
Exploring GPU Architectural Optimizations for RNNs
Suchita Pati

Computer Sciences Department
University of Wisconsin-Madison

spati@cs.wisc.edu

Abstract
GPUs have been widely adopted for the training of Deep

Learning applications employing Convolutional Neural Net-
works (CNNs). However, Recurrent Neural Network (RNN)
based applications, such as those for Natural Language Pro-
cessing and Speech and Text Recognition, are becoming in-
creasingly popular but have received significantly less at-
tention. RNNs possess a different set of characteristics than
CNNs, such as serialization between time-steps and the need
to remember recent events, and are unable to take advantage
of many of the common GPU hardware and software opti-
mizations for CNNs. To overcome this, we propose holistic
changes to the design of GPUs to optimize them for RNNs.

1 Introduction
Deep Learning has become immensely popular in the last

decade, dominating fields such as robotics, virtual reality and
autonomous vehicles. Given this, research on hardware for
deep neural networks (DNNs) has also become imperative
leading to the proposal of several accelerators [7–9, 15, 18,
19, 31, 34, 38]. However, more general-purpose GPUs are
also widely used for running DNNs since they are more
flexible and better able to adapt to new algorithms than
accelerators, which quickly become obsolete due to rapidly
evolving algorithms. Therefore, GPUs have been extensively
used for both CNN training and inference [28–30].
GPUs have also been used for RNNs, although RNNs

are less well studied than CNNs because CNNs are consid-
ered more widely used in practice [12]. However, RNNs are
also an important application that systems must optimize
for [17, 21, 24]. For example, Facebook runs 300 trillion ML
inferences a day, most of which are RNNs [16], and Google
found that 29% of the Tensor Processing Unit (TPU) work-
loads are RNNs (in comparison, only 5% are CNNs) [24].
RNNs present a unique challenge for GPUs, since each RNN
job often uses kernels with few threads that cannot fully
utilize the GPU [13]. Consequently, single RNN jobs cannot
benefit from increasing the number of computational units.
Moreover, batching RNN jobs to increase hardware uti-

lization is impractical for RNN inference, since many of the
application domains where RNNs are widely used, such as
speech recognition, have real-time constraints [17, 24, 43].
For example, data center data shows that an RNN inference
job must be completed in 7-10 ms [24, 43]. As a result, RNN

YArch ’19, Feb 2019, USA
.

Figure 1. RNN structure and the unfolding in time of the
computations involved in its forward pass [4].
performance significantly lags that of CNNs across a wide
variety of platforms [35, 36]. We further discuss RNNs and
their unique processing model in Section 2.
The fundamental differences between RNNs and CNNs

necessitate a different set of GPU optimizations that have
not been previously explored. As discussed in Section 5,
prior work on RNNs has primarily focused on software solu-
tions such as efficient strategies for mapping the RNNs on
to the GPUs [14, 44]. In contrast, we propose to holistically
rethink the GPU architecture – including the microarchitec-
ture, memory system, and coherence protocol, to optimize
GPUs for RNNs.

2 Background and Challenges
An example RNN is shown in Figure 1. In a single hidden

layer recurrent network, given that xt is the input at time t
and ht−1 is the recurrent layer activation matrix at time t-1,
then the recurrent layer activations are calculated as follows:

ht = f (W xt + U ht−1 + b )
whereW is the input-hidden weight matrix and U is the
recurrent weight matrix and b is a bias term.
RNNs contain loops which allow them to capture and re-

member information across multiple iterations (or timesteps).
These loops can be unrolled, as shown on the right of Fig-
ure 1. Each of the unrolled iterations passes information to
the next iteration. This sequential dependency between iter-
ations limits parallelism. Although input batching is one
of the optimizations that has been adopted to overcome this
issue for CNNs, this is not feasible for RNN (inference) due
to strict latency requirements [24, 43].
The number of times the loop is unrolled, N , represents

the sequence length of the RNN. Unrolling the RNN also al-
lows it to be formulated as a series of matrix operations using
optimized matrix multiplication routines like General Matrix
Multiply (GEMM). The hidden state vector (the memory) is
calculated by looking at the previous hidden state ht−1 and

1



YArch ’19, Feb 2019, USA Suchita Pati

the input ht at the current step. In theory, RNNs could be un-
rolled an infinite number of times, whichwould be equivalent
to remembering everything that has happened previously.
In practice, the large memory footprint and bandwidth
limitations of RNNs limit them to only remembering the
most recent events. Despite this practical limitation, RNNs
are well suited for domains where prior events persist and
influence subsequent ones [2, 5, 6, 20, 40, 42].

3 Proposal
To overcome the challenges mentioned in Section 2, we

propose several changes to the microarchitecture, memory
system and coherence protocol of GPUs. The key insight
underlying these innovations is that RNNs have producer-
consumer parallelism that can be exploited at multiple levels
to improve performance and energy efficiency.

3.1 Microarchitecture
Currently, RNNs must wait for all activation elements

to be computed before the result can be sent to the next
timestep. This incurs unnecessary overhead because some
of the activations have been computed much earlier than
other. By sending a partially computed activation element
or activation matrix from the current timestep to carry out
computations of the next timestep in parallel, we can ex-
ploit more parallelism at the microarchitectural level. To do
this, we will map each timestep’s computations to a different
Streaming Multiprocessor (SM) via an intelligent scheduling
mechanism. Thus, one SM will be a producer of activations
for the next timestep, which is consumed by a different SM.
Moreover, we will also distribute a timestep’s computations
across multiple SMs to improve parallelism, similar to prior
work [14]. To ensure this scheduling is only used when de-
sired, we will add a programmer-controlled flag.

3.2 Memory System
Since the activations are produced and consumed by dif-

ferent (sets of) SMs, memory system optimizations are also
required.
ReduceRedundant Storage:Wepropose using the L1 cache
for storing updated activations. Although prior work stores
activations in shared memory [14], this requires multiple ac-
tivation copies per SM whereas we only require one copy. By
storing fewer copies per SM, we enable larger recurrent layer
sizes. However, using caches requires TLB accesses which
may increase the access latency but it would be small com-
pared to repeatedly loading activations from global memory.
Reduce Memory Bandwidth: Storing the activations in
caches significantly reduces the memory bandwidth require-
ments. However, caches pose an additional challenge since
the activations may be evicted. Therefore, an additional
mechanism is required to retain all the activations in the
cache. To do this efficiently, we will build on prior work
on locking cache ways [11], or making the shared memory
globally addressable and coherent [27].

ReduceCommunicationOverhead:Although storing the
activations in shared memory [14] avoids some of the over-
heads of caches, it also has its own set of issues because
the shared memory must copy the data back and forth from
the global memory to propagate updates. This incurs signif-
icant latency overhead as it requires updates to the global
memory at the producer SM and loading of the updated ac-
tivations into the shared memory of the consumer SM at
every timestep. Thus, we will optimize the GPU coherence
protocol [41] to propagate updated activations directly to
the consumers’ L1 cache.

4 Evaluation
There has been a significant effort towards building in-

frastructure for accurately simulating state-of-the-art GPU
architectures in GPGPU-Sim (such as NVIDIA’s Pascal and
Volta GPUs [23, 25], including tensor cores [39]) with support
for executing Deep Learning benchmarks that use cuBLAS,
cuDNN, PyTorch, and TensorFlow [33]. Using the updated
GPGPU-Sim infrastructure will allow us to rapidly prototype
our ideas, while being confident that the changes are reflec-
tive of real hardware. As a first step, we have been augment-
ing GPGPU-Sim to simulate RNNs from DeepBench [35, 36],
which has both training and inference implementations for
the three most popular variants of RNN algorithms – Vanilla,
GRU [10] and LSTM [22]. With slight modifications, we have
been able to execute them with various batch sizes, num-
ber of hidden layer units, and timesteps, which will help us
evaluate our ideas for different RNNs. In addition to this,
we plan to compare against end-to-end solutions such as
DeepSpeech2 [1], PRNN [14], and SRU [32].

5 Related Work
Recently, there has been an increasing amount of work on

optimizing RNNs, especially at the software level. Research
on matrix multiplication level optimizations has resulted in
optimized cuDNN implementations that concatenate multi-
ple inputs as a single large matrix through batching or con-
catenation of weight matrices for networks with wide hidden
layers [? ] for GPUs. Since our applications are written using
cuDNN, our design is built on top of these optimizations. A
similar effort occurred on the CPU side with the DeepCPU
library [43]. However, CPUs do not provide the extent of
parallelism we would require to implement our design.

GPUs have also been recently equippedwith dedicated and
specialized units for matrix multiplications (tensor cores [3])
which can significantly boost performance as RNNs gain
considerably from reduced precision [14]. Since our infras-
tructure models current NVIDIA GPUs and has support for
tensor cores, this is another feature that our work builds
upon.
Most prior work on optimizing RNNs for GPUs focuses

on modifying the network architecture, pruning network
parameters and creating efficient mapping of the network on
GPUs [14, 26, 32, 37, 45]. For example, Persistent RNNs [14]

2



Exploring GPU Architectural Optimizations for RNNs YArch ’19, Feb 2019, USA

retain the recurrentweightmatrixwithin SMs over all timesteps.
Although this approach works well for some RNNs, it also
requires heavyweight synchronization. In comparison, our
approach is more general.

References
[1] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared

Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley,
Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Yi Wang, Zhiqian Wang, ChongWang, Bo Xiao, Dani Yogatama,
Jun Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).
arXiv:1512.02595 http://arxiv.org/abs/1512.02595

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick LeGresley,
Xiangang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair,
Ryan Prenger, Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, ChongWang, Yi Wang, ZhiqianWang, Bo
Xiao, Yan Xie, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. 2016. Deep
Speech 2 : End-to-End Speech Recognition in English and Mandarin. In
Proceedings of the 33nd International Conference on Machine Learning
(ICML). 173–182.

[3] Jeremy Appleyard and Scott Yokim. 2017. Programming
Tensor Cores in CUDA 9. https://devblogs.nvidia.com/
programming-tensor-cores-cuda-9/. (2017).

[4] Denny Britz. 2015. Recurrent Neural Networks Tutorial, Part
1 âĂŞ Introduction to RNNs. http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/.
(2015).

[5] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017.
Massive Exploration of Neural Machine Translation Architectures. In
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 1442–1451.

[6] William Chan and Ian Lane. 2015. Deep Recurrent Neural Networks
for Acoustic Modelling. CoRR abs/1504.01482 (2015). arXiv:1504.01482
http://arxiv.org/abs/1504.01482

[7] Andre Xian Ming Chang, Berin Martini, and Eugenio Culurciello.
2015. Recurrent Neural Networks Hardware Implementation on FPGA.
CoRR abs/1511.05552 (2015). arXiv:1511.05552 http://arxiv.org/abs/
1511.05552

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. Diannao: A small-footprint
high-throughput accelerator for ubiquitous machine-learning. ACM
Sigplan Notices 49, 4 (2014), 269–284.

[9] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadian-
nao: A machine-learning supercomputer. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 609–622.

[10] Kyunghyun Cho, Bart van Merriënboer, ÇaÄ§lar Gülçehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.
Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Doha, Qatar, 1724–1734.
http://www.aclweb.org/anthology/D14-1179

[11] Henry Cook, Krste Asanovic, andDavid A Patterson. 2009. Virtual local
stores: Enabling software-managedmemory hierarchies inmainstream

computing environments. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-131 (2009).

[12] Eugenio Culurciello. 2018. The Fall of RNN / LSTM. https://
towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0. (2018).

[13] Eugenio Culurciello, Aliasger Zaidy, and Vinayak Gokhale.
2017. Computation and Memory Bandwidth in Deep
Neural Networks. https://medium.com/@culurciello/
computation-and-memory-bandwidth-in-deep-neural-networks-16cbac63ebd5.
(2017).

[14] Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski,
Adam Coates, Erich Elsen, Jesse Engel, Awni Y. Hannun, and Sanjeev
Satheesh. 2016. Persistent RNNs: Stashing Recurrent Weights On-Chip.
In Proceedings of the 33nd International Conference on Machine Learning
(ICML). 2024–2033. http://jmlr.org/proceedings/papers/v48/diamos16.
html

[15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, andOlivier Temam. 2015. ShiDianNao:
Shifting vision processing closer to the sensor. In ACM SIGARCH
Computer Architecture News, Vol. 43. ACM, 92–104.

[16] Facebook Research. 2018. Deploying at Production Scale.
https://www.facebook.com/pytorch/videos/vl.486038211901583/
2142030806118038/?type=1. (2018).

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K. Rein-
hardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger. 2018. A
Configurable Cloud-scale DNN Processor for Real-time AI. In Pro-
ceedings of the 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE Press, Piscataway, NJ, USA, 1–14. https:
//doi.org/10.1109/ISCA.2018.00012

[18] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. 2017. FPGA-
based accelerator for long short-term memory recurrent neural net-
works. In Design Automation Conference (ASP-DAC), 2017 22nd Asia
and South Pacific. IEEE, 629–634.

[19] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, YuWang, et al. 2017. Ese: Efficient
speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 75–84.

[20] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg
Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sen-
gupta, Adam Coates, and Andrew Y. Ng. 2014. Deep Speech: Scal-
ing up end-to-end speech recognition. CoRR abs/1412.5567 (2014).
http://arxiv.org/abs/1412.5567

[21] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M.
Smelyanskiy, L. Xiong, and X. Wang. 2018. Applied Machine Learning
at Facebook: A Datacenter Infrastructure Perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.00059

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Computation 9, 8 (Nov. 1997), 1735–1780. https:
//doi.org/10.1162/neco.1997.9.8.1735

[23] Akshay Jain, Mahmoud Khairy, and Timothy G Rogers. 2018. A Quan-
titative Evaluation of Contemporary GPU Simulation Methodology.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems 2, 2 (2018), 35.

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert

3

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://arxiv.org/abs/1504.01482
http://arxiv.org/abs/1504.01482
http://arxiv.org/abs/1511.05552
http://arxiv.org/abs/1511.05552
http://arxiv.org/abs/1511.05552
http://www.aclweb.org/anthology/D14-1179
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
https://medium.com/@culurciello/computation-and-memory-bandwidth-in-deep-neural-networks-16cbac63ebd5
https://medium.com/@culurciello/computation-and-memory-bandwidth-in-deep-neural-networks-16cbac63ebd5
http://jmlr.org/proceedings/papers/v48/diamos16.html
http://jmlr.org/proceedings/papers/v48/diamos16.html
https://www.facebook.com/pytorch/videos/vl.486038211901583/2142030806118038/?type=1
https://www.facebook.com/pytorch/videos/vl.486038211901583/2142030806118038/?type=1
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
http://arxiv.org/abs/1412.5567
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


YArch ’19, Feb 2019, USA Suchita Pati

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
2017. In-Datacenter Performance Analysis of a Tensor Process-
ing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[25] Mahmoud Khairy, Akshay Jain, Tor M. Aamodt, and Timothy G.
Rogers. 2018. Exploring Modern GPU Memory System Design Chal-
lenges through Accurate Modeling. CoRR abs/1810.07269 (2018).
arXiv:1810.07269 http://arxiv.org/abs/1810.07269

[26] Farzad Khorasani, Hodjat Asghari Esfeden, Nael Abu-Ghazaleh, and
Vivek Sarkar. 2018. In-Register Parameter Caching for Dynamic Neural
Nets with Virtual Persistent Processor Specialization. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 377–389.

[27] Rakesh Komuravelli, Matthew D Sinclair, Johnathan Alsop, Muham-
mad Huzaifa, Maria Kotsifakou, Prakalp Srivastava, Sarita V Adve, and
Vikram S Adve. 2015. Stash: Have your scratchpad and cache it too. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 707–719.

[28] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[29] Andrew Lavin. 2015. maxDNN: An Efficient Convolution Kernel for
Deep Learning with Maxwell GPUs. CoRR abs/1501.06633 (2015).
arXiv:1501.06633 http://arxiv.org/abs/1501.06633

[30] Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby
Prochnow, and Andrew Y Ng. 2011. On optimization methods for
deep learning. In Proceedings of the 28th International Conference on
International Conference on Machine Learning. Omnipress, 265–272.

[31] Minjae Lee, Kyuyeon Hwang, Jinhwan Park, Sungwook Choi, Sungho
Shin, and Wonyong Sung. 2016. FPGA-based low-power speech recog-
nition with recurrent neural networks. In Signal Processing Systems
(SiPS), 2016 IEEE International Workshop on. IEEE, 230–235.

[32] Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav Artzi. 2018. Simple
Recurrent Units for Highly Parallelizable Recurrence. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing. 4470–4481.

[33] Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi
Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D.
Sinclair, Timothy G. Rogers, and Tor M. Aamodt. 2018. Analyz-
ing Machine Learning Workloads Using a Detailed GPU Simulator.
CoRR abs/1811.08933 (2018). arXiv:1811.08933 http://arxiv.org/abs/
1811.08933

[34] Sicheng Li, Chunpeng Wu, Hai Li, Boxun Li, Yu Wang, and Qinru Qiu.
2015. Fpga acceleration of recurrent neural network based language
model. In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 111–118.

[35] Sharan Narang. 2016. DeepBench. https://svail.github.io/DeepBench/.
(2016).

[36] Sharan Narang and Greg Diamos. 2017. An Update to DeepBench
with a Focus on Deep Learning Inference. https://svail.github.io/
DeepBench-update/. (2017).

[37] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta.
2017. Exploring sparsity in recurrent neural networks. arXiv preprint
arXiv:1704.05119 (2017).

[38] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan,
Christos Kozyrakis, and Mark A Horowitz. 2013. Convolution engine:
balancing efficiency & flexibility in specialized computing. In ACM
SIGARCH Computer Architecture News, Vol. 41. ACM, 24–35.

[39] Md Aamir Raihan, Negar Goli, and Tor M. Aamodt. 2018. Modeling
Deep Learning Accelerator Enabled GPUs. CoRR abs/1811.08309 (2018).
arXiv:1811.08309 http://arxiv.org/abs/1811.08309

[40] Kanishka Rao, Hasim Sak, and Rohit Prabhavalkar. 2018. Explor-
ing Architectures, Data and Units For Streaming End-to-End Speech
Recognition with RNN-Transducer. CoRR abs/1801.00841 (2018).
arXiv:1801.00841 http://arxiv.org/abs/1801.00841

[41] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Effi-
cient GPU Synchronization without Scopes: Saying No to Complex
Consistency Models. In Proceedings of the 48th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 647–659.

[42] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144
http://arxiv.org/abs/1609.08144

[43] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong
He. 2018. DeepCPU: Serving RNN-based Deep Learning Models 10x
Faster. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 951–965. https://www.usenix.org/
conference/atc18/presentation/zhang-minjia

[44] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and
Fung Xie. 2018. Sparse Persistent RNNs: Squeezing Large Recurrent
Networks On-Chip. CoRR abs/1804.10223 (2018). arXiv:1804.10223
http://arxiv.org/abs/1804.10223

[45] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and
Fung Xie. 2018. Sparse Persistent RNNs: Squeezing Large Recurrent
Networks On-Chip. arXiv preprint arXiv:1804.10223 (2018).

4

https://doi.org/10.1145/3079856.3080246
http://arxiv.org/abs/1810.07269
http://arxiv.org/abs/1810.07269
http://arxiv.org/abs/1501.06633
http://arxiv.org/abs/1501.06633
http://arxiv.org/abs/1811.08933
http://arxiv.org/abs/1811.08933
http://arxiv.org/abs/1811.08933
https://svail.github.io/DeepBench/
https://svail.github.io/DeepBench-update/
https://svail.github.io/DeepBench-update/
http://arxiv.org/abs/1811.08309
http://arxiv.org/abs/1811.08309
http://arxiv.org/abs/1801.00841
http://arxiv.org/abs/1801.00841
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
http://arxiv.org/abs/1804.10223
http://arxiv.org/abs/1804.10223

	Abstract
	1 Introduction
	2 Background and Challenges
	3 Proposal
	3.1 Microarchitecture
	3.2 Memory System

	4 Evaluation
	5 Related Work
	References

