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I. MOTIVATION

With the waning of Moore’s Law and the end of Dennard’s
Scaling, systems are turning towards heterogeneity, mixing
conventional cores and specialized accelerators to continue
scaling performance and energy efficiency. Specialized ac-
celerators are frequently used to improve the efficiency of
computations that run inefficiently on conventional, general-
purpose processors. As a result, systems ranging from smart-
phones to data-centers, hyper-scalars, and supercomputers are
increasingly using large numbers of accelerators to provide
better efficiency than CPU-based solutions. However, hetero-
geneous systems face key challenges: changes to the underly-
ing technology which threaten continued scaling, as well as the
voracious scaling from applications, which require additional
research to address. Traditionally, simulators could be used to
perform early exploration for this research. However, existing
simulators lack important support for these key challenges.

Detailed simulation of modern systems can take extremely
long times in existing tools and infrastructure. Furthermore,
prototyping optimizations at scale can also be challenging,
especially for newly proposed accelerators. Although other
simulators such as Accel-Sim [1], SCALE-Sim [2], and Gem-
mini [3] enable some early experiments, they are limited
in their ability to target a wide variety of accelerators. In
comparison, gem5 [4], [5] has support for various CPUs,
GPUs, DSPs, and many other important accelerators [6]–
[9]. However, efficiently simulating large-scale workloads on
gem5’s cycle-level models requires prohibitively long times.
We aim to enhance gem5’s support to make running these
workloads practical while retaining accuracy.

II. IMPLEMENTATION

Modern AI and ML algorithms are often partitioned across
multiple devices (e.g, GPUs) or nodes, which state-of-the-
art simulators do not support. Accordingly, we added support
into gem5 to model multi-GPU systems [9]. Moreover, we
are working on extending gem5 also performing significant
optimizations to ensure each node in the system only per-
forms detailed simulation for the most important parts of the
program. To enable this, we first extended gem5’s existing
KVM support to run application components that are lower
priority, or those that can be simulated at lower fidelity. This
allows gem5 to focus only on the GPU kernel simulations that
are of interest in an application.

Checkpointing a Full System (FS) simulation can also
present significant performance benefits. While running a
simulation for the first time, region(s) of interest can be
annotated for a variety of applications. This will help save the

state of the system when it reaches these point. Later, when
running the simulation a checkpoint file is created that stores
a snapshot of the entire state of the system immediately before
the region of interest executes. State can then be restored
during later simulations to skip over all instructions until the
annotation and effectively begin simulating from the region of
interest onwards. Restoring from a checkpoint saves significant
time during subsequent runs as the simulation does not need
to go through the initial steps again. We added checkpointing
support to the GPU FS simulation mode by saving not just the
state of GPU global memory, but also information about TLB
translations, DMA doorbells, and ROCm kernel parameters.
We also added functionality to restore from this checkpoint
before proceeding with kernel execution.

III. FUTURE WORK

We plan to add support for HIP-CPU [10] to simulate
GPU components faster. HIP-CPU emulates the AMD’s HIP
GPU runtime API to port and run GPU kernels on the CPU
instead. However, since HIP-CPU does not run the ROCm
stack, we will need to determine if it can be used to restore
checkpoints after HIP-CPU, or if modifying LLVM to target
different backends will be required. Regardless, by adding this
support we will reduce fidelity on less important portions
of the workload and accordingly reduce gem5’s runtime.
An initial prototype (using Rodinia [11], [12]) suggests that
this approach results in gem5’s simulation time being only
1.6-3× slower than bare metal, in comparison to at least
200× without these optimizations. We will also integrate
gem5-SALAM [8] into the mainline of gem5, extend it to
model various accelerators, and use techniques such as fast-
forwarding, check-pointing, and intelligent characterization of
workloads to optimize accelerator runtimes while avoiding
performing the fast-forwarding on the real accelerator.

We also aim to find representative portions of an application
to simulate. Using these insights, we will introduce a set of
clustering methods to segment work into dynamically created
sampled inputs like checkpoints and evaluate how these meth-
ods both summarize the original program and speed-up the
simulation of the program. Moreover, we will further develop
tools to identify algorithm-dependent factors that impact the
variation across iterations (e.g., in ML training) before needing
to profile or simulate applications [13]. Using these insights
will allow us to identify a small subset of the algorithm’s work
that is representative of each algorithm’s behavior while being
practical to simulate.
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