

pp. 54–58.

[22] AMD, “AMD64 Architecture Programmer’s Manual Volume 3:

General-Purpose andSystem Instructions,” 2017, no. 24594.

[23] Per Brinch Hansen, “Structured Multi- programming,” in

Communications of the ACM, 1972, vol. 15, no. 7, pp. 574–578.

[24] Butler W. Lampson, and David D. Redell, “Experience with

processes and monitors in Mesa,” in Communications of the ACM,

1980, vol. 23, no. 2, pp. 105–117.

[25] James R. Goodman, Mary K. Vernon, and Philip J. Woest,

“Efficient Synchronization Primitives for Large-Scale Cache-

Coherent Multiprocessors,” in Proceedings of the Third
International Conference on Architectural Support for

Programming Languages and Operating Systems, 1989, pp. 64–

75.

[26] James R. Goodman, and Philip J. Woest, “The Wisconsin
Multicube: A New Large-Scale Cache-Coherent Multiprocessor,”

in ACM SIGARCH Computer Architecture News, 1988, vol. 16,

no. 2, pp. 422–431.

[27] Robert Alverson, David Callahan, Daniel Cummings, Brian
Koblenz, Allan Porterfield, and Burton Smith, “The Tera

Computer System *,” in Proceedings of the 4th international

conference on Supercomputing, 1990, pp. 1–6.

[28] Jiwei Liu, Jun Yang, and Rami Melhem, “SAWS: Synchronization
Aware GPGPU Warp Scheduling for Multiple Independent Warp

Schedulers,” in Proceedings of the 48th International Symposium

on Microarchitecture - MICRO-48, 2015, pp. 383–394.

[29] Ahmed Eltantawy, and Tor M. Aamodt, “MIMD Synchronization
on SIMT Architectures,” in 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2016,

pp. 1–14.

[30] Thomas Bradley, “Hyper-Q Example,” 2013. [Online]. Available:
http://developer.download.nvidia.com/compute/DevZone/C/html

_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf. [Accessed:

16-Aug-2019].

[31] NVIDIA, “CUDA Stream Management,” 2019. [Online].
Available:

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/

docs/online/group__CUDART__STREAM.html. [Accessed: 16-

Aug-2019].

[32] AMD, “HIP: Heterogeneous-computing Interface for Portability,”

2019. [Online]. Available: https://github.com/ROCm-Developer-

Tools/HIP/. [Accessed: 16-Aug-2019].

[33] Justin Luitjens, “CUDA Streams: Best Practices and Common
Pitfalls,” 2014. [Online]. Available: http://on-

demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-

streams-best-practices-common-pitfalls.pdf. [Accessed: 16-Aug-

2019].

[34] Zhen Lin, North Carolina, Lars Nyland, North Carolina, and North

Carolina, “Enabling Efficient Preemption for SIMT Architectures

with Lightweight Context Switching,” in SC’16: Proceedings of
the International Conference for High Performance Computing,

Networking, Storage and Analysis, 2016, no. November, pp. 898–

908.

[35] Zhen Lin, and Michael Mantor, “GPU performance vs. thread-
level parallelism: Scalability analysis and a novel way to improve

TLP,” in ACM Transactions on Architecture and Code

Optimization (TACO), 2018, vol. 15, no. 1, pp. 1–21.

[36] Izzat El Hajj, Juan Gomez-Luna, Cheng Li, Li-Wen Chang, Dejan

Milojicic, and Wen-mei Hwu, “KLAP : Kernel Launch

Aggregation and Promotion for Optimizing Dynamic Parallelism,”

in 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2016, pp. 1–12.

[37] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar

Yalamanchili, “Dynamic Thread Block Launch : A Lightweight

Execution Mechanism to Support Irregular Applications on
GPUs,” in ACM SIGARCH Computer Architecture News, 2015,

vol. 43, no. 3S, pp. 528–540.

[38] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers,
Youtao Zhang, and Minyi Guo, “Simultaneous Multikernel GPU:

Multi-tasking throughput processors via fine-grained sharing,” in

Proceedings - International Symposium on High-Performance

Computer Architecture, 2016, vol. 2016-April, pp. 358–369.

[39] Hancheng Wu, Da Li, and Michela Becchi, “Compiler-Assisted

Workload Consolidation for Efficient Dynamic Parallelism on

GPU,” in Proceedings - 2016 IEEE 30th International Parallel
and Distributed Processing Symposium, IPDPS 2016, 2016, pp.

534–543.

[40] Guoyang Chen, and Xipeng Shen, “Free launch: optimizing GPU

dynamic kernel launches through thread reuse,” in Proceedings of
the 48th International Symposium on Microarchitecture, 2015, pp.

407–419.

[41] Jason Jong, Kyu Park, Ann Arbor, Yongjun Park, and Ann Arbor,

“Chimera : Collaborative Preemption for Multitasking on a Shared
GPU,” in ACM SIGARCH Computer Architecture News, 2015,

vol. 43, no. 1, pp. 593–606.

[42] AMD, “Graphics Core Next Architecture, Generation 3,” 2016.

[Online]. Available:
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN

3_Instruction_Set_Architecture_rev1.1.pdf. [Accessed: 16-Aug-

2019].

[43] Jiwei Liu, “Efficient Synchronization for GPGPU,” 2018.

[44] Kshitij Gupta, and Jeff Stuart, “A Study of Persistent Threads Style

Programming Model for GPU Computing,” in Nvidia GTC, 2012.

[45] Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu,

Xiangyu Li, Saoni Mukherjee, Carter Mccardwell, Alejandro

Villegas, and David Kaeli, “Hetero-Mark, A Benchmark Suite for
CPU-GPU Collaborative Computing,” in 2016 IEEE International

Symposium on Workload Characterization (IISWC), 2016, pp. 1–

10.

[46] Mehmet E. Belviranli, Peng Deng, Laxmi N. Bhuyan, Rajiv Gupta,
and Qi Zhu, “PeerWave: Exploiting Wavefront Parallelism on

GPUs with Peer-SM Synchronization,” in Proceedings of the 29th

ACM on International Conference on Supercomputing, 2015, pp.

25–35.

[47] Jeff A. Stuart, and John D. Owens, “Efficient Synchronization

Primitives for GPUs,” in arXiv preprint arXiv:1110.4623, 2011, p.

13.

[48] Shucai Xiao, and Wu Chun Feng, “Inter-block GPU

communication via fast barrier synchronization,” in Proceedings
of the 2010 IEEE International Symposium on Parallel and

Distributed Processing, IPDPS 2010, 2010, pp. 1–11.

[49] Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson, “GPU

schedulers: how fair is fair enough?,” in 29th International
Conference on Concurrency Theory (CONCUR 2018), 2018, no.

23, pp. 1–17.

[50] Amir Ali Abdolrashidi, Devashree Tripathy, Mehmet Esat

Belviranli, Laxmi Narayan Bhuyan, and Daniel Wong,
“WIREFRAME : Supporting Data-dependent Parallelism through

Dependency Graph Execution in GPUs,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on

Microarchitecture, 2017, pp. 600–611.

[51] Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu,

Joseph Gross, John Kalamatianos, Onur Kayiran, Michael

Lebeane, Matthew Poremba, Brandon Potter, Sooraj Puthoor,
Matthew D. Sinclair, Mark Wyse, Xianwei Zhang, Akshay Jain,

and Timothy G. Rogers, “Lost in Abstraction : Pitfalls of

Analyzing GPUs at the Intermediate Language Level,” in 2018
IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2018, pp. 608–619.

[52] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh
Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen,

and John Wickerson, “GPU Concurrency: Weak Behaviours and

Programming Assumptions,” in Proceedings of the Twentieth
International Conference on Architectural Support for

Programming Languages and Operating Systems - ASPLOS ’15,

2015, vol. 43, no. 1, pp. 577–591.

[53] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve,
“Chasing Away RAts : Semantics and Evaluation for Relaxed

Atomics on Heterogeneous Systems,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, 2017,

pp. 161–174.

[54] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve,

“Efficient GPU synchronization without scopes: Saying no to

complex consistency models,” in Proceedings of the Annual
International Symposium on Microarchitecture, MICRO, 2015,

vol. 05-09-Dece, pp. 647–659.

[55] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve,

“HeteroSync: A benchmark suite for fine-grained synchronization
on tightly coupled GPUs,” in Workload Characterization (IISWC),

2017 IEEE International Symposium on, 2017, pp. 239–249.

[56] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann,

Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David

A. Wood, “Heterogeneous-race-free Memory Models,” in

Proceedings of the 19th international conference on Architectural

support for programming languages and operating systems, 2014,

pp. 427–440.

[57] Wilson Wai Lun Fung, Inderpreet Singh, Andrew Brownsword,
and Tor M. Aamodt, “Hardware Transactional Memory for GPU

Architectures,” in 2011 44th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2011, pp. 296–307.

[58] Tong Li, Alvin R. Lebeck, and Dan J. Sorin, “Spin detection
hardware for improved management of multithreaded systems,” in

Parallel and Distributed Systems, IEEE Transactions on, 2006,

vol. 17, no. 6, pp. 508–521.

[59] Mithuna Thottethodi, Alvin R. Lebeck, and Shubhendu S.
Mukherjee, “Self-tuned congestion control for multiprocessor

networks,” in Proceedings HPCA Seventh International

Symposium on High-Performance Computer Architecture, 2001,

pp. 107–118.

[60] NVIDIA, “CUDA Instruction Set Reference,” 2019. [Online].

Available: https://docs.nvidia.com/cuda/cuda-binary-

utilities/index.html#instruction-set-ref. [Accessed: 16-Aug-2019].

[61] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and
David A. Wood, “Fine-grain task aggregation and coordination on

GPUs,” in Proceedings - International Symposium on Computer

Architecture, 2014, pp. 181–192.

[62] Benedict R. Gaster, and Lee Howes, “Can GPGPU programming
be liberated from the data-parallel bottleneck?,” in Computer,

2012, vol. 45, no. 8, pp. 42–52.

[63] J. Lawrence Carter, and Mark N. Wegman, “Universal Classes of
Hash Functions,” in Journal of Computer and System Sciences,

1979, vol. 18, no. 2, pp. 143–154.

[64] Myung Kuk Yoon, Keunsoo Kim, Sangpil Lee, Won Woo Ro, and

Murali Annavaram, “Virtual Thread : Maximizing Thread-Level
Parallelism beyond GPU Scheduling Limit,” in 2016 ACM/IEEE

43rd Annual International Symposium on Computer Architecture

(ISCA), 2016, pp. 609–621.

[65] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and
Murali Annavaram, “GPU register file virtualization,” in

Proceedings of the 48th International Symposium on

Microarchitecture - MICRO-48, 2015, pp. 420–432.

[66] Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenw, Samira
Khan, Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B.

Gibbons, and Onur Mutlu, “Zorua: A holistic approach to resource

virtualization in GPUs,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016,

pp. 1–14.

