
Challenge Benchmarks That Must be Conquered
to Sustain the GPU Revolution

Emily Blem Matthew Sinclair Karthikeyan Sankaralingam
University of Wisconsin - Madison
{blem, sinclair, karu}cs.wisc.edu

Abstract—The shift from GPUs to GPGPUs has brought
with it many changes to the GPU architecture (e.g. more
caches, more concurrent kernels, better synchronization).
As GPUs press further into the general-purpose domain,
architects must continue to address the performance of
challenging workloads. This paper presents a set of chal-
lenge benchmarks and their key performance limitations
to help direct future GPU architecture research. Our study
shows GPUs must develop multiple innovative architectural
techniques to efficiently execute these applications to con-
tinue making inroads into general purpose computing.

I. INTRODUCTION

GPU architectures have become increasingly general
purpose as manufacturers successfully expand into the
high throughput computing market. The introduction
of CUDA and OpenCL for programmability coupled
with architecture changes including more processors, in-
creased caching, and improved pipelines have all allowed
the GPU to support more diverse applications. However,
current GPUs struggle when executing programs where
SIMD parallelism is not abundant. In order for GPUs to
become a truly general purpose architecture, program-
mers and architects alike must address the performance
bottlenecks of challenging workloads.

This paper presents a set of challenging benchmarks
for GPGPU architectural research. Current GPGPU
benchmark suites contain a broad set of workloads, most
of which perform extremely well on GPUs. Current
research, such as Fung and Aamodt’s thread block com-
paction work [6], include their own sets of challenging
benchmarks for their specific problem domain. However,
an important question remains: in general, what are the
truly difficult GPU workloads, and what makes them
challenging? Answering this question will help to direct
future GPU architecture research.

GPGPU performance is primarily limited by program
parallelism, control flow issues, and stalls due to mem-
ory accesses. Without sufficient parallelism (threads),
GPGPU workloads cannot exploit the massively par-
allel architecture. Control flow issues can further limit
performance, even if the workload does follow the

GPU single-instruction, multiple-data paradigm. Finally,
the performance impact of long memory latencies and
limited memory bandwidth is significant if not hidden
by concurrent threads. Therefore, a truly challenging
GPGPU benchmark suite must include workloads that
trigger multiple combinations of these (and maybe other)
performance bottlenecks, while still being a representa-
tive set of real applications that users care about.

In this work, we first survey multiple GPU applica-
tions, and present such a challenge benchmark suites.
We present a detailed characterization of their execution
on GPUs, and identify key architectural bottlenecks
or application properties that make these benchmarks
challenging. Based on this characterization data, we then
use an analytic model to predict the performance impact
of mitigating each of these bottlenecks. Many of these
challenge benchmarks require multiple bottlenecks to be
alleviated before they achieve good performance. We
find that not only has the low hanging architectural fruit
been picked, but that there is no silver bullet waiting to
help architects reach the next level of performance on
these workloads.

Our study shows that if multiple benchmark-specific
architectural techniques are applied, these benchmarks
can be conquered. Our broad conclusion is that GPUs
will be forced to turn to specialization to energy-
efficiently improve performance, much sooner than gen-
erally anticipated. CPUs also must do the same, and
hence we see opportunities for synergy.

The limitations of our study include both the bench-
marks used and our methodology. We use available algo-
rithms and CUDA code that may not be fully optimized,
but that represents the current standard in research.
We also acknowledge that some of the applications are
heavily skewed in their memory access compared to their
computation. Building a viable general-purpose machine
to perform well on them may be an unrealistic goal.
Finally, our study relies on a mix of data from real
hardware, simulation, and analytic modeling; we discuss
errors introduced by this approach in Section III.

Section II describes our selection process for the

Appears EAMA Workshop 2011, Held in conjunction with ISCA



TABLE I
BENCHMARK EFFECTIVE IPC (CHALLENGE BMKS SHADED)

Eff
Benchmark Abbrev Input Size IPC

G
PG

PU
si

m

BlackScholes BLK 400M 202
AES Cryptography AES 256KB 184
StoreGPU STO 192KB 184
Ray Tracing RAY 256x256 image 159
Coulumbic Potential CP 200 atoms, 256x256 147
Libor Monte Carlo LIB 15 options, 4K paths 129
3D Laplace Solver LPS 100x100x100 104
Fast Walsh Transform FWT 8M elements —
gpuDG DG N=6, 2 steps —
Weather Prediction WP 10 timesteps 43.2
Neural Network NNW 28 digits 12.4
N-Queens Solver NQU 10 queens 8.5
Mummer MUM 200 queries/30K entries 3.8
Breadth First Search BFSG 64K nodes 3.7

R
od

in
ia

Cellular Automata CELL 1024x32, 8× 228
Kmeans KM 494K objects 193
Hotspot HOT 512x512x2 191
Leukocyte LKT 10 frames 180
PathFinder DYN 8192x8192x32 169
SRAD 2 SRAD2 402x458, 10× 158
Gaussian GAU dim = 512 139
LU Decomposition LUD dim = 256 135
ParticleFilter(fp64) PFT 10000 particles, 10 frames 116
Streamcluster SC 65K points 90.5
SRAD 1 SRAD 402x458, 10× 86.9
Backprop BPP 64K elements 82.5
HW Tracking HWT 10 frames 81.2
Heartwall HW 5 frames 81.2
Comp Fluid Dyn CFD 97K data points 74.9
Breadth First Search BFS 1M nodes 44.5
Nearest Neighbor NNB 42K records, 4 files 7.4
Needleman-Wunsch NW 4K elements 4.0
Myocyte MYO 100 ms, 100× 1.6

PA
R

SE
C

Fluidanimate FLD 100 frames, 4K cells 0.2
Swaptions SWP 64 swaptions, 20K sims 3.8

O
th

er S3D(fp64) [5] S3D 4K points —
Mummer++ [7] MMP 200 queries/33K entries 0.3

challenge benchmarks. In Section III, we characterize the
challenge benchmarks, and analyze their bottlenecks. In
Section IV, we discuss design choices suggested by the
bottleneck model and their impacts. Finally, we conclude
in Section V with a discussion of the implications of our
findings for the future of GPGPU architecture research.

II. CHALLENGE BENCHMARKS

We begin our search for challenge benchmarks with a
survey of the benchmarks listed in Table I. We obtained
these benchmarks from the GPGPU-Sim suite [2], Ro-
dinia suite [4], PARSEC suite [3], and other suites. We
limited our search to CUDA benchmarks as CUDA is
supported by both GPU hardware and the GPGPU-Sim
simulator [2] and is one of the most widely used GPU
programming languages. GPGPU-Sim and Rodinia are
commonly used CUDA benchmark suites. PARSEC is
a heavily used multicore benchmark suite from which

we ported fluidanimate and swaptions. Rather than mak-
ing wholesale algorithmic changes, our implementations
modify existing algorithms for GPU execution. The
remaining two benchmarks are cited in previous work
as challenging workloads [6].

In Table I, we list these benchmarks, input sizes used,
and our observed effective IPC. The effective IPC is
the IPC using only useful instructions per cycle (e.g.,
ignoring masked instructions due to warp divergence)
and is found using GPGPU-Sim with a Tesla C1060-
like configuration (see Section III-A). The peak IPC for
this system is 240. Our study focuses only on kernels
executed on the GPU – CPU work is ignored. Further,
except for the two benchmarks indicated on the table,
all others use only 32-bit floating point computation.

We classify any benchmark with overall or per kernel
effective IPC less than 40% of the peak (96) as a
challenging benchmark; these benchmarks are shaded in
the table. As mentioned earlier some applications are in-
herently skewed in their computation to memory access
ratio and for these improving the utilization of compute
engines may be inherently hard in a general-purpose
setting. A third of the GPGPU-Sim benchmarks and just
over half of the Rodinia benchmarks are classified as
challenging1.

III. GPU BOTTLENECKS
A. Overview

We now analyze the performance bottlenecks for these
challenge benchmarks and determine the performance
impact of each bottleneck. We use the GPGPU-Sim
simulator [2] for determining the bottlenecks and a GPU
performance model for determining the performance
impact from removing the bottleneck. We classify the
bottlenecks into three categories: parallelism, control
flow, and memory limitations. We present a validation
of both the simulator and the performance model by
comparing their projections to measurements from real
hardware.

We first describe our methodology and tools used. Our
study focuses on an Nvidia Tesla C1060 GPU, although
we expect the conclusions to hold for similar GPU
architectures. The C1060 has 30 simultaneous multicores
(SMs) with eight streaming processors (SPs) each for a
peak compute capability of 240 instructions per cycle
(IPC), and a peak memory bandwidth of 102 GB/s.

The GPGPU-Sim simulator (version 2.1.1b) models
the general-purpose functionality of GPUs, including
SMs, SPs, registers, memory, memory controllers, inter-
connect, and local, shader, texture, and constant memory.

1Performance information for DG, FWT and S3D are missing
due to GPGPU-Sim runtime or compilation errors; we include S3D
in the challenge benchmark suite based on hardware profiling results.

2



TABLE II
DETAILED CHALLENGE BENCHMARK ANALYSIS (KERNELS IN NUMERIC-ALPHA ORDER, EXCEPT NNW, WHICH IS IN LAYER ORDER).

Available Parallelism Control Flow Memory
Eff Kernel Th. per Total Avg Th. Accesses DRAM BW Stalled Anticipated

Kernel IPC Time Blocks Block Threads per Warp Serial Coalesced (GB/s) for Mem Bottlenecks

BFS1 4.87 92% 1954 512 1000448 10 25% 56% 70 76% WP, ST
BFS2 104.28 8% 1954 512 1000448 27 4% 97% 34 33% LAT
BFSG 3.69 100% 256 256 65536 10 25% 50% 69 66% WP, ST
BPP1 12.07 66% 4096 256 1048576 11 0% 88% 23 76% WP,BW
BPP2 132.94 34% 4096 256 1048576 12 0% 93% 41 11% —
CFD1 72.02 89% 506 192 97152 31 0% 76% 93 64% BW
CFD2 173.56 2% 506 192 97152 32 0% 94% 80 9% BW
CFD3 100.79 0% 506 192 97152 32 0% 94% 65 5% —
CFD4 82.09 9% 506 192 97152 32 0% 94% 91 62% BW
FLD1 0.81 0% 19 256 4864 14 11% 7% 47 96% LAT, WP, BP, ST
FLD2 0.16 40% 32 256 8192 3 39% 4% 14 — LAT, BP, WP, ST
FLD3 1.49 0% 32 256 8192 8 3% 13% 67 88% LAT, WP, BP
FLD4 0.12 58% 32 356 8192 3 51% 3% 13 40% LAT, WP, ST, BP
FLD5 1.22 0% 19 256 4864 13 12% 7% 43 94% LAT, WP, BP
FLD6 2.49 0% 19 256 4864 19 7% 94% 25 79% WP, BP
HW 81.17 100% 51 512 26112 25 1% 91& 86 26% BW, BP
HWT 81.22 100% 51 512 26112 25 1% 91% 86 26% BW, BP
MUM 3.75 100% 196 256 50176 8 37% 77% 52 58% WP, ST
MMP 0.28 100% 1 256 256 8 26% 30% 4 44% BP, WP, ST
MY O 1.60 100% 4 32 128 25 0% 0% 14 91% BP, LAT
NNW1 42.59 3% 168 169 28392 27 0% 90% 64 65% LAT
NNW2 11.96 19% 1400 25 35000 25 0% 83% 83 91% BW
NNW3 0.12 78% 2800 1 2800 1 100% 0% 80 47% TP, WP, ST, BW
NNW4 0.11 1% 280 1 280 1 100% 0% 68 44% TP, WP, ST
NNB 7.40 100% 938 16 15008 16 0% 22% 98 86% LAT, WP, BW
NQU 8.53 100% 256 96 24576 26 6% 90% 0 43% ST
NW1 4.14 49% 1 to 127 16 16 to 2032 11 5% 83% 6 82% WP, BP, TP
NW2 3.91 51% 1 to 127 16 16 to 2032 11 5% 83% 5 82% WP, BP, TP
SC 90.52 100% 128 512 65536 30 5% 93& 61 46% BW
SRAD1 205.02 0% 450 512 230400 31 0% 94% 41 2% —
SRAD2 207.52 0% 450 512 230400 32 0% 94% 57 4% —
SRAD3 53.01 41% 450 512 2304000 18 17% 93% 7 3% WP, ST
SRAD4 116.52 32% 1 or 450 512 512 or 2304000 32 0% 42% 67 76% BP
SRAD5 91.69 21% 450 512 2304000 32 0% 93% 78 57% BW
SRAD6 98.47 6% 450 512 2304000 32 0% 94% 89 54% BW
SWP 3.78 100% 1 512 512 21 1% 94% 15 18% BP, WP
WP 43.22 100% 72 64 4608 25 3% 83% 55 65% TP

K
E

Y Available Parallelism ⇒ TP: Threads per Block, BP: Blocks per Kernel
Control Flow ⇒ WP: Parallelism within Warp, ST: Serial Execution
Memory Accesses ⇒ BW: Memory Bandwidth, LAT: Memory Latency

We used the performance model proposed by Hong and
Kim [8]. It models GPU performance by considering the
computational and memory resources in the hardware
and the following application characteristics: memory
accesses, synchronization, block and grid structure.

B. Characterization
In Table II, we present the detailed workload charac-

terization for each kernel in the challenging benchmarks
using data from the GPGPU-Sim simulator. The first
three columns give general information about the kernel:
name, effective IPC, and percent of GPU time spent in
that kernel. Note that some kernels have IPCs greater
than 96; we include all kernels from a challenging bench-
mark even if the particular kernel performs well. The
next eight columns are divided into three sets: Available
Parallelism, Control Flow, and Memory. Section III-C

discusses these columns in detail, and is organized sim-
ilarly. The last column gives our diagnosed bottlenecks
based on intuition from the upcoming data analysis.C. Data Analysis

The following likely GPU bottlenecks are included in
Table II, with abbreviations listed in the table key:

1) Available Parallelism: GPUs achieve high perfor-
mance by running many concurrent threads on their
massively parallel architecture, but the total number of
threads can be limited by the number of blocks in the
kernel (BP) or the number of threads per block (TP).
Block and thread level parallelism is limited by the
fraction of the algorithm that has been parallelized and
the problem size. In our table, we consider a kernel par-
allelism limited if there are fewer than ten thousand total
threads (each SM is less than half full), and observe that
12 of the 38 kernels are limited by available parallelism.

3



20%

40%

60%

80%

100%

Pe
rc

en
tM

ac
hi

ne
E

ffi
ci

en
cy

S

S
S

S S

S

Tesla WP TP BP CM LAT BW

B
F

S
1

B
F

S
2

B
F

S
G

B
P

P
1

B
P

P
2

C
F

D
1

C
F

D
4

F
L

D
1

F
L

D
2

F
L

D
3

F
L

D
4

F
L

D
5

F
L

D
6

H
W

H
W

T

M
U

M

M
M

P

M
Y

O

N
N

W
1

N
N

W
2

N
N

W
3

N
N

W
4

N
N

B

N
Q

U

N
W

1

N
W

2

S
C

S
R

A
D

1

S
R

A
D

2

S
R

A
D

3

S
R

A
D

4

S
R

A
D

5

S
R

A
D

6

S
W

P

W
P

Fig. 1. Modeled bottleneck removal: impact of reducing warp divergence (WP), increasing threads per block (TP), increasing blocks per kernel
(BP), coalescing all memory accesses (CM), reducing memory latency (LAT), and increasing memory bandwidth (BW). (S: sync overheads)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
tE

rr
or

in
IP

C

B
F

S
1

B
F

S
2

B
F

S
G

F
L

D
1

F
L

D
2

F
L

D
3

F
L

D
4

F
L

D
5

F
L

D
6

H
W

M
M

P

M
Y

O

N
N

W
1

N
N

W
2

N
N

W
3

N
N

W
4

N
N

B

N
Q

U

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

S
R

A
D

3

S
R

A
D

4

S
R

A
D

5

S
R

A
D

6

S
W

P

Fig. 2. Simulator IPC validation against Tesla C1060

2) Control Flow: The single-instruction, multiple-
thread (SIMT) architecture of GPUs makes control flow
divergence a limiting factor for performance. We quan-
tify the impact of thread divergence by measuring the
average number of active threads in a warp over all
warp issues. We further measure the average number of
warp issues with only a single thread, which indicates
serial execution, synchronization, atomic operations, or
extreme thread divergence. Nineteen of the kernels have
fewer than 25 active threads per warp (WP) and twelve
of them have more than 10% of their issue cycles with
only a single active warp (ST).

3) Memory Accesses: Limited caching and heavy
cache contention make GPUs dependent on many ac-
cesses to main memory, and the long latencies may not
always be hidden by the heavy multi-threading if par-
allelism is limited or there are many memory accesses.
We observe that ten of the kernels use more than 70%
of the total 102 GB/s of memory bandwidth (BW). It
is important to note that DRAM performance can slow
with more than 70% utilization due to queuing effects
and memory access bursts. Further, we suspect that
nine benchmarks with few coalesced memory accesses
and many stalls for memory accesses are slowed by
the long latency of memory accesses (LAT). We note
here that applications that are limited by memory access
latency could overcome this using massive parallelism.
In our classification, this becomes a bottleneck only
when such large levels of parallelism are unavailable in
the application to hide the memory access latency.

D. Simulator Validation
Previous work has validated the GPGPUSim simulator

against an 8 SM system [2]; we validate against the
Tesla C1060 hardware. For hardware results, we use
computeprof [1] to get the total number of GPU
cycles required to execute each kernel. Since GPG-
PUSim uses PTX instructions, we need to translate this
hardware IPC. The synthetic hardware IPC is the number
of PTX instructions counted by GPGPU-Sim divided by
the number of cycles executed on the hardware; this
approach normalizes internal GPU instructions to PTX
instructions. In Figure 2, we show the percent error in the
calculated IPC for the majority of the challenge bench-
mark kernels. Errors are less than 50% for all kernels
that contribute greater than 5% of the GPU execution
time, which is sufficient for our purposes. Since, our
simulator is generally over-estimating performance, in
reality the performance of these challenge benchmarks
will be worse on real hardware.

E. Overall Bottleneck Impacts
Now that we have shown that the challenge bench-

marks span a set of performance bottlenecks, we use the
Hong and Kim model to show that mitigating the impact
of these constraints will indeed improve performance.
For model inputs, we use the kernel characteristics listed
in Table II and the Tesla C1060 architecture. We reduce
or eliminate the impact of each bottleneck by assuming
either algorithmic or hardware improvements. Iteratively,
we reduce or eliminate the bottleneck with the biggest
performance impact until all six bottlenecks discussed
have been removed. We repeat this process for each
kernel; each kernel may have bottlenecks removed in a
unique order. The results of this process are in Figure 1,
where the y-axis gives the percent machine efficiency
(percent of peak IPC, 240).

We make relatively to extremely optimistic assump-
tions about potential algorithmic or hardware changes to
predict maximum potential improvements. To increase
the level of parallelism, we increase either the number

4



of blocks or number of threads per block, keeping the
total amount of work done constant (improving BP and
TP, respectively). For control flow issues, we assume
that the algorithm and/or hardware can make it look
like all threads are active in every warp (WP). We
assume that synchronization points cannot be removed
from kernels, and do not model the removal of this
performance limiting factor. For memory accesses, we
try three scenarios: memory bandwidth increases by
five times (BW), memory latency halved (LAT), and all
memory accesses coalesced (CM). Note that coalescing
memory accesses decreases the effective memory access
latency seen by the kernel.

Figure 1 shows that 32 of the 38 kernels reach
practically 100% machine efficiency. The six kernels that
do not reach near peak machine efficiency are limited by
synchronization (labeled S in Figure 1). Kernels require
up to five bottleneck removals to achieve maximum
performance. While the first bottleneck relieved may not
have the largest impact, it must be mitigated before later
bottlenecks have an impact (e.g., increasing the number
of blocks may only have a significant impact once
memory is fast enough to keep the threads supplied).
Across the kernels, the first bottleneck removed varied.
Interestingly, increasing memory bandwidth does not
appear to improve performance for kernels. However, as
discussed in the model validation below, the model does
not include any queuing effects for memory accesses.
Given that many kernels use close to the bandwidth limit,
we observe these performance degradations in both the
GPGPU-Sim simulations and our hardware data. This
analysis shows that these kernels must obtain a geometric
mean speedup of 19× to reach peak machine efficiency.

F. Model Validation
For the analytic model, we are more interested in the

model’s ability to predict trends than its raw performance
predictions. Therefore, Figure 3 shows the percent error
in the model’s predicted speedup from a Quadro FX580
with 4 SMs to a Tesla C1060 with 30 SMs. Typical
errors vary widely, from -70% to 2×. Two benchmarks,
FLD4 and NQU , have even higher errors: 505× and
30×. The model only includes synchronization delays
due to __syncthreads() within a block; kernels that
use synchronization outside of a block, as these two
kernels do, will have their performance overpredicted.
The model is particularly optimistic when memory traffic
is significant; it does not model any queuing effects at
the memory controller or bursty traffic. This validation
shows that the model includes key bottlenecks, and we
expect the trends suggested by the model to hold. Like
the simulator, the model predominantly over-predicts,

-100%

-50%

0%

50%

100%

150%

200%

Pe
rc

en
tE

rr
or

in
IP

C
S

pe
ed

up

505x 30x

B
F

S
1

B
F

S
2

B
F

S
G

C
F

D
1

F
L

D
1

F
L

D
2

F
L

D
3

F
L

D
4

F
L

D
5

F
L

D
6

M
Y

O

N
N

W
1

N
N

W
2

N
N

W
3

N
N

W
4

N
N

B

N
Q

U

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

S
R

A
D

3

S
R

A
D

4

S
R

A
D

5

S
R

A
D

6

S
W

P

Fig. 3. Model speedup validation against Tesla C1060/QuadroFX580

and hence in reality, alleviating any one of the bottle-
necks is likely to have less performance improvement
on real hardware. This suggests, the projections from
our study under-estimate the severity of these challenge
workloads.
G. Limitations

Our technique’s limitations include our use of freely
available CUDA benchmark implementations, poten-
tially unoptimized algorithms, simulators, and analytic
models. For many statistics, computeprof only has
counters on a single SM. Kernels with limited paral-
lelism or non-steady state behavior are not well profiled
with counts from a single SM, and so using a simulator
allows us to collect a richer and more representative set
of data. As shown in the previous section, using the
simulator and model also introduces errors in our pre-
dictions. From a workload perspective, we acknowledge
that the benchmarks could potentially be rewritten to be
less challenging in the future, especially if algorithms are
designed specifically to exploit the GPUs architectural
features.

IV. DESIGN

We now apply the analysis from the previous section
to explore the types of design improvements that must
be made to continue improving GPGPU performance.
Given that many kernels are limited by warp diver-
gence, memory latency, synchronization, and available
parallelism, just adding additional cores or picking a
single bottleneck to mitigate is not sufficient to improve
performance across all benchmarks. Instead, we search
for a pair of bottlenecks that architects can focus their
design work on and expect that this design pair will im-
prove performance across many challenge benchmarks.
We focus on just two design features at a time to keep
the design effort practical and reduce added complexity.

To identify the design pairs most likely to improve
performance over many kernels, we find each kernel’s
performance after applying all possible design pairs. We
require that each of our proposed design pairs improve
performance to near maximal for at least two kernels.

The approach produces three design pairs: (1) re-
moving warp divergence and spreading work across an
optimal number of blocks, (2) removing warp divergence

5



20%

40%

60%

80%

100%
Pe

rc
en

to
fP

ea
k

IP
C

S
S

S
S S

S
Design Pair 1: remove WP & BP Design Pair 2: remove WP & CM Design Pair 3: remove WP & LAT

IPC

B
F

S
1

B
P

P
1

B
P

P
2

C
F

D
1

H
W

H
W

T

M
U

M

S
C

S
R

A
D

1

S
R

A
D

2

S
R

A
D

4

S
R

A
D

6

F
L

D
6

M
M

P

W
P

B
F

S
1

B
F

S
G

N
N

W
1

N
Q

U

S
R

A
D

5

N
W

1

N
W

2

C
F

D
4

F
L

D
1

F
L

D
2

F
L

D
3

F
L

D
4

F
L

D
5

M
Y

O

N
N

W
2

N
N

W
3

N
N

W
4

N
N

B

S
R

A
D

3

S
W

P

Tesla 198 80 88 233 179 183 58 170 234 239 239 240 89 2 5 38 31 101 103 44 22 22 11 21 4 24 3 22 3 23 1 .06 35 42 12

Design 239 240 240 240 237 237 240 217 240 240 240 240 201 219 240 237 234 240 240 47 96 97 47 75 49 10833 89 25 34 48 3 120 166 93

Peak 240 240 240 240 237 237 240 217 240 240 240 240 219 230 240 239 239 240 240 47 108 109 240 230 92 24056 232 240 240 240 240 240 240 140

Group X Group Y1 Group Y2 Group Y3 Group Z

Fig. 4. Modeled speedups after adding design pairs. Table includes IPC for Tesla, adding best design pair, and peak IPC. (S: sync overheads)

and coalescing all memory accesses, and (3) removing
warp divergence and halving the latency of memory
accesses. Across these three design pairs, nearly two
thirds of the kernels reach near optimal performance.

In Figure 4, we plot the percent of optimal IPC
achieved by each kernel after implementing each of these
design pairs. Below the figure, we include a three line
table with the following rows: (1) model predicted IPC,
(2) best IPC after adding one design pair, (3) peak IPC
from Section III. The kernels can be binned into three
groups: those with near peak IPC after any new design
pair is introduced (Group X), those with near peak IPC
after particular design pairs are implemented (Group Y ),
and those where implementing only one design pair is
not sufficient to achieve near peak IPC (Group Z). Group
Y is further subdivided by the corresponding design pair.

Note that while Group X contains twelve kernels, nine
had nearly peak IPC before any design improvements
were applied. Kernels in Group Y require implemen-
tation of specific design pairs. Group Z has no single
design pair that obtains near peak performance. In the
best case, SWP reaches 66% of peak IPC, and on
average kernels in Group Z reach 26% of peak IPC.
Thus, there is no silver performance bullet for either
a single kernel or across all kernels in our challenge
benchmarks suite.

Some current changes to GPU hardware seem tailored
toward making GPUs more general-purpose and improv-
ing GPGPU performance. The Fermi hardware includes
additional L1 caching and an L2 cache to reduce memory
latency [9]. Atomic operations are also significantly
faster, at least partially due to the L2 cache. Fermi also
increases the number of SPs per SM, effectively doubling
the peak IPC. These changes will not, however, address
performance issues for kernels with limited parallelism

or significant control flow overheads. We performed the
same profiling study on a Tesla C2050 (a Fermi GPU)
and found that challenge benchmarks were only sped up
by 1.5×. Current work in thread block compaction [6]
addresses the warp divergence issue that we observed,
but on average, our model suggests that only eliminating
thread divergence speeds up challenge kernels by just
1.8×. These are significant speedups, but our model
suggests that kernels from challenge benchmarks must
obtain a geometric mean speedup of 19× to reach peak
machine efficiency.

V. CONCLUSIONS

This paper characterizes a set of GPGPU challenge
benchmarks to find their performance bottlenecks and
predict the possible performance improvements after
mitigating those bottlenecks. We found that the bottle-
necks for challenge benchmarks are distributed across
memory, control flow, and parallelism limitations, and
on average leave a 19× performance gap from the peak
achievable performance. This need for higher perfor-
mance exists for at least half of the benchmarks in
common suites, but there is no single architectural fea-
ture to focus on for that improvement. A small number
of kernels are heavily skewed in their computation to
memory usage and hence building a general-purpose
machine that uses the compute engines well for these
applications may be unrealistic.

One of the contributions of our work is to identify
these challenge benchmarks. We have shown that there
is need for significant innovation to increase GPU perfor-
mance on them. We also expect that these results apply
to other many-core technologies and vector extensions
like Intel’s AVX.

While no single technique helps improve performance
for many benchmarks across the board, benchmark-

6



specific techniques show promising results. There ap-
pears to be no low hanging fruit or a silver bullet in
sight for architects to enable high performance for GPUs
on these benchmarks and thus diversify the application
space for GPUs even further. We believe, the main
implication of our study is that GPUs will be forced
to turn to specialization to energy-efficiently improve
performance, much sooner than generally anticipated.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and the Vertical
group for comments and the Wisconsin Condor project
and UW CSL for their assistance. Many thanks to Mark
Hill for comments on improving the paper. Support
for this research was provided by NSF under the fol-
lowing grants: CCF-0845751, CCF-0917238, and CNS-
0917213. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
NSF or other institutions.

REFERENCES

[1] Nvidia compute visual profiler version 3.1. http:
//developer.download.nvidia.com/compute/cuda/3 1/toolkit/
docs/VisualProfiler/computeprof.html.

[2] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M.
Aamodt. Analyzing cuda workloads using a detailed gpu simulator.
In ISPASS 2009., pages 163 –174, April 2009.

[3] Christian Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[4] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer,
Sang-Ha Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In IISWC 2009., pages 44 –54, 2009.

[5] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S.
Meredith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and
Jeffrey S. Vetter. The scalable heterogeneous computing (shoc)
benchmark suite. GPGPU ’10, pages 63–74, 2010.

[6] Wilson W.L. Fung and Tor M. Aadmodt. Thread block compaction
for efficient simt control flow. In HPCA-17, 2011.

[7] Abdullah Gharaibeh and Matei Ripeanu. Size matters: Space/time
tradeoffs to improve gpgpu applications performance. SC ’10,
pages 1–12, 2010.

[8] Sunpyo Hong and Hyesoon Kim. An analytical model for a
gpu architecture with memory-level and thread-level parallelism
awareness. ISCA ’09, pages 152–163, 2009.

[9] NVIDIA. Nvidias next generation cuda compute architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009.

7

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/VisualProfiler/computeprof.html
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/VisualProfiler/computeprof.html
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/VisualProfiler/computeprof.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Introduction
	Challenge Benchmarks
	GPU Bottlenecks
	Overview
	Characterization
	Data Analysis
	Available Parallelism
	Control Flow
	Memory Accesses

	Simulator Validation
	Overall Bottleneck Impacts
	Model Validation
	Limitations

	Design
	Conclusions
	References

