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I. MOTIVATION

The gem5 simulator offers Classic and Ruby as two separate
memory models for simulating on-chip caches. The Classic
model, which originated from M5 [1], is a quick and simple
option that allows for easy configuration, but only supports
a basic MOESI coherence protocol. On the other hand, the
Ruby model, which was developed by GEMS [2], is a more
advanced and flexible option that can accurately simulate a
wider range of cache coherence protocols and features [3], [4].
However, choosing between the two memory system models
in gem5 is challenging for researchers as each has advantages
and limitations which can be inconvenient. In particular, this
has led to a bifurcation of effort where prior work has
added replacement policies to Classic and Ruby in parallel
– duplicating effort unnecessarily and preventing users from
using a desired replacement policy if it is not implemented in
the desired memory model (e.g., users could only use RRIP [5]
in Classic).

Accordingly, we merged the cache replacement policies
from Classic to Ruby, enabling users to use any of the
replacement policies in either memory model. Gem5 currently
has the capability to support 13 replacement policies, which
can be used exchangeable within the Classic and Ruby cache
models, including commonly used options like LRU, FIFO,
PseudoLRU, and different types of RRIPs [6]. After combining
the replacement policies for the Classic and Ruby cache
models, we designed and integrated (into gem5’s nightly
regressions) multiple corner case tests to verify and ensure the
continued correct functionality of these policies [7]. Through
these tests, we identified and fixed several bugs [8] [9] to
ensure that the replacement policies operate correctly. Finally,
with the newly enabled and verified functionality, since there is
limited information about how different replacement policies
affects GPU performance, we decided to use gem5 to study
these policies in a GPU context. Specifically, we study GPU
L2 caches, since GPU L1 caches are often used to stream data
through and thus are unlikely to be significantly impacted by
replacement policy.

II. METHODOLOGY

We used an AMD Vega 10 as the target GPU [10], [11],
and studied various L2 cache sizes (256 KB - 512 MB) for all
13 replacement policies. To compare the impact of changing
L2 cache size and replacement policies, we examine total
GPU cycles and GPU L2 hit rates. We tested the replacement
policies with the Rodinia benchmarks [12], [13]. For example,

Fig. 1: B+Tree Performance across various LLC sizes and
replacement policies.

Fig. 2: B+Tree LLC hit rate across various LLC sizes and
replacement policies.

Figures 1 and 2 show how B+tree is impacted. The LFU
and MRU replacement policies performed the worst, while the
RRIP performed slightly better than other policies. Moreover,
B+ tree’s overall performance improved and stabilized when
the L2 cache size exceeded 8 MB – indicating that the working
set now fits in the LLC. Other Rodinia applications show
similar behavior, but they might be more or less affected by
size and replacement policies. We suspect this is partly because
by default the GPU configuration uses write-through caches,
limiting reuse opportunities to situations with read-only data.

III. CONCLUSION

Cache replacement policy plays an important role for mem-
ory design and optimization. It has a significant impact on
the cache system’s hit rate and access latency, which has led
to extensive efforts in both academia and industry to improve
its effectiveness [14]. Despite the critical importance of cache
replacement policies for efficient memory hierarchy design,
there is limited research on their impact on GPUs. Our results
show that, for write-through GPU LLC, caches replacement
policy does not significantly impact overall results. However,
we expect that write-back LLC caches and other, more cache
sensitive GPU applications, will show larger benefits.
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