Demystifying BERT: System Design Implications

Suchita Patil*? Shaizeen Aga®

Nuwan Jayasena? Matthew D. Sinclair 12

YWniversity of Wisconsin-Madison
{spati, sinclair)@cs.wisc.edu
2 Advanced Micro Devices Inc.
{shaizeen.aga, nuwan.jayasena}@amd.com

Abstract

Transfer learning in natural language processing (NLP)
uses increasingly large models that tackle challenging prob-
lems. Consequently, these applications are driving the re-
quirements of future systems. To this end, we study the
computationally and time-intensive training phase of NLP
models and identify how its algorithmic behavior can guide
future accelerator design. We focus on BERT (Bi-directional
Encoder Representations from Transformer), one of the most
popular Transformer-based NLP models, and identify key
operations which are worthy of attention in accelerator
design. In particular, we focus on the manifestation, size, and
arithmetic behavior of these operations which remain constant
irrespective of hardware choice. Our results show that although
computations which manifest as matrix multiplications dom-
inate BERT’s execution, they have considerable heterogeneity.
Furthermore, we characterize memory-intensive computations
which also feature prominently in BERT but have received
less attention. To capture future Transformer trends, we
also show and discuss implications of these behaviors as
networks get larger. Moreover, we study the impact of key
training techniques like distributed training, checkpointing,
and mixed-precision training. Finally, our analysis identifies
holistic solutions to optimize systems for BERT-like models
and we further demonstrate how enhancing compute-intensive
accelerators with near-memory compute can help accelerate
Transformer networks.

1. Introduction

In recent years, rapid advancements in natural language
processing (NLP) have enabled important applications that
interpret human language, such as intelligent personal as-
sistants, near instantaneous language translation, and more
intelligent search engines. This tremendous, transformative
rise has been enabled by a virtuous synergy of (1) better
hardware systems, (2) larger datasets, and (3) improved deep
neural network (DNN) structures and machine learning (ML)
algorithms that further benefit from more efficient hardware
and larger datasets. For decades, technology scaling has
driven Moore’s Law and enabled more efficient hardware
designs. However, the slowing of technology scaling and
Moore’s Law [44] presents a crucial challenge to more fully
realizing ML’s potential. In recognition of the slowing of
technology scaling, the community responded by optimizing
ML workloads for GPUs [15, 22, 45, 66, 101] and designing
accelerators [27, 43, 49, 61, 92]. As a result, ML workloads,
especially ML inference and convolutional neural networks

(CNNs), are often able to fully utilize on-chip ALUs and
execute efficiently [1, 2, 4, 12, 16, 27, 29, 30, 34, 35, 40, 41,
50, 51, 57, 59, 72, 76, 78, 83, 88, 96, 97, 99, 100].

However, more recently Transformer-based net-
works [87] have become the preferred algorithm for
NLP. These networks, along with transfer learning, have
given rise to models like the Bi-directional Encoder
Representation from Transformer (BERT) [21], which mark
a shift towards deeper knowledge transfer by applying
massive pre-trained models to different tasks. BERT ac-
curately trains on billions of words and outperformed its
predecessors on several NLP tasks [21]. To do this, BERT
uses unsupervised learning to train on large unlabeled
datasets. Its deeply bi-directional Transformer-based archi-
tecture implies its representation of a token in a given
sequence encodes information from all the preceding and
subsequent tokens. Furthermore, BERT models are large
with 110-340 million parameters. Collectively, these features
are important contributors to its power, and accuracy.

Understanding these feature’s underlying behaviors is
vital to designing efficient accelerators for Transformer-
based models. However, thus far there has been little work
on a detailed characterization for them. Most prior work that
characterizes ML algorithms focuses on CNNs, recurrent
neural networks (RNNs), or recommendation models [2, 32,
92, 100]. Moreover, prior works that analyze Transformers
miss important details such as manifestation of layer
operations and detailed runtime breakdown amongst all
operations [89, 92, 98]. Consequently, some works build
accelerators with matrix-vector engines for BERT layers
which actually perform matrix-matrix operations [33, 36].

Moreover, BERT has also become the basis of several
larger (3.9 billion parameters) models [56, 79] and has
also inspired other NLP architectures such as ALBERT [52],
ERNIE2.0 [85], Google’s TransformerXL [19], OpenAI’s GPT-
2 [68] and GPT-3 [14], RoBERTa [56], and XLNet [93].
Given the explosion in ML algorithms designed for NLP, it
is important to further optimize future systems for these
algorithms [95]. Although each of these models are worthy
of deeper investigation, most Transformer-based models
have a similar structure to BERT but have different sizes
(discussed in Section 2.3).

Accordingly, in this work we provide a detailed algorith-
mic characterization of BERT’s training to guide the design
and optimization of future accelerators for Transformer-
based networks. We focus on BERT since it embodies several
of the essential features and further study the impact
of varying its hyperparameters to capture Transformer

TABLE 1: Summary of takeaways

Takeaway Algorithmic Explanation

Sec.

LAMB optimizer is very memory
intensive & important to optimize for.

LAMB updates 340M BERT parameters and is the second highest training time contributor. It reads 3.21
data worth 4 the model size and has few element-wise operations. LAMB’s runtime scales linearly |3.2.3
with transformer layer count & quadratically with layer size. 3.3

GEMMs dominate BERT runtime
but have heterogeneity.

BERT processes all input sequence tokens in parallel & thus layers manifest as GEMMs, even if mini- |3.2.1
batch is one. Linear and Batched-GEMMs in attention are smaller than in FC & thus may not fully 3.2.2
utilize accelerators and may also be memory-bound. GEMM proportion also increases with layer size. | 3.3

Non-GEMMs are memory-bound &
a considerable proportion of runtime.

These constitute element-wise (add, mul, scale) & reduction operations. Their proportion drops with | 3.2.3
increasing layer size as they scale only linearly with it (unlike GEMMs & LAMB, which are quadratic), 3.3

Reducing precision makes optimizing
memory-intensive operations crucial.

GEMM s speedup more than others in half precision due to faster arithmetic & reduced memory
traffic. Non-GEMMs only benefit from reduced footprint of reduced precision data. LAMB uses high
(FP32) precision data to maintain accuracy and is unaffected.

3.2.1
3.23

Tensor Slicing is bottlenecked
by communication.

Communication is serialized with computations in tensor slicing. Its cost increases with device count. | 5.2

trends. Although we characterize the pre-training phase, our
takeaways hold for fine-tuning as well (details in Section 7).
To make our analysis broadly applicable to various types
of accelerators and agnostic of any particular hardware, we
focus our analysis and takeaways on BERT’s operations,
their manifestation, size, and arithmetic intensity, as well as
on important training techniques used to train the network.
Moreover, to demonstrate the impact of changing training
techniques and hyperparameters, we analyze the change
in relative runtime contributions of different operations
and layers using a GPU. However, as discussed in Sec-
tion 7, these contributions can also be extrapolated for
other devices. Finally, using these observations we discuss
hardware and software optimizations for BERT, and further
demonstrate how leveraging near-memory compute can
accelerate BERT-like models. Overall, we make the following

contributions:
e We characterize BERT training and, using the runtime

proportions as well as the arithmetic intensities of
operations, identify important components that future
accelerators should optimize for. Table 1 summarizes
our main takeaways.

e We analyze the implications of these behaviors as
networks get larger, deeper, and use different input
sizes, to capture future Transformer trends.

e We study the impact of mixed-precision training, check-
pointing, and distributed training, that are employed
to scale network training.

e Finally, we discuss software and potential hardware
optimizations for BERT and further demonstrate that
enhancing compute-intensive accelerators with near-
memory compute can accelerate BERT by 5-22%.

More broadly, we identify holistic future acceleration
solutions for Transformer-based models like BERT.

2. Background

2.1. Transfer Learning & BERT Pre-training

In transfer learning, a model trained for a particular
task is reused for different tasks. Although widely used
in Computer Vision [77, 94], transfer learning was only
recently applied to NLP in BERT. As shown in Fig. 1,
BERT’s training consists of two parts. It has a long pre-
training phase where the model learns the language using
large unlabeled datasets (e.g., Wikipedia), independent of

Wikipedia " =
Books g‘ articlos Emails

(Spam/Not Spam)

Masked gy g =
sentence £
s
3 s
I [_encoder MY
Q

Classifier

N .

Predict masked word 75% Not Spam 25% Spam

(a) Pre-training (b) Fine-tuning
Figure 1: BERT training overview

o f
0/p Classification /A ~{Add & Norm MatMul
Transforr.ner Enc. {—Ftﬁ
: g i Scaled Dot Mask
Transformer Enc. {Add & Norm] Product Attn*,
T i Multi-Head)’ =ﬁ! .
) LineanlinearLinear] | (Matmul)
Input Embedding Atentian o] \
(a) (b) (c) (d)

Figure 2: BERT hierarchical model breakdown.

any target task. BERT Large’s (one of the larger BERT
configurations, detailed in Section 3.1.3) pre-training takes
up to four days on 16 cloud TPU Pods (each Pod has four
TPU chips and 64 GB RAM [31]). BERT’s pre-training is
further split into two phases based on the input sequence
length (n): Phase-1 (n=128) and Phase-2 (n=512). Although
larger n is important for accuracy, BERT’s runtime is
quadratic with n (discussed in Section 2.2). Thus, to reduce
training time, Phase-1 has 90% of training iterations, while
Phase-2 has only 10% of them. Once pre-trained, BERT is
fine-tuned (Fig. 1b) during which it is trained on a labeled
dataset for a specific task with minimal model changes (e.g.,
BERT authors tune it separately for 11 different tasks [21]).
Fine-tuning is usually inexpensive, taking up to an hour
on a single TPU Pod or few hours on a GPU [31].

2.2. Attention

The attention network within the transformer layers
(Fig. 2(c, d)) is an essential component of BERT and other
recent NLP models. Given an input sequence, the attention
networks output a representation of the sequence such that
each output token of the sequence is encoded with weighted
information from all (or a subset, for Masked-Attention)
other tokens in the sequence (details in Section 3.2.2). Thus,
unlike its predecessor, RNN, in which processing of a token

is sequentially dependent on the processing of previous
tokens in the sequence, attention processes all tokens
independently. However, due to the all-to-all computations,
attention layer complexity grows quadratically with n,
making it computationally expensive for larger .

2.3. BERT & Other Transformer Architectures

BERT’s basic building block is the Transformer encoder
layer (Fig. 2(a)). Fig. 2(b) shows a breakdown of the
Transformer encoder layer into an attention layer and a
fully connected (FC) feed-forward layer, both of which are
followed by a residual connection and layer normalization.
BERT has an input embedding layer that provides the
first Transformer layer with an input representation for
every token. It has an output classification layer responsible
for two unsupervised tasks: masked word prediction and
Next Sentence Prediction. An additional output layer may
be added during fine-tuning for the target task. Most
Transformer-based models have a similar structure to BERT
but different sizes. They use multiple layers of encoder,
decoder or both depending on target functionality. The
decoder (e.g., in GPT-3) is similar to encoder except its
attention layer is masked to consider only past tokens.
While this causes different inference behavior, it does not
affect training (it only zeros certain matrix elements).

2.4. Gradient Descent Optimizer & LAMB

Gradient descent is commonly used to train neural
networks. It minimizes an objective function (usually the
loss) parameterized by the model’s parameters. Models use
algorithms which optimize gradient descent to converge
faster but require computing and tracking additional param-
eters. Although BERT is compatible with many optimizers,
it has recently used LAMB [95], which is effective for
very large batch-sizes. LAMB updates model weights once
every (few) iteration(s) using additional momentum (m)
and velocity (v) parameters. This algorithm (Algorithm
2 [95]) is executed independently for every model layer,
each accessing the corresponding layer’s data (weights,
gradients, and optimizer parameters).

2.5. Distributed Training

Growing model sizes and datasets have made the use
of multiple devices to train DNNs commonplace. There
are two common techniques to do so. Data parallelism
replicates the model and partitions the dataset amongst D
devices. Each device trains its model (using mini-batch of
B) while synchronizing with other devices every iteration.!
During synchronization, local gradients from all devices are
averaged and re-distributed (AllReduce operation), following
which each device updates its model. This enables large
effective mini-batch (D * B) training. Conversely model
parallelism splits the model across M devices such that each
device stores only a subset of parameters and activations.
This enables training of larger models. One form of this
approach, Megatron-LM [79] for Transformers, uses tensor
slicing (TS) to split individual layers amongst devices

1. Asynchronous training avoids this by converting fine-grained syn-
chronization into data accesses but may increase convergence time [20].

and requires communication/reduction of activations and
gradients. Models also use a hybrid approach, where the
model is split between M devices in a cluster, and replicated
across D such clusters, each with a disjoint dataset. This
enables training across M * D devices.

2.6. Arithmetic Intensity

An algorithm’s arithmetic intensity (ops/byte) is defined
as the number of operations it performs for every byte of
data read. If it performs very few operations on each byte
of data, it will likely be bottlenecked by memory bandwidth
and vice-versa. It is an important parameter used to gauge
if operations benefit from more compute, or higher memory
bandwidth.

3. BERT’s Algorithmic Behavior

3.1. Experimental Setup

3.1.1. System. Our system consists of an AMD Ryzen™
Threadripper™ CPU [7] and an AMD Instinct™ MI100
GPU [10] with 32GB of HBM2 [42]. Our software stack
is built on top of the AMD ROCm™ platform [8] with
PyTorch v1.7. Although many accelerators are used to train
BERT, we choose GPUs for this study because of their wide
availability and popularity for DNN training. However, our
takeaways are accelerator agnostic and should be applicable
to other GPUs, accelerators, and frameworks suitable for
machine learning. Since our goal is to characterize BERT
training in a platform independent manner, we focus
on relative importance of its operations, as well as the
size and nature of operations, which in turn depend on
BERT’s network architecture, hyperparameters, and selected
training mechanism (e.g., mixed precision; model versus
data parallelization strategy). Thus, this approach provides
fundamental value in guiding architecture design based on
deep, algorithmic understanding of the application instead
of solely profiling-based analysis, since architectures, both
within and across vendors, evolve considerably from one
generation to another. We discuss this further in Section 7.

3.1.2. BERT Phases. We analyze the BERT pre-training
phase. Since fine-tuning requires only minor model tweaks
and is similar to the more intensive pre-training, studying
pre-training provides a solid understanding of BERT’s
overall training behavior while focusing on the costliest -
most important to accelerate - part. We focus on Phase-1
(n=128) of pre-training with a mini-batch size (B) of 32 and
discuss how Phase-2’s (n=512) characteristics differ. Finally,
we study both single and mixed precision (MP) training
to discuss how bottlenecks shift with reduced precision.
Tables 2a and 2c list the acronyms we use to refer to model
details and training techniques.

3.1.3. BERT Hyperparameters. Although BERT has sev-
eral configurations [86], we focus on the largest and most
accurate one: BERT Large. BERT Large model contains 24
Transformer layers (V) with a hidden state size (d,;,,401) Of
1024, 16 attention heads (%) and an intermediate dimension
(dgr, usually 4xd,yp401) of 4096. Since these hyperparameters
can scale in future models, we also study their impact on

(a) BERT hyperparameters

TABLE 2: BERT hyperparameters, GEMMs and acronyms.
(b) Architecture-agnostic sizes of BERT GEMMs for both training and inference.

(c) BERT acronyms

M Input Embedding @& Transformer @ Output E LAMB Update
$100%

% Runtime Contribut

FP32

FP32 FP32 FP16 FP16

Figure 3: Runtime breakdown of BERT pre-training.

BERT’s execution profile in Section 3.3. Throughout the
remainder of the paper, we use these symbols to refer to
the parameters, as shown in Table 2a.

3.1.4. Profiling Mechanism. Profiling entire BERT pre-
training (with the English Wikipedia dataset [21]) can
be impractical. Although CNNs can be characterized by
profiling a single training iteration [58, 65, 99, 100], NLP
model iterations can be heterogeneous due to varying input
sequence length [67]. However, BERT’s training iterations
operate on same-size inputs within a phase. Thus, we profile
and study a single training iteration (after a set of warm-up
iterations) per pre-training phase. We use rocProf [6] to
gather runtime and other performance counter data.

3.2. Compute & Memory Demands of BERT

Operations

A BERT iteration performs (a) a forward (FWD) phase
to process input sequences to produce an output, (b) a
backpropagation (backprop, or BWD) phase to calculate the
loss in output prediction and weight gradients, and (c) an
update phase to update the weights using the gradients.
Table 2b describes three GEMM operations and activation
sizes for each important BERT sub-layer: one for FWD
and one each for BWD activation and weight gradient
calculation. Throughout we represent a matrix as MxN, a
GEMM as MxNxK, and a product of two variables as a * b.

3.2.1. Runtime Breakdown. We first present a high-level
runtime breakdown amongst different network layers and
training phases. In all the runtime distribution plots we
consider a layer’s FWD and BWD phases together and show
weight updates separately. Fig. 3 shows this for different
phases, B, and precisions: Phi-Bj-FPk, where i represents
the phase (Phase-1 or Phase-2), j is the mini-batch size,
and k is the number of floating-point (FP) bits used in the
experiment. Note that, FP16 here refers to mixed precision

|Acronym| Parameter Operation FWD BWD Grad. Activation | BWD Grad. Weight [Acronym| Full Form
B mini-batch size Linear Aodel X W'B X dyypiel dyodel X W'B X dyyp01 dodel X dmodel X 1B FC Fully-connected
dodel Hidden Dim. |Attn. Score| n X 1 X dyyp4e1/h, B=B*h | n x dypger/h x n, B=B*h | dyyp401/h x n x n, B=B*h EW Element-wise
#Attention Heads Attn. O/p | dyypger/h x 1 x n, B=B*h | dyp401/h x n x 0, B=B*h | n x n x dypge1/h, B=B*h LN LayerNorm
dgr Intermediate Dim. FC-1 dg x "B X dyodel dmodel X "B x dgy dmodel X dp x n"B DR Dropout
N Layer Count FC-2 diodel X W"B x dg di x "B X dipodel d X dipodel X "B SM Softmax
n Sequence Length RC Residual Conn.
MP Mixed Precision

[62], where FWD and BWD use FP16 inputs, weights, and
gradients, but updates are in FP32 to maintain accuracy.

As expected, for all the configurations, the Transformer
layers dominate (68-85%) the runtime since they account
for most of the layers. The output layer constitutes only a
small proportion (3-7%) and the input embedding layer is
negligible. Interestingly, the LAMB optimizer (Section 2.4)
is consistently the second highest contributor (7-25%). Its
proportion increases as the number of tokens (n * B) per
training iteration decrease (e.g., Ph1-B4-FP32 and Ph2-
B4-FP32 have a higher LAMB proportion than Ph1-B32-
FP32). This occurs because the FWD and BWD runtimes
depend on token count, while the weight update runtime
is only proportional to model size. LAMB’s proportion also
increases with MP training (in Ph1-B32-FP16 and Ph2-B4-
FP16). Reduced precision speeds up computations via faster
arithmetic and reduced memory accesses. This helps both
FWD and BWD operations speed up by about 2x while the
runtime of FP32 LAMB remains constant. Its proportion will
further increase with more aggressive quantization [75].
Obs. 1: Transformer layers dominate (68-85%) BERT runtime.
Output and embedding layers contribution is negligible.
Takeaway 1: LAMB updates are the second highest con-
tributor (7-10%) to BERT’s training time. Their contribution
increases (25%) with decreasing token count per iteration.
Takeaway 2: LAMB updates become more important (16-
19%) to optimize for with mixed-precision training.

Fig. 4 presents a hierarchical breakdown of Transformer
layers for single (Ph1-B32-FP32) and MP (Ph1-B32-FP16)
training (labels represent their contribution to overall train-
ing time). The second bar, Transformer, shows the runtime
breakdown among the Transformer layer’s components: the
attention layer, the Fully Connected (FC) feed-forward layer,
as well as the combined dropout (DR), residual connection
(RC), and Layer Normalization (LN) layers. Overall, FC
layer has a higher runtime contribution compared to the
attention layer due to its larger (4x) intermediate dimension
(Section 3.1.3). Additionally, the combined DR, RC and LN
layers have a smaller, but non-negligible (5% in FP32, 9%
in MP) contribution per iteration.

The third bar of Fig. 4, breakdown of the Attention
layer, shows that a significant portion of the runtime
(22% in FP32, 19% in MP) is spent on linear operations
(linear in Fig. 2(c)). These operations are required to
project each of the inputs query, key, and value vectors
(of length d,;,4.;) into h different vectors (of dimension
dinodel’h) to be operated on by h attention heads (detailed
in Section 3.2.2). The actual attention operation (Fig. 2(d))

[DLinear Grad

B LAMB @ Scale+Mask+DR+SM
Output BFC EAttn. BGEMM @ FC Grad
@ Gelu

B Transformer [0 Attention
M Input Embedding I DR+RC+LN
16% [

B Mem Transform
& Linear GEMM

FP32 MP FP32 MP FP32 MP
Iteration Transformer Attention

Figure 4: Hierarchical breakdown of BERT pre-training
runtime. Labels show contribution to overall training time.

Linear GEMMs | ke
—— Y Attention

W, | ki kaykya Kazkag iah

| ! Ko lens Teoale Weights

%_ ' k; K21 K22 K23k24 Output

— % a5 @13 014 |

Input ! ks Kaikaa kazkss 1tz a13 a“ | 01 011012013014
Sequence x— 02922023824 1 o) 051053073074
(n=3) | Query s 3243354 | | 0; 031055033034
l:l 1:111}2 i'13f'14 l/qu G Q1112 913 Gaa ®— a'1a'120'130'14 ; |
Lo 1 f22l23l04 ~ % — | 42 921922 Q23 G24 a',0'250 230, | | Wo— %

i3 l31132 33 (34 | g3 931932 q33 34
| Value I
‘iVu | V1 V11 V12 Vi3 Vg \

y1 Y11Y12 Y13 V14 |
R—y, Y21Y22 Y23V2a !
V3 Y3132 Y3334 |

P
A'30'320 330 34

% ' V2 V21V22 V23V3s %

1 V3 V31 V33 V33V3s

represented by Attn. BGEMM and Scale+Mask+DR+SM,
constitute a much smaller proportion (7% in FP32, 9% in
MP) of the overall runtime. The feed-forward sub-layer, FC,
of BERT’s Transformer layers (last bar in Fig. 4) consist
of two fully-connected connections with a Gaussian Error
Linear Unit (GeLu) [38] activation in between. The FC
connections (FC GEMMs+Grad) dominate the runtime with
GeLu contributing to 13% in FP32 and 15% in MP.

Finally, the proportion of linear and FC layers decreases

considerably (from 57% in FP32 to 42% in MP) compared
to other operations when executed with MP implying they
benefit more from the drop in precision. These layers
manifest as GEMMs (details in Section 3.2.2) and their
speedup can be attributed to both faster arithmetic (Matrix
Core Engine [9]) and smaller memory footprint.
Obs. 2: Linear and FC layers dominate (57%, FP32) BERT
runtime. Rest is spent executing several smaller operations.
Takeaway 3: Reducing precision speeds up GEMMs in
the dominant linear and FC connections more than other
operations, reducing their overall contribution (42% in MP).
Takeaway 4: Attention operations constitute a very small
proportion (7% in FP32, 9% in MP) of BERT runtime.

3.2.2. GEMM Operations in BERT. Since GEMMs con-
stitute a large proportion (55% in FP32 and 36% in MP) of
BERT’s iteration time, we next characterize these and their
compute requirements. There are three sets of GEMMs in
BERT’s Transformer layers, corresponding to the attention
computations, the linear transform operation, and the fully
connected layers.

As illustrated in Fig. 5 (within the dotted box), the
attention head takes the query (¢,) and key (k) vectors

of all the tokens in the input and calculates the attention
score (ay) between every token pair through the product
of their respective query and key vectors using a GEMM.
Since there are / independent attention heads working in
parallel, there are 1 GEMMs executed in parallel per input
sequence (h = 2 in Fig. 5). Furthermore, since a training
iteration operates on a mini-batch (B) of inputs, there are
B« h GEMMs invoked as a single batched-GEMM kernel
(Attn. B-GEMM in Fig. 4 and Attn. Score in Table 2b). The
attention scores are then used to calculate the weighted
sum (y,) of all value vectors (v;) in the input sequence,
also invoked as a batched-GEMM (Attn. O/p in Table 2b)
with B x h parallel GEMMs. While there are several (B * h)
parallel GEMMs in this operation, each of them is quite
small (dimensions of n and d,;;,g.1/h).

To enable multiple attention heads, the query, key, and
value vectors of the tokens are first linearly projected
(outside the dotted box in Fig. 5, left) into & smaller
(dnoder’h) feature vectors. All the token vectors of all the
input sequences in a mini-batch are usually combined
into a single (B * n) x djp4,; matrix. Thus, unlike in
RNNSs, a batch size of one does not lead to matrix-vector
operations in Transformers. Using the learned Weights (W,
Wy, Wy), the tokens are linearly projected via three differ-
ent GEMMs which dominate the attention layer runtime
(Linear GEMMs in Fig. 4 and Table 2b). These GEMM
outputs are then split to create the query, key, and value
vectors for each of the attention heads. The concatenated
outputs of the attention heads are also projected back using
W, (outside the dotted box in Fig. 5, right). Finally, the FC
layers use their learned Weights (4x the linear weights) to
operate on the output of the attention layer. This creates two
large FC GEMMs (Table 2b FC-1 & FC-2) which dominate
the execution time of the FC layer (Fig. 4).

Usually, larger, and squarer GEMMs perform better on
modern accelerators by leveraging the highly parallel accel-
erator’s compute power, exploiting data reuse, and better
hiding memory latency. However, not all of BERT’s GEMMs
and B-GEMMs fit this paradigm. To understand better,
we plot the arithmetic intensity (ops/byte) of all GEMMs
(labeled as transposeA, transposeB,M,N, K, [batch]) in a
BERT’s Transformer layer (Ph1-B-32-FP32) in Fig. 6. While
the FC GEMMs are large and extremely compute intensive,
the linear transform GEMMs are not, with 4x smaller
matrix dimensions and smaller ops/byte ratios. Furthermore,
the attention layer’s B-GEMM matrices are even smaller,
leading to extremely low ops/byte ratio. We further plot
their memory bandwidth requirements normalized to the
maximum bandwidth achieved by any BERT operation (i.e.,
element-wise or EW multiply) in Fig. 7. Attn. GEMMs
have much higher (70%) memory bandwidth requirements
compared to the other GEMMs (only 20%), making them
memory-bound in contrast to the commonly occurring
compute-bound GEMMs in DNNs.

Takeaway 5: GEMM dimensions in BERT are a multiple
of the input token count (i.e., B * n), and layer’s hidden
size (djpodel OF dfy) and scale with these parameters. Unlike
RNNSs, a B of one does not lead to matrix-vector operations.

~
0
o

2 o O O ©
&
< 500 o o o
Q.
O 250
0 , , , , , , , , , , ,
o~ o~ o~ o~ o~ o~ < o < o < o o
ol ol Al Al - - o D o~ {2 o~ {2 {2}
wn wn wn wn wn wn o o o o o o o
11 11 11 11 I Il - < - < - < <
ala a9 g|g|e|e|d|o|<
< o0 0 0 < 0 (o) N fo2) {2 {2 {2} o
o o~ o~ o~ (') o~ o o o o o o o
o0 | Al A Ao | A S| 2| L | L]
o~ 0 < 0 (]) < < < < O < O
- o~ w o~ — o~ o o o~ o~ D o~ (2]
LI I T = S I S e O (s O e O e O A s O
Sle|dle | dlelz|RlzZZ| 50
zlz|lwlR|Z|Z2|Z2|Zz|+|2|2|2|2
| Z2|Z|Z2|-|F
Attention B-GEMM Linear GEMMs FC GEMMs

Figure 6: Arithmetic intensity of BERT’s training GEMMs.
It shows that not all of BERT’s GEMMs are equal.

@ Ops/Byte Ratio x Mem BW

35 2% %2 9,7
';%g x % « X X x X ir 1.0 %
2% » X X w0 x 4 08 £
}15 X x X 2 0.6 5
S 10 2 404z

g 08 09 04 03 01 15 01 01 01 01 28 o5 03 0303 01 [H H[8(2) =

. o
£ 9 N2 Do x|gyxQ Z|IT L 2L 5 ¢ >
T EETRLRRE S I s I

© ©
I - z 888 5
LAMB c+Ma+DR+SM| DR+RC+LN Gelu GEMM

Figure 7: BERT op’s arithmetic intensity & bandwidth
requirements.

Takeaway 6: Not all GEMMs in BERT are equal. Smaller,
skinnier GEMMs in BERT’s attention layer are memory-
bound and can under-utilize highly parallel accelerators.

3.2.3. Non-GEMM Operations in BERT. In the previous
sections, we observed that 45% (FP32) and 64% (MP)
of BERT’s training time is spent executing non-GEMM
operations. Thus, accelerators for BERT-like models must
optimize both GEMMs and these operations. There are
four parts of BERT pre-training where we observe these
operations: (1) LAMB, (2) scale, mask, dropout (DR) and
softmax (SM), (3) GeLU activation, and (4) DR, residual con-
nection (RC), and layer normalization (LN). Input and output
layer operations are omitted as they are a small proportion,
especially as model sizes grow (Section 3.3.2). Fig. 7 includes
memory bandwidth requirements and ops/byte ratios of the
four phases.

LAMB Updates: The LAMB algorithm described in Sec-
tion 2.4 is 7-25% of BERT’s iteration time, and can further
increase with increasing model size (Section 3.3.2), smaller
token size per iteration, or MP training. It is implemented
as two stages in [62]. LAMBStagel (Fig. 7) determines the
update values and learning rate multiplier using additional
momentum (m) and velocity (v) states from past iterations
and gradients of the current iteration (all of which are the
same size as the model parameters being updated, shown as
MxN of the BWD Grad. Weight GEMMs in Table 2b). This
stage performs multiple EW add, multiply, divide, scale, and
square-root operations on these parameters and therefore,
has very low arithmetic intensity (Fig. 7) making it memory
intensive. The second stage (LAMBStage2 in Fig. 7) updates
model weights with stage 1’s output also using multiple
EW operations and has similar memory characteristics to
stage 1. These two stages are executed for each layer, and
access the corresponding layer’s data (weights, gradients,

and optimizer parameters). Therefore, each set has no data
reuse across kernels (its impact on kernel fusion is discussed
in Section 6.1.1). Moreover, LAMB must perform the L2
Norm (reduction) across all the model’s gradients before
it can update any parameter, which serializes the model
update with respect to the entire model backprop.
Takeaway 7: The memory-intensive LAMB optimizer reads
4x more data than the model size and has few EW
operations.

Scale, Mask, Dropout & Softmax: The attention head
generates attention scores between token pairs. These scores
are normalized and operated on by a mask, softmax, and
dropout functions (Scale+Mask+DR+SM in Fig. 4) before
being used to calculate the weighted representation of each
token in the input. The normalization kernel multiplies
each element of the input matrix with a constant value.
The mask and DR operations, invoked as separate kernels,
involve an EW add and multiply of the activation matrix
with a mask and DR matrix, respectively. Therefore, all
three perform only a single operation on each data read.
Finally, SM performs a series of EW operations on the input
matrix, which improves its arithmetic intensity, but it is
still not very compute intensive. Thus, these operations
have high memory bandwidth requirements (Fig. 7).
GeLU: GeLu activation [38] is executed between two FC
GEMMs and consists of a series of EW add, multiply, divide,
and ERF (error function) as shown in Equation 1:

1 x
= X% — % —

GELU(x) =x 3 [1 +€l’f(ﬂ)] (1)
When invoked as separate kernels, these operations have
very low ops/byte ratios, as shown in Fig. 7. Along with
the large input activation size (output of FC GEMM), this
makes these kernels memory bandwidth bound.
Dropout, Residual Connection, & Layer Normalization:
Outputs of the FC and attention sublayers are applied the
DR, RC, and LN (DR+RC+LN in Fig. 4) function as shown
in Fig. 2(b) (Add & Norm). DR randomly sets activation
elements to zero using an EW multiply. RC does EW
addition of the input to the output of a sublayer. Thus,
these kernels have an arithmetic intensity of less than one
(Fig. 7). Finally, LN [13] is a reduction operation and requires
calculation of mean/variance of rows/columns, followed by
a few EW operations. However, it still has a very low
arithmetic intensity as shown in Fig. 7. Consequently, these
kernels are memory bandwidth bound.

While LAMB kernels remain unchanged in MP training
(since updates are in FP32), most other memory bandwidth
bound kernels speed up by 1.5-1.9x in MP. However, this
speedup is much smaller than GEMMs, thereby increasing
the relative proportion of these operations in MP training.
Thus, non-GEMM operations become even more important
to optimize for when training with reduced precision.
Takeaway 8: BERT has multiple memory-bound element-
wise operations that make up to 30% of its (FP32) runtime.
Takeaway 9: Optimizing memory-bound operations is even
more important for BERT’s reduced precision training,
where they make up 46% of all operations.

O Linear Grad

(ISA‘JTZt aFc i Scale+Mask+DR+SM

P) DAttn BGEMM B FC Grad
D Transformer 0 Attention
= Input Embeddi S DR+RCHLN B Mem Transform B Gelu

B:
B=
B=32

B
B

>
1
>
1
n

128
Iteration

[
=
N
=
N
>

Transformer Attention FC

Figure 8: Impact of scaling mini-batch size & sequence length.
O Linear Grad

=]
@ I(-):,l/lpit S FC Scale+Mask+DR+SM
& Transformer I Attention EANBGEMM = WFC Grad

B Mem Transform & Gelu

M Input Embedding [DR+RC+LN & Linear GEMM

100%
80%
60%
40%
20%

0%

% Runtime Breakdown

Cl C2 €3 (€1 €2 3 Cc1 2 3
Iteration Transformer Attention
C1: H=512, A=8, I=2K, C2: H=1K, A=16, I=4K, C3: H=2K, A=32, |=8K

Figure 9: Impact of scaling Transformer layer size.

3.3. Effects of Hyperparameter Sweep

Most Transformer-based NLP models have a similar
structure to BERT and vary largely in their model/input
sizes (discussed in Section 2.3). However, Transformer
training characteristics can change as models get larger and
deeper, with evolving hyperparameters like Transformer
layer count, hidden dimension, mini-batch and sequence
length. Thus, we next analyze and characterize the impact
of these hyperparameters on BERT’s execution profile.

3.3.1. Input Size: Mini-batch Size (B), Sequence Length
(n). B and n impact training convergence and throughput. In-
creasing B improves throughput but may hurt convergence,
especially in data-parallel training (Section 5). Conversely,
increasing n improves accuracy but increases training costs.
B and n decide the token count processed in a BERT itera-
tion. Thus, increasing them increases the total computations
in the forward and backward gradient calculations while
keeping the parameter update computation (which only
depends on model size) constant. Fig. 8 highlights this: as
B ranges from 4 to 32 LAMB updates constitute 25% to 7%
of training time.

Within the Transformer layer the input size’s impact
varies across layers/operations. The impact depends on the
layer type and its relationship with the input. For example,
a layer with a MxNxK GEMM has operations proportional
to M xNxK. Thus, increasing any dimension would linearly
scale operation count. Since B * n forms one of the Linear
and FC GEMM dimensions (Table 2b), their operations
scales linearly with B or n. This is similar to its impact
on other operations (e.g., EW, reduce) which operate on
activations with one of the dimensions as Bx*n. The number

of GEMMs in attention B-GEMMs, and thus its runtime, also
scale linearly with B (Table 2b). Thus, the breakdowns of
the Transformer layers with a constant n (128) but varying
B (from 4 to 32) remains largely the same in Fig. 8.

The efficiency of operations at each size also impacts
the proportions: for higher Bs, attention and DR+RC+LN
proportions drop, while FC’s increases. Operations with
small matrices may not be able to utilize the accelerator’s
peak throughput and/or memory bandwidth. A smaller Bxn,
along with 4x smaller hidden dimension, can lead to smaller
matrices in attention and DR+RC+LN layer as compared
to the FC layer. Accordingly, increasing B (from 4 to 16
in Fig. 8) improves the size of matrices, which improves
these layers’ throughput more than others, causing their
overall runtime proportion to drop. The benefits, however,
diminish with further increase in B.

Changing n has a similar impact as B, except attention
operations (B-GEMMs in Table 2b and Scale+Mask+DR+SM)
scale quadratically with n but only linearly with B. Thus,
increasing n from 128 to 512 (and changing B from 16 to
4 to keep token count same) increases their proportion
from 7% to 17% (B-GEMMs’ proportion increases from 3%
to 8%) as shown in Fig. 8. This also implies that, unlike B,
Transformer iteration time increases super-linearly with n.
Obs. 3: B impacts all layers similarly due to their lin-
ear dependence on it. Increasing it sometimes improves
throughput.

Takeaway 10: Higher n makes attention operations impor-
tant.

3.3.2. Model Size: Layer Count (N), Hidden Dimension
(dnoder)- BERT model size is dictated by N and hidden
sizes, dyoge; and dy. Increase in N linearly scales the
count of every operation pertaining to a Transformer
layer and LAMB update (parameter count also scales
linearly). Intuitively, this does not change the Transformer
layer breakdown, but runtime proportions of both the
Transformer layers and LAMB update slightly increase
as operation count in the input and output layers remain
constant. Conversely, increasing layer widths (i.e., ;0401
and djr) increases the size of weight matrices and input to
layer operations. Thus, it changes two of MxNxK GEMM’s
dimensions (see Table 2b) and scales GEMM computation
count quadratically. Since other layer operations only scale
linearly with d,qe O dg, the proportion of linear and
FC GEMMs increase with increasing layer size. Fig. 9
highlights this: proportion of these GEMMs in configuration
C3 (i.e., similar to Megatron-LM-BERT with 2x higher
doder than BERT-Large or C2) is much higher than in
C2. Furthermore, the "Transformer" breakdown shows that
FC runtime proportion increases compared to the attention
layer. This indicates that (similar to changing B) throughput
of linear GEMMs increase more than FC GEMMs’, causing
their runtimes to scale differently. Finally, the proportion of
LAMB update increases considerably with larger layers (34%
for C3). Unlike the linear scaling with N, parameter count
and thus LAMB operations scale quadratically with d,,,g4.;
and/or dg (if dq0 = 1024, layer parameters = 1024x1024).
Thus, optimizing for complex optimizers like LAMB, which

thus far had not been studied in detail, is increasingly
important as Transformer models grow deeper and larger.
Obs. 4: Transformer and LAMB updates scale linearly and
remain important as Transformer layer counts increase.
Takeaway 11: GEMM and LAMB runtime proportions in-
crease with larger Transformer layers due to their quadratic
relationship with layer size.

4. Effects of Activation Checkpointing

Activation (or gradient) checkpointing helps overcome
device memory capacity issues. Instead of saving all layer
activations from the forward pass to use in backprop, it
checkpoints a limited set of activations and recomputes the
others on demand during backprop. This reduces a model’s
memory capacity requirements and enables training a large
model or a model with larger B on a single device. It,
however, adds considerable recomputation overheads. We
executed BERT Large training with activation checkpoint-
ing, which checkpoints activations at four (v/N) different
points and recomputes activations after backprop of every
six Transformer layers. This increases kernel count by
~33% and runtime by ~27%. However, the breakdown
within Transformer layers remains similar. Furthermore,
since LAMB remains unaffected, its proportion drops.

5. Effects of Multi-device Training

Although studying BERT training on a single device is
important and reveals interesting computational behaviors,
BERT is usually trained in a multi-device environment
using data parallelism (DP), a form of model parallelism
called tensor slicing (TS), or both (Section 2). Thus, we
first describe the analytical model we use to generate the
profiles. Next, we characterize training BERT Large on 128
GPUs using DP and TS (Megatron-LM [79] with 2-way and
8-way TS) approaches.

5.1. Modeling Multi-device Training

We construct per-device execution profiles in a dis-
tributed setting by building an analytical model from a
single GPU’s data. We use an analytical model because the
publicly available BERT implementations are not optimized
for multiple devices. For example, they do not overlap gradi-
ent computation and communication in DP training, without
which network communication becomes a bottleneck. Thus,
to avoid drawing incorrect conclusions we instead model
the behavior analytically to take optimizations like these
into account. This model also allows us to study different
multi-device configurations and can project performance
for hypothetical GPU/network improvements. We briefly
describe how we model DP and TS training below:
Modeling Data Parallelism: Since DP training replicates
the model on every device, the per-device computation
matches single-device training. Additionally, an AllReduce
operation gathers each device’s gradients (during backprop).
To estimate AllReduce’s communication costs, we use
the gradient sizes and Ring AllReduce [28]. To estimate
communication time, we divide the gradient sizes by the
communication bandwidth assuming PCIe™ 4.0. Finally,
since the communication and computations of different

1k 1k 1k 1k 4k 4k

4k Weight ® Weight =
- ght ~_ | o =
Input | X w) Act. Act. X W /p 2z

(a) Single device.

; 1k 1k/m 1k/m 1k/m
{2 4 Input f

q

"
T-Y
n1e9

o
>
M
I
wepy et
[meo] i[meo]
Wpye e
=
=
S
1
{m
El=
gm

%

(b) Multi-device, m-way Tensor Slicing in Megatron-LM.
Figure 10: FC layer computation in BERT.

amd 2onpay-Iv

Communication [Linear Grad

B LAMB Scale+Mask+DR+SM

2 Output BFC gAttn BGEMM B FC Grad
® Transformer OAttention g Mem Transform @ Gelu

H Input Embedding S DR+RC+LN @ Linear GEMM

100%
80%
60%
40%
20%

0%

@ FC GEMMs

% Runtime Breakdown
+4440448
+seseeeel

S1 D1 D2T1 T2 S1 71 T2 s1 T1 72 S T T2
Iteration Transformer Attention FC
S1: Single, B=16; D1: DP, B=16, no overlap; D2: DP, B=16, overlap;
T1: TS, 2-way, B=16; T2: TS, 8-way, B=64

Figure 11: BERT iteration breakdown in a multi-GPU setup.

layer’s gradients are independent, they can be overlapped
(e.g., layer L’s gradients are communicated while the
device calculates gradients for layer L —1). We model this
overlap by taking the maximum of the computation and
communication times for every pair of consecutive layers.
Modeling Tensor Slicing: Megatron-LM splits most of
the layer’s operations across all devices. Some involve
splitting of weight matrices horizontally, while others are
split vertically. The remaining layers (e.g., LN) are replicated
across devices to reduce communication overheads. Fig. 10
illustrates this change for the FC layer operations. The
operations within the dashed line illustrate the dimension
of operations on each device after a m-way split. To model
TS computations, we execute BERT operations with the
expected input dimensions after splitting and replicating
the layers. Since each device only updates a fraction (/m)
of the weight matrices, the LAMB operations are also split
equally amongst the GPUs. Finally, there are four AllReduce
operations executed per forward and backward pass of a
Transformer layer. We estimate this communication time
using the approach described above. However, unlike in
DP, these AllReduce operations cannot be overlapped with
computations due to data dependencies.

5.2. Multi-GPU Training Profile

Fig. 11 compares the execution breakdown within a
single GPU participating in different distributed training
mechanisms.
Data Parallel: The per-GPU execution profiles of BERT’s
DP approach with overlap, D2 (DP, B=16 w/ overlap) in
Fig. 11, is similar to a single GPU training, S1 (w/ B=16). This
is unsurprising as each GPU has a copy of the model and

independently computes the entire forward, backprop, and
update phases. Although DP requires additional inter-GPU
communication of local gradients, this cost (except for the
first layer) can be hidden by overlapping computations
and using a fast channel such as PCle 4.0™. D1 (DP,
B=16, w/o overlap) uses the same data parallel approach as
D2 but communicates gradients after the entire backprop,
highlighting this cost. Consequently, a significant portion
of D1’s runtime (19%) is spent communicating gradients.
Recent work has also shown that these communication
overheads and redundant updates could potentially be
reduced by making each device gather a reduced copy
of a subset of gradients and only update the corresponding
subset of parameters [69]. However, certain optimizers such
as LAMB require normalization of all the layers’ gradients
at the beginning of the algorithm, thus requiring at least a
single device to have a copy of all gradients.

Tensor Slicing: Fig. 11 shows the per-GPU runtime break-
down for TS implementations: T1 (TS, 2-way, B=16) and
T2 (TS, 8-way, B=64). The reduction in parameters going
from 2-way to 8-way TS enables the increase in B. The
high-level iteration breakdown of T1 is similar to S1, single-
GPU training with the same B (16). However, there are
two differences. First, T1 spends considerable time (9%)
communicating activations and gradients. Second, LAMB’s
proportion scales by half as each device is responsible
for half of the model’s parameters. These changes are
more prominent in T2 which uses eight devices. The
communication costs increase to about 42% due to the
larger volume of data communicated (due to its larger
B). Moreover, the proportion of LAMB is negligible in T2
with 8-way partitioning of parameters and is unaffected
by an increase in B. As device count continues to increase,
this trend continues since the total data traffic increases
with device count while the per-device computations scale
down proportional to device count and any scaling of B
to improve per-device computations would also scale the
communication volume. Finally, T2 also highlights that the
proportion of replicated layers (DR+RC+LN), which are
memory-intensive, increases with device count.

Obs. 5: The compute and memory-bound operation break-
down in a data-parallel, multi-GPU setting is similar to
single-GPU training due to data parallel’s ability to overlap
most communication with computation.

Takeaway 12: Proportion of memory-bound LAMB updates
drops for model-parallel, multi-GPU training as parameter
count per device scales inversely with device count.
Takeaway 13: The communication volume (and runtime)
increases with tensor-sliced devices due to a larger B.

To validate our analytical model, we compared our
observations to prior work and found the takeaways to be
similar [71, 79]. Megatron-LM observed near-linear scaling
as they increase the number of devices in the DP training
of BERT, implying little impact from synchronization and
communication. Similarly, ASTRA-SIM show that using
a DP approach for some ML algorithms can provide a
near-perfect overlap of communication and computation,
although this can change if compute speeds up much faster

than communication. These observations are in line with
our Obs. 5. Furthermore, Megatron-LM also shows that
BERT training’s scaling efficiency drops with more TS
devices due to increased communication overheads. This is
also in line with our Takeaway 13.

Although we assume a homogeneous topology and
network bandwidth, our takeaways also hold for non-
homogeneous networks. Communication costs will not
change for DP since communication and compute are
overlapped. Although TS is more sensitive to communi-
cation, algorithms are often optimized for the underlying
substrate (e.g., TS is usually employed within a node for
higher bandwidth). Furthermore, while non-homogeneous
networks within a node can change absolute communication
cost (bottlenecked by the slowest connection), increasing
cost with additional TS devices would still hold.

6. Potential Optimizations for BERT

Since roughly half of BERT’s training time is spent
executing GEMMs, a straightforward way to improve its
throughput would be to improve the accelerator FLOPs.
Thus, most prior works accelerate GEMMs. However, our
work highlights that not all GEMMs can utilize highly
parallel accelerators (Section 3.2.2), the importance of non-
GEMM (optimizer update, other element-wise) operations
(Section 3.2.3), and how reducing precision and increasing
layer size (Section 3.3.2) can make optimizing for non-
GEMMs more important. Moreover, as GEMMs speed up,
the remaining memory-intensive operations will become
the bottleneck. Thus, we next discuss several common
software and hardware optimizations to help overcome
this bottleneck.

6.1. Software Mechanisms
6.1.1. Kernel Fusion. Fusion combines two or more con-

secutive GPU kernels, potentially with a producer-consumer
relationship, into a single one. It improves performance by
reducing duplicate memory accesses, and kernel launch
overheads [11, 25, 26, 55, 63, 82, 84, 90]. However, there
are some important considerations while fusing kernels:

Data reuse across operations is directly correlated with
improved performance from their fusion. Kernel fusion
prevents data from being flushed into global memory
between kernel calls [5, 37, 48, 80, 81]. Thus, data intensive
phases like GeLu, DR+Res+LN, and Scale+Mask+DR+Soft
(Section 3.2.3) in which the output of one operation feeds
into the next are perfect scenarios for applying kernel fusion.
LAMB operations of a single layer are already fused in
PyTorch [62] (into LAMBStagel and LAMBStage2 kernels of
Fig. 7). There is little benefit from fusing LAMB operations
of different layers given they access independent data. This
is evident in Fig. 12 which shows the impact of fusion
on kernel counts, runtime and memory accesses. Fusion
is very effective for LayerNorm; runtime and memory
traffic scale similar to kernel count (by 6 —8x) implying
high data-reuse opportunities across the unfused kernels.
However, for Adam,? the reduction in memory accesses

2. Adam is an alternate to LAMB; we chose Adam for this study because
its unfused and fused versions were publicly available.

2 1.2 @Unfused SFused @13 @3S @3F
1.
£0.8 " = EPSg= - 012
204 F g MS : 206
;OO N N HIN / = N % 0
2 = g z - GE) = 2
X OJ o o 3| o
g § £ £ 5 £ £ s
= ~ S 2L o 5 9 X
5 * c = 3 x =
z

LayerNorm Adam

(a) (b)

Figure 12: Impact of fusing (a) kernels, (b) 3 Linear GEMMs
(3F vs. non-fused serial, 3S, execution).

1024 2048, 2048 1024 2048 2048

= w

o XX |=| Q ||&

N x| K ‘d
1 x WA= V| Fusion v

Weights Inputs Outputs
Figure 13: Fusion of Attention linear GEMMs in BERT.

Weights Input Output

and runtime (6 — 8x) is not proportionate to that of kernel
count (&~ 250x). This is because Adam’s unfused kernels
had fewer data re-use opportunities: some operations access
independent data (gradients, parameters, and optimizer
states) corresponding to different layers and do not benefit
from fusion.

6.1.2. GEMM Fusion. Fusing multiple smaller, independent
GEMMs with a common input matrix into a single, large
GEMM is another common optimization. Fig. 13 shows how
the independent linear transform GEMMs of the attention
layers can be fused. Since these GEMMs operate on the same
input matrix and their respective weight matrices, W, Wy,
and W, (Fig. 13, left), they can be fused such that the weight
matrices are concatenated, and the input matrix is read once
(Fig. 13, right). The output of this GEMM is simply the
output of the three individual GEMMs concatenated, which
can be split for subsequent use. Fig. 12(b) examines the
impact of this fusion on both FWD and BWD Grad. GEMMs
of the linear layer. Fusion improves performance by up to
62% by enabling reuse of the common input matrix and
increasing parallelism by using a larger matrix dimension.
Its impact is higher when the input matrices are small
(smaller token count or hidden dimension). Along with
data layout improvements, such fusion can speed up BERT
training considerably [39].

6.2. Hardware Mechanisms

6.2.1. Near-Memory Computing. Near-memory compute
(NMC) can help accelerate BERT’s memory-intensive phases.
NMC performs operations using specialized ALUs that are
part of the main memory. Thus, NMC avoids data movement
between the main memory and GPU [3, 46] and improves
performance and energy efficiency. It also provides very
high bandwidth accesses to data from the ALUs in memory.

We examine such a system where the compute-intensive
phases such as GEMMs are executed on the GPU, as is
done today, and only the memory-intensive operations
are offloaded to NMCs. While Transformers have several
memory-intensive operations, we focus on the optimizer
algorithm (LAMB) as it consists of a sequence of EW

operations (Section 3.2.3) and is invoked at the end of the
training iteration after all memory updates. Thus, executing
LAMB with NMC does not require frequent, expensive
synchronization between the NMC and GPU compute units.
Moreover, these operations do not benefit from GPU kernel
fusion as it cannot further reduce data accesses to the
memory (Section 6.1.1).

DRAM is internally organized hierarchically with the
lowest level being 2D groupings of memory cells. Several
such groupings form a sub-array and multiple sub-arrays
form a memory bank. A typical DRAM chip contains several
such banks. In an NMC design, placement of ALUs at each
sub-array provides extremely high bandwidth by enabling
access to all (or many) sub arrays in parallel. However,
such a design incurs high complexity, area, and power
costs as well as limited data accessibility due to the large
number of ALUs and each ALU being associated with a
relatively small amount of memory. Placing ALUs at each
bank, enabling parallel access to all (or many) banks, leads to
fewer ALUs and, thus, reduced cost and increased memory
capacity accessible by each ALU. Further reductions in ALU
count can be achieved by sharing ALUs among multiple
banks. However, reduced ALU count limits performance as
fewer operations can occur in parallel. A more thorough
discussion of design tradeoffs can be found in prior works
focused on NMC [3, 36, 46, 54]. Here, we consider a balanced
design point with ALUs at each bank. This design is similar
to recent proposals by major memory vendors [46, 53, 54].
The NMC ALUs operate on commands broadcast from the
host GPU to all banks and support arithmetic and logic
operations. Similar to prior work [3], we assume the data
structures are allocated such that data for an NMC ALU
operation is placed in the associated bank.

To evaluate the benefits of this system, we model the
execution of LAMB on NMC units using DRAM timing
parameters from prior works [3, 46, 54]. We compare
it against an optimistic GPU model in which LAMB’s
execution comprises of only (minimal) data reads and writes
to GPU memory. The higher bandwidth and parallelism
provided by NMC units can speed up memory-intensive
LAMB updates on millions (higher for larger Transform-
ers) of BERT parameters by 3.8x, which improves BERT
training’s overall performance by 5-22%.

6.2.2. GEMM Accelerators. A dynamically configurable
accelerator would be well positioned to tackle BERT’s
GEMM diversity (Section 3.2.2) and address a spectrum
of GEMM behaviors.

6.2.3. In-Network Processing. Compute capabilities in
network switches can potentially eliminate the interference
between computation and communication operations and
help accelerate collective operations such as All-Reduce [47],
used in distributed training (discussed in Section 5).

7. Discussion

Other Accelerators: While our analysis largely focused
on a GPU, by focusing on platform-independent analysis,
our takeaways can also guide BERT analysis on other

devices or accelerators. Most of the observations (1,4,5)
and takeaways (1,2,5-7,11-13) are architecture-agnostic, only
depending on BERT’s architecture and the manifestation,
size, computational complexity, and arithmetic intensity of
its training operations. Thus, they hold regardless of the
profiled accelerator. For example, analysis of BERT inference
on CPUs shows that Obs. 1, which is purely based on model
architecture, is also applicable to CPUs (differences between
BERT training and inference are discussed below) [23].
Although some takeaways (e.g., 8) about operation runtime
distribution might differ across accelerators, one can ap-
proximately extrapolate these proportions to another device
by comparing the device’s compute and memory bandwidth
ratios. For example, the measured proportion of memory-
bound and GEMM operations on an AMD Instinct™ MI100
GPU are similar to other commercial GPUs with similar com-
pute and bandwidth ratios [39]. While differences in GPU
architectures can also impact this distribution, we believe
they would be small enough to not alter the application’s
compute- or memory-boundedness. This demonstrates the
value of architecture-independent takeaways and using any
particular device only secondarily. Finally, since compute
generally improves faster than memory, takeaways (7,8,9)
involving the memory boundedness of BERT operations
will either hold or be amplified in current and future
accelerators.

BERT Fine-tuning & Inference: Although we focus on
BERT’s pre-training phase, our takeaways also hold for fine-
tuning since the latter uses the same training techniques
and model with changes only to the output layer (which is
often simpler and thus negligible). For example, the output
layer of SQUAD (Q&A) [70] is simpler than tasks BERT is
pre-trained for, requiring fewer GEMMs and thus making it
a negligible component of SQUAD fine-tuning. Importantly,
just like pre-training, the Transformer layers still dominate
the runtime. BERT’s inference differs from pre-training since
the former does not require backpropagation and parameter
updates. Since backpropagation has approximately 2x more
operations as a forward pass with similar properties, the
breakdown of the Transformer layer’s execution during
inference would remain similar to pre-training. However,
the high-level breakdown of an inference iteration would
not include LAMB updates.

Other NLP Models: Although several Transformer-based
models have been proposed after BERT (discussed in
Section 1), we focus on BERT as it embodies several of
the essential trends that are important when optimizing
accelerators for these networks (discussed in Section 2.3).
Furthermore, our analysis on the impact of larger and
deeper models as well as of different input sizes (Section 3.3)
capture future Transformer trends.

8. Related Work

Characterizing DNNs: Prior work characterize ML work-
loads, especially CNNs, RNNs and recommendation models.
Although most focus on inference [73, 89, 98], some also
characterize training [32, 60, 100]. However, Transformer-
based models, an important optimization target for mod-

ern systems, have received less attention; especially the
expensive pre-training phase we focus on. Works that
include Transformer characterization either do not provide
detailed runtime breakdown amongst operations, only
focus on its FC layers, or focus on inference rather than
training [33, 89, 92, 98]. Instead, we focus on detailed end-
to-end breakdown which helps in identifying LAMB or
optimizer updates as one of the important candidates for
Transformer acceleration. We also show how Transformer
operations scale with varying hyperparameters and when
employing different training techniques, which can be useful
to project bottlenecks when training future Transformer
models. While some works [23, 64] examine the impact
of sweeping input size on throughput, they either do not
include in-depth characterization that explains the behavior
or are focused on inference in CPUs.

Optimizing Transformers: Recent work has also designed
accelerators for Transformer-based networks. However,
the relative lack of comprehensive characterization of
Transformers has led these works to overlook important
characteristics of self-attention. For example, recent works
design both efficient matrix-vector [33, 36] and matrix-
matrix engines [17] to accelerate BERT even though BERT
does not execute matrix-vector operation the majority of
the time, as our work shows. Unlike in RNNs where tokens
are processed one at a time, Transformer layers process all
the tokens of the input sequence in parallel. This leads to
matrix, rather than vector, operations in Transformer layers
even if mini-batch is one (e.g., during inference) as illus-
trated in Fig. 5. Although some prior work acknowledges
this property when comparing their accelerator against
GPUs [33], it did not influence the accelerator’s design.
This confusion about matrix-vector operations in BERT
underscores the necessity of our work - understanding
DNNs at an algorithmic level — before building efficient
accelerators for them. Very few works optimize for non-
GEMM operations or data-intensive phases [39], which we
show have a significant runtime contribution that increases
with reducing precision and increasing layer size. Amongst
non-GEMMs, complex optimizers (e.g., LAMB), used in
modern NLPs, have received little attention; we highlight
LAMB’s bandwidth-intensive characteristics and demon-
strate how near-memory computing can help accelerate it.
Finally, other works optimize Transformer inference [18,
23, 24, 91] or memory management [74].

Near-Memory Computing for Optimizers [46]: Grad-
PIM [46] evaluated NMC for optimizers. However, they only
evaluate simple momentum-based optimizers and focus on
CNNs, which have an order of magnitude fewer parameters
to update compared to NLP models.

9. Conclusion

BERT has been a groundbreaking innovation in NLP.
Its accuracy stems from its Transformer architecture, mil-
lions of parameters, and its ability to train on enormous,
unlabeled datasets. Its success has also inspired several
popular models that are larger but have a similar structure
to BERT. However, training these models is expensive due

to their large compute and memory requirements. They
pose challenges to system designers that must be met
through deeper understanding of algorithmic behaviors as
the waning of Moore’s Law changes the virtuous synergy
that has helped propel prior transformative improvements
of ML and NLP. Thus, we focus on BERT’s most expensive
component, pre-training, analyze its execution, and provide
a detailed characterization that acts as an exemplar for
optimizing Transformer networks. Moreover, we further
analyze how these characteristics change with evolving
hyperparameters, and training techniques, including mixed
precision and in a distributed setting. Our analysis also iden-
tifies future acceleration opportunities and we demonstrate
how enhancing compute-intensive accelerators with near-
memory compute helps accelerate Transformer networks.

10. Acknowledgements

AMD, AMD Ryzen, AMD Radeon, and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for
identification purposes only and may be trademarks of
their respective companies.

References

[1] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker,
T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell, J. Hwang,
R. Leslie-Hurd, M. Bye, E. R. Creswick, M. Boyd, M. Venigalla,
E. Laforge, J. Purdy, P. Kamath, D. Maheshwari, M. Beidler,
G. Rosseel, O. Ahmad, G. Gagarin, R. Czekalski, A. Rane, S. Parmar,
J. Werner, J. Sproch, A. Macias, and B. Kurtz, “Think Fast: A
Tensor Streaming Processor (TSP) for Accelerating Deep Learning
Workloads,” in ISCA, 2020, p. 145-158.

[2] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference Workloads for Modern Deep Learning Methods,” in IISWC,
2016, pp. 1-10.

[3] S. Aga, N. Jayasena, and M. Ignatowski, “Co-ML: A Case for
Collaborative ML Acceleration Using near-Data Processing,” in
MEMSYS, 2019, p. 506-517.

[4] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free Deep Neural
Network Computing,” in ISCA, 2016, pp. 1-13.

[5] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy Release
Consistency for GPUs,” in MICRO, 2016, pp. 26:1-26:13.

[6] AMD, “AMD ROCm Profiler,”
rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html, 2019.

[71] ——, “AMD Ryzen™ Threadripper 2950X Processor,
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-
2950x%, 2019.

[8] ——, “ROCm, a New Era in Open GPU Computing,” rocm.github.io/,
2019.

1] —. “AMD CDNA ARCHITECTURE,
amd.com/system/files/documents/amd-cdna-whitepaper.pdf,

2020.

[10] —, “AMD Instinct™ MI100 Accelerator,”
"https://www.amd.com/en/products/serveraccelerators/instinct-
mil00", 2020.

[11] J. Appleyard, T. Kocisky, and P. Blunsom, “Optimizing Performance
of Recurrent Neural Networks on GPUs,.” CoRR, vol. abs/1604.01946,
2016.

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

0. M. Awad, M. Mahmoud, 1. E. Vivancos, A. H. Zadeh, C. Bannon,
A. Jayarajan, G. Pekhimenko, and A. Moshovos, “FPRaker: A
Processing Element For Accelerating Neural Network Training,”
CoRR, vol. abs/2010.08065, 2020.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR,
vol. 1607.06450, 2016.

T. Brown, B. Mann, N. Ryder, M. Subbiah,]J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I Sutskever, and D. Amodei, “Language Models are Few-Shot
Learners,” in NeurIPS, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33, 2020, pp. 1877-1901.

N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM
System for GPUs,” in HPCA, 2017, pp. 73-84.

Y.-H. Chen,]J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-efficient Dataflow for Convolutional Neural Networks,” in
ISCA, 2016, pp. 367-379.

B. Y. Cho, J. Jung, and M. Erez, “Accelerating Bandwidth-Bound
Deep Learning Inference with Main-Memory Accelerators,” CoRR,
vol. 2012.00158, 2020.

Y. Choi, Y. Kim, and M. Rhu, “LazyBatching: An SLA-aware Batching
System for Cloud Machine Learning Inference,” in HPCA, 2020, pp.
493-506.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context,” CoRR, vol. 1901.02860, 2019.

C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding
and Optimizing Asynchronous Low-Precision Stochastic Gradient
Descent,” in ISCA, 2017, pp. 561-574.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,’
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019, pp. 4171-4186.

G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates,
E. Elsen, J. Engel, A. Y. Hannun, and S. Satheesh, “Persistent RNNs:
Stashing Recurrent Weights On-Chip,” in ICML, 2016, pp. 2024-2033.

D. Dice and A. Kogan, “Optimizing Inference Performance of
Transformers on CPUs,” CoRR, vol. abs/2102.06621, 2021.

J. Fang, Y. Yu, C. Zhao, and J. Zhou, “TurboTransformers: An Efficient
GPU Serving System for Transformer Models,” in PPoPP, 2021, p.
389-402.

J. Filipovi¢, M. Madzin, J. Fousek, and L. Matyska, “Optimizing
CUDA Code by Kernel Fusion: Application on BLAS” The Journal
of Supercomputing, p. 3934-3957, 2015.

J. Fousek, J. Filipovi¢, and M. Madzin, “Automatic Fusions of CUDA-
GPU Kernels for Parallel Map,” SIGARCH Comput. Archit. News, p.
98-99, Dec. 2011.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-scale
DNN Processor for Real-time AL’ in ISCA, 2018, pp. 1-14.

A. Gibiansky, “Bringing HPC techniques to deep learning.”
https://github.com/baidu-research/baidu-allreduce, 2017.

Z. Gong, H. Ji, C. W. Fletcher, C. J. Hughes, S. Baghsorkhi, and
J. Torrellas, “SAVE: Sparsity-Aware Vector Engine for Accelerating
DNN Training and Inference on CPUs,” in MICRO, 2020, pp. 796-810.

Z. Gong, H. Ji, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“SparseTrain: Leveraging Dynamic Sparsity in Software for Training
DNNs on General-Purpose SIMD Processors,” in PACT, 2020, p.
279-292.

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

Google, “Google Research: BERT,” https://github.com/google-
research/bert, 2020.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S.
Lee, D. Brooks, and C. Wu, “DeepRecSys: A System for Optimizing
End-To-End At-Scale Neural Recommendation Inference,” in ISCA,
2020, pp. 982-995.

T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H.
Park, S. Lee, K. Park, J. W. Lee et al., “A3: Accelerating Attention
Mechanisms in Neural Networks with Approximation,” in HPCA,
2020, pp. 328-341.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in ISCA, 2016, pp. 243-254.

K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied Machine Learning
at Facebook: A Datacenter Infrastructure Perspective,” in HPCA,
2018, pp. 620-629.

M. He, C. Song, I. Kim, C. Jeong, S. Kim, L. Park, M. Thottethodi, and
T. Vijaykumar, “Newton: A DRAM-maker’s Accelerator-in-memory
(AIM) Architecture for Machine Learning,” in MICRO, 2020, pp.
372-385.

B. Hechtman, S. Che, D. Hower, Y. Tian, B. Beckmann, M. Hill,
S. Reinhardt, and D. Wood, “QuickRelease: A Throughput-Oriented
Approach to Release Consistency on GPUs,” in HPCA, 2014, pp.
189-200.

D. Hendrycks and K. Gimpel, “Bridging Nonlinearities and Stochas-
tic Regularizers with Gaussian Error Linear Units,” CoRR, vol.
abs/1606.08415, 2016.

A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data Move-
ment Is All You Need: A Case Study on Optimizing Transformers,”
in MLSys, vol. 3, 2021, pp. 711-732.

S. M. A. H. Jafri, H. Hassan, A. Hemani, and O. Mutlu, “Refresh
Triggered Computation: Improving the Energy Efficiency of Convo-
lutional Neural Network Accelerators,” ACM TACO, vol. 18, no. 1,
2021.

A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist:
Efficient Data Encoding for Deep Neural Network Training,” in
ISCA, 2018, pp. 776-789.

JEDEC, “High Bandwidth Memory DRAM (HBM1, HBM2)’
jedec.org/standards-documents/docs/jesd235a, 2019.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark,]J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017,

pp- 1-12.

S. W. Keckler, “Life After Dennard and How I Learned to Love the
Picojoule,” Keynote at MICRO, 2011.

F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-
Register Parameter Caching for Dynamic Neural Nets with Virtual
Persistent Processor Specialization,” in MICRO, 2018, pp. 377-389.

H. Kim, H. Park, T. Kim, K. cho, E. Lee, S. Ryu, H.-J. Lee, K. Choi,
and J. Lee, “GradPIM: A Practical Processing-in-DRAM Architecture
for Gradient Descent,” in HPCA, 2021.

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

(59]

[60]

[61]

[62]

[63]

[64]

B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network
Architecture for Accelerating Shared-Memory Multiprocessor Col-
lectives,” in ISCA, 2020, pp. 996-1009.

K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building Hetero-
geneous Unified Virtual Memories (UVMs) Without the Overhead,”
ACM TACO, vol. 13, no. 1, pp. 1:1-1:22, Mar. 2016.

S. Kumar, V. Bitorff, D. Chen, C. Chou, B. A. Hechtman, H. Lee,
N. Kumar, P. Mattson, S. Wang, T. Wang, Y. Xu, and Z. Zhou,
“Scale MLPerf-0.6 models on Google TPU-v3 Pods,” CoRR, vol.
abs/1909.09756, 2019.

S. Kumar, J. Bradbury, C. Young, Y. E. Wang, A. Levskaya, B. Hecht-
man, D. Chen, H. Lee, M. Deveci, N. Kumar, P. Kanwar, S. Wang,
S. Wanderman-Milne, S. Lacy, T. Wang, T. Oguntebi, Y. Zu, Y. Xu,
and A. Swing, “Exploring the limits of Concurrency in ML Training
on Google TPUs,” CoRR, vol. 2011.03641, 2020.

Y. Kwon and M. Rhu, “A Disaggregated Memory System for Deep
Learning,” IEEE Micro, vol. 39, no. 5, pp. 82-90, 2019.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations,” in ICLR, 2019.

S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim et al, “A 1lynm 1.25 v 8gb, 16gb/s/pin gddr6-based
accelerator-in-memory supporting 1tflops mac operation and various
activation functions for deep-learning applications,” in ISSCC, vol. 65,
2022, pp. 1-3.

S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin et al., “Hardware Architecture and Software Stack for
PIM Based on Commercial DRAM Technology: Industrial Product,”
in ISCA, 2021, pp. 43-56.

A. Li, B. Zheng, G. Pekhimenko, and F. Long, “Automatic Horizontal
Fusion for GPU Kernels,” CoRR, vol. 2007.01277, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” CoRR, vol. 1907.11692, 2019.

S. Lym and M. Erez, “FlexSA: Flexible Systolic Array Architecture
for Efficient Pruned DNN Model Training,” CoRR, vol. 2004.13027,
2020.

S. Lym, D. Lee, M. O’Connor, N. Chatterjee, and M. Erez, “DeLTA:
GPU Performance Model for Deep Learning Applications with
In-depth Memory System Traffic Analysis,” in ISPASS, 2019, pp.
293-303.

M. Mahmoud, I. Edo, A. H. Zadeh, O. Mohamed Awad, G. Pekhi-
menko, J. Albericio, and A. Moshovos, “TensorDash: Exploiting
Sparsity to Accelerate Deep Neural Network Training,” in MICRO,
2020, pp. 781-795.

P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius,
D. A. Patterson, H. Tang, G. Wei, P. Bailis, V. Bittorf, D. Brooks,
D. Chen, D. Dutta, U. Gupta, K. M. Hazelwood, A. Hock, X. Huang,
B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan,
T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, C. Wu, L. Xu, C. Young, and M. Zaharia, “MLPerf Training
Benchmark,” CoRR, vol. abs/1910.01500, 2019.

T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. P. Jouppi, and D. Patterson, “Google’s Training Chips Revealed:
TPUv2 and TPUv3,” in IEEE Hot Chips 32 Symposium, 2020, pp.
1-70.

NVIDIA, “Apex (A
"https://nvidia.github.io/apex/", 2018.

PyTorch Extension),”

——, “NVIDIA cuDNN: GPU Accelerated Deep Learning,’
"https://developer.nvidia.com/cudnn", 2018.

_ “NVIDIA FasterTransformer,”
"https://github.com/NVIDIA/FasterTransformer/", 2020.

(65]

(66]

[67]

(68]

(69]

(70]

(71]

(72]

(73]

(74]

[75]

[76]

(7]

(78]

(79]

(80]

(81]

(82]

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A Systematic Approach to DNN Accelerator Evaluation,” in ISPASS,
2019, pp. 304-315.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-sparse Convolutional Neural Networks,”
in ISCA, 2017, pp. 27-40.

S. Pati, S. Aga, M. D. Sinclair, and N. Jayasena, “SeqPoint: Identifying
Representative Iterations of Sequence-based Neural Networks,” in
ISPASS, 2020, pp. 69-80.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and L. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAIl
blog, vol. 1, no. 8, p. 9, 2019.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory
Optimizations Toward Training Trillion Parameter Models,” CoRR,
vol. 1910.02054, 2019.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,
000+ Questions for Machine Comprehension of Text,” CoRR, vol.
abs/1606.05250, 2016.

S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-
SIM: Enabling SW/HW Co-Design Exploration for Distributed DL
Training Platforms,” in ISPASS, 2020, pp. 81-92.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
Low-power, Highly-accurate Deep Neural Network Accelerators,”
in ISCA, 2016, pp. 267-278.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kan-
war, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference
Benchmark,” in ISCA, 2020, pp. 446-459.

J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Effi-
cient Tensor Migration and Allocation on Heterogeneous Memory
Systems for Deep Learning,” in HPCA, 2021, pp. 598-611.

C. Sakr, S. Dai, R. Venkatesan, B. Zimmer, W. Dally, and B. Khailany,
“Optimal Clipping and Magnitude-aware Differentiation for Im-
proved Quantization-aware Training,” in ICML, 2022, pp. 19 123—
19 138.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-situ Analog
Arithmetic in Crossbars,” in ISCA, 2016, pp. 14-26.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
Features off-the-shelf: an Astounding Baseline for Recognition,” in
CVPR, 2014, pp. 806-813.

Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN Accelerator
Efficiency Through Resource Partitioning,” in ISCA, 2017, pp. 535—
547.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism,” CoRR, vol. abs/1909.08053, 2019.

M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU Synchroniza-
tion without Scopes: Saying No to Complex Consistency Models,”
in MICRO, 2015, pp. 647-659.

I Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M.
Aamodt, “Cache Coherence for GPU Architectures,” in HPCA, 2013,
pp. 578-590.

M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting Predictability to Optimize Deep Learning,” in ASPLOS,
2019, p. 909-923.

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang,
“DRQ: Dynamic Region-based Quantization for Deep Neural Network
Acceleration,” in ISCA, 2020, pp. 1010-1021.

M. Springer, P. Wauligmann, and H. Masuhara, “Modular Array-
Based GPU Computing in a Dynamically-Typed Language, in
Proceedings of the 4th ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, 2017, p.
48-55.

Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang,
“ERNIE 2.0: A Continual Pre-training Framework for Language
Understanding,” CoRR, vol. 1907.12412, 2019.

L. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-Read Students
Learn Better: On the Importance of Pre-training Compact Models,”
CoRR, vol. abs/1908.08962, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,
in NeurIPS, 2017, p. 6000-6010.

S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks,” in ISCA, 2017, pp.
13-26.

S. Verma, Q. Wu, B. Hanindhito, G. Jha, E. B. John, R. Radhakrishnan,
and L. K. John, “Demystifying the mlperf training benchmark suite,”
in ISPASS, 2020, pp. 24-33.

G. Wang, Y. Lin, and W. Yi, “Kernel Fusion: An Effective Method
for Better Power Efficiency on Multithreaded GPU,” in Proceedings
of the 2010 IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and Social
Computing, 2010, p. 344-350.

H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient Sparse Attention
Architecture with Cascade Token and Head Pruning,” in HPCA, 2021,
pp. 97-110.

Y. Wang, G.-Y. Wei, and D. Brooks, “A Systematic Methodology
for Analysis of Deep Learning Hardware and Software Platforms,”
MLSys, pp. 30-43, 2020.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized Autoregressive Pretraining for Language
Understanding,” CoRR, vol. 1906.08237, 2020.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How Transferable Are
Features in Deep Neural Networks?” in NeurIPS, 2014, p. 3320-3328.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Reducing BERT Pre-Training
Time from 3 Days to 76 Minutes,” CoRR, vol. abs/1904.00962, 2019.

J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN Pruning to the Underlying Hardware
Parallelism,” in ISCA, 2017, pp. 548-560.

A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “GOBO:
Quantizing Attention-Based NLP Models for Low Latency and
Energy Efficient Inference,” in MICRO, 2020, pp. 811-824.

A. H. Zadeh, Z. Poulos, and A. Moshovos, “Deep Learning Language
Modeling Workloads: Where Time Goes on Graphics Processors,”
in IISWC, 2019, pp. 131-142.

B. Zheng, N. Vijaykumar, and G. Pekhimenko, “Echo: Compiler-
based GPU Memory Footprint Reduction for LSTM RNN Training,”
in ISCA, 2020, pp. 1089-1102.

H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “TBD: Benchmarking and Ana-
lyzing Deep Neural Network Training,” in IISWC, 2018.

M. Zhu, M. Rhu, J. Clemons, S. W. Keckler, and Y. Xie, “Training Long
Short-Term Memory With Sparsified Stochastic Gradient Descent,”
https://openreview.net/forum?id=HJWzXsKxx, 2016.

