
gem5 GPU Accuracy Profiler (GAP)
Charles Jamieson, Anushka Chandrashekar, Ian McDougall, Matthew D. Sinclair

University of Wisconsin-Madison
{cjamieson2, achandrashe4, imcdougall}@wisc.edu {sinclair}@cs.wisc.edu

I. MOTIVATION

In recent years, we have been enhancing and updating
gem5’s GPU support [1]. First, we have enhanced gem5’s GPU
support for ML workloads such that gem5 can now run [2].
Moreover, as part of this support, we created, validated, and
released a Docker image that contains the proper software
and libraries needed to run GCN3 and Vega GPU models
in gem5. With this container, users can run the gem5 GPU
model, as well as build the ROCm applications that they
want to run in the GPU model, out of the box without
needing to properly install the appropriate ROCm software and
libraries [2], [3]. Additionally, we have updated gem5 to make
it easier to reproduce results, including releasing support for a
number of GPU workloads in gem5-resources [4] and enabling
continuous integration testing on future GPU commits.

However, we currently do not have a way to model validated
gem5 configurations for the most recent AMD GPUs. Current
support focuses on Carrizo- and Vega-class GPUs. Unfortu-
nately, these models do not always provide high accuracy
relative to real GPU runs. This leads to a mismatch between
how each instruction is supposedly being executed according
to the ISA and how a given GPU model executes a given
instruction. These discrepancies are of interest to those devel-
oping the gem5 GPU models as they can lead to less accurate
simulations. Accordingly, to help bridge this divide, we have
created a new tool, GAP (gem5 GPU Accuracy Profiler),
to identify discrepancies between real GPU and simulated
gem5 GPU behavior. GAP identifies and verifies how accurate
these configurations relative to real GPUs by comparing the
simulator’s performance counters to those from real GPUs.

II. METHODOLOGY

Figure 1 shows the overall flow of GAP. To properly
identify inaccuracies in the gem5’s GPU simulations, we
used an AMD Vega 20 (Radeon VII) as the baseline GPU.
After configuring gem5 to use a similar configuration to the
Vega 20, GAP’s scripts run the same GPU binaries on gem5
and the physical chip. Overall, the user must specify: a)
which benchmarks/binaries to run (in GAP’s configuration
file), b) any required command line arguments (in the gem5
configuration script), c) the path to gem5, and d) the ROCm
profiler’s (rocprof) configuration file [5] (to gather the appro-
priate hardware counter information). Given these elements,
the script runs the ROCm profiler and gem5 as specified, then
collects the output and parses for relevant metrics. The metrics
that will be compared in the output file are specified in the
ROCm profiler’s input file. The GAP output file will contain
the absolute values and percentage difference of collected

Fig. 1: GAP flowchart.

metrics. Although currently we have only tested this on a Vega
20, GAP and gem5’s GPU model are both flexible enough that
other GPUs could also be used for testing.

To test GAP, we used the existing benchmarks in gem5-
resources [3]. For example, for square, GAP shows that the
VALUUtilization is within 1% on the real GPU and gem5, but
the TCC misses differ by 821%, likely indicating that further
tuning of the memory sub-system is required to improve model
quality. However, these benchmarks tend to be larger and
thus make it difficult to isolate the behavior of specific GPU
components. Thus, to help isolate and improve the behavior
of specific components, we also ported a variety of GPU
microbenchmarks from prior work [6]–[9] to HIP.

III. CONCLUSION

Architectural simulation tools are highly important to the
computer architecture community: both industry and academia
rely on these tools to substantiate their findings. However
this means that findings are only accurate insofar as the tools
are accurate. GAP helps measure and improve gem5’s GPU
model. GAP gets a picture of how close gem5 is to reality
by running an application on both gem5 and real hardware.
The gem5 simulation is set up to closely emulate the real
GPU while the hardware is profiled during the running of
an application. By collecting the results of both the profiler
and the simulation we can get a picture of how closely
the simulation is following reality. GAP does the leg work
to compare items such as cache hit and misses, utilization,
instruction counts, and others. By iteratively making changes
to gem5 and using GAP to ensure those changes increase the
correlation of the real and simulated hardware we can improve
the accuracy of gem5. Although GAP currently only improves
the GPU model in this work, we believe the underlying idea
can also be applied to other simulation tools. Moving forward
we plan to integrate GAP into the regressions, to help parties
contributing to gem5’s source code to ensure their additions
do not hurt the accuracy of gem5’s GPU simulations.



ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation grant ENS-1925485.

REFERENCES

[1] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-
matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair,
M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in Abstraction:
Pitfalls of Analyzing GPUs at the Intermediate Language Level,” in
2018 IEEE International Symposium on High Performance Computer
Architecture, ser. HPCA, Feb 2018, pp. 608–619.

[2] K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in
gem5,” in 3rd gem5 Users’ Workshop, June 2020.

[3] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,
T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium on
Performance Analysis of Systems and Software, ser. ISPASS, 2021.

[4] gem5, “gem5 Resources,” https://www.gem5.org/documentation/general
docs/gem5 resources/, 2020.

[5] AMD, “AMD ROCm Profiler,” https://rocmdocs.amd.com/en/latest/
ROCm Tools/ROCm-Tools.html, 2021.

[6] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “GPU-
STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of
Many-Core Processors Across Diverse Parallel Programming Models,” in
High Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel,
Eds. Cham: Springer International Publishing, 2016, pp. 489–507.

[7] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “Exploring
Modern GPU Memory System Design Challenges through Accurate
Modeling,” CoRR, vol. abs/1810.07269, 2018. [Online]. Available:
http://arxiv.org/abs/1810.07269

[8] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA, 2020, pp. 473–486.

[9] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU Microarchitecture Through Microbenchmarking,”
in IEEE International Symposium on Performance Analysis of Systems
Software, ser. ISPASS, 2010, pp. 235–246.


