
Improving the Speed of gem5’s GPU Regression
Tests

James Braun and Matthew D. Sinclair
University of Wisconsin-Madison

jebraun3@wisc.edu sinclair@cs.wisc.edu

I. MOTIVATION

In recent years, we have been enhancing and updating
gem5’s GPU support [1]. First, we have enhanced gem5’s GPU
support for ML workloads such that gem5 can now run [2].
Moreover, as part of this support, we created, validated, and
released a Docker image that contains the proper software
and libraries needed to run GCN3 and Vega GPU models
in gem5. With this container, users can run the gem5 GPU
model, as well as build the ROCm applications that they
want to run in the GPU model, out of the box without
needing to properly install the appropriate ROCm software and
libraries [2], [3]. Additionally, we have updated gem5 to make
it easier to reproduce results, including releasing support for a
number of GPU workloads in gem5-resources [4] and enabling
continuous integration testing on future GPU commits.

However, in an effort to provide sufficient coverage, the cur-
rent testing support for GPU tests requires significant runtime
both for the nightly and weekly regression tests. Currently
most of these regression tests test the GPU SE mode support,
since GPU FS mode support is still nascent. Unfortunately,
much of this time is spent parsing input files to create
arrays and other data structures that the GPU subsequently
computes on. Although SE mode does not simulate the system
calls needed to read these input files, nevertheless this still
represents a significant overhead that increases runtime and
prevents other tests (potentially providing additional coverage)
from being run in that same timeframe. In an effort to address
this, in the work we have been working on utilizing SE mode’s
avoiding modeling system calls to speed up the runtime of
the GPU regression tests. Specifically, we redesign the input
reading phase of these GPU tests to create and use mmap’d
files for their input arrays (which SE mode completes all at
once) instead of reading in the files entry by entry. In doing
so, we see significant reductions in runtime of at least 29%.

II. IMPLEMENTATION & METHODOLOGY

Although both the mmap’d and non-mmap’d inputs for these
benchmarks both use SE mode, we take advantage of the fact
that mmap’d files can be completed in a single access because
SE mode will have the underlying real hardware perform the
mmap – and in the process read in the entire set of inputs at
once. The alternative – using system calls like fgets – also
uses the underlying hardware to read in the inputs, but requires
that we perform many fgets (usually 1 such system call per
line in the input file). However, since the applications gem5
supports (e.g., Pannotia [5]) often run on large grants with at

least thousands of lines of inputs, performing these operations
is still time consuming – sometimes even taking longer than
the portion of the benchmark that simulates the GPU kernels.
Thus, changing the benchmarks to use mmap’d inputs can
significantly improve runtime. Moreover, since these bench-
marks often run many different input files, hardcoding the
values we want to read is not realistic. Instead, our redesigned
benchmarks use input flags to create mmap’d files for a specific
input file on real hardware and then use those mmap’d files
with another flag when run in gem5. Thus, our solution is
configurable and flexible regardless of inputs used.

To determine the efficacy of our approach we examined
Pannotia’s Floyd-Warshall (FW) benchmark [5] from gem5-
resources [3] on gem5’s Vega 10 GPU model. Thus far, we
have only used the small 1k_128K.gr input graph from
the Pannotia repo. Then, we compared the runtime (using
Linux’s time) of gem5 using the baseline version of FW
that reads in the input file one line at a time and our modified
version that creates and then uses a mmap’d file instead for
the inputs. Overall, our results show that using mmap’d files
reduces FW’s runtime by 41%, demonstrating the value in
extending this approach to other benchmarks. Moreover, since
the proportion of the simulation time spent reading input files
is often proportional with input file size, we expect the gains
for other, larger graphs will be even bigger.

III. CONCLUSION

Architectural simulation tools are highly important to the
computer architecture community: both industry and academia
rely on these tools to substantiate their findings. Given their
widespread use, it is important that regressions be performed
frequently to ensure new features do not affect the correctness
of existing features. This introduces a new source of tension:
ensuring sufficient coverage while not bloating runtime to
unacceptable levels (e.g., too many tests to run overnight). By
adding flexible, configurable support for the GPU SE mode
tests to use faster mmap’d inputs instead of slowly reading
in input files, our approach helps alleviate this tension: either
more tests can be in the same amount of time (increasing
coverage without increasing runtime) or the regression tests
can be completed faster (reducing runtime for the current level
of coverage). Although so far we only have examined a single
GPU benchmark, we are currently adding similar support for
the other GPU workloads in gem5-resources and integrating
this support into both gem5-resources and the per-checkin,
nightly, and weekly regression tests.



ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation grant ENS-1925485.

REFERENCES

[1] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-
matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair,
M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in Abstraction:
Pitfalls of Analyzing GPUs at the Intermediate Language Level,” in
2018 IEEE International Symposium on High Performance Computer
Architecture, ser. HPCA, Feb 2018, pp. 608–619.

[2] K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in
gem5,” in 3rd gem5 Users’ Workshop, June 2020.

[3] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,
T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium on
Performance Analysis of Systems and Software, ser. ISPASS, 2021.

[4] gem5, “gem5 Resources,” https://www.gem5.org/documentation/general
docs/gem5 resources/, 2020.

[5] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in IEEE Interna-
tional Symposium on Workload Characterization, ser. IISWC, Sept 2013,
pp. 185–195.


