
To appear at the 28th IEEE International Symposium on High-Performance Computer Architecture

Only Buffer When You Need To: Reducing On-chip GPU
Traffic with Reconfigurable Local Atomic Buffers

Preyesh Dalmia
University of Wisconsin-Madison

Email: pdalmia@wisc.edu

Rohan Mahapatra
University of California, San Diego

Email: rohan@ucsd.edu

Matthew D. Sinclair
University of Wisconsin-Madison, AMD Research

Email: sinclair@cs.wisc.edu

ABSTRACT

In recent years, due to their wide availability and ease
of programming, GPUs have emerged as the accelerator of
choice for a wide variety of applications including graph
analytics and machine learning training. These applications
use atomics to update shared global variables. However,
since GPUs do not efficiently support atomics, this limits
scalability. We propose to use hardware-software co-design
to address this bottleneck and improve scalability. At the
software level, we leverage recently proposed extensions
to the GPU memory consistency model to identify atomic
updates where the ordering can be relaxed. For example,
in these algorithms the updates are commutative. At the
hardware level, we propose a buffering mechanism that
extends the reconfigurable local SRAM per SM. By buffering
partial updates of these atomics locally, our design increases
reuse, reduces atomic serialization cost, and minimizes
overhead. Thus, our mechanism alleviates the impact of
global atomic updates and improves performance by 28%,
energy by 19%, and network traffic by 19% on average and
outperforms hLRC and PHI.

Keywords-GPGPU; Relaxed Atomics; Machine Learning;
Graph Analytics; Buffering

I. INTRODUCTION

Traditionally, GPUs were used for streaming, data parallel
applications with limited data reuse and sharing, and coarse-
grained synchronization. Accordingly, GPUs utilize a simple,
software-driven coherence protocol [4], [40], [57], [75],
[80], [84], [93], [95] and push complexity into the memory
consistency model [31], [42], [65], [94], [103]. As a result,
infrequent synchronization, which is often implemented using
atomics, is expensive and must be performed at a shared
ordering point. The memory accesses’ scope impacts the
ordering point: threads in the same thread block (TB) share
a local scope and can synchronize locally (e.g., at the L1
cache) [31], [42], [43], [60]. However threads in different
TBs must use device-scoped atomics that are performed at
the shared last level cache (LLC, usually the L2). Thus
global, inter-TB synchronization is expensive, but reasonable
for throughput-oriented graphics and general-purpose GPU
(GPGPU) applications [8], [12], [13], [20], [35], [97], which
use coarse-grained synchronization.

Figure 1. Percent of device-scope commutative atomics for histograms
(blue), graph analytics (green), and ML training (gray) on a Titan V GPU.

However, as GPUs become increasingly general-purpose,
they are also used for applications that require efficient
support for more access patterns. For example, modern GPUs
are widely used for graph analytics and machine learning
(ML) training, both of which utilize device-scope atomics
to update shared global variables. Although many memory
accesses in ML training are regular data loads and stores,
ML training algorithms that use techniques such as stochastic
gradient descent (SGD) also use atomics to update the shared
weights [110]. Similarly, graph analytics algorithms have
irregular, input dependent parallelism [45], [64], [90], [102]
that often use atomics to perform edge-propagated updates
(discussed further in Section II-B).

Recent work has shown that these atomic updates are a
large source of inefficiency in ML training [59] and graph
analytics [1], [102]. To validate these claims, we profiled
histograms, graph analytics, and ML training applications
(described further in Section IV). Figure 1 shows that device-
scoped atomics make up a significant fraction (29%) of their
global memory accesses. However, in these programs all of
these atomics do not imply ordering on surrounding accesses
because thy are commutatively updating shared variables.
Thus, they can safely use lower overhead relaxed atomics
(discussed further in Section II-A). Nevertheless, relaxed
atomics are still expensive. Moreover, although applications
like BC have fewer atomics, these accesses are often a
bottleneck because they are serialized [26] – multiple threads
from the same TB concurrently, atomically update the same
address, which serializes the accesses (discussed further in
Section III-A).

1

Given the importance of ML, prior work designed ML
architectures and libraries, especially for ML inference [3],
[15], [21], [29], [37], [38], [44], [46], [77], [82], [91], [92],
[106]. However, these solutions primarily focus on inference
whereas we focus on training. Although more customized
solutions also exist for graph analytics [36], [105] and ML
training, GPUs are still widely used due to their availability
and ease of programming. Thus, subsequent work further
optimized ML training on GPUs by reducing the width and/or
number of memory accesses [44], [101], [113], utilizing
compression [86], or rewriting code to frequently perform
memory accesses in the register file or shared memory [24],
[27], [51], [71], [111] (discussed further in Section VII).
However, Figure 1 shows that many of the remaining
memory requests are atomics that update shared locations.
Accordingly, these atomics are a significant overhead.

To overcome this inefficiency we propose a hardware-
software co-design approach that reduces atomic latency,
data movement, and energy. At the software level, we exploit
algorithmic properties; recent work identified that graph
analytics algorithms often use commutative relaxed atomics
– i.e., although the accesses must be performed atomically
to ensure correctness, the order of the atomics does not
matter since the program does not view the updated values
until all updates have completed [2], [10], [94], [107]. We
find that this property also holds for ML training weight
updates: the updated weights are not used until subsequent
layers. Moreover, other, non-commutative relaxed atomics
with similar properties can benefit from our approach.

At the hardware level, we exploit the commutativity of
these atomic updates to buffer partial device-scope atomic
updates locally at each SM in a small local atomic buffer
(LAB), before sending coalesced updates to the shared L2
later. We propose to extend the partitioning of the unified
local memory [32] to include the LAB. This enables LAB to
coalesce commutative atomic updates across all TBs on an
SM, and improves performance, energy, and network traffic
by reducing both the latency for atomic accesses and the
number of commutative atomic accesses sent to the L2.

Prior work also exploits commutativity to improve perfor-
mance and reduce energy [28]. In particular, DeNovo and
hLRC cache device-scoped atomics in GPU L1 caches [4],
[93], [94]. However, they require significant coherence
protocol or consistency model changes. Similarly, in multi-
core CPUs AIM, CCache, Coup, and PHI exploit commu-
tativity by adding an additional coherence state or in-cache
buffers [2], [9], [68], [107]. Although these approaches
exploit similar insights, since GPUs use lightweight, software-
driven coherence protocols [57], [93], [95] and have high
L1 cache contention, our results show these solutions are
not ideal fits for GPUs. Instead, LAB shows that using the
existing reconfigurable SRAM to separately buffer atomics
improves performance and energy efficiency relative to PHI
and hLRC (Section V), requires minor software changes

(annotating commutative atomic accesses), and does not
require coherence protocol or consistency model changes.
Thus, LAB provides similar or better benefits than hLRC and
PHI, without their downsides. We further discuss how LAB
compares to these and other related works in Section VII.

Overall, across 15 graph analytics and ML training
workloads, a small, reconfigurable, per SM LAB improves
performance by 28%, reduces energy by 19%, and reduces
on-chip traffic by 19% on average, respectively. Moreover,
LAB improves on state-of-the-art solutions like hLRC and
PHI. Additionally, our results show that reconfiguring 8 KB
or less of the SM’s local SRAM into a LAB is often sufficient.
Finally, LAB does not affect applications that do not use
commutative atomics, unlike other state-of-the-art solutions.

II. BACKGROUND

A. GPU Coherence and Consistency

Since GPUs traditionally run massively data-parallel,
streaming applications with coarse-grained synchronization
and little to no data reuse, they use a simple, software-
driven Valid-Invalid (VI)-style coherence protocol [57],
[84], [93], [94], without ownership requests, downgrade
requests, writer-initiated invalidations, state bits, snoopy
buses or directories [95]. Thus, since synchronization is
infrequent, GPU coherence protocols invalidate the cache on
acquires (the start of the kernel or an acquire synchronization
operation) so that subsequent reads do not read stale values.
Typically, GPU L1 caches either use a write through or
write no-allocate approach for global memory writes [50],
[95]. To improve performance, these writes may be buffered
and coalesced until the next store release [40]. When a
store release occurs (the end of the kernel or a release
synchronization operation), all prior stores must complete and
the data is written to the next level of the memory hierarchy,
which is usually shared between SMs.

Thus, fine-grained synchronization that uses load ac-
quires or store releases provides ordering between data and
atomic requests from TBs on multiple SMs. For example,
sequentially consistent (SC) atomics orders both data and
atomic accesses. However, since GPU coherence protocols
do not obtain ownership for written data or atomics, GPUs
perform all global atomics at the first shared level of the
memory hierarchy (usually the L2). When fine-grained
synchronization is required, it is usually implemented with
atomics, which may incur expensive load acquire and store
release overheads to ensure a consistent view of memory
for variables being accessed by multiple TBs. However,
sometimes relaxed atomics can be used. Relaxed atomics act
neither as an acquire nor a release, and since they imply no
ordering on other memory accesses, they can be reordered
with other data and atomic accesses. As a result, relaxed
atomics are cheaper. However, since L2 accesses in modern
GPUs take over 100 cycles (Section IV), even relaxed, device-
scope atomics are expensive. In contrast, CPUs often obtain

1 i f (t i d <= (N − 1)) {
2 l o c = a r r [t i d] ;
3 / / atomicAdd(& h i s t [l o c] , 1 , mem order comm) ;
4 atomicAdd(& h i s t [l o c] , 1) ; } / / commuta t ive

Listing 1. Pseudo-code of GPU histogram kernel [67].

1 end = ((t i d +1) < numNodes ? row [t i d +1] : numEdges) ;
2 f o r (edge = row [t i d] ; edge < end ; ++ edge) {
3 nodeID = c o l [edge] ;
4 i n c = pR1 [t i d] / (f l o a t) (end− s t a r t) ;
5 / / atomicAdd(&pR2 [nodeID] , inc , mem order comm) ;
6 atomicAdd(&pR2 [nodeID] , i n c) ; } / / commuta t ive

Listing 2. Pseudo-code from key PageRank kernel [14].

ownership for written data and atomics (e.g., in MOESI-
style coherence), which makes synchronization points cheap;
however, these protocols are a poor fit for GPUs [40], [95].

Instead GPU consistency models utilize scopes to reduce
synchronization overhead, as part of sequentially consistent
for heterogeneous-race-free (SC-for-HRF) based consistency
models [31], [42], [43], [60], [65]. Programs which properly
identify both memory accesses as data or synchronization
and each synchronization accesses’ scope are guaranteed to
be SC-for-HRF. Although SC-for-HRF has multiple scopes,
we focus on the two most widely used variants: local and
device. Locally scoped atomics are only guaranteed to be
visible to other threads in the same TB, while device-scoped
atomics are visible to all threads across the GPU. Thus,
locally scoped synchronization is significantly cheaper since
it does not invalidate all valid L1 data on acquires nor writes
through dirty data on releases.

B. Applications

We first examine a histogram microbenchmark, then extend
the ideas to the larger benchmarks.
Histograms: Histograms are widely used in image processing
to find the frequency of pixel values [67], [78]. However,
since different threads may encounter the same pixel value,
either device-scope atomics must be used, or each thread
must store its per-pixel value counts separately, then sum up
the per-thread counts in a separate kernel. We focus on the
former, as it requires less memory and fewer kernels. Listing 1
shows a code snippet of a histogram performing device-
scoped atomics. Its atomic increments are commutative –
the final result will be the same regardless of the order
the atomics execute. Furthermore, since the intermediate
histogram results are not read, they do not affect the
program’s control flow. Thus it is safe to use relaxed atomics
(i.e., memory_order_relaxed [10]) while still ensuring
the final results are SC [94]. However, more optimized GPU
software implementations are possible. In particular, per-
TB sub-histograms that perform atomics locally in shared
memory, before sending per-TB partial updates with a single
device-scoped atomic per histogram bin, can significantly
reduce overhead [78] if the array fits in shared memory.
Graph Analytics: Graph analytics algorithms perform edge-
propagated updates, where a source vertex can either pull
changes from its neighbor vertices or push changes to its

neighbors [14], [53]. We focus on the push variants since the
pull variants, similar to Histogram, tradeoff additional kernels
and memory for avoiding atomics. Additionally, recent work
has shown neither push nor pull algorithms are always best
on GPUs [88], [96]. Nasre et al. also reduced atomics in
irregular programs by using global barriers or other software-
based approaches such as idempotence [69]. However, global
barriers limit the number of TBs (most of our applications use
too many TBs to use this approach), and their other software-
based approaches cannot be applied to our applications.
Others use vertex duplication and out-of-core execution [58]
to optimize pull-based graphs that cannot fit in memory [66].
However, we focus on push-based graphs that fit in memory.

We examine seven graph analytics algorithms: Between-
ness Centrality (BC), Connected Components Analysis
(CCA), Cuda Cuts (CC), Graph Coloring (CLR), Maximal
Independent Set (MIS), PageRank (PR), and Single-Source
Shortest Path (SSSP) [11], [14], [88], [100]. Since multiple
vertices may be connected to each other, device-scoped
atomics must be used for updates to avoid data races (e.g., PR
in Listing 2). Like Histogram, the atomics are commutative:
their order does not affect the final result and the intermediate
results do not affect control flow. However, unlike Histogram,
it is difficult to apply software optimizations because each
TB accesses input dependent locations. Thus, to use shared
memory, a TB must allocate enough shared memory space for
all of the graph’s vertices (discussed further in Section VI).
ML Training: To study the impact of atomics on ML training
algorithms, we examined several popular Convolutional
Neural Networks (CNNs), as discussed in Section IV. In
deep neural network (DNN) training, ML algorithms improve
accuracy by propagating the loss function gradient backwards
through the network and updating the weights, also known
as backpropagation [87]. In GPUs, weight gradients and
input gradients are calculated across multiple SMs. Thus,
device-scope atomics are needed to add these partial updates
together and ensure subsequent layers see the updated weights.
Calculating these gradient updates is a significant part of the
total training execution time [59]. However, these updates
are commutative and are only used in subsequent kernels.

Like Histogram, software optimizations could perform
many of these atomics locally before sending a few device-
scoped atomic updates. However, since weight matrices
are large for modern DNNs, storing the weights in shared
memory may hurt performance by limiting SM utilization
(Section VI). Thus, cuDNN and other libraries often use
device-scoped atomics for weight updates instead.

III. PROPOSED DESIGN

A. LAB Hardware Support

Figure 2a shows our proposed addition of the LAB to
the GPU memory hierarchy. Physically, the LAB is similar
to the L1 data cache; as shown in Figure 2b we exploit
the reconfigurability of the unified local memory [32] to

SIMT Core

Shared Memory L1 D$ LAB

Local SRAM

L2 Cache

Main Memory

Atomics

(a) (b)

…

…

Local SRAM Data
0 N-1

Mux (Shar. Mem./L1 D$/LAB)

…

Cache/LAB Tags

…

0 N-1

…

0 N-1

…

0 N-1

Mux (L1 D$/LAB)

Figure 2. Proposed design (a) including LAB (in green) and (b) local
SRAM.

partition it into L1 data cache, shared memory, and LAB.
This requires an additional 2:1 mux for the tag array to avoid
duplication and determine if a tag belongs to the cache or
LAB; the data array already has a 4:1 mux which previously
had one unused input [32].1 Like some GPU L1 caches, the
LAB has 128 byte lines, broken into four 32-byte sectors.
Since LAB is intended to be small, we make it associative.2

LAB also utilizes a portion of the local SRAM’s data and
tag arrays (via the muxes in Figure 2b). The data array holds
partial values for a given address, while the metadata holds
address, replacement, and atomic function information. Next,
we discuss LAB’s operation:
Steady-State Behavior: Since atomics entering the LAB are
all commutatively updating shared global variables, we use
an allocate on fill write miss policy.
Evictions: When the LAB is full, we use an LRU replacement
policy to determine which entry to evict. However, evictions
can be done off the critical path, since the commutative
atomics do not imply any ordering on other memory accesses.
Accordingly, as soon as the message is sent to the L2, we
reuse the entry. When the evicted atomic request reaches the
L2, it updates the appropriate addresses’ value.3

Coalescing: Like L1 cache and shared memory accesses, the
GPU coalescer coalesces accesses before sending them to
the LAB. Thus, threads within the same warp are coalesced
and LAB can use the same number of read and write ports
as the L1 cache.
Handling Uncoalesced Accesses: Some programs have
divergent, uncoalesced memory accesses where every thread
may access a unique cache line. Although we only observed
up to 38% divergence (12 unique cache lines/warp), LAB still
supports these accesses. On an uncoalesced access, the GPU

1It is also possible to implement LAB inside the L1 cache using techniques
such as way partitioning [18]. However, way partitioning also requires
additional muxes and may increase conflict misses. Thus, we focus on
partitioning the SRAM, which also decouples data and atomic accesses.

2We examined various LAB associativities including 8-way and fully
associative; the performance difference was small. Thus, similar to modern
GPU L1 caches, we assume a 8-way associative LAB to meet timing
(although Figure 2b does not show associativity for simplicity).

3Like prior work [4], [57], [93], we assume the GPU has an ALU co-
located with the L1 cache. If this is not the case, then Figure 2 and the
overall area (Section V-G) would need to include this.

(and LAB) treats each requested line as a unique request.
Consequently, LAB handles them as they arrive. If the number
of requests exceed the LAB’s size, then requests evict entries
from the same uncoalesced access.
Behavior at Ordering Points: Although atomics using the
LAB are relaxed and thus do not imply ordering on other
memory requests, at ordering points we flush all LAB entries
to the L2. Thus, at all kernel boundaries or at software
enforced ordering points (e.g., CUDA’s threadfence or
barriers, mutexes, and semaphores) all LAB entries are
evicted. None of our benchmarks had software ordering
points, so flushes only happened at kernel boundaries.
Atomics with Ordering Requirements: Since LAB stores
partial atomic updates, it cannot be used for atomics with
ordering requirements (e.g., SC atomics) without causing
significant delays. Thus, our software requirements (Sec-
tion III-B) ensure that only commutative atomics use the
LAB. Non-commutative atomics must be performed at the
appropriate level defined by their scope. We discuss LAB’s
implications on GPU coherence and consistency further in
Section III-C.
Serialization of Atomics: Atomic serialization occurs due
to two primary factors: atomic collisions and centralized
resources. Intra-warp atomic collisions occur when multiple
threads in a warp attempt to update the same memory location
concurrently, while inter-warp and inter-TB atomic collisions
occur when multiple threads from different warps (or different
TBs) attempt to update the same address concurrently.
When this happens, one request must be issued before the
other. Atomic serialization can also occur at a centralized
destination such as the L2 cache. Since device-scoped atomics
are performed at the L2 (which is ≈6X more expensive than
GPU L1 accesses, Section IV), this serialization can be very
expensive, especially when combined with L2 queuing delay
and potentially backpressure from interconnect stalls. Since
LAB performs all commutative, device-scope atomics locally,
LAB reduces the serialization penalty due to atomic collisions.
Moreover, LAB’s decentralized updates (one LAB per SM)
also reduces atomic serialization from centralized resources,
since only the combined requests are sent to the L2.
Identifying Atomic Function: CUDA supports multiple
types of atomics, some of which are not commutative with
each other. Thus, the LAB must track what atomic function
is being performed for each line. Since CUDA has fewer
than 16 atomic functions [72], we use 4 bits per LAB line
to identify the atomic operation. If a LAB hit occurs but the
atomic function does not match, we flush the entry.
Benefits Over Software Solutions: Since the atomic opera-
tions are commutative and are not read before all updates
complete, programmers could either use per-TB shared
memory to accumulate updates locally or use L1 data cache
with private variables. In this situation, a per-TB global
atomic performs the global memory final update. However,
for most of our applications this would require large, sparsely

6

SIMT Core X

Atomic
Add (X, 2)

Atomic
Add (X, 5)

SIMT Core X

ValueTag Metadata

Tag(X) 2 Valid/Atom. Add

6

Metadata

Tag(X) 7

Tag(X)

(Hit)

Tag(X)

(Miss)

Atomic
Add (X, 7)

L2 Cache

Valid/Atom. Add

Eviction/

Kernel End

(a) (b) (c)

ValueTag

… … …… … …

1

2 3

4

5

6

Figure 3. Example LAB access sequence with reuse.

accessed shared memory allocations that limit the number of
TBs per SM (discussed further in Section VI). In contrast,
LAB only holds frequently accessed atomic addresses and
their values, without requiring large allocations.

Overall, LAB effectively enables per-SM intra-warp, inter-
warp, and inter-TB reuse in the same kernel invocation. For
example, when threads in Listings 1 and 2 on the same SM
(inter- or intra-TB) access the same address atomically, they
can be reused in the LAB. Moreover, when atomic reuse
is minimal, LAB’s decentralized design still reduces the
serialization penalty (Serialization of Atomics). Although
the LAB may increase the burstiness of the atomic traffic in
the worst case, we have not observed significant increases in
queuing delay due to LAB’s coalescing benefits and because
SMs usually flush at different times (as shown in Section V).
Moreover, the atomics sent to the L2 by the LAB will be
performed off the critical path, except at kernel boundaries
where the LAB is flushed in parallel with the caches, since
instructions complete upon reaching the LAB. This lessens
observed impact of burstiness (Figure 9).

Figure 3 shows two LAB operations from the same SM:
1) An atomicAdd(X, 2) (Figure 3a) is issued.
2) We use the tag to index into the LAB and check if it

hits. Since this is the first access to X on this SM, it
misses.

3) Next, we allocate an LAB entry and update the value
of the entry to the value of the first update (here, 2).

4) Another atomic is issued to the same address, atomi-
cAdd(X, 5) (Figure 3b).

5) We use the tag to index into the LAB; this access hits
and updates the partial value at the LAB index (here,
7).

6) Later, when the LAB evicts the entry (Figure 3c), a
partial atomic update is sent to the L2 (atomicAdd(X,
7)). Since the L2 already supports atomics, LAB simply
sends its an atomic to update the global value.

B. Software Support: Distinguishing Atomic Operations

LAB relies on identifying which atomic accesses can be
buffered locally (e.g., commutative atomics). To identify
which accesses are commutative atomics, we leverage recent
work that proposed additional memory orderings: SC-for-
Data Race Free Relaxed (or SC-for-DRFrlx) introduced a
new memory ordering, memory_order_comm, to identify

commutative accesses [94]. However, since we do not need
the additional complexity for other, non-commutative relaxed
atomics that SC-for-DRFrlx proposes, we use a SC-for-HRF
consistency model with the additional commutative memory
ordering. Programmers or compilers can instrument software
to use this new memory ordering to indicate commutative
atomics to the hardware, analogous to how C, C++, HSA,
and OpenCL specify other memory orderings [10], [43], [60].
For example, Listing 1 and 2, show how the programmer
would label the atomicAdd’s as commutative atomics. Non-
commutative atomics bypass LAB.

C. Impact on Consistency and Coherence

The key ideas that allow the LAB to batch atomic updates
without affecting consistency and coherence guarantees are:
Commutativity: The order of commutative Read-Modify-
Write updates to a shared variable can be arbitrary without
affecting correctness. Since these updates race, they must
use atomics to conform to the SC-for-HRF consistency
model (Section II-A). However, since reordering updates still
produces correct results, programs often use relaxed atomics
for the updates [94]. Thus, caching relaxed commutative
atomics in the LAB should not affect the final results. By
perturbing the order of atomics, LAB may cause small
rounding errors for floating point commutative atomics,
but this is already a problem on real GPUs, where the
atomic order is not deterministic [16], [17], [22]. Although
we only observed minor impacts on the final results, if
complete determinism is desired we could adopt DAB [16]
or Reproducible FP [22] at the cost of additional area.
Interaction with Data Accesses: Like C++ [10], HSA [43],
and OpenCL [52], by default we assume that atomically
updated shared variables are always accessed atomically.
Thus, if a program uses properly labeled and synchronized
commutative atomics, there will never be data accesses to
the same variable and SC results are guaranteed (which
also ensures that the program does not view the updated
values until all updates have completed) [94]. As a result,
data accesses and non-commutative atomics do not need to
check the LAB, since the commutative atomics do not order
other accesses and all accesses to a commutative address
are atomic. However, although CUDA is moving towards
similar requirements [73], currently it allows a variable to be
accessed by both atomic and data accesses in the same kernel.
If this happens for accesses using memory_order_comm,
a commutative race may occur [94] and, like other DRF-
based consistency models, threads may access a stale value
and SC results are not guaranteed (e.g., since data accesses
do not check the LAB). However, if the data accesses occur
in separate kernels, since the LAB is flushed at the end
of each kernel, the data accesses will see any previously
buffered LAB updates.
Coherence: As discussed in Section II-A, GPU coherence
relies on data-race-freedom and software invalidations to

GPU Feature Configuration (Size, Access Latency)
SMs 80

Registers / SM 64 KB
LI Instruction Cache / SM 128 KB

LI Data Cache / SM 32 KB (max 128 KB), 28 cycles
L2 Cache 4.6 MB, 148 cycles

MSHR 256 (L1) and 192 (L2) Entries
Shared Memory Size / SM 96 KB (max 128 KB), 19 cycles

Memory 16 GB HBM2, 248 cycles

Table I
SIMULATED BASELINE GPU PARAMETERS

Operation Energy (pJ)
Non-Memory Operation 3.7

L1D (32 KB) Read/Write 1.4097, 1.7044
L1I (132 KB) Read/Write 5.6387, 6.8177
L2 (4.6 MB) Read/Write 193.59, 234.0675
LAB (Size 8) Read/Write 0.0881, 0.1065

LAB (Size 16) Read/Write 0.1762, 0.2131
LAB (Size 64) Read/Write 0.3524, 0.4261
LAB (Size 128) Read/Write 0.7048, 0.8522
LAB (Size 256) Read/Write 1.4097, 1.7044
LAB (Size Inf) Read/Write 45.1097, 54.5417

NOC 254
Main Memory 501

Table II
PER-ACCESS ENERGIES USED [19], [37], [76].

ensure that there is no stale data in the local caches. Adding
the LAB does not impact the GPU coherence protocol, since it
only aggregates updates for commutative, atomically accessed
global addresses. Accordingly, LAB does not require any
changes to the existing coherence protocol and additional
fences are not required because the commutative updates do
not need to be ordered with one another.

IV. METHODOLOGY

A. Simulation Environment & Parameters

To evaluate LAB’s impact, we added LAB to GPGPU-Sim
v4.0 [8], [50], [62], [63], [81], which has been shown in
previous work to provide high accuracy for modern NVIDIA
GPUs, including when running ML workloads [50], [62],
[63]. Table I summarizes the key system parameters, which
is based on a NVIDIA Titan V GPU [74]. Additionally, we
assume support for performing atomics at the LAB. We use
CUDA 8 and cuDNN v7.1.3 for the ML training benchmarks,
because these are the latest versions of CUDA and cuDNN
that embed the PTX in the libraries – which is necessary to
run cuDNN in GPGPU-Sim [63]. For all other benchmarks
(Table III), we use CUDA 11.2. Although GPGPU-Sim has
an integrated energy model [61], it has not been validated for
post-Fermi architectures and is not representative for modern
GPUs.4 Thus, we use a per-access energy model (Table II)
based on recent work [19], [37], [76]. To label commutative
atomics (Section III-B), like prior work [94] we use software
flags to find and simulate these accesses.

4Accel-Wattch now provides a validated GPU energy model for modern
GPUs, but was not available until after this work was submitted [47].

B. Configurations
Since the LAB is physically located in the unified local

SRAM, configuring part of the SRAM to be LAB reduces
the size of the L1 data cache or shared memory. Hence, we
examine varying the size of the L1 data cache and shared
memory. Overall, we use the following configurations:
Baseline: The baseline GPU configuration without an LAB,
with a 32 KB L1 data cache and 96 KB shared memory, and
which performs all device-scoped atomics at the shared L2.
Cache-8KB: Models the Baseline configuration with 8 KB
less cache, which is representative of a 64-entry LAB.
Cache+8KB: Baseline configuration with 8 KB more cache
instead of using LAB.
Cache*2: Like Cache+8KB, except doubles the cache size.
hLRC: hLRC [4] obtains ownership for atomics, enabling
it to cache them locally. Since hLRC has not been publicly
released, we implemented and validated it in GPGPU-Sim.
PHI: PHI [68] buffers atomics in write allocate L1 caches
(fetch on write); we implemented and extended PHI for GPUs
(only cache lines with commutative atomics are buffered
updates). We also extended PHI to use a lazy fetch on
read scheme, which has a 6% difference but did not affect
the takeaways. Although PHI was designed for MESI-like
CPU coherence, we optimistically ignore invalidation and
downgrade overheads – otherwise PHI is worse.
LAB i: We vary LAB’s size to examine its sensitivity: LAB
i represents i LAB entries per SM: 8, 16, 32, 64, 256, and
Infinite. Each statically reconfigures the cache, shared mem-
ory, and LAB proportions based on LAB size before kernel
launch, similar to CUDA’s existing cache/shared memory
flag. Although some configurations require significant SRAM,
we include them to examine larger LAB performance. For
context, a 64-entry LAB uses approximately 8 KB of local
SRAM. For all LABs except infinite, we take space from
the cache since the applications were less sensitive to cache
size and changing shared memory size affected utilization.

We also increased shared memory size per SM, but it
had no effect (discussed further in Section VI). Moreover,
although weights currently do not use shared memory,
cuDNN uses shared memory for other arrays (from inspecting
disassembled binaries [99]). However, since TBs per SM is
limited by register file size [79], increasing shared memory
per SM did not increase the TBs per SM. Since cuDNN is
closed source, we tried modifying cuTLASS [48]. However,
cuTLASS lacked the corresponding kernels. Finally, to isolate
LAB’s serialization and coalescing benefits, we implemented
a LAB variant that performs atomics locally but does not
store data in the LAB, preventing reuse and separating the
coalescing and serialization benefits. Since it is difficult
to isolate serialization from reducing backpressure and
interconnect stalls, this provides a minimum bound on
LAB’s serialization reductions. We also isolated the burstiness
overheads by turning off the end-of-kernel LAB flushes and
measuring its impact.

Benchmark Input
Microbenchmarks

Histogram [67] (H) 256K (30720x17280 pixels)
Histogram Shared [67] (HS) 256K (30720x17280 pixels)
Backward Conv [25] (BWC) NCHW = 128,3,256,256

Graph Analytics (’ ’ denotes different utilization levels)
BC[100, 75, 50, 25] [14] CT, NH,

VT, AK [23]
CCA[100, 75, 50, 25] [88] amazon, olesnik0,

wing, emailEnron [88]
CC [88], [100] flower.txt [88]
CLR [88], MIS [88], or2010, nd2010,

nv2010, nh2010 [7]PR [14], SSSP [88] [100, 75, 50, 25]
ML Training

AlexNet [25] (AN) NCHW = 16,3,227,227
VGG-19 [25] (VGG) NCHW = 16,3,112,112
SqueezeNet [25] (SN) NCHW = 16,3,224,224
Tiny YOLO [83] (TY) NCHW = 16,3,416,416
ResNet [39] (RN) NCHW = 16,3,256,256

GPGPU
Backprop [12] 64K
B+Tree [12] mil.txt
BFS [12] graph1MW 6.txt
DWT2D [12] 1Kx1K
gaussian [12] 1Kx1K
Heartwall [12] test.avi
Hotspot [12] 512x512
huffman [12] 1024
HybridSort [12] 218

KMeans [12] kdd cup
LavaMD [12] boxes1D
Leukocyte [12] testfile.avi
LUD [12] 512
MummerGPU [12] NC 003997
Myocyte [12] 100
NN [12] lat 30, long 90
NW [12] 8Kx8K
Pathfinder [12] 1Mx100x20
ParticleFilter [12] 128x128, 4K particles
SRAD [12] 2Kx2K
Streamcluster [12] 8K

Table III
BENCHMARKS AND INPUTS.

C. Benchmarks

Table III summarizes the workloads we use. To study per-
formance for GPGPU applications, we analyze Rodinia [12],
[13] with inputs sized to fully utilize the GPU.5 We analyze
two histogram [67] variants each with 256 bins: an ideal
use case for LAB where most accesses are device-scoped
atomics, similar to Listing 1, and another that uses shared
memory to bin updates locally before sending a single atomic
update per bin to global memory [94]. We also use popular
graph analytics and ML training workloads: BC, CCA, CC,
CLR, MIS, SSSP, PR, AlexNet, VGG-19, SqueezeNet, Tiny
YOLO, and ResNet. We selected these benchmarks because
they cover a wide variety of use cases, and have been shown
to be high performance in prior work [88], [96]. As discussed
in Section VI, the larger benchmarks are unable use similar
software optimizations to the histograms. Since the graph
analytics algorithms are input dependent, we focus on input

5We do not use CFD because it has issues with GPGPU-Sim 4.0 [49].

graphs that fully utilize the GPU. However, we also studied
three other utilization levels for all graph analytics algorithms
except CC to study how performance is impacted.6 For all
DNNs we extend DNNMark [25] to model the networks and
run them for one iteration since CNN iterations have similar
behavior [109], [112]. Moreover, to study the training kernels
that use atomics in isolation, we also run micro-benchmarks
such as BWC and ResNet (1 Layer).

V. RESULTS

Figures 4-7 show the performance improvement, intercon-
nect traffic reduction, miss rate, and energy consumption,
respectively, for all micro-benchmarks and benchmarks,
across the configurations described in Section IV. We divide
energy into multiple components based on source: ALU,
shared memory, L1, L2, interconnect, LAB, and main
memory. Broadly, the smaller and larger cache configurations
show no appreciable change in performance due to the mostly
streaming, read only nature of the application’s data loads.
Thus, we do not show the additional cache configurations
in Figure 7, as the energy impact follows a similar trend. In
comparison, LAB yields significant benefits. With LAB, an
application’s performance is closely tied to the ratio of global
atomic requests to the total number of global memory requests
(ATGR), the application’s spatial and temporal locality for
atomic transactions, and the application’s ratio of LAB size
to atomic’s working set size. Since these properties vary per
application, LAB’s benefits vary. LAB’s coalescing benefits
tap into the locality that exists within atomic transactions,
while the serialization benefits (Section III) result from
performing atomics locally at the LAB rather than at the L2.
Without LAB, overlapping, device-scoped relaxed atomics
are sent to the L2, increasing queuing delay and interconnect
buffer stalls. Coalescing these atomics in the LAB reduces
these overheads, and helps LAB rival Figure 1 (since Figure 1
profiles real GPUs, it cannot include LAB reuse). Overall,
across all non-infinite LAB sizes, on average LAB improves
performance by 28%, reduces energy by 19%, and reduces
interconnect traffic by 19%, while also improving on state-
of-the-art techniques like PHI and hLRC.

A. Microbenchmarks

Histogram vs. Histogram Shared: Histogram’s device-
scope atomics are ideal for LAB. Furthermore, the histogram
completely fits in a size 8 LAB. Thus, LAB perfectly
coalesces all partial updates from each SM, significantly
improving performance (64%), energy (82%), and intercon-
nect traffic (77%). Moreover, since the array fits in a size 8
LAB, increasing LAB size does not help. Thus, LAB can
provide significant benefits when applications have many
commutative atomics with significant reuse.

By optimizing software to perform most atomics in shared
memory, Histogram Shared significantly reduces LAB’s

6CC only had one input size.

Figure 4. Execution time for different cache configurations, LAB sizes, hLRC, and PHI, normalized to the baseline configuration without LAB from
Table I.

Figure 5. Interconnect traffic reduction for different cache configurations, LAB sizes, hLRC, and PHI, normalized to the baseline configuration without
LAB from Table I.

Figure 6. LAB miss rate for different LAB sizes and cache configurations, normalized to the baseline configuration without LAB from Table I.

Figure 7. Energy consumption normalized to the baseline without an LAB from Table I. For each application, left to right is the baseline (B), LAB-8 (8),
LAB-16 (16), LAB-32 (32), LAB-64 (64), LAB-128 (128), LAB-256 (256), LAB-Inf (In f), hLRC (H), and PHI (P).

Figure 8. Execution time for the graph analytics workloads with different
utilization levels, averaged across LAB-8 to LAB-256, normalized to the
baseline configuration without an LAB from Table I.

Figure 9. Isolating serialization and coalescing benefits for the graph
analytics workloads. ANBF: average without bursty flush. ML workloads
not included due to space constraints.

benefits: 1% better performance, with minimal differences in
energy and interconnect traffic. These small benefits come
from coalescing updates across TBs on the same SM. Thus,
LAB may provide small benefits if significant software
optimizations are possible. However, in applications where
data cannot fit in the shared memory, such optimizations are
less practical, as discussed in Section VI.
BWC: BWC has a high ATGR ratio because it is composed
of atomic-heavy kernels for a single backward pass through
a convolution layer. Thus, LAB significantly improves BWC:
on average performance improves 28% (max 43%), energy
is reduced by 14% (max 22%), and interconnect traffic is
reduced by 25% (max 65%). Even with smaller LAB sizes
(e.g., LAB 64), BWC obtains significant improvements from
reduction in serialization penalty (discussed in further detail
in Section V-C). Moreover, BWC uses a larger batch size,
which demonstrates that LAB’s gains improve as batch size
and the number of device-scoped atomics increase.
ResNet: For ResNet (RN) we study the atomic-heavy kernels
since they form major parts of training. On average LAB
improves performance by 31%, reduces network traffic by
6%, and reduces energy by 8%. RN’s benefits are larger than
the full networks (discussed next) because RN only runs
the kernels with atomics. However, since these kernels form
70-80% of training time, we expect end-to-end RN would
show similar trends. RN’s kernels are largely streaming,

and only exhibit temporal reuse after a specific number of
accesses (256-512) to unique addresses. This pattern repeats
N times, where N depends on layer parameters. Thus, for
LAB sizes < 256, LAB’s benefits come solely from reducing
the serialization penalty. Size 256 and larger LABs also
benefit from coalescing; for LAB-Inf, 13% of LAB’s benefits
are from coalescing and 29% from reduced serialization costs.

B. Graph Analytics Workloads
GPU Utilization Study: Figure 8 shows how the graph
analytics algorithms perform for different input graphs that
utilize 25%, 50%, 75%, and 100% of the GPU, respectively,
averaged across LAB sizes 8-256. As utilization increased,
the graphs provide additional reuse opportunities, but also
increased contention that may increase LAB misses. For
benchmarks with High ATGR, the connectivity of the graphs
played impacts performance improvement. For example, in
PR 75 24% of all nodes are strongly connected, while
PR 50’s graph has less connectivity: only 5% of the nodes
are strongly connected. As a result, LAB provides more reuse
for PR 75 than PR 50, and further improves performance.
For CCA, both CCA 75 and CCA 100 have a few very
strongly connected nodes. Thus, LAB captures most of
the reuse even for smaller LAB sizes and enables them
to outperform CCA 25 and CCA 50. However, CCA 75
slightly outperforms CCA 100 because it has less contention.
The lower utilization graphs also outperform by the higher
utilization graphs in a few other cases. For BC and SSSP,
which generally have low locality, the majority of LAB’s ben-
efits come from reducing the serialization benefit. As a result,
performance is similar for all utilization levels. However, for
benchmarks with Moderate ATGR such as CLR and MIS,
higher utilization levels consistently increase performance
slightly. This happens because the larger working sets in
the higher utilization graphs of CLR and MIS dominate
compared to the additional reuse they offer. Nevertheless,
since these differences are small and the overall performance
gains are similar for all four utilization levels, we focus on
the full (100%) utilization graphs in the remaining analysis.
High Locality & ATGR: As shown in Figure 1, PR
(0.72) and CCA (0.84) have high ATGRs ratio and many
commutative atomics. For CCA, a small subset of vertices are
very strongly connected. Thus, even a small LAB significantly
improves performance: across all LAB sizes, PR improves
performance up to 74% (42% on average) and CCA up
to 95% (92% on average), with similar improvements in
energy consumption, interconnection traffic, and miss rate.
As LAB size increases, LAB buffers more atomics locally,
but also reduces L1 cache space. However we observed that
for both CCA and PR (especially CCA) the average reuse
distance often decreases for increasingly strongly connected
nodes: CCA and PR’s average reuse distance decreases by
96% for the most strongly connected nodes). Moreover,
larger LAB sizes are tolerant to higher reuse distances and

hence capture more reuse and further improve performance.
Reducing the cache size has less effect because the load
locality is relatively lower. The interconnect traffic reduction
follows similar trends: a maximum reduction of 89% for
LAB-Inf for PR and 88% for CCA. Finally, the overall
energy trends are directly proportional to interconnect traffic
since device-scoped atomics dominate: on average, energy is
reduced by 16% (max 79%) for PR and by 48% for CCA.

LAB also improves CCA’s and PR’s performance by
decreasing serialization cost. As shown in Figure 9, since
small LABs (min results) have fewer coalescing opportunities,
the serialization cost reduction provides 15% of PR’s benefits.
However, as LAB size increases (average and max results),
coalescing opportunities increase and progressively make up
a larger percentage of PR’s and CCA’s improvements.
Low ATGR & Locality: BC’s (0.05) and SSSP’s (0.19)
ATGRs are significantly lower than CCA and PR. However,
as also observed in prior work [26], these atomic accesses
cause bottlenecks in BC and SSSP due to serialization. As a
result, across all LAB sizes on average performance improves
by 30% for BC and 21% for SSSP. Nevertheless, since there
are few atomics, even with an infinite LAB, energy and
network traffic gains are small (e.g., 3% less network traffic
for BC with up to 1% less energy). Interestingly, although BC
and SSSP have less locality than CCA and PR, their average
reuse distance is 82% lower than PR and CCA for weakly
connected nodes. Consequently, all LAB sizes capture similar
amounts of reuse, resulting in smaller differences in miss
rate until the data completely fits in the LAB (LAB-Inf).
Since BC and SSSP have fewer coalescing opportunities,
unsurprisingly the vast majority of LAB’s benefits come
from reducing serialization latency (Figure 9).
Moderate ATGR & Locality: CC, CLR, and MIS have
fewer device-scope atomics than CCA and PR but more than
BC and SSSP. Although CC, CLR, and MIS have similar
ATGR and locality, they have different access patterns. Some
of CC’s kernels are streaming with little or no reuse; in
these kernels most of LAB’s benefits come from reducing
serialization costs. Nevertheless, most of CC’s kernels have
moderate to good reuse; in these kernels LAB provides
more benefits from coalescing. Like BC and SSSP, the
kernels in CC that have at least moderate reuse have small
average reuse distances, enabling even small LABs to provide
good performance. CLR (ATGR: 0.24) initially performs
device-scoped atomics on many cache lines, then reduces the
working set as the application proceeds. Thus, all LAB sizes
perform similarly once working set decreases. Furthermore,
when the working set is large, larger LABs reduce more
atomic traffic, but the reduced cache size also increases cache
misses. However, again LAB’s benefits outweigh the reduced
cache locality, although the reduce cache hits reduce the
performance difference between the LABs. Somewhat similar
to CLR, MIS (ATGR: 0.43) has a large device-scoped atomic
working set. Thus, a larger LAB is needed to capture the

possible reuse. Accordingly, reducing serialization provides
most (69%) of the benefit for small LABs, but a smaller
portion (47%) for larger LABs. Moreover, the burstiness of
the flushing the LAB is small (Figure 9): 0.5% (BC) - 5%
(MIS) on average, and outweighed by LAB’s overall gains.
Overall, on average performance increases by 37% for CC,
14% for CLR, and 16% for MIS.

C. ML Training Workloads

Overall, on average across all DNN workloads LAB im-
proves performance by 18%, energy by 11%, and interconnect
traffic by 19%. However, different training algorithms exhibit
different trends in terms of benefits, especially as the number
of layers, parameters, and batch sizes vary. For the ML
benchmarks LAB’s gains are larger for deeper networks and
bigger batch sizes – trends that are expected to continue in
next generation ML workloads. However, the overall gains
are sometimes limited because CNNs are largely compute
bound on modern GPUs. Nevertheless, given the significant
efforts to optimize compute for CNNs, the memory system
will become more of a bottleneck, increasing LAB’s utility.
AlexNet, Tiny YOLO: AlexNet (AN) and Tiny YOLO (TY)
have relatively low ATGRs because, like other CNNs, they
are compute bound [33]. Thus, LAB improves interconnect
traffic and performance for kernels with atomics, but the
overall gains are smaller. AN is relatively unaffected by
increasing LAB size (9% average performance improvement).
Here, reducing cache size while incrementing LAB size is
sometimes detrimental: performance declines a little when
using a larger LAB due to reduced cache locality. Although
AN and TY have a similar number of layers, TY spends more
time in kernels with device-scoped atomics (85% compared
to 74% for AN). Thus, LAB improves TY’s performance
more than AN’s. On average LAB improves performance by
10%, decreases interconnect traffic by 18%, and decreases
energy by 12% for AN and TY.

Moreover, AN’s reuse pattern is different for bwd filter
and bwd data. Bwd filter is similar to RN, where addresses
only exhibit temporal reuse after a certain number of accesses
to unique addresses. Thus, the overall reuse depends on batch
size and layer parameters. Bwd data has a lower ATGR than
bwd filter, but more temporal reuse since a small subset of
addresses are repeatedly reused. Thus, miss rate decreases
as LAB size increases: LAB 64 captures an average of 71%
of the reuse for the most heavily accessed addresses, while
LAB 16 only provides 28% of the same reuse.
VGG19, SqueezeNet: VGG19 (VGG) and SqueezeNet (SN)
are deeper networks, and VGG has a larger batch size (64).
Thus, they have more device-scoped atomics than smaller
networks like AN, and accordingly larger improvements
from LAB: for VGG performance improves up to 24%
(16% average), energy decreases up to 22% (19% average),
and interconnect traffic decreases up to 61% (29% average).
Similarly, more of SN’s bwd filter and bwd data kernels have

ATGR > 30%. As a result, SN has better average performance
improvements (13%) than AN, but smaller improvements than
VGG, which has a larger batch size and thus more device-
scoped atomics. Similar to the other DNNs, on average LAB
reduces interconnect traffic by 21% and energy by 18%.
Although VGG and SN see additional benefits from larger
LABs, due to more temporal reuse in the bwd data kernels
and to a lesser extent in bwd filter kernels, a size 16 LAB
again provides the majority of the benefits, for the same
reasons as previously described networks.
D. Comparison to hLRC

hLRC improves reuse and reduces the serialization penalty
by obtaining ownership for atomics. However, hLRC strug-
gles for large working sets and high contention because
atomics and data accesses contend for L1 cache entries.
Moreover, when multiple SMs perform atomics on the same
cache line, hLRC must forward ownership to remote L1s,
adding additional overhead. Although hLRC performed well
for smaller graphs in prior work [4], our larger graphs
have more frequent remote L1 ownership requests, larger
working sets, and higher contention. Consequently, hLRC
performs poorly for them, especially for CCA, MIS, PR,
and Histogram which have high inter-SM contention for
atomics. In Histogram and CCA this is amplified by heavy
contention across a small subset of addresses, significantly
increasing network traffic due to remote invalidations and
further hurting performance. Conversely, most ML workloads
have less contention or perform atomics in a small window,
reducing remote invalidations and enabling more reuse. Con-
sequently, hLRC provides similar performance to LAB for
ML workloads, especially for small LAB sizes. However, as
LAB size increases (e.g., 64+ entries for AN and VGG), LAB
batches more updates without evictions than hLRC. Overall
for the full sized benchmarks, compared to the baseline hLRC
reduces performance by 76% (3% performance improvement
without CCA and Histogram), energy by 72% (12% reduction
without CCA and Histogram), and network traffic by 102%
(20% reduction without CCA and Histogram). Thus, LAB
outperforms hLRC by enabling multiple SMs to update local
copies before sending out partial updates.

E. Comparison to PHI

Overall, PHI outperforms hLRC and the baseline. Al-
though, like hLRC, PHI caches atomic updates locally,
it does not suffer from remote invalidations [68]. This
helps for Histogram, PR, and CCA, which have numerous
commutative atomics that PHI buffers locally, significantly
reducing network traffic and improving its performance and
energy versus hLRC. Furthermore, avoiding expensive remote
invalidations also helps PHI outperform hLRC for some
applications with moderate or low ATGR and locality like
SSSP, CLR, and MIS. However, hLRC outperforms PHI for
CC and ML workloads. In the ML workloads hLRC has
fewer remote invalidations since SMs usually update their

own fixed set of weights. Unlike PHI, hLRC also must wait
for ownership for atomics, which reduces these workload’s
contention and stalls compared to PHI.

Although PHI provides some of LAB’s benefits, and
offers the second best performance of all configurations,
overall LAB outperforms PHI (on average 20.94% better
performance, 0.2% better on network traffic and 3% better
on energy, and , respectively, for LAB-64; 20% performance,
1.5% energy, and 0.3% network traffic for LAB-Inf). For the
histograms, AN, CCA, and SSSP, PHI provides most or all
of LAB’s benefits because their working set fits in the cache.
Moreover, PHI outperforms LAB for BC by better leveraging
BC’s limited locality across atomics, since PHI can evict
either a regular data read or an atomic when an atomic
misses, unlike LAB. However, PHI significantly increases L1
cache stalls due to increased L1 contention, which usually
occurs when PHI utilizes all the MSHRs for pending data
read misses that are evicted by interspersed atomics. Thus,
while PHI reduces network traffic for some benchmarks, like
LAB, in others it increases stalls and contention between
reads and writes. Accordingly, PHI cannot provide all of
LAB’s benefits in applications with large working sets that
cause frequent L1 cache evictions (e.g., CC, CLR, MIS, SN,
and VGG). Although these workloads sometimes evict data
loads or stores with limited locality, in other situations PHI’s
co-mingling of data and atomic accesses increases stalls
and limits atomic reuse. As a result, LAB provides more
consistent improvements than either hLRC or PHI, by both
explicitly exploiting commutativity and decoupling where
data and atomic accesses are stored.

F. Traditional GPU Workloads

In Figure 10 we evaluate the baseline’s, LAB’s, PHI’s,
and hLRC’s performance for more traditional GPGPU
workloads. We allocate LAB space only for applications
that have atomics (Huffman and HybridSort). Thus, we use
LAB-0 for all other applications in Figure 10 (adjusted
for LAB-0’s overheads, see Section V-G), and LAB-64,
which was big enough for other applications, for Huffman
and HybridSort. Since Huffman and HybridSort perform
histograms, unsurprisingly both PHI and LAB improve
performance by 24% and 26% respectively, while hLRC
again suffers from inter-SM contention. Since the other
applications do not use atomics, both LAB and hLRC perform
similar to the baseline: all were within 1.2% of the baseline.
However, PHI again increases contention between reads and
writes, hurting performance for Backprop, BFS, DWT2D,
MummerGPU, and SRAD. PHI also performs worse for NW,
NN, pathfinder and particlefilter, though the performance
degradation is smaller, either because these applications have
fewer writes or because their read locality is low enough that
writes taking up cache space does not significantly impact
performance. Conversely, PHI does better for LUD, gaussian
and b+tree, which have write locality. Overall, on average

Figure 10. GPGPU results for PHI, hLRC and LAB, normalized to baseline.

PHI is 14% worse and LAB is 0.9% better than the baseline.
This further highlights the importance of decoupling data
and atomics in GPUs, like LAB, whose reconfigurability
allows it to work well across both synchronization-heavy and
traditional streaming GPGPU workloads, unlike PHI.

G. Area

Although LAB dynamically partitions the local SRAM,
LAB does have some small overheads within the reconfigured
SRAM block. Each LAB line requires 4 additional bits (e.g.,
32 bytes in total for an LAB of size 64) to identify the
atomic operation. Additionally, LAB also adds a 2-1 mux
(Section III-A) and a 4 bit comparator to ensure the atomic
operation matches. In total, this requires 4 caches lines of
overhead in a 128 KB L1 GPU cache, and our results in
Section V-F show this has minimal impact on performance.
Alternatively, to avoid extra storage, we can exploit the fact
that the atomic values did not require all of the data bits,
and instead use 4 data bits per line for this.

VI. DISCUSSION

Software vs. Hardware: Histogram obtains significant
benefits from using shared memory to exploit commutativity.
However, as discussed in Sections II-B and IV-C, the larger
graph analytics and ML training workloads cannot use shared
memory for their vertices (graph analytics) and weights
(ML training) because GPUs must statically allocate the
entire array in shared memory – even if a given TB only
accesses a small subset of the locations. Moreover, these
large arrays exceed the maximum shared memory size per
TB. To demonstrate this effect, we increased the number of
histogram bins from 256 to 8192. Since Histogram Shared
creates partial histograms for each TB, using more bins
reduces how many TBs can run simultaneously from 8 to 3
TBs per SM, hurting performance.

In comparison, Histogram has no such limitation. Thus, it
outperforms Histogram Shared by at least 3X for 8192 bins
with LAB (not shown due to space constraints). Moreover,
as histogram bins increase, Histogram Shared eventually
cannot run even 1 TB per SM. Thus, using GPU software
optimizations like shared memory can improve performance,
but only when the working set is sufficiently small. In
comparison, LAB dynamically retains the most highly used
locations, improving reuse even for applications with large

working sets. For example, on average AlexNet’s weight array
size is 466540 bytes, which requires ∼1900 KB of storage –
whereas modern GPUs only allow up to 192 KB of shared
memory per SM. Finally, for graph analytics algorithms, the
vertex updates are not predictable at compile time and hence
it is difficult to use shared memory to improve performance.

It is also possible to virtualize and manage shared memory
allocations manually in software [6], [18], [56]. This enables
programs with large shared memory requirements to run.
However, this requires programmers to handle issues such
as evictions, significantly increasing overhead (especially
from thread divergence), and prior work has shown that such
approaches provide mixed results for CPUs [54].
Applicability to Other ML Training Algorithms: Our
results focused on CNN training algorithms (Section IV-C).
However, LAB is also applicable to other ML training
algorithms: any ML training algorithm that atomically
updates shared weights at the end of a training iteration,
which is common in data parallel training, could utilize
a similar approach. Similar to DAB [16], we attempted to
examine recurrent neural network (RNN) training. Like DAB,
we found that current versions of cuDNN do not use atomics
for weight updates in RNN training. Nevertheless, we expect
that other ML training algorithms such as Reinforcement
Learning and GANs would obtain similar benefits to CNNs.
Simplicity: Although our proposed additions are relatively
simple, LAB still provides significant benefits by intelligently
exploiting algorithmic properties. Moreover, LAB seamlessly
fits in the existing, per-SM reconfigurable SRAM, which
allows programmers to utilize the LAB only when it is useful
(unlike prior approaches). Prior approaches (Section VII)
provide some of the same benefits as LAB, but often
require more invasive coherence protocol or consistency
model changes [4], [9], [93], [107] or suffer from cache
contention [2], [68]. Thus, LAB’s simplicity is a strength
and demonstrates how the additional complexity of prior
approaches is unnecessary, while also improving efficiency
over the state-of-the-art (Section V).

VII. RELATED WORK

Table IV compares LAB to prior work.
Remote Memory Operations [34], [55], [89], [104]: RMOs
send and perform update operations to a fixed memory
location or memory controller, and have been used in Cray
T3E, NYU Ultra, SGI Origin, and NVIDIA’s Fermi GPUs.
RMOs avoid contention for cache lines since updates are sent
to a fixed, shared memory location. However, this approach
increases memory traffic, which hurts performance, and
sometimes require programmers to explicitly allocate shared
memory locations. In comparison, LAB buffers commutative
atomics locally and does not increase network traffic.
Coherence Protocol or Consistency Model Changes [4],
[5], [9], [30], [93], [107]: Other work exploited commutativity
by extending or modifying the coherence protocol or memory

Feature hLRC [4] DeNovo [93] COUP [107] PHI [68] RMOs [34], [89] TS [85], [98] LAB
No coherence protocol change X X X X X X X
No memory consistency model change X X X X X X X
Low degree of atomic L2 traffic X X X X X X X
Reduces atomic serialization penalty X X X X X X X
No overhead for remote invalidations
or ownership requests X X X X X X X

Decouple data & atomic accesses X X X X X X X
Applied to GPUs X X X X X X X

Table IV
COMPARING LAB TO PRIOR WORK.

consistency model. Sinclair, et al. extended DeNovo to CPU-
GPU systems and showed how obtaining ownership for
written data reduced global memory traffic for atomics [5],
[93], [94]. Subsequently, hLRC extended DeNovo to only
obtain ownership for atomics [4]. Coup [107] and CCache [9]
apply similar concepts to CPU coherence protocols and
software. Although these approaches provide some of
LAB’s features, LAB outperforms hLRC (Section V-D),
and they significantly change the coherence protocol or
consistency model. Moreover, GPU coherence protocols
differ significantly from CPU coherence protocols [40],
[41], [95], which makes adopting CPU coherence-based
techniques like Coup or CCache on GPUs difficult. Similarly,
AtomicCoherence makes caching GPU atomics in the L1
easier, but requires coherence and interconnect changes [30].
Finally, GPU timestamp (TS)-based protocols [85], [95],
[98] improve efficiency, especially for streaming GPGPU
workloads. However, these protocols are write-through or
write-no-allocate for stores (and atomics) and block further
accesses to the addresses that are written through to the L2,
limiting intra- and inter-TB reuse opportunities.
Add Buffers to Caches: AIM uses special instructions to
perform aggregation for commutative updates throughout the
memory hierarchy [2]. However, similar to hLRC, AIM
uses coherence to transfer aggregation updates between
remote caches. For workloads with large working sets and
high contention, this will hurt performance as discussed
in Section V-D. PHI [68] improves commutative access
performance without changing the coherence or consistency
by buffering and coalescing updates in the cache. As shown
in Section V-E, LAB outperforms PHI, since the buffered
and data lines are not partitioned, contention from other
GPU memory accesses can evict buffered lines prematurely
and increase stalls, reducing coalescing and increasing in
global memory traffic. In comparison, since LAB utilizes a
separate space it is unaffected by data accesses, and thus
increases reuse. Additionally, PHI requires both a buffered
update bit and bits to identify the atomic operation for the
entire cache, whereas the LAB only needs atomic operation
bits (Section V-G).
Avoiding Collisions [26]: Egielski, et al. reduced GPU
atomic collisions with software optimizations to coalesce
atomics [26]. Although this reduces serialization, LAB targets
an orthogonal problem: performing atomics locally to reduce
serialization. Moreover, their approach could further improve

LAB’s performance by increasing hits.
ML Training: Prior work also optimized ML training.
However, unlike our work, most of this work optimizes
the width or number of memory accesses [44], [101], [113],
utilizing compression [86], optimizing synchronization in
distributed training [108], or rewriting code to keep memory
accesses in the register file or shared memory [24], [51], [71],
[111]. In comparison, we focus on a different bottleneck
– fine-grained synchronization. Moreover, these works are
complementary because applying them removes other sources
of inefficiency and makes fine-grained synchronization even
more important. Prior work also converted fine-grained
synchronization into data accesses [21], [70]. This removes
atomics, but potentially increases convergence time. In
comparison, we make device-scoped atomic accesses cheaper
without increasing iterations.

VIII. CONCLUSION

As GPGPU applications increasingly use fine-grained
synchronization, improving device-scoped atomics support
is imperative. We exploit the insight that atomic accesses
in graph analytics and ML training are commutative, and
utilize recent work to identify commutative atomics. Next,
we introduce a small, per-SM buffer (LAB) that combines
commutative atomics and utilizes reconfigurability to avoid
hurting applications that do not use commutative atomics.
LAB improves locality for commutative atomics, reduces
serialization costs, and reduces execution time, energy
consumption, and on-chip memory traffic compared to state-
of-the-art solutions.

REFERENCES

[1] M. Ahmad and O. Khan, “GPU Concurrency Choices in
Graph Analytics,” in IISWC, 2016, pp. 1–10.

[2] J. Ahn, S. Yoo, and K. Choi, “AIM: Energy-Efficient
Aggregation Inside the Memory Hierarchy,” ACM TACO,
vol. 13, no. 4, Oct. 2016.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.
Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free
Deep Neural Network Computing,” in ISCA, 2016, pp. 1–13.

[4] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood,
“Lazy Release Consistency for GPUs,” in MICRO, 2016, pp.
26:1–26:13.

[5] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A
Flexible Interface for Efficient Heterogeneous Coherence,”
in ISCA, 2018, pp. 261–274.

[6] L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzàlez,
X. Martorell, N. Navarro, E. Ayguadé, and M. Valero, “Co-
herence Protocol for Transparent Management of Scratchpad
Memories in Shared Memory Manycore Architectures,” in
ISCA, 2015, pp. 720–732.

[7] D. A. Bader, A. Kappes, H. Meyerhenke, P. Sanders,
C. Schulz, and D. Wagner, Benchmarking for Graph Clus-
tering and Partitioning, 2018, pp. 161–171.

[8] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in ISPASS, April 2009, pp. 163–174.

[9] V. Balaji, D. Tirumala, and B. Lucia, “Flexible Support for
Fast Parallel Commutative Updates,” 2017.

[10] H.-J. Boehm and S. V. Adve, “Foundations of the C++
Concurrency Memory Model,” in PLDI, 2008, p. 68–78.

[11] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative
Study of Irregular Programs on GPUs,” in IEEE International
Symposium on Workload Characterization, ser. IISWC, 2012,
pp. 141–151.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in IISWC, Oct 2009, pp. 44–54.

[13] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, Liang
Wang, and K. Skadron, “A Characterization of the Rodinia
Benchmark Suite with Comparison to Contemporary CMP
Workloads,” in IISWC, 2010, pp. 1–11.

[14] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,
“Pannotia: Understanding Irregular GPGPU Graph Applica-
tions,” in IISWC, Sept 2013, pp. 185–195.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial
Architecture for Energy-efficient Dataflow for Convolutional
Neural Networks,” in ISCA, 2016, pp. 367–379.

[16] Y. H. Chou, C. Ng, S. Cattell, J. Intan, M. D. Sinclair,
J. Devietti, T. G. Rogers, and T. M. Aamodt, “Deterministic
Atomic Buffering,” in MICRO, Oct 2020, pp. 981–995.

[17] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Full-
Speed Deterministic Bit-Accurate Parallel Floating-Point
Summation on Multi- and Many-Core Architectures,” INRIA
- Centre de recherche Rennes - Bretagne Atlantique, Tech.
Rep., 2014.

[18] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual Local
Stores: Enabling Software-Managed Memory Hierarchies
in Mainstream Computing Environments,” Electrical Engi-
neering and Computer Sciences University of California at
Berkeley, Tech. Rep., 2009.

[19] W. J. Dally, “Hardware for Deep Learning,” SysML Keynote,
Feb 2018.

[20] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite,” in
GPGPU-3, 2010, p. 63–74.

[21] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understand-
ing and Optimizing Asynchronous Low-Precision Stochastic
Gradient Descent,” in ISCA, 2017, pp. 561–574.

[22] D. Defour and S. Collange, “Reproducible floating-point
atomic addition in data-parallel environment,” in FedCSIS,
2015, pp. 721–728.

[23] C. Demetrescu, “9th DIMACS Implementation Chal-
lenge,” http://users.diag.uniroma1.it/challenge9/download.
shtml, 2006.

[24] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski,
A. Coates, E. Elsen, J. Engel, A. Y. Hannun, and S. Satheesh,
“Persistent RNNs: Stashing Recurrent Weights On-Chip,” in
ICML, 2016, pp. 2024–2033.

[25] S. Dong and D. Kaeli, “DNNMark: A Deep Neural Network
Benchmark Suite for GPUs,” in GPGPU, 2017, pp. 63–72.

[26] I. J. Egielski, J. Huang, and E. Z. Zhang, “Massive Atomics
for Massive Parallelism on GPUs,” in ISMM, 2014, p. 93–103.

[27] I. El Hajj, J. Gomez-Luna, C. Li, L.-W. Chang, D. Milojicic,
and W.-m. Hwu, “KLAP: Kernel launch aggregation and
promotion for optimizing dynamic parallelism,” in MICRO,
2016, pp. 1–12.

[28] B. Feinberg, B. C. Heyman, D. Mikhailenko, R. Wong, A. C.
Ho, and E. Ipek, “Commutative Data Reordering: A New
Technique to Reduce Data Movement Energy on Sparse
Inference Workloads,” in ISCA, 2020, pp. 1076–1088.

[29] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,
M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods,
S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung,
and D. Burger, “A Configurable Cloud-scale DNN Processor
for Real-time AI,” in ISCA, 2018, pp. 1–14.

[30] S. Franey and M. Lipasti, “Accelerating atomic operations
on gpgpus,” in NoCS, 2013, pp. 1–8.

[31] B. R. Gaster, D. Hower, and L. Howes, “HRF-Relaxed: Adapt-
ing HRF to the Complexities of Industrial Heterogeneous
Memory Models,” ACM TACO, vol. 12, no. 1, pp. 7:1–7:26,
Apr. 2015.

[32] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and
W. J. Dally, “Unifying Primary Cache, Scratch, and Register
File Memories in a Throughput Processor,” in MICRO, 2012,
pp. 96–106.

[33] Google, “Hot Chips 2017: A Closer Look At Google’s TPU
v2,” September 2017.

[34] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,
L. Rudolph, and M. Snir, “The NYU Ultracom-
puter—Designing an MIMD Shared Memory Parallel Com-
puter,” IEEE TOCS, vol. C-32, no. 2, pp. 175–189, Feb
1983.

[35] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-Tuning a High-Level Language Targeted
to GPU Codes,” in InPar, 2012, pp. 1–10.

[36] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient
accelerator for graph analytics,” in MICRO, 2016, pp. 1–13.

[37] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient Inference Engine on
Compressed Deep Neural Network,” in ISCA, 2016, pp. 243–
254.

[38] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law,
K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
and X. Wang, “Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective,” in HPCA, Feb 2018,
pp. 620–629.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[40] B. Hechtman, S. Che, D. Hower, Y. Tian, B. Beckmann,
M. Hill, S. Reinhardt, and D. Wood, “QuickRelease: A
Throughput-Oriented Approach to Release Consistency on
GPUs,” in HPCA, Feb 2014, pp. 189–200.

[41] B. A. Hechtman and D. J. Sorin, “Evaluating Cache Coherent
Shared Virtual Memory for Heterogeneous Multicore Chips,”
in ISPASS, 2013, pp. 118–119.

[42] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-
race-free Memory Models,” in ASPLOS, 2014, pp. 427–440.

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml

[43] HSA Foundation, “HSA Platform System Architecture Spec-
ification,” http://www.hsafoundation.com/?ddownload=4944,
2015.

[44] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhi-
menko, “Gist: Efficient Data Encoding for Deep Neural
Network Training,” in ISCA, 2018, pp. 776–789.

[45] Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, and
A. Aiken, “A Distributed Multi-GPU System for Fast Graph
Processing,” Proc. VLDB Endow., vol. 11, no. 3, p. 297–310,
Nov. 2017.

[46] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in ISCA,
2017, pp. 1–12.

[47] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath,
T. G. Rogers, T. M. Aamodt, and N. Hardavellas, “Accel-
Wattch: A Power Modeling Framework for Modern GPUs,”
in MICRO, 2021, p. 738–753.

[48] A. Kerr, D. Merrill, J. Demouth, and J. Tran, “CUTLASS:
Fast Linear Algebra in CUDA C++,” https://developer.nvidia.
com/blog/cutlass-linear-algebra-cuda/, 2017.

[49] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-
Sim: An Extensible Simulation Framework for Validated
GPU Modeling,” in ISCA, 2020, pp. 473–486.

[50] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers,
“Exploring Modern GPU Memory System Design Challenges
through Accurate Modeling,” CoRR, vol. abs/1810.07269,
2018.

[51] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar,
“In-Register Parameter Caching for Dynamic Neural Nets
with Virtual Persistent Processor Specialization,” in MICRO,
2018.

[52] Khronos OpenCL Working Group, “The OpenCL Specifi-
cation,” https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/pdf/OpenCL API.pdf, 2021.

[53] J. Kim and C. Batten, “Accelerating Irregular Algorithms on
GPGPUs Using Fine-Grain Hardware Worklists,” in MICRO,
2014, p. 75–87.

[54] W. Kim, S. Tavarageri, P. Sadayappan, and J. Torrellas,
“Architecting and Programming a Hardware-Incoherent Mul-
tiprocessor Cache Hierarchy,” in IPDPS, 2016, pp. 555–565.

[55] B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An
In-Network Architecture for Accelerating Shared-Memory
Multiprocessor Collectives,” in ISCA, 2020, pp. 996–1009.

[56] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa,
P. Srivastava, M. Kotsifakou, S. V. Adve, and V. S. Adve,
“Stash: Have Your Scratchpad and Cache it Too,” in ISCA,
2015, pp. 707–719.

[57] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building
Heterogeneous Unified Virtual Memories (UVMs) Without

the Overhead,” ACM TACO, vol. 13, no. 1, pp. 1:1–1:22,
Mar. 2016.

[58] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-
Scale Graph Computation on Just a PC,” in OSDI, Oct. 2012,
pp. 31–46.

[59] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing Near
Memory for Machine Learning Workloads with Bounded
Staleness Consistency Models,” in PACT, 2015, pp. 241–252.

[60] Lee Howes and Aaftab Munshi, “The OpenCL Specification,
Version 2.0,” Khronos Group, 2015.

[61] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling
Energy Optimizations in GPGPUs,” in ISCA, 2013, p.
487–498.

[62] J. Lew, D. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla,
C. Ng, N. Goli, M. D. Sinclair, T. G. Rogers, and T. M.
Aamodt, “Analyzing Machine Learning Workloads Using a
Detailed GPU Simulator,” CoRR, vol. abs/1811.08933, 2018.

[63] J. Lew, D. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla,
C. Ng, N. Goli, M. D. Sinclair, T. G. Rogers, and T. M.
Aamodt, “Analyzing Machine Learning Workloads Using a
Detailed GPU Simulator,” in ISPASS, 2019.

[64] B. Li, J. Wei, J. Sun, M. Annavaram, and N. S. Kim, “An
Efficient GPU Cache Architecture for Applications with
Irregular Memory Access Patterns,” ACM TACO, vol. 16,
no. 3, Jun. 2019.

[65] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A Formal
Analysis of the NVIDIA PTX Memory Consistency Model,”
in ASPLOS, 2019, p. 257–270.

[66] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph:
Efficient GPU-accelerated Graph Processing on a Single
Machine with Balanced Replication,” in USENIX ATC, Jul.
2017, pp. 195–207.

[67] D. Merrill, “NVIDIA CUB Library,” https://nvlabs.github.io/
cub/, 2020.

[68] A. Mukkara, N. Beckmann, and D. Sanchez, “PHI: Architec-
tural Support for Synchronization- and Bandwidth-Efficient
Commutative Scatter Updates,” in MICRO, 2019, pp. 1009–
1022.

[69] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-Free
Irregular Computations on GPUs,” in GPGPU-6, 2013, p.
96–107.

[70] F. Niu, B. Recht, C. Re, and S. J. Wright, “HOGWILD!:
A Lock-free Approach to Parallelizing Stochastic Gradient
Descent,” in NeurIPS, 2011, pp. 693–701.

[71] NVIDIA, “NVIDIA cuDNN: GPU Accelerated Deep Learn-
ing,” https://developer.nvidia.com/cudnn, 2018.

[72] NVIDIA, “CUDA C++ Programming Guide,”
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, 2020.

[73] NVIDIA, “libcu++: The C++ Standard Library for Your
Entire System,” https://nvidia.github.io/libcudacxx/, 2020.

[74] NVIDIA Corp., “Inside Volta: The World’s
Most Advanced Data Center GPU,”
https://devblogs.nvidia.com/parallelforall/inside-volta/,
May 2017.

[75] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D.
Hill, and D. A. Wood, “Synchronization Using Remote-Scope
Promotion,” in ASPLOS, 2015, p. 73–86.

[76] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal,
S. W. Keckler, and W. J. Dally, “Fine-Grained DRAM:
Energy-Efficient DRAM for Extreme Bandwidth Systems,”
in MICRO, 2017, p. 41–54.

http://www.hsafoundation.com/?ddownload=4944
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://nvidia.github.io/libcudacxx/

[77] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An Accelerator for Compressed-sparse Convolutional Neural
Networks,” in ISCA, 2017, pp. 27–40.

[78] V. Podlozhnyuk, “Histogram calculation in CUDA,”
https://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86 website/projects/histogram64/doc/histogram.pdf,
2007.

[79] B. Pourghassemi, C. Zhang, J. H. Lee, and A. Chan-
dramowlishwaran, “On the Limits of Parallelizing Convo-
lutional Neural Networks on GPUs,” in SPAA, 2020, p.
567–569.

[80] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous
System Coherence for Integrated CPU-GPU Systems,” in
MICRO, 2013, pp. 457–467.

[81] M. A. Raihan, N. Goli, and T. M. Aamodt, “Modeling
Deep Learning Accelerator Enabled GPUs,” CoRR, vol.
abs/1811.08309, 2018.

[82] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks,
“Minerva: Enabling Low-power, Highly-accurate Deep Neural
Network Accelerators,” in ISCA, 2016, pp. 267–278.

[83] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
Only Look Once: Unified, Real-time Object Detection,” in
CVPR, 2016, pp. 779–788.

[84] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and
D. Nellans, “HMG: Extending Cache Coherence Protocols
Across Modern Hierarchical Multi-GPU Systems,” in HPCA,
2020, pp. 582–595.

[85] X. Ren and M. Lis, “Efficient Sequential Consistency in
GPUs via Relativistic Cache Coherence,” in HPCA, 2017,
pp. 625–636.

[86] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,
and S. W. Keckler, “Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks,” in
HPCA, 2018, pp. 78–91.

[87] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin,
Backpropagation: The Basic Theory, 1995, p. 1–34.

[88] G. Salvador, W. H. Darvin, M. Huzaifa, J. Alsop, M. D. Sin-
clair, and S. V. Adve, “Specializing Coherence, Consistency,
and Push/Pull for GPU Graph Analytics,” in ISPASS, 2020.

[89] S. L. Scott, “Synchronization and Communication in the T3E
Multiprocessor,” in ASPLOS, 1996, p. 26–36.

[90] A. Segura, J. Arnau, and A. González, “SCU: A GPU Stream
Compaction Unit for Graph Processing,” in ISCA, 2019, pp.
424–435.

[91] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
“ISAAC: A Convolutional Neural Network Accelerator with
In-situ Analog Arithmetic in Crossbars,” in ISCA, 2016, pp.
14–26.

[92] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN
Accelerator Efficiency Through Resource Partitioning,” in
ISCA, 2017, pp. 535–547.

[93] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU
Synchronization without Scopes: Saying No to Complex
Consistency Models,” in MICRO, December 2015, pp. 647–
659.

[94] M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing Away
RAts: Semantics and Evaluation for Relaxed Atomics on
Heterogeneous Systems,” in ISCA, 2017, pp. 161–174.

[95] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and
T. M. Aamodt, “Cache Coherence for GPU Architectures,”
in HPCA, 2013, pp. 578–590.

[96] T. Sorensen, S. Pai, and A. F. Donaldson, “One Size
Doesn’t Fit All: Quantifying Performance Portability of
Graph Applications on GPUs,” in IISWC, November 2019.

[97] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu, IMPACT
Technical Report, IMPACT-12-01, University of Illinois, at
Urbana-Champaign, 2012.

[98] A. Tabbakh, X. Qian, and M. Annavaram, “G-TSC: Times-
tamp Based Coherence for GPUs,” in HPCA, 2018, pp. 403–
415.

[99] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler,
“NVBit: A Dynamic Binary Instrumentation Framework for
NVIDIA GPUs,” in MICRO, 2019, p. 372–383.

[100] V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts
on the GPU,” in CVPR Workshops, 2008, pp. 1–8.

[101] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu,
and T. Kraska, “SuperNeurons: Dynamic GPU Memory
Management for Training Deep Neural Networks,” in PPoPP,
2018, pp. 41–53.

[102] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A High-Performance Graph Processing
Library on the GPU,” in PPoPP, 2016.

[103] J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Don-
aldson, “Remote-Scope Promotion: Clarified, Rectified, and
Verified,” in OOPSLA, 2015, p. 731–747.

[104] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi
GF100 GPU Architecture,” IEEE Micro, vol. 31, no. 2, pp.
50–59, March 2011.

[105] Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and
L. Liu, “GraphABCD: Scaling out Graph Analytics with
Asynchronous Block Coordinate Descent,” in ISCA, 2020, p.
419–432.

[106] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: Customizing DNN Pruning to the
Underlying Hardware Parallelism,” in ISCA, 2017, pp. 548–
560.

[107] G. Zhang, W. Horn, and D. Sanchez, “Exploiting Commu-
tativity to Reduce the Cost of Updates to Shared Data in
Cache-Coherent Systems,” in MICRO, Dec 2015, pp. 13–25.

[108] H. Zhang, Y. Li, Z. Deng, and X. Liang, “AutoSync: Learning
to Synchronize for Data-Parallel Distributed Deep Learning,”
in NeurIPS, 2020.

[109] B. Zheng, A. Tiwari, N. Vijaykumar, and G. Pekhimenko,
“Ecornn: Efficient computing of lstm rnn training on gpus,”
arXiv preprint arXiv:1805.08899, 2018.

[110] Z. Zheng, W. Jiang, and G. Wu, “SpeeDO: Parallelizing
Stochastic Gradient Descent for Deep Convolutional Neural
Network,” in LearningSys, 2015.

[111] F. Zhu, J. Pool, M. Andersch, J. Appleyard, and F. Xie,
“Sparse Persistent RNNs: Squeezing Large Recurrent Net-
works On-Chip,” in ICLR, 2018.

[112] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “TBD: Benchmarking
and Analyzing Deep Neural Network Training,” in IISWC,
October 2018.

[113] M. Zhu, M. Rhu, J. Clemons, S. W. Keckler, and
Y. Xie, “Training long short-term memory with sparsified
stochastic gradient descent,” https://openreview.net/forum?
id=HJWzXsKxx, 2016.

https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
https://openreview.net/forum?id=HJWzXsKxx
https://openreview.net/forum?id=HJWzXsKxx

	Introduction
	Background
	GPU Coherence and Consistency
	Applications

	Proposed Design
	LAB Hardware Support
	Software Support: Distinguishing Atomic Operations
	Impact on Consistency and Coherence

	Methodology
	Simulation Environment & Parameters
	Configurations
	Benchmarks

	Results
	Microbenchmarks
	Graph Analytics Workloads
	ML Training Workloads
	Comparison to hLRC
	Comparison to PHI
	Traditional GPU Workloads
	Area

	Discussion
	Related Work
	Conclusion
	References

