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Abstract
GPUs have been widely adopted for the training of Deep

Learning applications employing Convolutional Neural Net-
works (CNNs). However, Recurrent Neural Network (RNN)
based applications, such as those for Natural Language Pro-
cessing and Speech and Text Recognition, are becoming in-
creasingly popular but have received significantly less at-
tention. RNNs possess a different set of characteristics than
CNNs, such as serialization between time-steps and the need
to remember recent events, and are unable to take advantage
of many of the common GPU hardware and software opti-
mizations for CNNs. To overcome this, we propose holistic
changes to the design of GPUs to optimize them for RNNs.

1 Introduction
Deep Learning has become immensely popular in the last

decade, dominating fields such as robotics, virtual reality and
autonomous vehicles. Given this, research on hardware for
deep neural networks (DNNs) has also become imperative
leading to the proposal of several accelerators [7–9, 15, 18,
19, 31, 34, 38]. However, more general-purpose GPUs are
also widely used for running DNNs since they are more
flexible and better able to adapt to new algorithms than
accelerators, which quickly become obsolete due to rapidly
evolving algorithms. Therefore, GPUs have been extensively
used for both CNN training and inference [28–30].
GPUs have also been used for RNNs, although RNNs

are less well studied than CNNs because CNNs are consid-
ered more widely used in practice [12]. However, RNNs are
also an important application that systems must optimize
for [17, 21, 24]. For example, Facebook runs 300 trillion ML
inferences a day, most of which are RNNs [16], and Google
found that 29% of the Tensor Processing Unit (TPU) work-
loads are RNNs (in comparison, only 5% are CNNs) [24].
RNNs present a unique challenge for GPUs, since each RNN
job often uses kernels with few threads that cannot fully
utilize the GPU [13]. Consequently, single RNN jobs cannot
benefit from increasing the number of computational units.
Moreover, batching RNN jobs to increase hardware uti-

lization is impractical for RNN inference, since many of the
application domains where RNNs are widely used, such as
speech recognition, have real-time constraints [17, 24, 43].
For example, data center data shows that an RNN inference
job must be completed in 7-10 ms [24, 43]. As a result, RNN
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Figure 1. RNN structure and the unfolding in time of the
computations involved in its forward pass [4].
performance significantly lags that of CNNs across a wide
variety of platforms [35, 36]. We further discuss RNNs and
their unique processing model in Section 2.
The fundamental differences between RNNs and CNNs

necessitate a different set of GPU optimizations that have
not been previously explored. As discussed in Section 5,
prior work on RNNs has primarily focused on software solu-
tions such as efficient strategies for mapping the RNNs on
to the GPUs [14, 44]. In contrast, we propose to holistically
rethink the GPU architecture – including the microarchitec-
ture, memory system, and coherence protocol, to optimize
GPUs for RNNs.

2 Background and Challenges
An example RNN is shown in Figure 1. In a single hidden

layer recurrent network, given that xt is the input at time t
and ht−1 is the recurrent layer activation matrix at time t-1,
then the recurrent layer activations are calculated as follows:

ht = f (W xt + U ht−1 + b )
whereW is the input-hidden weight matrix and U is the
recurrent weight matrix and b is a bias term.
RNNs contain loops which allow them to capture and re-

member information across multiple iterations (or timesteps).
These loops can be unrolled, as shown on the right of Fig-
ure 1. Each of the unrolled iterations passes information to
the next iteration. This sequential dependency between iter-
ations limits parallelism. Although input batching is one
of the optimizations that has been adopted to overcome this
issue for CNNs, this is not feasible for RNN (inference) due
to strict latency requirements [24, 43].
The number of times the loop is unrolled, N , represents

the sequence length of the RNN. Unrolling the RNN also al-
lows it to be formulated as a series of matrix operations using
optimized matrix multiplication routines like General Matrix
Multiply (GEMM). The hidden state vector (the memory) is
calculated by looking at the previous hidden state ht−1 and
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the input ht at the current step. In theory, RNNs could be un-
rolled an infinite number of times, whichwould be equivalent
to remembering everything that has happened previously.
In practice, the large memory footprint and bandwidth
limitations of RNNs limit them to only remembering the
most recent events. Despite this practical limitation, RNNs
are well suited for domains where prior events persist and
influence subsequent ones [2, 5, 6, 20, 40, 42].

3 Proposal
To overcome the challenges mentioned in Section 2, we

propose several changes to the microarchitecture, memory
system and coherence protocol of GPUs. The key insight
underlying these innovations is that RNNs have producer-
consumer parallelism that can be exploited at multiple levels
to improve performance and energy efficiency.

3.1 Microarchitecture
Currently, RNNs must wait for all activation elements

to be computed before the result can be sent to the next
timestep. This incurs unnecessary overhead because some
of the activations have been computed much earlier than
other. By sending a partially computed activation element
or activation matrix from the current timestep to carry out
computations of the next timestep in parallel, we can ex-
ploit more parallelism at the microarchitectural level. To do
this, we will map each timestep’s computations to a different
Streaming Multiprocessor (SM) via an intelligent scheduling
mechanism. Thus, one SM will be a producer of activations
for the next timestep, which is consumed by a different SM.
Moreover, we will also distribute a timestep’s computations
across multiple SMs to improve parallelism, similar to prior
work [14]. To ensure this scheduling is only used when de-
sired, we will add a programmer-controlled flag.

3.2 Memory System
Since the activations are produced and consumed by dif-

ferent (sets of) SMs, memory system optimizations are also
required.
ReduceRedundant Storage:Wepropose using the L1 cache
for storing updated activations. Although prior work stores
activations in shared memory [14], this requires multiple ac-
tivation copies per SM whereas we only require one copy. By
storing fewer copies per SM, we enable larger recurrent layer
sizes. However, using caches requires TLB accesses which
may increase the access latency but it would be small com-
pared to repeatedly loading activations from global memory.
Reduce Memory Bandwidth: Storing the activations in
caches significantly reduces the memory bandwidth require-
ments. However, caches pose an additional challenge since
the activations may be evicted. Therefore, an additional
mechanism is required to retain all the activations in the
cache. To do this efficiently, we will build on prior work
on locking cache ways [11], or making the shared memory
globally addressable and coherent [27].

ReduceCommunicationOverhead:Although storing the
activations in shared memory [14] avoids some of the over-
heads of caches, it also has its own set of issues because
the shared memory must copy the data back and forth from
the global memory to propagate updates. This incurs signif-
icant latency overhead as it requires updates to the global
memory at the producer SM and loading of the updated ac-
tivations into the shared memory of the consumer SM at
every timestep. Thus, we will optimize the GPU coherence
protocol [41] to propagate updated activations directly to
the consumers’ L1 cache.

4 Evaluation
There has been a significant effort towards building in-

frastructure for accurately simulating state-of-the-art GPU
architectures in GPGPU-Sim (such as NVIDIA’s Pascal and
Volta GPUs [23, 25], including tensor cores [39]) with support
for executing Deep Learning benchmarks that use cuBLAS,
cuDNN, PyTorch, and TensorFlow [33]. Using the updated
GPGPU-Sim infrastructure will allow us to rapidly prototype
our ideas, while being confident that the changes are reflec-
tive of real hardware. As a first step, we have been augment-
ing GPGPU-Sim to simulate RNNs from DeepBench [35, 36],
which has both training and inference implementations for
the three most popular variants of RNN algorithms – Vanilla,
GRU [10] and LSTM [22]. With slight modifications, we have
been able to execute them with various batch sizes, num-
ber of hidden layer units, and timesteps, which will help us
evaluate our ideas for different RNNs. In addition to this,
we plan to compare against end-to-end solutions such as
DeepSpeech2 [1], PRNN [14], and SRU [32].

5 Related Work
Recently, there has been an increasing amount of work on

optimizing RNNs, especially at the software level. Research
on matrix multiplication level optimizations has resulted in
optimized cuDNN implementations that concatenate multi-
ple inputs as a single large matrix through batching or con-
catenation of weight matrices for networks with wide hidden
layers [? ] for GPUs. Since our applications are written using
cuDNN, our design is built on top of these optimizations. A
similar effort occurred on the CPU side with the DeepCPU
library [43]. However, CPUs do not provide the extent of
parallelism we would require to implement our design.

GPUs have also been recently equippedwith dedicated and
specialized units for matrix multiplications (tensor cores [3])
which can significantly boost performance as RNNs gain
considerably from reduced precision [14]. Since our infras-
tructure models current NVIDIA GPUs and has support for
tensor cores, this is another feature that our work builds
upon.
Most prior work on optimizing RNNs for GPUs focuses

on modifying the network architecture, pruning network
parameters and creating efficient mapping of the network on
GPUs [14, 26, 32, 37, 45]. For example, Persistent RNNs [14]
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retain the recurrentweightmatrixwithin SMs over all timesteps.
Although this approach works well for some RNNs, it also
requires heavyweight synchronization. In comparison, our
approach is more general.
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