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I. INTRODUCTION

The breakdown in Moore’s Law and Dennard Scaling is
leading to drastic changes in the makeup and constitution
of computing systems. For example, a single chip integrates
10-100s of cores and has a heterogeneous mix of general-
purpose compute engines and highly specialized accelerators.
Traditionally, computer architects have relied on tools like
architectural simulators (e.g., Accel-Sim [1], gem5 [2], [3],
gem5-SALAM [4], GPGPU-Sim [5], MGPUSim [6], Sniper-
Sim [7], and ZSim [8]) to accurately perform early stage proto-
typing and optimizations for the proposed research. However,
as systems become increasingly complex and heterogeneous,
architectural tools are straining to keep up. In particular,
publicly available architectural simulators are often not very
representative of the industry parts they intend to represent.
This leads to a mismatch in expectations; when prototyping
new optimizations in gem5 users may draw the wrong conclu-
sions about the efficacy of proposed optimizations if the tool’s
models do not provide high fidelity.

In this work, we focus on the gem5 simulator, the most
popular platform for computer system simulation. In recent
years gem5 has been used by ∼20% of simulation-based
papers published in top-tier computer architecture conferences
per year. Moreover, gem5 can run entire systems, including
CPUs, GPUs [9], and accelerators [4], [10], as well as the
operating system, runtime, network [11], [12], and other
related components (including multiple ISAs). Thus, gem5 has
the potential to allow users to study the behavior of the entire
heterogeneous systems.

Unfortunately, some of gem5’s models do not always pro-
vide high accuracy relative to their ”real” counterparts. In par-
ticular, although gem5’s GPU model provides high accuracy
internally at AMD [9], the publicly available gem5 GPU model
is often inaccurate, especially for the memory subsystem. To
understand this, we designed a series of microbenchmarks
designed to expose the latencies, bandwidths, and sizes of
a variety of GPU components on real AMD GPUs. Our
results showed that while gem5’s GPU microarchitecture was
relatively accurate (within 5-10% in most cases), gem5’s
memory subsytem was off by an average of 272% (645% max)
for latency and 70% (693% max) for bandwidth. Accordingly,
to help bridge this divide, we propose to design and use a
new tool, GPU Accuracy Profiler (GAP), to compare and
improve the behavior of gem5’s simulated GPUs relative to
real GPUs. By iteratively applying fixes and improvements to

Fig. 1: gem5 GPU Accuracy Profiler (GAP)

gem’s GPU model via GAP, we will significantly improved its
fidelity relative to real AMD GPUs. Although this work is still
ongoing, our preliminary results (Section V) show significant
promise: on average 25% error for latency and 16% error
for bandwidth, respectively. Overall, by completing this work
we hope to enable more widespread adoption of gem5 as an
accurate platform for heterogeneous architecture research.

II. BACKGROUND

The gem5 simulator is a widely used, open-source, cycle-
level computer system simulator with around 700,000 lines
of core code and around 250,000 additional lines of code in
locally maintained external libraries. The gem5 simulator is
used in computer system research to evaluate novel hardware
designs. To support this use case, gem5 provides a robust API
for researchers to modify and extend current models and to
create new models in the gem5 infrastructure. At its core,
gem5 contains an event-driven simulation engine. On top of
this simulation engine, gem5 contains hundreds of cycle-level
models for system components from accelerators [4], [10],
coherent caches, CPUs (out-of-order designs, in-order designs,
and others), I/O devices, GPUs, memories (including DDR3/4,
GDDR5, HBM, HBM2, and HMC), on-chip interconnects,
and many others. Using a Python scripting interface, users
can configure systems and control the simulation to perform
full-system performance analysis. Thus, gem5 provides a way
to quickly prototype hardware-software co-design. The gem5
models are designed to have enough fidelity to boot Linux,
run unmodified applications, and investigate cross-layer design
proposals. As a result, it is used frequently in both academia
and industrial research labs including AMD Research, ARM
Research, and Google.

Recent work has enhanced and updated gem5’s GPU sup-
port [9], including adding support for multi-chiplet setups [13]
and running ML workloads [14], [15]. Moreover, contributors
validated and released a Docker image with the proper soft-
ware and libraries needed to run AMD’s GCN3 and Vega GPU



models in gem5. With this container, users can run the gem5
GPU model and build the desired ROCm applications out of
the box without needing to properly install the appropriate
ROCm software and libraries [14], [15]. However, as discussed
in Section I, the publicly available GPU model is not always
accurate.

III. PROPOSAL

To overcome the fidelity issues with gem5’s GPU models,
we propose to develop a tool called GPU Accuracy Profiler
(GAP). As shown in Figure 1, GAP compares the performance
of a given application (or microbenchmark) between real hard-
ware and gem5. More specifically, given a set of applications,
GAP runs each of them in isolation on both the real GPU and
the corresponding gem5 GPU model (green, Figure 1). Before
running on gem5, it configures the simulator to resemble the
real GPU. Then, GAP measures the application’s performance
on both the real GPU and gem5. On the real GPU, it uses uses
AMD’s ROCm profiler [16] (rocProf) to collect statistics about
the application’s behavior (brown, Figure 1). For example, a
user may want to compare cache hits/misses and runtime,
although the desired profiler metrics can be configured by
the user before running (blue, Figure 1). In gem5, GAP
uses the simulator’s corresponding generated statistics. Given
these outputs, GAP then compares and matches1 the real
GPU and gem5’s collected stats to generate a per-application
comparison file (yellow, Figure 1). We propose to use this
information to iteratively apply fixes and improve gem5’s GPU
model.

IV. METHODOLOGY

To measure the accuracy of gem5’s GPU models, we will
use existing benchmarks in gem5-resources [15]. However,
since large benchmarks often make it difficult to isolate the
behavior of specific GPU components in larger benchmarks.
For example, in an initial prototype, we observed that running
square (a simple GPU vector addition program) with GAP
showed that the vector ALU utilization is within 1% between
the real GPU and gem5, but the L2 cache misses differ by
821%, likely indicating that further tuning of the memory
sub-system is required. Thus, we will also either develop
or port a variety of GPU microbenchmarks [1], [17]–[19]
to HIP (AMD’s GPGPU programming language). We will
feed these microbenchmarks into GAP to help isolate gem5’s
inaccuracies such as access latencies and bandwidths of L1,
L2 caches, LDS, atomic operations, and global memory.

gem5’s current GPU support currently focuses on Carrizo-
and Vega-class GPUs. Thus, we propose to initially utilize an
AMD Vega 20 (Radeon VII) as our baseline system in our
experiments [20]. However, since GAP is highly configurable,
we also plan to conduct similar experiments on more modern
GPUs, such as AMD’s MI200 GPU which is being added as
a supported model in gem5 v24.0. In terms of metrics, our
main goal will be to minimize Mean Absolute Error (MAE)

1Our scripts do matching by checking all cases since rocProf has few
metrics. We plan to use machine learning to automate this process.

Metric Old Error New Error
L1 Latency 2.18% 0.4%

L1 Bandwidth 41.75% 9.83%
L1 Scalar Latency 41.39% 0.98%

L2 Latency 0.08% 0.07%
L2 Bandwidth 52.15% 7.81%

Atomics Latency 51.79% 0.13%
Atomics Bandwidth 47.77% 7.7%

TABLE I: gem5 GPU component errors before and after our
improvements, relative to a Vega 20 GPU.

– first for each microbenchmark in isolation, then for the
larger benchmarks from a variety of GPGPU, graph analytics,
HPC, and ML suites [21]–[26]. Since we are optimizing the
existing gem5 GPU support, our main comparison will be its
previous published version [9]. As part of this work, we plan to
provide ”known good” configurations for a variety of modern
AMD GPUs once the models are accurate. Moreover, we will
integrate our tests into existing regression flows to help parties
contributing to gem5’s source code to ensure their additions
do not hurt the behavior of gem5’s GPU simulations.

V. PRELIMINARY RESULTS

Although much work remains in this project, as a proof of
concept we analyzed how GAP shows gem5’s GPU model
compares against an AMD Vega 20 (Radeon VII) [20] for
a subset of our proposed microbenchmarks. We configured
gem5 to use resemble a Vega 20 and ran the same binaries
on gem5 and the Vega 20. As shown in Table I, GAP has
helped us significantly improve the fidelity by identifying
components with significant errors. For example, we found
that the public gem5 GPU support assumed all atomics were
system-scope [27], [28], even when cheaper scopes (e.g.,
device scope) were specified by the program. Similarly, AMD
GPUs have ISA extensions that allow loads and stores to
bypass one or more levels of cache, which gem5 did not
previously support. Overall, we reduced the error from an
average of 272% for latency and 70% for bandwidth to 25%
error for latency and 16% error for bandwidth, respectively,
for the microbenchmarks. However, much work remains. For
example, gem5’s GPU main memory model seemingly does
not model HBM2 well (which Vega 20’s use), resulting in
significant error: 125% for latency, 85% for bandwidth.

VI. RELATED WORK

Although some tools [1], [29] have validation specific GPU
components, our work differs in that gem5 models the entire
computing stack, including the drivers, runtime, and Command
Processor interface between the host and device. Thus, we
must design a much broader set of tests to ensure accuracy
for the GPU in the context of the entire system. Nevertheless,
we plan to use these works as inspiration, especially when
designing tests for specific components. Similarly, we hope
to leverage prior work on designing GPU microbenchmarks
for testing features like bandwidth, latency, and size [1], [19].
However, unlike these prior works, since AMD GPUs do



not have an intermediate ISA like NVIDIA’s PTX we must
often write tests in hand-tuned assembly for specific to the
architecture we are testing [9].
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