
NUMA-Aware Queue Scheduler
for Multi-Chiplet GPUs

Leveraging the Command Processor for Queue Scheduling in
multi-chiplet GPUs

by

Neeraj Surawar

A project submitted in partial fulfillment

of the requirements for the degree of

Masters of Science

Computer Sciences

University of Wisconsin-Madison
December 2024

i

Acknowledgments

I would like to extend my heartfelt gratitude to my research advisor, Professor Matt

Sinclair. His constant support, valuable mentorship, and encouragement have been in-

strumental throughout my research journey. Prof. Sinclair is one of the most diligent

and hard-working individuals I have ever encountered, and his work ethic has inspired me

to dedicate myself more fully to my research. His guidance has been truly inspirational

and has tremendously impacted how I approach and tackle difficult research challenges.

Working on exciting projects under his supervision has been an enriching experience, and

I truly appreciate the opportunity to learn and grow under his mentorship. I also want to

thank all the members of the HAL Research Group sincerely. Their insightful discussions,

collaborative spirit, and readiness to help have enriched my learning experience and made

the research process both rewarding and enjoyable. I am grateful to be part of such an

exceptional research team.

I am also grateful to the Computer Sciences Department at the University of Wisconsin-

Madison for fostering an environment rich with opportunities.

Last but not least, I would like to thank my parents and sister for believing in me, en-

couraging me, and always supporting me throughout my academic career.

On Wisconsin!

ii

Abstract

Chiplet-based architectures have recently emerged as a technique to improve yields and

enable continued performance scaling. However, the increased modularity and scalabil-

ity they offer also requires rethinking system design. Compared to monolithic designs,

chiplet-based architectures face challenges around how computation is scheduled and how

data movement is coordinated across chiplets. These challenges introduce additional Non-

Uniform Memory Access (NUMA) complexities in multi-chiplet systems that can impact

performance. Consequently, exploiting locality is a significant bottleneck in multi-chiplet

systems. Although multi-chiplet CPUs overcome this inefficiency through complex co-

herence protocols or OS support, accelerators (e.g., GPUs) utilize relatively lightweight

coherence and OS support. Thus, inter-chiplet NUMA effects affect them more – especially

at phase boundaries where accelerators often utilize heavyweight operations to ensure cor-

rectness. In recognition of these challenges, prior multi-chiplet GPU works introduced

mechanisms to improve data locality or reduce synchronization overhead. However, these

techniques perform these optimizations in isolation, limiting their benefits. Conversely,

we propose CAQS, a novel Cache-Aware Queue Scheduler that intelligently utilizes

both locality and synchronization information when deciding where to schedule applica-

tion phases to reduce the impact of inter-chiplet NUMA effects. Overall, across 18 popular

GPU workloads CAQS improves geomean performance (30%, 28%, 6%), energy efficiency

(36%, 19%, 27%), and reduces network traffic (80%, 61%, 80%), over modern GPUs and

the state-of-the-art CPElide and LADM, respectively. Moreover, CAQS’s advantages grow

for more concurrent streams.

iii

Contents

1 Introduction 1

2 Background 6

2.1 Multi-Chiplet GPU Architecture . 6

2.1.1 GPU Command Processors . 6

2.1.2 CPElide . 7

3 Design 10

3.1 Architecture . 10

3.2 Dynamic Queue Scheduling Mechanism . 11

3.3 Putting It All Together . 13

3.4 Overheads . 15

4 Methodology 17

4.1 Baseline GPU Architecture . 17

4.2 System Setup . 17

4.3 Workloads . 19

4.4 Configurations . 20

4.5 Design Decisions . 21

4.6 Sensitivity Study: Number of Streams . 21

5 Results 22

5.1 Single Stream . 24

iv

5.1.1 CAQS vs Baseline . 24

5.1.2 CAQS vs LADM vs CPElide . 26

5.2 4-Stream Workloads . 29

5.3 Saturating the System: 6-Stream Workloads 31

6 Discussion 32

7 Related Work 34

8 Conclusion 36

v

List of Figures

1.1 MCM GPU system’s high-level view. 2

2.1 CPElide architecture [27]. 8

3.1 CAQS Design (changes in red). 10

3.2 CAQS Req/Resp Flow . 11

5.1 Single stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a

6-chiplet GPU, normalized to Baseline. 23

5.2 Single stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in

a 6-chiplet GPU, normalized to Baseline. 23

5.3 Single stream apps’ network traffic for Baseline, CPElide, LADM, & CAQS

in a 6-chiplet GPU, normalized to Baseline. 23

5.4 Single stream apps’ energy usage for Baseline, CPElide, LADM, & CAQS

in a 6-chiplet GPU, normalized to Baseline. 23

5.5 Four stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a

6-chiplet GPU, normalized to Baseline. 28

5.6 Four stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in

a 6-chiplet GPU, normalized to Baseline. 29

5.7 Four stream apps’ network traffic for Baseline, CPElide, LADM, & CAQS

in a 6-chiplet GPU, normalized to Baseline. 29

vi

5.8 Four stream apps’ energy usage for Baseline, CPElide, LADM, & CAQS in

a 6-chiplet GPU, normalized to Baseline. 29

5.9 Six stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a

6-chiplet GPU, normalized to Baseline. 31

5.10 Six stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in a

6-chiplet GPU, normalized to Baseline. 31

vii

List of Tables

1.1 Mechanisms to improve inter-kernel reuse on chiplet-based GPUs. 2

4.1 Simulated baseline GPU parameters. 18

4.2 Evaluated Benchmarks . 19

1

Chapter 1

Introduction

Workloads including high performance computing (HPC) and machine learning (ML) con-

tinue to exhibit voracious demands for compute and memory [1, 2]. Concurrently, the

waning of Moore’s Law and end of Dennard’s Scaling limit the performance benefits that

transistor scaling traditionally provided [3]. Thus, modern systems are facing challenges

above from applications and below from the slowing of transistor scaling [4]. As a result,

systems are embracing heterogeneous mixes of conventional cores and specialized accel-

erators to continue scaling performance and energy efficiency. Specialized accelerators

are frequently used to improve the efficiency of computations that run inefficiently on

conventional, general-purpose processors. To keep pace with the insatiable demand for

performance, accelerators are growing larger, integrating more compute cores, specialized

processing units, and sophisticated memory hierarchies [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

However, this monolithic scaling approach faces challenges in manufacturing yield, cost,

and thermal limits [15, 16, 17, 18].

Given these challenges, designers are embracing chiplets [19, 20], also known as multi-

chip modules (MCMs) [15, 21, 22] (Figure 1.1a). Chiplets combine multiple smaller chips

into a large, aggregated system using interposers [23, 24, 16, 25] or other packaging tech-

niques such as crosslinks [4, 26]. By breaking down large, complex chips into smaller,

interconnected semiconductor dies, chiplet architectures enable more flexible manufactur-

2

(a) MCM GPU (b) Distributed Memory

Figure 1.1: MCM GPU system’s high-level view.

Implicit Synchronization at Kernel Boundaries
Always Required Sometimes Required

No Current GPUs CPElide [27]Data Access
Optimizations Yes CODA[28], GRIT[29], LADM[17], Milic, et al. [30], SAC[31], SelRep [32] CAQS

Table 1.1: Mechanisms to improve inter-kernel reuse on chiplet-based GPUs.

ing, improved yield, enhanced design flexibility, and reduced costs. Thus, chiplets offer a

modular strategy to continue scaling performance and offer a potentially transformative

architectural approach to address the escalating challenges of monolithic chip design.

Although chiplet-based designs offer a number of benefits over more conventional,

monolithic designs, they also introduce unique challenges. In particular, maintaining data

locality and minimizing latency overheads is more challenging in chiplet-based designs.

Compared to monolithic designs, chiplets introduce an additional level of indirection in

the memory hierarchy. As shown in Figure 1.1a, chiplets utilize private L1 and L2 caches

located within the chiplets, as well as shared L3 caches. Furthermore, chiplet-based de-

signs also distribute memory across chiplets (Figure 1.1b). This introduces significant

indirection and NUMA (Non-Uniform Memory Access) overheads whenever inter-chiplet

communication is required. Thus, NUMA-aware design is essential to optimize perfor-

mance and fully harness the potential of chiplet-based architectures.

Although all chiplet-based designs face challenges from inter-chiplet NUMA effects,

vendors have demonstrated how they can leverage a) complex coherence protocols (e.g.,

MOESI) that minimize the overhead of synchronization and increase locality [4] and b)

OS support to mitigate NUMA effects [33, 34, 35] in homogeneous, multi-chiplet CPUs.

Unfortunately, these solutions clash with how accelerators are typically designed. While

3

monolithic accelerators had some NUMA overheads, multi-chiplet designs exacerbate these

NUMA effects. Most accelerators assume relatively flat memory hierarchies, have limited

OS support, and utilize relatively simple coherence protocols with heavyweight synchro-

nization operations [36, 37, 38, 39, 40, 41]. Consequently, multi-chiplet accelerators cannot

use the same solutions as multi-chiplet CPUs. In this work, we focus on the increasingly

ubiquitous multi-chiplet GPUs due to their combination of programmability, performance,

and energy efficiency. However, since many accelerators suffer from NUMA effects and

utilize similar approaches [42, 43, 44, 45], CAQS also applies to them (discussed further

in Chapter 6).

Previous NUMA-aware Approaches: Prior work has shown that the impact of NUMA

effects on chiplet-based GPUs is severe: 29%-54% average performance loss versus

equivalently sized monolithic accelerators [27, 17, 39, 46]. Accordingly, they have made

significant improvements to reduce NUMA penalties. Broadly, these efforts can be divided

into two categories: scheduling work close to the data (Data Access Optimizations) and

reducing the overhead of implicit GPU synchronization at kernel boundaries (Implicit

Synchronization at Kernel Boundaries). We use these factors as axes in Table 1.1 to

describe the state-of-the-art in reducing NUMA overheads (related work discussed further

in Chapter 7).

Current multi-chiplet GPUs: At kernel boundaries, current multi-chiplet GPUs [10, 12,

14] must implicitly invalidate all valid data and flush all dirty data from all caches in a

chiplet to keep the data consistent across chiplets [47, 48, 49]. In chiplet-based GPUs

like those in Figure 1.1, this means that all data in both L1 and L2 caches, across all

chiplets, must be invalidated/flushed at kernel boundaries. Thus, unlike in monolithic

GPUs, in modern chiplet-based GPUs data cannot be retained in the L2 cache across

kernels – significantly hurting performance. Although they do allow programmers to bind

GPU streams to a specific chiplet, and offer virtualization techniques such as MIG [50] and

MxGPU [51] to provide isolated access to a subset of the GPU’s resources, these techniques

are often unable to improve per-chiplet locality and must implicitly synchronize at kernel

4

boundaries.

Data Access Optimizations: Prior work such as CODA [28], GRIT [29], Locality-Aware

Data Management (LADM) [17], and Milic, et al. [30] proposed various page placement

policies to co-locate data and compute, including first touch placement, on-touch migra-

tion, access counter-based migration, and page duplication to reduce NUMA penalties by

reducing remote accesses. LADM attempts to schedule threads on the chiplet(s) where the

data resides utilizing a compile-time static index analysis of a GPU program to dynamically

make decisions about data placement, thread scheduling, and remote caching [17]. Con-

versely, GRIT attempts to dynamically identify the appropriate page placement schemes

instead of using a single page placement policy [29]. Other approaches such as SAC

and SelRep improve either memory- or SM-side LLC (e.g., L3) cache bandwidth [31, 32].

While each of these schemes improves locality, all must implicitly synchronize at kernel

boundaries. Thus, they cannot exploit inter-kernel L2 reuse.

Reducing Implicit Synchronization Overhead : The above approaches optimize data ac-

cesses at the L3 cache or main memory. This approach is common because at kernel

boundaries GPUs must implicitly invalidate all valid data and flush all dirty data from all

caches in a chiplet to keep the data consistent across chiplets [47, 48, 49]. However, recent

work, CPElide (discussed further in Chapter 2.1.2), reduces the overhead of these im-

plicit synchronizations [27]. CPElide observed that many implicit kernel synchronizations

are redundant, and reduces the overhead from these flushes/invalidations by tracking the

kernel accesses using the GPU’s Command Processor’s (CP, discussed further in Chap-

ter 2.1.1) to perform implicit synchronization only when required. Thus, CPElide keeps

more data in the chiplet’s L2 caches and reduces the overhead of implicit, kernel bound-

ary synchronization. However, since CPElide does not consider the data locality when

scheduling kernels, it cannot always avoid NUMA penalties.

Our Approach: CAQS: Prior work either require coarse-grained, redundant implicit

synchronization or do not consider data placement optimizations when scheduling work.

To overcome the shortcomings of both approaches, we propose CAQS, which considers

5

both locality and synchronization information when making GPU scheduling decisions.

Like CPElide, we exploit the fact that the GPU CP already has a global view of what work

groups (WGs) are being sent to each chiplet and what data structures each work group

(WG) in a GPU kernel accesses at a given time [27]. However, neither modern GPUs

nor CPElide leverage this information when the CP’s queue scheduler (stream scheduler

in NVIDIA parlance) decides which chiplet(s) to schedule a GPU kernels WGs on. Thus,

CAQS introduces a novel queue scheduler into the GPU CP that leverages the CP’s

dynamic tracking information to schedule GPU kernels on chiplet(s) to improve L2 reuse,

avoid expensive inter-chiplet communication, and reduce NUMA penalties.

To demonstrate CAQS’s efficacy we evaluate it over 18 workloads from traditional

GPGPU, graph analytics, and HPC. Compared to modern multi-chiplet GPUs and the

state-of-the-art CPElide and LADM, CAQS significantly improves geomean performance

(30%, 28%, 6%), improves average L2 hit rate (27%, 25%, 26%), reduces geomean energy

consumption (36%, 19%, 27%), and decreases geomean network traffic (80%, 61%, 80%),

respectively. Moreover, as concurrent GPU streams increase, CAQS outperforms the best

baseline, LADM, by 29% geomean for 4-stream and 22% geomean for 6-stream workloads.

To the best of our knowledge, CAQS is the first multi-chiplet GPU queue scheduler to

combine locality- and synchronization-awareness to combat multi-chiplet GPU NUMA

effects. Additionally, because CAQS is integrated into the GPU CP, it does not require

hardware changes and can adapt to changing workload behavior.

6

Chapter 2

Background

2.1 Multi-Chiplet GPU Architecture

Modern GPU systems are often made of multiple GPUs that are connected via high-

bandwidth interconnects such as PCIe [52], NVLink [53], or xGMI [54]. Each GPU in this

multi-GPU system is composed of multiple chiplets, known as a multi-chiplet GPU or an

MCM GPU. In a multi-chiplet GPU, multiple chiplets communicate over high-bandwidth

interconnects (Figure 1.1a). Each of these chiplets has multiple Streaming Multiprocessors

(SMs)/Compute Units (CUs) and a cache hierarchy that is connected to the L3 cache and

high bandwidth memory (HBM). While all chiplets share the L3 cache and main memory,

the L3 and HBM banks are physically distributed across multiple chiplets (Figure 1.1b).

These distributed resources cause non-uniform memory accesses (NUMA) – local chiplet

accesses are faster than remote ones [39, 15]. In this work, we focus on alleviating NUMA

penalty impacts within a chiplet-based GPU. However, as we discuss in Chapter 6, CAQS

could also be applied to multi-GPU systems that combine multiple chiplet-based GPUs.

2.1.1 GPU Command Processors

As shown in Figure 1.1, modern GPUs utilize an embedded, programmable RISC micro-

processor, the CP, to act as the interface between the host and accelerator. In modern

multi-chiplet GPUs, GPU vendors typically have a CP per chiplet [12, 14], and elect

7

Algorithm 1: Default Queue Scheduler.

Input: Function running on each CPU cur cpu
for all HW queues do

Pick the highest priority queue, Qi, from all the HW queues
end
forall work groups (WGs) in kernel K at the head of Queue Qi do

// Round-Robin Scheduler
schedule on chiplet C = (lastChiplet + 1) % totalChiplets
lastChiplet = C

end

one as the leader. A GPU driver (e.g., AMD’s ROCm [55]) maps the GPU program

into software queues and enqueues the program’s kernels, along with any memory man-

agement and inter-kernel synchronization, as a packet(s). The CP’s packet processor

then maps each kernel onto a hardware compute queue using its queue scheduler. A

GPU queue scheduler orchestrates the efficient allocation and management of computa-

tional tasks across GPU resources, including determining task execution order and resource

mapping. When dispatching kernel invocations, it must manage the critical interface be-

tween application-level workload requirements and hardware-level execution capabilities:

balancing competing objectives: minimizing kernel launch latency, maximizing hardware

utilization, and ensuring fair resource distribution. As shown in Algorithm 1, modern

GPU queue schedulers typically dispatch all WGs from a kernel in round-robin (RR)

fashion across the available CUs [56, 57] before switching to another kernel. GPUs also

support multiple hardware queues to manage independent work submitted asynchronously

with GPU streams [58, 59, 60]. Typically each stream is mapped to a queue and each

queue holds one or more kernels from that stream. The CP maintains intra-stream and

inter-kernel dependencies but often executes different streams concurrently.

2.1.2 CPElide

Since CAQS builds on key ideas from CPElide, we first discuss how CPElide works. Fig-

ure 2.1 demonstrates the overall CPElide architecture [27]. In addition to having local,

8

L2

Chiplet 1

Compute
Units

Global Memory
HBM

Local CP

L2

Chiplet 2

Compute
Units

Local CP

L2

Chiplet 3

Compute
Units

Local CP

L2

Chiplet 4

Compute
Units

Local CP

Chiplet Coherency Table

Data
Structure

Access
mode

Chiplet Vector
m-chiplet * (2bits/chiplet)

Array A x - y R 01_01_00_00

Array B i - j R/W 10_10_00_00

... chiplet4_c3_c2_c1

Chiplet
Coherency

Table

DMA

Host interface
(eg: PCIe)

Inter-GPU
interface

(eg: xGMI)

Single GPU package

Array A

Global
Command
Processor

(CP)
Array B Array B

Data Structure
States

00 Not
Present

01 Valid

10 Dirty

11 Stale

Address
Range

Array A

Figure 2.1: CPElide architecture [27].

typedef tuple <Addr_t , Addr_t , LogicalChipletID >

rangeChiplet;

vector <rangeChiplet > C_ranges(numSchedChip) =

{make_tuple(C_d[start], C_d[mid], 0),

make_tuple(C_d[mid+1], C_d[end], 1)};

vector <rangeChiplet > A_ranges(numSchedChip) =

{make_tuple(A_d[start] , A_d[mid], 0),

make_tuple(A_d[mid+1] , A_d[end], 1)};

hipSetAccessModeRange(square , C_d , ’R/W’, C_ranges);

hipSetAccessModeRange(square , A_d , ’R’, A_ranges);

hipLaunchKernelGGL(square ,..., C_d , A_d , N);

Listing 2.1: CPElide’s proposed API calls to label the memory accesses in a sample
kernel [27].

per-chiplet CPs like modern GPUs (Chapter 2.1.1), CPElide further splits the CPs func-

tionality by adding a global CP to handle communication with the host. The global CP

and leader CP are similar, except the global CP does not need to manage local, per-

chiplet functionality. Moreover, CPElide leverages information already available in the

CP to monitor kernel memory accesses across chiplets. Specifically, CPElide inspects each

queue entry’s kernel object to identify coarse-grained data structure access information.

Programmers or compilers provide this information to the (global) CP via an API, which

CPElide tracks in its Chiplet Coherency Table (CCT).

Listing 2.1 shows an example of how CPElide adds new API calls to AMD’s open-source

ROCm GPU API to pass this information to the CP [27]. Unlike coherence protocols,

CPElide tracks access information coarsely per data structure, and only updates it at ker-

nel boundaries. Thus, it conservatively estimates what data may be in each chiplet’s L2

caches. When launching a kernel, CPElide’s queue scheduler uses the CCT’s information

9

to decide which chiplets require implicit synchronization to ensure correctness, and which

ones do not (L1 caches must still be invalidated and flushed). Thus, CPElide implicitly

synchronizes only on the chiplets that require it, reducing the overhead of implicit synchro-

nization and increasing L2 reuse in chiplets. However, CPElide does not consider locality

when scheduling. Consequently, it only realizes significant benefits from retaining data

in a chiplet’s L2 cache when a kernel happens to be scheduled on a chiplet with reusable

data. However, in Chapter 5 we show such serendipitous occurrences are infrequent.

10

Chapter 3

Design

3.1 Architecture

Figure 3.1: CAQS Design (changes in red).

Figure 3.1 presents the CAQS’s overall architecture. CAQS’s primary objective is to

reduce the NUMA penalty in chiplet-based GPUs by dynamically scheduling kernels from

queues to increase inter-kernel cache reuse and retention. Unlike approaches (e.g., CODA,

LADM) that rely on static profiling or predictions, CAQS leverages runtime information

to make adaptive scheduling decisions. We leverage information on how data structures

are being accessed by GPU kernels to determine what data has been accessed by recent

kernels and where (i.e., which chiplet(s)) it has been accessed on. This per data structure

access information is already available in the GPU (global) CP, but neither modern GPUs

(Chapter 2.1.1) nor CPElide (Chapter 2.1.2) use it in their queue schedulers.

11

Figure 3.2: CAQS Req/Resp Flow

CAQS’s key insight is that queue schedulers can leverage this coarse-grained informa-

tion to cheaply, quickly determine when inter-kernel reuse may be possible in multi-chiplet

GPUs. Thus, CAQS creates a novel, NUMA-aware queue scheduler in the GPU’s global

CP that builds on CPElide. CAQS uses CPElide to eliminate implicit synchronization

operations, enabling L2 caches to retain previous kernel’s data beyond kernel boundaries.

These data structures are tracked in CPElide’s CCT (Chapter 2.1.2). However, unlike

CPElide, CAQS’s new queue scheduler inspects the CCT to identify whether a data struc-

ture resides in any chiplet’s L2 cache. Specifically, for each kernel at the front of a hardware

compute queue (Chapter 2.1.1), CAQS’s identifies all data structures the kernel will ac-

cess, potentially including their address ranges. Then CAQS checks the CCT for potential

inter-kernel reuse for these data structures, and finalizes its scheduling decision.

3.2 Dynamic Queue Scheduling Mechanism

Figure 3.2 illustrates CAQS’s high-level request/response flow for an incoming kernel.

Likewise, Algorithm 2 shows how we implement CAQS. When a kernel reaches the head

of a hardware compute queue (1), CAQS extracts the data structure(s) the kernel will

access (2). CAQS only considers chiplets with available resources – if a chiplet is com-

pletely utilized, CAQS will not attempt to schedule this kernel’s WGs on it. Given the list

of chiplets with available resources, CAQS then queries the CCT to determine the presence

12

Algorithm 2: CAQS Queue Scheduler. For simplicity, this algorithm assumes a
given kernel is scheduled on a single chiplet.

Input: Function running on global CP
forall HW queues do

Pick the highest priority queue, Qi, from all the HW queues
end
schedOptions = NULL
K = head[Qi] // kernel K at the head of Queue Qi

// Extract all the Data Structures from K
kernelDataStructures = extractDataStructures(K)
foreach data structure (Dj) in kernelDataStructures do

foreach chiplet Ci do
// Check data structure in CCT for Ci

cctData = readCCT(Dj , Ci)
// Check if Dj may be in Ci and is valid/dirty
if cctData.match and (cctData.valid or cctData.dirty) then

schedOptions.pushBack(Ci)
end

end

end
// Determine which chiplet is best fit from available options
bestScore = 0
bestChiplet = 0
foreach chiplet Oi in schedOptions do

score = calcScore(K, Oi)
if score > bestScore then

bestScore = score
bestChiplet = Oi

end

end
if bestScore > 0 then

... // Perform appropriate implicit synchronization on Ci

forall work groups (WGs) in K do
Schedule on chiplet bestChiplet

end
lastChiplet = bestChiplet

end
else

forall work groups (WGs) in K do
// Round-Robin Scheduler
Schedule on chiplet C = (lastChiplet + 1) % totalChiplets

end
lastChiplet = C

end

13

// A Workload with 3 kernels:

// Kernel1 with Array A (R) as

// input and Array B (R/W) as output

hipSetAccessMode(Kernel1 , B_d , ’R/W’);

hipSetAccessMode(Kernel1 , A_d , ’R’);

hipLaunchKernelGGL(Kernel1 ,..., B_d , A_d , N);

// Kernel2 with Array B (R) as

// input and Array C (R/W) as output

hipSetAccessMode(Kernel2 , C_d , ’R/W’);

hipSetAccessMode(Kernel2 , B_d , ’R’);

hipLaunchKernelGGL(Kernel2 ,..., C_d , B_d , N);

// Kernel3 with Array D (R) as

// input and Array E (R/W) as output

hipSetAccessMode(Kernel3 , E_d , ’R/W’);

hipSetAccessMode(Kernel3 , D_d , ’R’);

hipLaunchKernelGGL(Kernel3 ,..., E_d , D_d , N);

Listing 3.1: An example workload with 3 kernels.

and state of each data structure required by the kernel in those chiplets’ L2 caches (3).

CCT sends the response back to CAQS (4). If the CCT indicates that a data structure

has been previously accessed, CAQS checks whether the data is still valid or dirty (5).

If the data is valid or dirty, CAQS identifies this chiplet as one to consider scheduling the

kernel on. If a read-only data structure is valid on multiple chiplets, CAQS selects the first

chiplet as a tiebreaker (not shown in Algorithm 2 for simplicity). Moreover, if a required

data structure has not been previously accessed or is not valid or dirty, CAQS defaults to

RR scheduling. This strategy enables CAQS to balance the load across multiple chiplets

instead of binding a stream to any one chiplet, which could negatively impact performance

[33]. Once the queue scheduler has made its decision and before the kernel is dispatched,

CPElide performs any necessary implicit acquire and release operations. Finally, CAQS

schedules the kernel onto the identified chiplet(s) (6).

3.3 Putting It All Together

Consider a single-stream workload with three kernels, as described in Listing 3.1, run-

ning on a 2-chiplet GPU with an L2 cache that can hold two large data structures. In

Listing 3.1, we use the same API calls as CPElide to pass per-kernel data structure (A d,

14

B d, C d, D d, E d) access information, since our approach builds on it.

Baseline System: In the baseline system (Chapter 2), the first kernel, Kernel1, is

scheduled on Chiplet 0. Before Kernel1 is launched, all chiplets are invalidated, and upon

completion, any dirty data (e.g., B d) is flushed from each chiplet. Next, the second kernel

(Kernel2) is scheduled on Chiplet 1 following the baseline’s round robin queue scheduling

policy, undergoing a similar invalidate-and-flush process at kernel boundaries. Finally, the

third kernel (Kernel3) is subsequently scheduled back on Chiplet 0, repeating the implicit

invalidates-and-flushes at its boundaries.

System with CAQS: When Kernel1 is enqueued at the global CP, CAQS extracts its

data structures (A d, B d) and checks their status in the CCT. Since this is the first kernel,

the CCT has no entries. Thus, CAQS defaults to scheduling Kernel1 on Chiplet 0. Before

scheduling Kernel1, CAQS checks and determines that no acquire or release operations

are required since the CCT is empty (unlike in the baseline); thus it dispatches Kernel1

WGs to Chiplet 0. When Kernel1 completes the L2 cache on Chiplet 0 retains A d and

B d.

Subsequently Kernel2 is enqueued. For Kernel2, CAQS extracts B d and C d and

queries their status in the CCT. Since Kernel1 wrote B d in Chiplet 0, it may still be

present in Chiplet 0’s L2 cache (Chapter 2.1.2). Thus, CAQS schedules Kernel2 on

Chiplet 0. Moreover, since Kernel2 is scheduled on Chiplet 0 this reduces the overhead

of flushing Chiplet 0 (unlike in the baseline). Accordingly, Kernel2 benefits from reusing

B d in Chiplet 0’s L2 cache, reducing main memory accesses and avoiding synchronization

overhead. After Kernel2 completes, Chiplet 0 retains B d and C d, while A d is evicted

(per LRU).

For Kernel3, CAQS similarly extracts D d and E d and queries them in the CCT. Nei-

ther of these structures has been accessed previously. To preserve the contents of Chiplet

0’s L2 cache, particularly B d and C d, CAQS schedules Kernel3 on Chiplet 1 (Chap-

ter 2.1.2). Thus, Chiplet 0 retains B d and C d while accessing D d and E d on Chiplet 1 –

balancing the cached data structures across the chiplets. Hence, CAQS reduces evictions,

15

and retains more data in the L2 cache, increasing L2 reuse opportunities in subsequent

kernels. Additionally, this strategy ensures that CAQS effectively load balances, avoiding

rigidly binding streams to chiplets. In Chapter 5, we show that CAQS’s relatively simple

changes to the GPU queue scheduler provides the best of both worlds: balancing locality

like LADM and avoiding implicit synchronization overheads like CPElide, without the

downsides of either.

3.4 Overheads

Queue Scheduler Overhead: CAQS reads the CCT for each data structure associated

with a kernel, which adds overhead. We model this overhead within our system. Given

that the size of the CCT is ≈2KB [61], CAQS also fits into the global CP’s private memory.

The number of reads required varies based on the number of data structures accessed by

each kernel. However, prior work has shown that most GPU programs access eight or

fewer data structures per kernel [62] [63]. In our experiments, the average number of data

structures accessed per kernel is four. Furthermore, because CAQS schedules kernels on

chiplet(s) where the L2 cache may already contain the required data, it reduces memory

accesses and avoids the invalidations and flushes typically seen in CPElide when subsequent

kernels are scheduled on different chiplets. Thus, CAQS’s runtime mechanism has minimal

overhead (discussed further in Chapter 4.2) and negligible impact (Chapter 5).

Delayed Writebacks: Unlike the baseline, which incurs overhead from implicit flushes

and invalidations for the per-chiplet L2 caches at kernel boundaries, CAQS delays these

operations to encourage inter-kernel L2 reuse. However, subsequent kernels may evict this

dirty data to make space for other data. Thus, CAQS may have write-back overheads.

Since these writebacks occur during kernel execution in CAQS, they may be on the critical

path. However, the performance impact of these writebacks is usually limited, and the

increased reuse far outweighs their cost (Chapter 5).

False Positives: Unlike coherence protocols, CPElide’s CCT coarsely tracks information

at the data structure granularity, and only updates its state when kernels are launched.

16

Thus, CAQS may encounter false positives if some of the data is no longer in a chiplet’s

L2 cache (e.g., due to cache evictions). However, in this situation CAQS provides the

same behavior as CPElide and LADM, which also do not perform fine-grained tracking.

Moreover, in Chapter 5 we show that our approach provides significant benefits.

17

Chapter 4

Methodology

4.1 Baseline GPU Architecture

Similar to prior work, we evaluate CAQS using a tightly coupled CPU-GPU architecture

with a unified address space with shared memory and coherence caches [27]. Figure 1.1

illustrates our GPU system, which is similar to prior work [27, 17, 39, 26]. All CPU

cores and GPU CUs are connected via a shared, inclusive L3, which also serves as the

directory. Each GPU chiplet has a private L1 cache and LDS per CU, and an L2 cache

shared across the chiplet’s CUs. The HBM and L3 cache are distributed across chiplets

as shown in Figure 1.1b. The interconnect connects the chiplets, which routes L2 misses

to the appropriate “home chiplet” for the address [39].

4.2 System Setup

As noted in prior work, GPU CPs can be reprogrammed [27, 64, 65, 66, 67]. However,

since GPU vendors have not disclosed an API, doing so is difficult. As a result, prior

work like CPElide simulate their CP extensions in gem5 [27]. Since we compare against

CPElide (Chapter 4.4), we utilize the same approach to reduce the impact of system

differences when comparing approaches. Thus, we simulate CAQS in gem5, which recent

work has extended to support multi-chiplet GPUs [27, 68]. Moreover, while other popular

18

simulators support modern GPUs [69, 70], gem5 has the most detailed CP model and

models GPUs with high fidelity [71].

GPU Feature Configuration

GPU Clock 1801 MHz

CP Latency 31 cycles

Num Chiplets 6

CUs/Chiplet; Complexes/Chiplet 60; 1

SE/Chiplet, SA/SE 4, 1

Total CUs 360

Num SIMD units/CU 4

Max WF/SIMD unit 10

Vector/Scalar Reg. File Size / CU 256/12.5 KB

Num Compute Queues 256

LI Instruction Cache / 4 CU 16 KB, 64B line, 8-way

L1 Data Cache / CU 16 KB, 64B line, 16-way

L1 Latency 140 cycles

LDS (Local Data Share) Size / CU 64 KB

LDS Latency 65 cycles

L2 Cache/chiplet 8 MB, 64B line, 32-way (8 banks per chiplet)

Local/Remote L2 Latency 269/390 cycles

L2 Write Policy Write-back with write allocate

L3 Size 16 MB, 64B line, 16-way (64 banks)

L3 Latency 330 cycles

Main Memory 16 GB HBM, 4H stacks, 1000 MHz
(64 banks)

Inter-chiplet Interconnect BW 768 GB/s

Table 4.1: Simulated baseline GPU parameters.

Specifically, we utilize CPElide’s publicly available artifact [61] as our starting point.

We implemented CAQS into its gem5 GPU global CP, including adding support for com-

municating between the global scheduler (Chapter 2.1.2) and CPElide’s CCT (Chap-

ter 2.1.2). Moreover, like CPElide we use ROCm 1.6 [55], gem5 v21.1 [72, 73], and

configure the GPU to emulate CPElide’s GPU setup. Table 4.1 summarizes the common

key system parameters, which are based on an AMD Radeon VII GPU. To measure the

energy consumption we leverage prior work’s per-access GPU energy models [74, 75, 76,

77, 67], scaled for multi-chiplet GPUs [27]. In our simulated system the CP frequency is

1.5 GHz [78] and the CPs private memory’s access latency is 31 cycles [79]. The global

CP and local CP are connected via a high bandwidth crossbar, with 65 cycles of uni-

cast latency and 100 cycles of broadcast latency. Similar to CPElide and prior work,

the modeled local/global CP latency is 2 µs [80, 52, 57]. We also model CAQS’s over-

19

Application Input

Square [81, 82] 512K 1 2 2048 256

BabelStream [83, 84] 512K

BFS [85, 86] graph128k.txt

Gaussian [85, 86] 16x16

Backprop [85, 86] 64K

Color-max [87] AK.gr

HACC [88] 0.5 0.1 512 0.1 2 N 12 rcb

Hotspot [85, 86] 512 2 20 temp 512 power 512

LUD [85, 86] 512.dat

LULESH [88] 1.0e-2 10

Pennant [88] noh.pnt

SSSP [87] AK.gr

FW [87] 512 65536.gr

BTree [85, 86] mil.txt

BC [87] AK.gr

DWT2d [85, 86] rgb.bmp 4096x4096

Pathfinder [85, 86] 200000 100 20

SRAD v2 [85, 86] 2048 2048 0 127 0 127 0.5 2

Table 4.2: Evaluated Benchmarks

heads (Chapter 3.4). However, since CAQS only affects internal CP communication paths

(e.g., CCT -queue scheduler communication), these changes do not affect the area beyond

CPElide’s original ∼2 KB [27], which fits in the CP’s private memory and does not change

the GPU’s area. Specifically, our changes affect the CP’s processing latency by ≈100ns,

which our simulations factor in when processing new GPU kernels. However, this overhead

is hidden for all but an application’s first kernel since the kernel runtimes are much larger.

4.3 Workloads

We evaluate CAQS across 18 traditional GPGPU [85, 86], graph analytics [87], and

HPC [88, 89] applications with diverse memory access patterns from gem5-resources [81].

Table 4.2 summarizes these workloads, which launch up to 450 kernels. Like our modeled

system (Chapter 4.1), all gem5-resource’s workloads use unified virtual memory (UVM)

and page-aligned memory allocations [90]. We also selected these benchmarks to overlap

with LADM and CPElide’s (Chapter 4.4) studied benchmarks. Like CPElide, these work-

loads never overflow the CCT. We scaled the input sizes for all workloads to stress the

L2 cache capacity [91]. Moreover, to evaluate CAQS’s behavior in various scenarios, our

20

workloads range from high or moderate inter-kernel reuse to low inter-kernel reuse [92, 91,

93]. We also simulated a subset of these workloads for 4 and 6 streams to evaluate the

scalability of CAQS. Some of our evaluated works (HACC, Pennant) use multiple streams

by default. Thus, we exclusively study them when we evaluate larger numbers of streams

(Section 4.6).

4.4 Configurations

We compare CAQS against 3 state-of-the-art methods using the system described in Chap-

ter 4.2:

Baseline: Baseline models a modern, multi-chiplet GPU [94, 95, 10, 12, 96, 14]. It uses

a gem5’s VIPER coherence protocol [80], which is similar to modern GPUs [36, 37, 38,

39, 40, 97, 41], extended for multi-chiplet GPUs [68]. It forwards remote requests to the

home chiplet, writes through remote stores, and writes back local stores. Moreover, it

uses a RR queue scheduler where each subsequent kernel is scheduled on the next chiplet

(Chapter 2.1.1).

CPElide: CPElide [27] is a state-of-the-art approach for avoiding unnecessary implicit

synchronization at kernel boundaries in chiplet-based GPUs. CPElide uses Baseline’s co-

herence, forwarding policy, queue scheduler, and write policies, but elides synchronizations

by tracking data structure access information in its global CP’s CCT.

LADM: LADM [17] is a state-of-the-art approach for placing pages and scheduling WGs

on multi-chiplet GPUs (Chapter 1) which we implemented in gem5. LADM also uses the

VIPER coherence protocol. We optimistically model LADM’s best-case scenario when

threads are always scheduled on the same chiplet where the data is present. Thus, our

LADM implementation does not need its underlying LASP page placement policy. Instead

we can utilize a first touch page allocation policy to allocate the pages wherever the data

is first accessed [15, 39]. As a result, our implementation may overstate LADM’s efficiency

when this is not possible.

CAQS: Our proposed CAQS approach (Chapter 3) implemented on top of CPElide. Like

21

CPElide, CAQS tracks the kernel accesses in the CCT, and leverages it to schedule a

kernel in a way that optimizes the L2 reuse and retention.

4.5 Design Decisions

We also made the following design choices for all the different configurations (Chapter 4.4):

Page Placement Policy: Since CAQS’s focuses on improving inter-kernel reuse, we uti-

lize the same page placement policy for all configurations. Specifically, we use a First Touch

page placement policy since it usually performs well on modern multi-chiplet GPUs [15,

27, 39]. The first touch policy determines the home node (chiplet) for a given physical

address. Moreover, different page placement policies can be used with CAQS (discussed

further in Chapter 6).

Scheduling Kernels on One Chiplet: Modern multi-chiplet GPUs can be configured

to schedule kernels on a single chiplet or across chiplets [10, 12, 14]. However, for many

systems, as well as virtualization techniques like MIG [50] and MxGPU [51], it is common

to partition the GPU at chiplet boundaries to improve locality. Thus, we model this

behavior and do not split a given kernel’s WGs across multiple chiplets (alternatives

discussed further in Chapter 6).

4.6 Sensitivity Study: Number of Streams

Modern GPU workloads also often utilize multiple streams to improve the utilization. To

understand the impact of this behavior and test the scalability of CAQS, we study the

sensitivity of different numbers of streams in the system for all of our applications: 1, 4,

and 6 streams. As in prior work, we run a subset of our benchmarks (Table 4.2) to run

multiple parallel streams where each stream performs independent work [27, 98].

22

Chapter 5

Results

Figures 5.1 and 5.2 present the relative speedup and absolute L2 hit percentage, respec-

tively, for all single-stream workloads across various configurations on a 6-chiplet GPU.

Figure 5.3 depicts the normalized network traffic, broken into local and remote traffic. Fig-

ure 5.4 shows the normalized energy consumption for each configuration, broken down into

main memory, L1, L2, remote, and the remaining (e.g., core) energy components. Over-

all, CAQS demonstrates significant improvements over Baseline, CPElide, and LADM.

CAQS provides a geomean speedup (30%, 28%, 6%), average increase in L2 hits (27%,

25%, 26%), geomean energy consumption reduction (36%, 19%, 27%), and geomean net-

work traffic reduction (80%, 61%, 80%) over Baseline, CPElide, and LADM, respectively.

These results demonstrate the benefits of considering both locality and synchronization

overheads in multi-chiplet GPU scheduling decisions. Moreover, for 4- and 6-stream work-

loads that further stress the system, CAQS’s advantages over the alternatives become

even more substantial: CAQS outperforms the best baseline, LADM, by 29% geomean for

4-stream workloads and 22% geomean for 6-stream workloads. Thus, CAQS scales better

and provides greater benefits even as GPU configurations grow.

23

Figure 5.1: Single stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a
6-chiplet GPU, normalized to Baseline.

Figure 5.2: Single stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in a
6-chiplet GPU, normalized to Baseline.

Figure 5.3: Single stream apps’ network traffic for Baseline, CPElide, LADM, & CAQS in
a 6-chiplet GPU, normalized to Baseline.

Figure 5.4: Single stream apps’ energy usage for Baseline, CPElide, LADM, & CAQS in
a 6-chiplet GPU, normalized to Baseline.

24

5.1 Single Stream

5.1.1 CAQS vs Baseline

Figure 5.1 compares Baseline’s and CAQS’s normalized speedups for single-stream sim-

ulations. Unlike Baseline, CAQS’s consideration of locality and implicit synchronization

information enables it to increase cache hit rates, reduce memory and remote accesses, and

reduce overhead from implicit flushes and invalidations at kernel boundaries. As a result,

CAQS provides a 30% geomean speedup over the Baseline. This is further emphasized

by Figure 5.2, which shows that CAQS consistently enhances L2 cache reuse: 27% aver-

age L2 hit rate improvement versus Baseline. Importantly, CAQS’s L2 hit rate is always

equal to or better than Baseline. However, the relationship between speedup and L2 hit

rate improvement is not linear. While higher L2 hit rates generally benefit performance,

workloads with different sensitivities to memory latency exhibit varying speedups.

Applications with Inter-Kernel Reuse: Figure 5.3 demonstrates CAQS’s ability to improve

reuse and keep data local within a chiplet. In particular, for workloads with opportunities

for inter-kernel reuse (all but BTREE, DWT2D, Pathfinder, and SRAD v2), CAQS effec-

tively identifies and leverages reuse opportunities in the CCT from previously executed

kernels (Chapter 3.2). This enables CAQS to keep the stream localized on that chiplet.

Thus, CAQS significantly reduces remote accesses (80% geomean less network traffic than

Baseline). Similarly, CAQS improves L2 hit rates for many applications with inter-kernel

reuse: six benchmarks achieved L2 hit rates exceeding 90%, including LUD, SSSP, and

FW reaching ≈97%.

CAQS is also effective for BC (84% L2 hit rate) and Square (94% L2 hit rate). Al-

though both are memory-bound workloads, Square has a regular memory access pattern

while BC is highly irregular. Nevertheless, CAQS captures their inter-kernel reuse pat-

terns, reduces NUMA effects, and significantly improves their performance. Interestingly,

Babelstream demonstrates CAQS’s ability to balance locality and synchronization Al-

though Babelstream has substantial inter-kernel reuse, it only achieves a modest 14% L2

hit rate improvement with CAQS since its working set exceeds the L2 cache capacity,

25

leading to cache thrashing. Despite this, CAQS improves Babelstream’s performance by

90% over Baseline because CAQS keeps the accesses for the L2 misses local on the same

chiplet.

However, not all workloads with inter-kernel reuse opportunities obtain significant

benefits with CAQS. For example, FW’s high, irregular memory parallelism hides memory

latency through parallelism, rendering L2 hit rate improvements less impactful on overall

performance. Thus, it obtains limited performance gains despite significant L2 hit rate

improvements (Figure 5.2).

Applications with Limited Inter-Kernel Reuse: Unsurprisingly, applications (e.g., BTREE,

DWT2D, Pathfinder, and SRAD v2) with little or no inter-kernel reuse opportunities of-

ten obtain little speedup from CAQS. Accordingly, like Baseline, CAQS schedules the

kernels in a RR fashion across the chiplets (the final else path in Algorithm 2), resulting

in remote accesses similar to the Baseline to access pages first touched on another chiplet.

However, even in these situation CAQS provides roughly the same performance as Base-

line. DWT2D is the only workload where CAQS incurs a slight performance drop (3%).

DWT2D has no inter-kernel reuse and minimal intra-kernel reuse (≈6%). Interestingly, in

DWT2D CAQS’s avoiding implicit synchronization hurts performance. Unlike Baseline,

CAQS uses CPElide and retains modified data in the writeback L2 cache across kernel

boundaries (Chapter 2.1.2). When a new kernel is scheduled, the chiplet must write back

this data to memory, adding significant writeback traffic. This writeback traffic falls on a

subsequent kernel’s critical path (Chapter 3.4), unlike Baseline, which concurrently flushes

and invalidates data at kernel boundaries. Thus, flushing or invalidating data at kernel

boundaries could benefit workloads with no inter-kernel reuse. However, other applica-

tions with limited inter-kernel reuse like BTREE have high intra-kernel L2 reuse (≈74%).

This reduces L2 evictions and writeback traffic, avoiding DWT2D’s slowdown.

Energy: While improving the cache hit rate does not always improve performance, it

usually reduces energy. CAQS not only reduces the remote accesses (like prior work),

it also reduces the energy consumed by L2 misses that go to the L3 cache or memory.

26

Overall, Figure 5.4 shows that CAQS reduces geomean energy consumption by 36% over

Baseline. A significant portion of these savings stems from reductions in L2 to L3 requests,

memory accesses, and remote traffic. As expected, the energy consumption for L1 to L2

accesses remains the same as the Baseline.

However, the energy reduction benefits vary with workload characteristics such as data

size and inter-kernel reuse. For instance, Babelstream, which generates high writeback

traffic but reduces remote traffic, obtains significant energy savings. Similarly, workloads

like BC, which exhibit zero intra-kernel reuse but high inter-kernel reuse, experience an

85% reduction in energy consumption with CAQS compared to the Baseline. Moreover,

CAQS significantly reduces energy even for workloads like FW and SRAD v2, which did

not obtain speedups. However, for workloads with low inter-kernel reuse, such as DWT2D

and BTREE, CAQS and Baseline consume similar energy because CAQS resort to Base-

line’s RR scheduling in the absence of reuse.

5.1.2 CAQS vs LADM vs CPElide

LADM reduces remote accesses, while CPElide minimizes implicit invalidations and flushes.

Thus, both also improve performance, energy, and network traffic compared to Baseline.

However, CAQS achieves both by retaining data in the cache and optimally scheduling

kernels. As a result, CAQS improves geomean speedup (6%, 28%), average L2 Hit rate

(26%, 25%), and reduces geomean energy consumption (27%, 19%), geomean network traf-

fic (80%, 61%) over LADM and CPElide, respectively. Thus, CAQS provides the benefits

of both of these prior approaches and reduces NUMA effects in multi-chiplet GPUs.

Applications with Inter-Kernel Reuse: Figure 5.1 shows that CAQS always equals or out-

performs CPElide and outperforms LADM for all but 3 workloads. As expected, CAQS’s

improvements stem from: (1) enhanced L2 reuse (as shown in Figure 5.2), which both

CPElide cannot fully capitalize on and LADM does not provide, and (2) reducing remote

accesses versus CPElide (Figure 5.3). As discussed in Chapter 4.4, in LADM we optimisti-

cally bind the stream to a specific chiplet, eliminating remote accesses. However, despite

27

this optimal configuration, CAQS still outperforms LADM by effectively exploiting cache

reuse.

Although CAQS effectively balances locality and implicit synchronization overheads

in most workloads with inter-kernel reuse, LADM outperforms CAQS for FW (10%),

Babelstream (3%), and LULESH (13%). For FW and Babelstream, like Babelstream

in Chapter 5.1.1, CAQS ’s delayed writebacks of dirty data increases the critical path

of subsequent kernels (versus LADM implicitly synchronizing at the kernel boundaries).

Moreover, FW’s high memory parallelism reduces its sensitivity to L2 cache misses, limit-

ing CAQS’s overall impact. Conversely, LULESH has low, irregular inter-kernel reuse. As

a result, CAQS often resorts to the default RR scheduler. However, CAQS obtains some

reuse for a few kernels (9% improvement in the L2 hit rate versus LADM and CPElide).

Despite this improvement, the combination of this behavior with the first touch page pol-

icy results in remote accesses, which LADM avoids in its best-case scenario. Thus, LADM

outperforms CAQS for LULESH. Nevertheless, in aggregate CAQS significantly reduces

the impact of NUMA effects compared to CPElide and LADM.

Conversely, CPElide’s NUMA-unawareness hurts it in several scenarios. In our 6-

chiplet system, CPElide’s RR scheduler takes 5 more kernels to return to the same chiplet.

As a result, cache invalidations are likely to be triggered by one of the intervening kernels,

reducing data reuse opportunities. Thus, CPElide only outperforms LADM in terms of

L2 hit rate and network traffic (but not performance) for Square. Without considering

locality – like CAQS – CPElide often cannot fully harness L2 cache reuse, and thus suffers

from additional NUMA effects.

Applications with Limited Inter-Kernel Reuse: For the workloads (e.g., BTREE, DWT2D,

Pathfinder, and SRAD v2) with little or no inter-kernel reuse opportunities, CPElide,

LADM, and CAQS all provide relatively similar speedups, L2 hit rates, and network traf-

fic. For BTREE, since CAQS resorts to a RR scheduler in the absence of inter-kernel

reuse, it has more remote accesses than LADM (Chapter 5.1.1). However, these remote

accesses are <1% of total requests; hence they have minimal impact. For DWT2D, like

28

Figure 5.5: Four stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a 6-
chiplet GPU, normalized to Baseline.

CAQS, CPElide and LADM are also worse than Baseline (Chapter 5.1.1). For CPElide,

the drop in performance comes from the same reason as CAQS – high writeback traffic.

LADM reduces DWT2D’s remote accesses, but the benefits are not enough to overcome

the overhead of implicit synchronization on the same chiplet.

Energy: Figure 5.4’s results confirm the speedup, L2 hit rate, and network traffic trends

discussed above. Overall, CAQS significantly reduces energy consumption (Figure 5.4)

over both LADM and CPElide. CAQS consumes less energy than CPElide by lowering

remote accesses and improving the L2 hit rate. Compared to the best-case scenario of

LADM, CAQS does not always reduce remote accesses, but it still leads to energy savings

for workloads with high inter-kernel reuse due to its improved L2 hit rate. Interestingly,

even workloads where LADM provides higher speedups than CAQS (e.g., FW, LULESH),

CAQS still reduces energy versus LADM due to improved L2 reuse and fewer memory

accesses in CAQS.

As before, there are a small number of outliers to this overall trend. CAQS consumes

more energy than CPElide for Babelstream, due to its high write-back traffic (Chap-

ter 5.1.1), which CPElide avoids due to its round robin queue scheduling across chiplets.

Similarly, CAQS consumes more energy than LADM for DWT2D. Here, DWT2D’s low

inter-kernel reuse increases remote accesses in CAQS (Chapter 5.1.1) versus LADM, in-

creasing energy.

29

Figure 5.6: Four stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in a
6-chiplet GPU, normalized to Baseline.

Figure 5.7: Four stream apps’ network traffic for Baseline, CPElide, LADM, & CAQS in
a 6-chiplet GPU, normalized to Baseline.

Figure 5.8: Four stream apps’ energy usage for Baseline, CPElide, LADM, & CAQS in a
6-chiplet GPU, normalized to Baseline.

5.2 4-Stream Workloads

Multi-stream workloads increase shared resource contention in chiplet-based GPUs, includ-

ing the L3 cache, main memory, and interconnect. With multiple streams active, implicit

synchronization overheads also increase since every kernel from every stream will flush

the entire system. Nevertheless, Figures 5.5-5.8 show CAQS meets this challenge: with 4

concurrent streams CAQS provides even better performance gains over Baseline, LADM,

and CPElide. Overall, CAQS improves geomean performance (30%, 31%, 29%), average

30

L2 hits (26%, 23%, 25%), reduces energy consumption (24%, 18%, 19%), and decreases

network traffic (68%, 62%, 66%) over Baseline, CPElide, and LADM, respectively.

Applications with Inter-Kernel Reuse: Most of these workloads obtain substantial in-

creases in L2 hit rate with CAQS. CAQS keeps the data in each chiplet’s L2 caches

and schedules subsequent kernels from the same stream on the same chiplet when the

CCT identifies reuse opportunities. Thus, the L2 hit rate, energy, and network traffic

trends are similar to the single stream trends (Chapter 5.1). However, the increased net-

work congestion due to writeback traffic when 4 concurrent streams are active impacts

some application’s behavior relative to a single stream (Chapter 5.1). While Baseline’s

flushes increase, the writebacks in CAQS are on the critical path of kernel execution and

have a more significant negative impact on performance – especially for Babelstream and

Square. For Babelstream, the increased congestion, combined with its large working set

and L2 cache thrashing (Chapter 5.1), reduce CAQS’s benefit over Baseline from 90% with

one stream to 42% with four streams. Conversely, Square’s L2 hit rate is much higher,

resulting in significantly lower writeback traffic and thus fewer NUMA effects.

Interestingly, LADM and CPElide suffer even more than CAQS with four streams.

CPElide’s NUMA-unaware, RR queue scheduling leads to high writeback traffic with four

streams and limited L2 hit rate improvements. Conversely, LADM is able to preserve

locality, significantly reducing remote accesses. However, because it is unable to exploit

inter-kernel L2 reuse, it also increases congestion during flushes. Accordingly, its relative

speedup versus Baseline drops from 23% for a single stream to 2% for 4 streams. Thus,

CAQS’s ability to avoid both remote accesses and implicit synchronization make it much

better at handling NUMA effects.

Applications with Limited Inter-Kernel Reuse: Since these workloads have little or no

reuse opportunities, they are relatively unaffected by the increased number of streams.

For example, just like with one stream (Chapter 5.1), workloads like BTREE obtain sim-

ilar performance with Baseline, CPElide, LADM, and CAQS.

31

Figure 5.9: Six stream apps’ speedup for Baseline, CPElide, LADM, & CAQS in a 6-
chiplet GPU, normalized to Baseline.

Figure 5.10: Six stream apps’ L2 hit rates for Baseline, CPElide, LADM, & CAQS in a
6-chiplet GPU, normalized to Baseline.

5.3 Saturating the System: 6-Stream Workloads

Finally, Figures 5.9 and 5.10 examines the behavior of our configurations for workloads

with 6 concurrent streams, which fully utilize our 6-chiplet GPU. Six stream applications

effectively cause the RR queue scheduler to bind each stream to a specific chiplet in our

system (Section 4.2). Consequently, Baseline emulates LADM ’s behavior, while CPElide

emulates CAQS’s functionality. Overall, both CAQS and CPElide provide a geomean

speedup of 22% and average L2 hit rate improvement of 27% over LADM and Baseline.

Although most workloads exhibit similar patterns to the transition to four streams, unsur-

prisingly Babelstream experiences a further performance drop in CAQS due to writebacks

(Chapter 5.1, 5.2). However, at full utilization contention for shared resources reduces

CAQS’s overall geomean speedup from 29% (4-streams) to 22% (6-streams). Neverthe-

less, CAQS’s increased L2 reuse and ability to avoid implicit synchronization overhead

continues to enable it to equal or outperform all other approaches.

32

Chapter 6

Discussion

Page Placement Policies: We evaluate CAQS with a First Touch page placement pol-

icy (Chapter 4.5). However, as discussed in Chapter 1, there are a number of alternatives

including Feng [99], LADM, and GRIT [29]. Unfortunately, this prior work has demon-

strated how no single page placement policy is universally best for multi-chiplet GPU

workloads [99, 29]. In particular, workloads with low inter-kernel reuse or sparse access

patterns sometimes prefer alternate page placement policies. Although this reduces the

number of NUMA accesses, they focus on page placement, whereas CAQS focuses on

inter-kernel reuse (e.g., at the L2). Thus, these page placement policies are orthogonal to

CAQS and could be applied on top of CAQS to further reduce NUMA penalties.

Scheduling Kernels Across Chiplets: In this work, we schedule a kernel on a single

chiplet. Although this approach is common in modern multi-chiplet GPUs, it can limit

performance for workloads (e.g., Babelstream) with large working sets. As discussed in

Chapters 5.1.1 and 5.2, even when these workloads obtain significant inter-kernel reuse,

they also suffer from thrashing at the L2 – lowering L2 hit rates and causing bursty write-

back traffic. Splitting a kernel across chiplets can reduce the stress on L2 and alleviate the

impacts of L2 thrashing, leading to further performance improvements. However, splitting

a kernel requires finer grained data structure tracking. A given WG often accesses a smaller

portion of each data structure. Accordingly, CAQS must track these accesses at the same

33

granularity to avoid additional, redundant flushes and invalidations, which would decrease

reuse. Unfortunately, this would also increase the area overhead at the global CP.

Chiplet-based GPUs versus Multi-GPU Designs: As mentioned in Chapter 2, in

this work we focus on chiplet-based GPUs of multi-GPU systems each with multiple

chiplets because queue schedulers typically only schedule work for the specific multi-chiplet

GPU they receive work for. Moreover, prior work (and our results in Chapter 5) high-

lights how there are significant opportunities for reuse within a single multi-chiplet GPU.

Thus, by improving a multi-chiplet GPU versus state-of-the-art solutions like CPElide and

LADM, CAQS can also potentially improve the efficiency of multi-GPU systems.

CAQS Applicability to Other Accelerators: Although we evaluate CAQS on AMD

multi-chiplet GPUs, CAQS can also be applied to other vendor’s multi-chiplet GPUs,

which also suffer from NUMA effects and interface with CPs. More broadly, other accel-

erators are also being split across multiple chiplets. Although kernels are a GPU-specific

way to partition work, other accelerators also partition work into multiple phases and

iterate through the phases. Moreover, many accelerators [43, 42, 44, 100, 45, 9] also use

embedded microprocessors (like CPs) as an interface and work scheduler. Thus, CAQS

works for a wide range of accelerators.

34

Chapter 7

Related Work

Since CPElide and LADM are most closely related to CAQS, we quantitatively compared

against them in Chapter 5 and discussed them and other closely related work in Chapter 1.

Here we qualitatively discuss other related approaches in the context of Table 1.1.

Reducing Chiplet-based GPU NUMA Penalties: As discussed in Chapter 1, other

prior work on multi-chiplet GPUs have examined alternative approaches to reducing

NUMA penalties through more intelligent data locality and placement [28, 30, 101, 46,

31]. For example, CARVE extends the GPU cache capacity to improve NUMA GPU per-

formance [46]. Similar to LADM, other work optimized WG scheduling and/or placement

algorithms [15, 28]. However, LADM outperforms them and they do not target implicit

synchronization. Thus, since CAQS outperforms LADM (Chapter 5), CAQS should also

outperform them. Conversely, SAC dynamically reduces NUMA penalties in multi-chiplet

GPUs by improving the cache bandwidth [31]. However, SAC runs at the LLC (e.g.,

L3) level and does not impact per-chiplet L2 caches. Thus, CAQS is less affected by LLC

caching changes. However, SAC or its ancestor SelRep [32] could be combined with CAQS

to improve LLC bandwidth.

Other Optimizations for Chiplet-Based Accelerators: Other recent work has im-

proved chiplet-based GPU cache coherence [102, 39], compression [103], design [15, 21],

domain specialization [104, 22], and memory management [105, 106, 107, 108, 109]. How-

35

ever, these designs are largely orthogonal to CAQS.

Monolithic GPU Queue/WF Schedulers: Other works significantly increase reuse

on monolithic GPUs via better wavefront (WF) [110, 111, 112, 113, 114, 115, 116, 117,

118, 119, 120, 121, 122] and queue [123, 124, 125, 126, 127, 128, 67, 129] scheduling.

However, unlike CAQS, these solutions are focused on monolithic GPUs. Thus, they are

unable neither able effectively provide inter-kernel reuse per chiplet nor are they able to

manage the overheads of implicit synchronization – since those overheads are specific to

chiplet-based GPUs, these approaches did not face them. Nevertheless, CAQS could be

integrated with these WF schedulers to further improve performance.

CPU-based NUMA Approaches: Multi-chiplet GPUs are not the first device to face

challenges from NUMA effects. For example, multi-core CPUs have a rich history of re-

ducing the impact of NUMA effects, including Beckmann & Wood [130], D-NUCA [131],

NuRapid [132], TD-NUCA [133], and TLC [134]. Similarly, CPU OS’s consider waking up

a thread on a core that they believe can provide cache benefits or utilize thread affinity

to bind a thread to a core [34, 35]. While CAQS leverages some similar concepts to these

works, such as load balancing and avoiding binding a stream to a chiplet [33], they require

different support. These approaches work well in monolithic, multi-core CPUs, but are

less effective in multi-chiplet GPUs which do not possess complex coherence protocols to

improve locality and avoid synchronization overheads or OS support to identify where to

migrate the threads to. Moreover, they were designed assuming inter-phase synchroniza-

tion is relatively cheap – which is not the case in accelerators like GPUs. Thus, they

cannot fully preserve inter-kernel reuse like CAQS. To preserve reuse in a chiplet-based

GPU, they would need run-time scheduling information, which CAQS leverages via the

CP.

36

Chapter 8

Conclusion

The increasing preponderance of multi-chiplet GPUs offers improved yield and continued

performance scaling. However, the additional level of indirection chiplets incurs also intro-

duces significant challenges, especially NUMA latencies across chiplets, which are difficult

for GPUs to overcome. Recent work has reduced its overhead but has been constrained

to levels below the L2 cache due to the implicit synchronization mechanism of GPUs.

However, emerging techniques such as CPElide have opened up new possibilities by en-

abling data to be retained in the L2 cache beyond the execution of a single kernel. In this

work, we present CAQS. CAQS’s co-designed approach is the first GPU queue scheduler

to combine both locality and synchronization information to reduce the impact of NUMA

overheads in multi-chiplet GPUs. Consequently, CAQS provides substantial improvements

over Baseline and the state-of-the-art CPElide and LADM approaches for geomean per-

formance (30%, 28%, 6%, respectively), L2 cache hits (27%, 25%, 26%), energy efficiency

(36%, 19%, 27%), and network traffic reduction(80%, 61%, 80%). Moreover, CAQS’s

gains increase for increased GPU streams – underscoring the importance of balancing

both locality and synchronization when designing multi-chiplet GPU schedulers.

37

References

[1] James Ang et al. “Reimagining Codesign for Advanced Scientific Computing: Re-

port for the ASCR Workshop on Reimagining Codesign”. In: DOE ASCR Work-

shop on Reimagining Codesign (Apr. 2022). doi: 10.2172/1822199. url: https:

//www.osti.gov/biblio/1822199.

[2] Amir Gholami.Memory Footprint and FLOPs for SOTA Models in CV/NLP/Speech.

”https://github.com/amirgholami/ai_and_memory_wall”. 2021.

[3] Stephen W. Keckler. Life After Dennard and How I Learned to Love the Picojoule.

Keynote at MICRO. 2011.

[4] Samuel Naffziger et al. “Pioneering Chiplet Technology and Design for the AMD

EPYC™ and Ryzen™ Processor Families : Industrial Product”. In: ACM/IEEE

48th Annual International Symposium on Computer Architecture. ISCA. New York,

NY, USA: Association for Computing Machinery, 2021, pp. 57–70. doi: 10.1109/

ISCA52012.2021.00014.

[5] AMD. AMD CDNA Architecture. ”https : / / www . amd . com / system / files /

documents/amd-cdna-whitepaper.pdf”. 2020.

[6] Jack Choquette, Olivier Giroux, and Denis Foley. “Volta: Performance and Pro-

grammability”. In: IEEE Micro 38.2 (2018), pp. 42–52. doi: 10.1109/MM.2018.

022071134.

[7] Norm Jouppi et al. “TPU v4: An Optically Reconfigurable Supercomputer for

Machine Learning with Hardware Support for Embeddings”. In: Proceedings of the

38

50th Annual International Symposium on Computer Architecture. ISCA. Orlando,

FL, USA: Association for Computing Machinery, 2023. isbn: 9798400700958. doi:

10.1145/3579371.3589350. url: https://doi.org/10.1145/3579371.3589350.

[8] Norman P. Jouppi et al. “Ten lessons from three generations shaped Google’s

TPUv4i”. In: Proceedings of the 48th Annual International Symposium on Com-

puter Architecture. ISCA. Virtual Event, Spain: IEEE Press, 2021, pp. 1–14. isbn:

9781450390866. doi: 10.1109/ISCA52012.2021.00010. url: https://doi.org/

10.1109/ISCA52012.2021.00010.

[9] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-

ing Unit”. In: Proceedings of the 44th Annual International Symposium on Com-

puter Architecture. ISCA. Toronto, ON, Canada: ACM, 2017, pp. 1–12. isbn: 978-

1-4503-4892-8. doi: 10.1145/3079856.3080246. url: http://doi.acm.org/10.

1145/3079856.3080246.

[10] Gabriel H. Loh et al. “A Research Retrospective on AMD’s Exascale Computing

Journey”. In: Proceedings of the 50th Annual International Symposium on Com-

puter Architecture. ISCA. Orlando, FL, USA: Association for Computing Machin-

ery, 2023. isbn: 9798400700958. doi: 10.1145/3579371.3589349. url: https:

//doi.org/10.1145/3579371.3589349.

[11] Thomas Norrie et al. “The Design Process for Google’s Training Chips: TPUv2 and

TPUv3”. In: IEEE Micro 41.2 (2021), pp. 56–63. doi: 10.1109/MM.2021.3058217.

[12] NVIDIA. “NVIDIA H100 Tensor Core GPU Architecture”. In: Proceedings of GPU

Technology Conference. GTC. 2022.

[13] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. “Modeling deep learning accel-

erator enabled gpus”. In: IEEE International Symposium on Performance Analysis

of Systems and Software. ISPASS. IEEE. Piscataway, NJ, USA: IEEE Press, 2019,

pp. 79–92.

39

[14] Alan Smith et al. “Realizing the AMD Exascale Heterogeneous Processor Vision

: Industry Product”. In: 51st ACM/IEEE Annual International Symposium on

Computer Architecture. ISCA. Piscataway, NJ, USA: IEEE, 2024, pp. 876–889. doi:

10.1109/ISCA59077.2024.00068. url: https://doi.org/10.1109/ISCA59077.

2024.00068.

[15] Akhil Arunkumar et al. “MCM-GPU: Multi-Chip-Module GPUs for Continued Per-

formance Scalability”. In: Proceedings of the 44th Annual International Symposium

on Computer Architecture. ISCA. Toronto, ON, Canada: ACM, 2017, pp. 320–332.

isbn: 978-1-4503-4892-8. doi: 10.1145/3079856.3080231. url: http://doi.acm.

org/10.1145/3079856.3080231.

[16] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. “Exploiting In-

terposer Technologies to Disintegrate and Reintegrate Multicore Processors”. In:

IEEE Micro 36.3 (2016), pp. 84–93. doi: 10.1109/MM.2016.53.

[17] Mahmoud Khairy et al. “Locality-Centric Data and Threadblock Management for

Massive GPUs”. In: 53rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture. MICRO. Washington, DC, USA: IEEE Computer Society, 2020,

pp. 1022–1036. doi: 10.1109/MICRO50266.2020.00086.

[18] Saptadeep Pal et al. “Architecting Waferscale Processors - A GPU Case Study”. In:

25th IEEE International Symposium on High Performance Computer Architecture.

HPCA. Piscataway, NJ, USA: IEEE Press, 2019, pp. 250–263. doi: 10.1109/HPCA.

2019.00042.

[19] Bryan Black. Chiplets: How to Utilize Them, Some of Their Challenges and What

They Can Do. Annual IMAPS Symposium Keynote. 2020.

[20] Thiruvengadam Vijayaraghavany et al. “Design and Analysis of an APU for Ex-

ascale Computing”. In: Proceedings of the IEEE 23rd International Symposium

on High Performance Computer Architecture. HPCA. Piscataway, NJ, USA: IEEE

Press, Feb. 2017, pp. 85–96. doi: 10.1109/HPCA.2017.42.

40

[21] Akhil Arunkumar et al. “Understanding the Future of Energy Efficiency in Multi-

Module GPUs”. In: 25th IEEE International Symposium on High Performance

Computer Architecture. HPCA. Piscataway, NJ, USA: IEEE Press, 2019, pp. 519–

532. doi: 10.1109/HPCA.2019.00063.

[22] Yakun Sophia Shao et al. “Simba: Scaling Deep-Learning Inference with Multi-

Chip-Module-Based Architecture”. In: Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture. MICRO. Columbus, OH, USA: As-

sociation for Computing Machinery, 2019, pp. 14–27. isbn: 9781450369381. doi:

10.1145/3352460.3358302. url: https://doi.org/10.1145/3352460.3358302.

[23] Natalie Enright Jerger et al. “NoC Architectures for Silicon Interposer Systems:

Why Pay for more Wires when you Can Get them (from your interposer) for Free?”

In: 47th Annual IEEE/ACM International Symposium on Microarchitecture. MI-

CRO. Piscataway, NJ, USA: IEEE, Dec. 2014, pp. 458–470. doi: 10.1109/MICRO.

2014.61.

[24] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H Loh. “Enabling Interposer-

based Disintegration of Multi-core Processors”. In: 48th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture. MICRO. IEEE Press. Piscataway, NJ,

USA, 2015, pp. 546–558.

[25] Gabriel H. Loh et al. “Interconnect-Memory Challenges for Multi-chip, Silicon In-

terposer Systems”. In: Proceedings of the 2015 International Symposium on Mem-

ory Systems. MEMSYS. Washington DC, DC, USA: ACM, 2015, pp. 3–10. isbn:

978-1-4503-3604-8. doi: 10.1145/2818950.2818951. url: http://doi.acm.org/

10.1145/2818950.2818951.

[26] Skyler J Saleh et al. “GPU Chiplets Using High Bandwidth Crosslinks”. US20200409859A1.

Dec. 2020.

[27] Preyesh Dalmia, Rajesh Shashi Kumar, and Matthew D. Sinclair. “CPElide: Effi-

cient Multi-Chiplet GPU Implicit Synchronization”. In: Proceedings of 57th IEEE/ACM

41

International Symposium on Microarchitecture. MICRO. Los Alamitos, CA, USA:

IEEE Computer Society, 2024.

[28] Hyojong Kim et al. “CODA: Enabling Co-Location of Computation and Data for

Multiple GPU Systems”. In: ACM Trans. Archit. Code Optim. 15.3 (Sept. 2018).

issn: 1544-3566. doi: 10.1145/3232521. url: https://doi.org/10.1145/

3232521.

[29] Yueqi Wang et al. “GRIT: Enhancing Multi-GPU Performance with Fine-Grained

Dynamic Page Placement”. In: IEEE International Symposium on High-Performance

Computer Architecture. HPCA. Washington, DC, USA: IEEE Computer Society,

2024, pp. 1080–1094. doi: 10.1109/HPCA57654.2024.00085.

[30] Ugljesa Milic et al. “Beyond the Socket: NUMA-aware GPUs”. In: Proceedings

of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.

MICRO. Cambridge, Massachusetts: ACM, 2017, pp. 123–135. isbn: 978-1-4503-

4952-9. doi: 10.1145/3123939.3124534. url: http://doi.acm.org/10.1145/

3123939.3124534.

[31] Shiqing Zhang et al. “SAC: Sharing-Aware Caching in Multi-Chip GPUs”. In:

Proceedings of the 50th Annual International Symposium on Computer Architec-

ture. ISCA. Orlando, FL, USA: Association for Computing Machinery, 2023. isbn:

9798400700958. doi: 10.1145/3579371.3589078. url: https://doi.org/10.

1145/3579371.3589078.

[32] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. “Selective Replication in Memory-

Side GPU Caches”. In: 53rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture. MICRO. Los Alamitos, CA, USA: IEEE Computer Society, 2020,

pp. 967–980. doi: 10.1109/MICRO50266.2020.00082.

[33] Josep Torrellas, Andrew Tucker, and Anoop Gupta. “Benefits of Cache-affinity

Scheduling in Shared-memory Multiprocessors: a Summary”. In: Proceedings of the

1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

42

Systems. SIGMETRICS. Santa Clara, California, USA: Association for Computing

Machinery, 1993, pp. 272–274. isbn: 0897915801. doi: 10.1145/166955.167038.

url: https://doi.org/10.1145/166955.167038.

[34] Qiuming Luo et al. “Characteristic Analysis of Operating Systems for Large Scale

Hierarchical NUMA System”. In: Sixth International Symposium on Parallel Archi-

tectures, Algorithms and Programming. SPAA. New York, NY, USA: Association

for Computing Machinery, 2014, pp. 114–117. doi: 10.1109/PAAP.2014.55.

[35] Ben Verghese et al. “Operating System Support for Improving Data Locality on

CC-NUMA Compute Servers”. In: Proceedings of the Seventh International Confer-

ence on Architectural Support for Programming Languages and Operating Systems.

ASPLOS. Cambridge, Massachusetts, USA: Association for Computing Machin-

ery, 1996, pp. 279–289. isbn: 0897917677. doi: 10.1145/237090.237205. url:

https://doi.org/10.1145/237090.237205.

[36] Johnathan Alsop et al. “Lazy release consistency for GPUs”. In: 49th Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO. Los Alami-

tos, CA, USA: IEEE Computer Society, 2016, 26:1–26:13. doi: 10.1109/MICRO.

2016.7783729. url: https://doi.org/10.1109/MICRO.2016.7783729.

[37] B.A. Hechtman et al. “QuickRelease: A Throughput-Oriented Approach to Release

Consistency on GPUs”. In: 20th International Symposium on High Performance

Computer Architecture. HPCA. Los Alamitos, CA, USA: IEEE Computer Society,

Feb. 2014, pp. 189–200. doi: 10.1109/HPCA.2014.6835930.

[38] Konstantinos Koukos et al. “Building Heterogeneous Unified Virtual Memories

(UVMs) Without the Overhead”. In: ACM Trans. Archit. Code Optim. 13.1 (Mar.

2016), 1:1–1:22. issn: 1544-3566. doi: 10.1145/2889488. url: http://doi.acm.

org/10.1145/2889488.

[39] Xiaowei Ren et al. “HMG: Extending Cache Coherence Protocols Across Mod-

ern Hierarchical Multi-GPU Systems”. In: 26th IEEE International Symposium on

43

High Performance Computer Architecture. HPCA. Washington, DC, USA: IEEE

Computer Society, 2020, pp. 582–595. doi: 10.1109/HPCA47549.2020.00054.

[40] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. “Efficient GPU Syn-

chronization without Scopes: Saying No to Complex Consistency Models”. In: Pro-

ceedings of the 48th Annual IEEE/ACM International Symposium on Microarchi-

tecture. MICRO. New York, NY, USA: Association for Computing Machinery, Dec.

2015, pp. 647–659.

[41] Inderpreet Singh et al. “Cache Coherence for GPU Architectures”. In: 19th In-

ternational Symposium on High Performance Computer Architecture. HPCA. Los

Alamitos, CA, USA: IEEE Computer Society, 2013, pp. 578–590. doi: http://

doi.ieeecomputersociety.org/10.1109/HPCA.2013.6522351.

[42] Renée St. Amant et al. “General-Purpose Code Acceleration with Limited-Precision

Analog Computation”. In: ACM/IEEE 41st International Symposium on Computer

Architecture. ISCA. Piscataway, NJ, USA: IEEE, 2014, pp. 505–516. doi: 10.1109/

ISCA.2014.6853213.

[43] Apple. Dispatch. https://developer.apple.com/documentation/dispatch.

2024.

[44] Lucian Codrescu et al. “Hexagon DSP: An Architecture Optimized for Mobile

Multimedia and Communications”. In: IEEE Micro 34.2 (2014), pp. 34–43. doi:

10.1109/MM.2014.12.

[45] HSA Foundation.HSA Platform System Architecture Specification. https://hsafoundation.

com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf. 2021.

[46] Vinson Young et al. “Combining HW/SW Mechanisms to Improve NUMA Per-

formance of Multi-GPU Systems”. In: 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO. Washington, DC, USA: IEEE Computer

Society, 2018, pp. 339–351. doi: 10.1109/MICRO.2018.00035.

44

[47] Benedict R. Gaster, Derek Hower, and Lee Howes. “HRF-Relaxed: Adapting HRF

to the Complexities of Industrial Heterogeneous Memory Models”. In: ACM Trans.

Archit. Code Optim. 12.1 (Apr. 2015), 7:1–7:26. issn: 1544-3566. doi: 10.1145/

2701618. url: http://doi.acm.org/10.1145/2701618.

[48] Derek R. Hower et al. “Heterogeneous-race-free Memory Models”. In: Proceedings

of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS. Salt Lake City, Utah, USA: ACM,

2014, pp. 427–440. isbn: 978-1-4503-2305-5. doi: 10 . 1145 / 2541940 . 2541981.

url: http://doi.acm.org/10.1145/2541940.2541981.

[49] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. “A Formal Analysis of

the NVIDIA PTX Memory Consistency Model”. In: Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Association for

Computing Machinery, 2019, pp. 257–270. isbn: 9781450362405. doi: 10.1145/

3297858.3304043. url: https://doi.org/10.1145/3297858.3304043.

[50] NVIDIA Corp. NVIDIA Multi-Instance GPU (MIG). https://docs.nvidia.com/

cuda/mig/index.html. 2021.

[51] AMD. AMD MxGPU and VMware. https://drivers.amd.com/relnotes/amd_

mxgpu_deploymentguide_vmware.pdf. 2020.

[52] Rolf Neugebauer et al. “Understanding PCIe Performance for End Host Network-

ing”. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on

Data Communication. SIGCOMM. Budapest, Hungary: Association for Comput-

ing Machinery, 2018, pp. 327–341. isbn: 9781450355674. doi: 10.1145/3230543.

3230560. url: https://doi.org/10.1145/3230543.3230560.

[53] NVIDIA Corp. NVLink Fabric: A Faster, More Scalable Interconnect. https://

www.nvidia.com/en-us/data-center/nvlink/. 2018.

45

[54] Dave James. AMD’s answer to Nvidia’s NVLink is xGMI, and it’s coming to the

new 7nm Vega GPU. Sept. 2018. url: https://www.pcgamesn.com/amd-xgmi-

vega-20-gpu-nvidia-nvlink.

[55] AMD. ROCm: Open Platform For Development, Discovery and Education around

GPU Computing. https://gpuopen.com/compute-product/rocm/. 2021.

[56] Sooraj Puthoor et al. “Implementing Directed Acyclic Graphs with the Hetero-

geneous System Architecture”. In: Proceedings of the 9th Annual Workshop on

General Purpose Processing Using Graphics Processing Unit. GPGPU. Barcelona,

Spain: ACM, 2016, pp. 53–62. isbn: 978-1-4503-4195-0. doi: 10.1145/2884045.

2884052. url: http://doi.acm.org/10.1145/2884045.2884052.

[57] Sooraj Puthoor et al. “Oversubscribed Command Queues in GPUs”. In: Proceedings

of the 11th Workshop on General Purpose GPUs. GPGPU. Vienna, Austria: ACM,

2018, pp. 50–60. isbn: 978-1-4503-5647-3. doi: 10.1145/3180270.3180271. url:

http://doi.acm.org/10.1145/3180270.3180271.

[58] AMD. HIP: Heterogeneous-computing Interface for Portability. https://github.

com/ROCm-Developer-Tools/HIP/. 2018.

[59] NVIDIA. NVIDIA, CUDA Stream Management. 2024. url: http://developer.

download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group_

_CUDART__STREAM.html.

[60] Justin Luitjens. “CUDA Streams: Best Practices and Common Pitfalls”. In: GPU

Technology Conference. GTC. 2014.

[61] Preyesh Dalmia, Rajesh Shashi Kumar, and Matthew D. Sinclair.Artifact: CPElide:

Efficient Multi-Chiplet GPU Implicit Synchronization. https://github.com/hal-

uw/cpelide-micro24-artifact. Nov. 2024.

[62] Reese Kuper, Suchita Pati, and Matthew D. Sinclair. “Improving GPU Utiliza-

tion in ML Workloads Through Finer-Grained Synchronization”. In: 3rd Young

Architects Workshop. YArch. Apr. 2021.

46

[63] Oreste Villa et al. “NVBit: A Dynamic Binary Instrumentation Framework for

NVIDIA GPUs”. In: Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO. Columbus, OH, USA: Association for

Computing Machinery, 2019, pp. 372–383. isbn: 9781450369381. doi: 10.1145/

3352460.3358307. url: https://doi.org/10.1145/3352460.3358307.

[64] Michael LeBeane et al. “ComP-Net: Command Processor Networking for Efficient

Intra-Kernel Communications on GPUs”. In: Proceedings of the 27th International

Conference on Parallel Architectures and Compilation Techniques. PACT. Limas-

sol, Cyprus: Association for Computing Machinery, 2018. isbn: 9781450359863. doi:

10.1145/3243176.3243179. url: https://doi.org/10.1145/3243176.3243179.

[65] Michael LeBeane et al. “Extended Task Queuing: Active Messages for Heteroge-

neous Systems”. In: Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. SC. Piscataway, NJ, USA:

IEEE Press, 2016, pp. 933–944. doi: 10.1109/SC.2016.79.

[66] Vinay Ramakrishnaiah et al. “Cache Cohort GPU Scheduling”. In: Proceedings of

the 16th Workshop on General Purpose Processing Using GPU. GPGPU. Edin-

burgh, United Kingdom: Association for Computing Machinery, 2024, pp. 19–25.

isbn: 9798400718175. doi: 10.1145/3649411.3649415. url: https://doi.org/

10.1145/3649411.3649415.

[67] Tsung Tai Yeh et al. “Deadline-Aware Offloading for High-Throughput Accelera-

tors”. In: 27th IEEE International Symposium on High Performance Computer Ar-

chitecture. HPCA. Washington, DC, USA: IEEE Computer Society, 2021, pp. 479–

492. doi: 10.1109/HPCA51647.2021.00048.

[68] Bobbi W. Yogatama, Matthew D. Sinclair, and Michael M. Swift. “Enabling Multi-

GPU Support in gem5”. In: 3rd gem5 Users’ Workshop. June 2020.

[69] Yuhui Bao et al. “NaviSim: A Highly Accurate GPU Simulator for AMD RDNA

GPUs”. In: Proceedings of the International Conference on Parallel Architectures

47

and Compilation Techniques. PACT ’22. Chicago, Illinois: Association for Comput-

ing Machinery, 2023, pp. 333–345. isbn: 9781450398688. doi: 10.1145/3559009.

3569666. url: https://doi.org/10.1145/3559009.3569666.

[70] Mahmoud Khairy et al. “Accel-Sim: An Extensible Simulation Framework for Val-

idated GPU Modeling”. In: ACM/IEEE 47th Annual International Symposium on

Computer Architecture. ISCA. Piscataway, NJ, USA: IEEE Press, 2020, pp. 473–

486. doi: 10.1109/ISCA45697.2020.00047.

[71] Charles Jamieson et al. “GAP: gem5 GPU Accuracy Profiler”. In: 4th gem5 Users’

Workshop. June 2022.

[72] Nathan Binkert et al. “The gem5 simulator”. In: ACM SIGARCH Computer Ar-

chitecture News 39.2 (2011), pp. 1–7.

[73] Jason Lowe-Power et al. The gem5 Simulator: Version 20.0+. 2020. arXiv: 2007.

03152 [cs.AR].

[74] Preyesh Dalmia, Rohan Mahapatra, and Matthew D. Sinclair. “Only Buffer When

You Need To: Reducing On-Chip Memory Traffic Using Local Atomic Buffers

on GPUs”. In: 28th IEEE International Symposium on High-Performance Com-

puter Architecture. HPCA. Washington, DC, USA: IEEE Computer Society, 2022,

pp. 676–691.

[75] William J. Dally. Hardware for Deep Learning. SysML Keynote. Feb. 2018.

[76] Song Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Net-

work”. In: Proceedings of the 43rd International Symposium on Computer Archi-

tecture. ISCA. Seoul, Republic of Korea: IEEE Press, 2016, pp. 243–254. isbn:

978-1-4673-8947-1. doi: 10.1109/ISCA.2016.30. url: https://doi.org/10.

1109/ISCA.2016.30.

[77] Mike O’Connor et al. “Fine-grained DRAM: Energy-efficient DRAM for Extreme

Bandwidth Systems”. In: Proceedings of the 50th Annual IEEE/ACM International

48

Symposium on Microarchitecture. MICRO. ACM. New York, NY, USA: ACM, 2017,

pp. 41–54.

[78] NVIDIA. “NVIDIA RISC-V Story”. In: 4th RISC-V Workshop (2016). url: https:

//riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_

V2.pdf.

[79] Jagadish B. Kotra et al. “Increasing GPU Translation Reach by Leveraging Under-

Utilized On-Chip Resources”. In: 54th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. MICRO. Virtual Event, Greece: Association for Com-

puting Machinery, 2021, pp. 1169–1181. isbn: 9781450385572. doi: 10 . 1145 /

3466752.3480105. url: https://doi.org/10.1145/3466752.3480105.

[80] Anthony Gutierrez et al. “Lost in Abstraction: Pitfalls of Analyzing GPUs at the

Intermediate Language Level”. In: IEEE International Symposium on High Per-

formance Computer Architecture. HPCA. Washington, DC, USA: IEEE Computer

Society, 2018, pp. 608–619.

[81] Bobby R. Bruce et al. “Enabling Reproducible and Agile Full-System Simulation”.

In: IEEE International Symposium on Performance Analysis of Systems and Soft-

ware. ISPASS. Los Alamitos, CA, USA: IEEE Computer Society, 2021, pp. 183–

193.

[82] AMD. HIP-Examples. https : / / github . com / ROCm - Developer - Tools / HIP -

Examples. 2023.

[83] Tom Deakin et al. “GPU-STREAM v2.0: Benchmarking the Achievable Memory

Bandwidth of Many-Core Processors Across Diverse Parallel Programming Mod-

els”. In: High Performance Computing. Ed. by Michela Taufer, Bernd Mohr, and

Julian M. Kunkel. Cham: Springer International Publishing, 2016, pp. 489–507.

isbn: 978-3-319-46079-6.

49

[84] Tom Deakin et al. “Evaluating Attainable Memory Bandwidth of Parallel Program-

ming Models via BabelStream”. In: Int. J. Comput. Sci. Eng. 17.3 (Jan. 2018),

pp. 247–262. issn: 1742-7185.

[85] Shuai Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Computing”.

In: IEEE International Symposium on Workload Characterization. IISWC. Wash-

ington, DC, USA: IEEE Computer Society, Oct. 2009, pp. 44–54. doi: 10.1109/

IISWC.2009.5306797.

[86] Shuai Che et al. “A Characterization of the Rodinia Benchmark Suite with Com-

parison to Contemporary CMP Workloads”. In: IEEE International Symposium

on Workload Characterization. IISWC. Washington, DC, USA: IEEE Computer

Society, 2010, pp. 1–11. doi: 10.1109/IISWC.2010.5650274.

[87] Shuai Che et al. “Pannotia: Understanding Irregular GPGPU Graph Applica-

tions”. In: IEEE International Symposium on Workload Characterization. IISWC.

Los Alamitos, CA, USA: IEEE Computer Society, Sept. 2013, pp. 185–195. doi:

10.1109/IISWC.2013.6704684.

[88] Lawrence Livermore National Labs. CORAL-2 Benchmarks. https://asc.llnl.

gov/coral-2-benchmarks. 2020.

[89] R. D. Hornung, Jeff A. Keasler, and M. B. Gokhale. Hydrodynamics Challenge

Problem, Lawrence Livermore National Laboratory. Tech. rep. LLNL-TR-490254.

Livermore, CA: Lawrence Livermore National Laboratory, 2011, pp. 1–28.

[90] Johnathan Alsop et al. “Optimizing GPU Cache Policies for MI Workloads”. In:

IEEE International Symposium on Workload Characterization. IISWC. Piscataway,

NJ, USA: IEEE Press, 2019.

[91] Bodun Hu and Christopher J. Rossbach. “Altis: Modernizing GPGPU Bench-

marks”. In: IEEE International Symposium on Performance Analysis of Systems

and Software. ISPASS. Piscataway, NJ, USA: IEEE Press, 2020, pp. 1–11. doi:

10.1109/ISPASS48437.2020.00011.

50

[92] Joel Hestness, Stephen W. Keckler, and David A. Wood. “A Comparative Analysis

of Microarchitecture Effects on CPU and GPU Memory System Behavior”. In:

IEEE International Symposium on Workload Characterization. IISWC. Piscataway,

NJ, USA: IEEE Press, 2014, pp. 150–160. doi: 10.1109/IISWC.2014.6983054.

[93] Mahmoud Khairy, Mohamed Zahran, and AmrWassal. “SACAT: Streaming-Aware

Conflict-Avoiding Thrashing-Resistant GPGPU Cache Management Scheme”. In:

IEEE Transactions on Parallel and Distributed Systems 28.6 (2017), pp. 1740–1753.

doi: 10.1109/TPDS.2016.2627560.

[94] AMD. Introducing AMD CDNA™ 2 Architecture. https://www.amd.com/content/

dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-

white-paper.pdf. 2022.

[95] AMD. AMD CDNA™ 3 Architecture. 2023. url: https://www.amd.com/content/

dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-

white-paper.pdf.

[96] NVIDIA. NVIDIA Blackwell Architecture Technical Brief. https://resources.

nvidia . com / en - us - blackwell - architecture / blackwell - architecture -

technical-brief. 2024.

[97] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. “Chasing Away RAts:

Semantics and Evaluation for Relaxed Atomics on Heterogeneous Systems”. In:

Proceedings of the 44th Annual International Symposium on Computer Architec-

ture. ISCA. Toronto, ON, Canada: ACM, 2017, pp. 161–174. isbn: 978-1-4503-

4892-8. doi: 10.1145/3079856.3080206. url: http://doi.acm.org/10.1145/

3079856.3080206.

[98] Liu Ke et al. “RecNMP: Accelerating Personalized Recommendation with near-

Memory Processing”. In: Proceedings of the ACM/IEEE 47th Annual International

Symposium on Computer Architecture. ISCA. Piscataway, NJ, USA: IEEE Press,

51

2020, pp. 790–803. isbn: 9781728146614. url: https : / / doi . org / 10 . 1109 /

ISCA45697.2020.00070.

[99] Yuan Feng. “Understanding Scalability of Multi-GPU Systems”. In: 15th Workshop

on General Purpose Processing Using GPU. GPGPU. Montreal, Canada: ACM,

Feb. 2023.

[100] Qualcomm. Qualcomm Hexagon DSP. https : / / developer . qualcomm . com /

sites/default/files/docs/adreno-gpu/developer-guide/dsp/dsp.html.

2021.

[101] Harini Muthukrishnan et al. “Efficient Multi-GPU Shared Memory via Automatic

Optimization of Fine-Grained Transfers”. In: ACM/IEEE 48th Annual Interna-

tional Symposium on Computer Architecture. ISCA. Piscataway, NJ, USA: IEEE

Press, 2021, pp. 996–1009.

[102] Saiful A. Mojumder et al. “HALCONE : A Hardware-Level Timestamp-based

Cache Coherence Scheme for Multi-GPU Systems”. In: arXiv preprint arXiv:2007.04292

(2020). arXiv: 2007.04292 [cs.AR].

[103] Mohammad Khavari Tavana et al. “Exploiting Adaptive Data Compression to Im-

prove Performance and Energy-Efficiency of Compute Workloads in Multi-GPU

Systems”. In: IEEE International Parallel and Distributed Processing Symposium.

IPDPS. Piscataway, NJ, USA: IEEE Press, 2019, pp. 664–674. doi: 10.1109/

IPDPS.2019.00075.

[104] Yaosheng Fu et al. “GPU Domain Specialization via Composable On-Package Ar-

chitecture”. In: ACM Trans. Archit. Code Optim. TACO 19.1 (Dec. 2021). issn:

1544-3566. doi: 10.1145/3484505. url: https://doi.org/10.1145/3484505.

[105] Trinayan Baruah et al. “Griffin: Hardware-Software Support for Efficient Page Mi-

gration in Multi-GPU Systems”. In: 26th IEEE International Symposium on High

Performance Computer Architecture. HPCA. Piscataway, NJ, USA: IEEE Press,

2020, pp. 596–609. doi: 10.1109/HPCA47549.2020.00055.

52

[106] Trinayan Baruah et al. “Valkyrie: Leveraging Inter-TLB Locality to Enhance GPU

Performance”. In: Proceedings of the ACM International Conference on Parallel

Architectures and Compilation Techniques. PACT. Virtual Event, GA, USA: As-

sociation for Computing Machinery, 2020, pp. 455–466. isbn: 9781450380751. doi:

10.1145/3410463.3414639. url: https://doi.org/10.1145/3410463.3414639.

[107] Bingyao Li et al. “Improving Address Translation in Multi-GPUs via Sharing and

Spilling Aware TLB Design”. In: 54th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. MICRO. Virtual Event, Greece: Association for Com-

puting Machinery, 2021, pp. 1154–1168. isbn: 9781450385572. doi: 10 . 1145 /

3466752.3480083. url: https://doi.org/10.1145/3466752.3480083.

[108] Jinhui Wei et al. “Dynamic GMMU Bypass for Address Translation in Multi-GPU

Systems”. In: Network and Parallel Computing. Ed. by Xin He, En Shao, and

Guangming Tan. Cham: Springer International Publishing, 2021, pp. 147–158. isbn:

978-3-030-79478-1.

[109] B. Pratheek, Neha Jawalkar, and Arkaprava Basu. “Designing Virtual Memory

System of MCM GPUs”. In: 2022 55th IEEE/ACM International Symposium on

Microarchitecture. MICRO. Los Alamitos, CA, USA: IEEE Computer Society, Oct.

2022, pp. 404–422. doi: 10.1109/MICRO56248.2022.00036. url: https://doi.

ieeecomputersociety.org/10.1109/MICRO56248.2022.00036.

[110] Aamer Jaleel et al. “CRUISE: Cache Replacement and Utility-Aware Schedul-

ing”. In: Proceedings of the Seventeenth International Conference on Architectural

Support for Programming Languages and Operating Systems. ASPLOS. London,

England, UK: Association for Computing Machinery, 2012, pp. 249–260. isbn:

9781450307598. doi: 10.1145/2150976.2151003. url: https://doi.org/10.

1145/2150976.2151003.

[111] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. “Cache-Conscious Wave-

front Scheduling”. In: 45th Annual IEEE/ACM International Symposium on Mi-

53

croarchitecture. MICRO. Piscataway, NJ, USA: IEEE Press, 2012, pp. 72–83. doi:

10.1109/MICRO.2012.16.

[112] Shin-Ying Lee, Akhil Arunkumar, and Carole-Jean Wu. “CAWA: Coordinated

Warp Scheduling and Cache Prioritization for Critical Warp Acceleration of GPGPU

Workloads”. In: Proceedings of the 42nd Annual International Symposium on Com-

puter Architecture. ISCA. Portland, Oregon: Association for Computing Machinery,

2015, pp. 515–527. isbn: 9781450334020. doi: 10.1145/2749469.2750418. url:

https://doi.org/10.1145/2749469.2750418.

[113] Wilson W. L. Fung et al. “Dynamic Warp Formation and Scheduling for Efficient

GPU Control Flow”. In: 40th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO. New York, NY, USA: ACM, 2007, pp. 407–420. doi:

10.1109/MICRO.2007.30.

[114] James A. Jablin et al. “Warp-aware Trace Scheduling for GPUs”. In: Proceed-

ings of the 23rd International Conference on Parallel Architectures and Compila-

tion. PACT. Edmonton, AB, Canada: Association for Computing Machinery, 2014,

pp. 163–174. isbn: 9781450328098. doi: 10.1145/2628071.2628101. url: https:

//doi.org/10.1145/2628071.2628101.

[115] Nagesh B. Lakshminarayana and Hyesoon Kim. “Effect of Instruction Fetch and

Memory Scheduling on GPU Performance”. In: Workshop on Language, Compiler,

and Architecture Support for GPGPU. 2010.

[116] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. “Divergence-Aware

Warp Scheduling”. In: 46th Annual IEEE/ACM International Symposium on Mi-

croarchitecture. MICRO. Piscataway, NJ, USA: IEEE Press, 2013, pp. 99–110.

[117] Yulong Yu et al. “A Stall-Aware Warp Scheduling for Dynamically Optimizing

Thread-level Parallelism in GPGPUs”. In: Proceedings of the 29th ACM on In-

ternational Conference on Supercomputing. ICS. Newport Beach, California, USA:

54

Association for Computing Machinery, 2015, pp. 15–24. isbn: 9781450335591. doi:

10.1145/2751205.2751234. url: https://doi.org/10.1145/2751205.2751234.

[118] Benjamin Hao and David Pearson. “Instruction Scheduling and Global Register Al-

location for SIMD Multiprocessors”. In: 2nd Int’l Workshop on Parallel Algorithms

for Irregularly Structured Problems. 1995, pp. 81–86.

[119] Adwait Jog et al. “OWL: Cooperative Thread Array Aware Scheduling Techniques

for Improving GPGPU Performance”. In: Proceedings of the Eighteenth Interna-

tional Conference on Architectural Support for Programming Languages and Op-

erating Systems. ASPLOS. Houston, Texas, USA: Association for Computing Ma-

chinery, 2013, pp. 395–406. isbn: 9781450318709. doi: 10.1145/2451116.2451158.

url: https://doi.org/10.1145/2451116.2451158.

[120] Veynu Narasiman et al. “Improving GPU Performance via Large Warps and Two-

Level Warp Scheduling”. In: 44th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO. Piscataway, NJ, USA: IEEE Press, Dec. 2011, pp. 308–

317.

[121] Qiumin Xu and Murali Annavaram. “PATS: Pattern Aware Scheduling and Power

Gating for GPGPUs”. In: Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation. PACT. Edmonton, AB, Canada: Asso-

ciation for Computing Machinery, 2014, pp. 225–236. isbn: 9781450328098. doi:

10.1145/2628071.2628105. url: https://doi.org/10.1145/2628071.2628105.

[122] J. Liu, J. Yang, and R. Melhem. “SAWS: Synchronization aware GPGPU warp

scheduling for multiple independent warp schedulers”. In: Proceedings of the 48th

Annual IEEE/ACM International Symposium on Microarchitecture. MICRO. New

York, NY, USA: Association for Computing Machinery, 2015, pp. 383–394.

[123] Quan Chen et al. “Prophet: Precise QoS Prediction on Non-Preemptive Accel-

erators to Improve Utilization in Warehouse-Scale Computers”. In: Proceedings

of the Twenty-Second International Conference on Architectural Support for Pro-

55

gramming Languages and Operating Systems. ASPLOS ’17. Xi’an, China: ACM,

2017, pp. 17–32. isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037700. url:

http://doi.acm.org/10.1145/3037697.3037700.

[124] Quan Chen et al. “Baymax: QoS Awareness and Increased Utilization for Non-

Preemptive Accelerators in Warehouse Scale Computers”. In: Proceedings of the

Twenty-First International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS. Atlanta, Georgia, USA: ACM, 2016,

pp. 681–696. isbn: 978-1-4503-4091-5. doi: 10.1145/2872362.2872368. url: http:

//doi.acm.org/10.1145/2872362.2872368.

[125] Pin Gao et al. “Low Latency RNN Inference with Cellular Batching”. In: Pro-

ceedings of the Thirteenth EuroSys Conference. EuroSys. Porto, Portugal: ACM,

2018, 31:1–31:15. isbn: 978-1-4503-5584-1. doi: 10.1145/3190508.3190541. url:

http://doi.acm.org/10.1145/3190508.3190541.

[126] Connor Holmes et al. “GRNN: Low-Latency and Scalable RNN Inference on GPUs”.

In: Proceedings of the Fourteenth EuroSys Conference 2019. EuroSys. Dresden, Ger-

many: ACM, 2019, 41:1–41:16. isbn: 978-1-4503-6281-8. doi: 10.1145/3302424.

3303949. url: http://doi.acm.org/10.1145/3302424.3303949.

[127] Glenn A. Elliott, Bryan C. Ward, and James H. Anderson. “GPUSync: A Frame-

work for Real-Time GPU Management”. In: 2013 IEEE 34th Real-Time Systems

Symposium. Piscataway, NJ, USA: IEEE Press, Dec. 2013, pp. 33–44. doi: 10.

1109/RTSS.2013.12.

[128] Shinpei Kato et al. “TimeGraph: GPU Scheduling for Real-Time Multi-Tasking

Environments”. In: USENIX Annual Technical Conference. USENIX ATC. Port-

land, OR: USENIX Association, June 2011. url: https://www.usenix.org/

conference/usenixatc11/timegraph- gpu- scheduling- real- time- multi-

tasking-environments.

56

[129] Jacob T Adriaens et al. “The Case for GPGPU Spatial Multitasking”. In: 18th

IEEE International Symposium on High-Performance Computer Architecture. HPCA.

IEEE. Piscataway, NJ, USA: IEEE Press, 2012, pp. 1–12.

[130] Bradford M. Beckmann and David A. Wood. “Managing Wire Delay in Large Chip-

Multiprocessor Caches”. In: 37th International Symposium on Microarchitecture.

MICRO. Piscataway, NJ, USA: IEEE Press, 2004, pp. 319–330. doi: 10.1109/

MICRO.2004.21.

[131] Changkyu Kim, Doug Burger, and StephenW. Keckler. “An Adaptive, Non-uniform

Cache Structure for Wire-delay Dominated On-chip Caches”. In: Proceedings of

the 10th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems. ASPLOS. San Jose, California: Association for Com-

puting Machinery, 2002, pp. 211–222. isbn: 1581135742. doi: 10.1145/605397.

605420. url: https://doi.org/10.1145/605397.605420.

[132] Zeshan Chishti, Michael D. Powell, and T.N. Vijaykumar. “Distance Associativ-

ity for High-performance Energy-efficient Non-uniform Cache Architectures”. In:

Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture. MICRO. New York, NY, USA: Association for Computing Machinery,

2003, pp. 55–66. doi: 10.1109/MICRO.2003.1253183.

[133] Paul Caheny et al. “TD-NUCA: Runtime Driven Management of NUCA Caches

in Task Dataflow Programming Models”. In: International Conference for High

Performance Computing, Networking, Storage and Analysis. SC. Piscataway, NJ,

USA: IEEE Press, 2022, pp. 1–15. doi: 10.1109/SC41404.2022.00085.

[134] Bradford M. Beckmann and David A. Wood. “TLC: Transmission Line Caches”.

In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Mi-

croarchitecture. MICRO. New York, NY, USA: ACM, 2003, pp. 43–54. doi: 10.

1109/MICRO.2003.1253182.

