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Abstract 

Contemporary GPUs are widely used for throughput-ori-

ented data-parallel workloads and increasingly are being 

considered for latency-sensitive applications in datacenters. 

Examples include recurrent neural network (RNN) inference, 

network packet processing, and intelligent personal assis-

tants. These data parallel applications have both high 

throughput demands and real-time deadlines (40µs-7ms). 

Moreover, the kernels in these applications have relatively 

few threads that do not fully utilize the device unless a large 

batch size is used. However, batching forces jobs to wait, 

which increases their latency, especially when realistic job 

arrival times are considered. 

Previously, programmers have managed the tradeoffs as-

sociated with concurrent, latency-sensitive jobs by using a 

combination of GPU streams and advanced scheduling algo-

rithms running on the CPU host. Although GPU streams al-

low the accelerator to execute multiple jobs concurrently, 

prior state-of-the-art solutions use the relatively distant CPU 

host to prioritize the latency-sensitive GPU tasks. Thus, these 

approaches are forced to operate at a coarse granularity and 

cannot quickly adapt to rapidly changing program behavior. 

We observe that fine-grain, device-integrated kernel sched-

ulers efficiently meet the deadlines of concurrent, latency-

sensitive GPU jobs. To overcome the limitations of software-

only, CPU-side approaches, we extend the GPU queue 

scheduler to manage real-time deadlines. We propose a novel 

laxity-aware scheduler (LAX) that uses information collected 

within the GPU to dynamically vary job priority based on 

how much laxity jobs have before their deadline. Compared 

to contemporary GPUs, 3 state-of-the-art CPU-side sched-

ulers and 6 other advanced GPU-side schedulers, LAX meets 

the deadlines of 1.7X – 5.0X more jobs and provides better 

energy-efficiency, throughput, and 99-percentile tail latency. 

Keywords – GPGPU, job scheduling, laxity 

1 Introduction 

GPUs are the programmable accelerator of choice for mas-

sively data-parallel applications that do not have strict latency 

requirements. However, there is a growing class of latency-

sensitive, data-parallel workloads that can benefit from the 

GPU’s throughput. Examples include machine learning (ML) 

inference for RNNs [24]-[28][51], network packet processing 

[61]-[63], and natural language processing (NLP) in intelli-

gent personal assistants (IPAs) [65][70]. These latency-sen-

sitive applications have become a staple of contemporary dat-

acenters, which increasing include GPUs and other high-

throughput accelerators. Given the availability of GPUs in the 

datacenter, and the data-parallel nature of the applications, 

there is significant potential to offload work from overbur-

dened CPUs to an accelerator. However, contemporary GPUs 

are deadline-blind and have no mechanism to predict which 

work can be offloaded and completed in time. 

Many deadline-driven applications exhibit a middling 

amount of data-parallelism [43]. Enough to justify GPU ac-

celeration, but not enough to fully utilize the GPU’s resources 

[69][70]. As a result, executing one job on the GPU at a time 

causes severe underutilization. To alleviate this issue, pro-

grammers batch similar jobs together [28], greatly improving 

throughput and utilization at the expense of additional la-

tency. This increase in latency is usually unacceptable for 

tasks with tight deadlines [3], especially when realistic job 

arrival rates are considered. GPU programs can avoid batch-

ing, while still executing multiple jobs at once with streams. 

Streams allow kernels from independent jobs to be scheduled 

concurrently on multiple command queues located between 

the CPU and GPU [45][49][52]. However, as we discuss fur-

ther in Section 2, software cannot efficiently manage the rel-

ative priority of these queues at short time scales, which 

makes it difficult to efficiently re-prioritize jobs with differ-

ent deadlines as contention in the GPU changes. 

State-of-the-art GPU solutions for managing latency-sensi-

tive tasks are restricted to varying priorities at a coarse gran-

ularity on the host CPU [53]-[55], and thus do not fully utilize 

the GPU’s integrated queue scheduling logic. Consequently, 

the precision of information available to these CPU-side 

  
Figure 1: Characteristics of many-kernel latency-sensitive jobs 

versus few-kernel latency-sensitive jobs, listed in Table 4. 
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mechanisms is limited. Dynamic, microsecond-scale infor-

mation about GPU-side contention, which some latency-sen-

sitive applications require, is difficult to track from host-side 

software. As a result, these software-only techniques are less 

effective when scheduling many latency-sensitive jobs and 

primarily focus on mixing latency-insensitive and latency-

sensitive work. We discuss related work further in Section 7. 

In contrast, we target a common situation where datacenters 

execute homogenous, latency-sensitive jobs in parallel [80]. 

Figure 1 demonstrates how quickly scheduling decisions 

must be made when executing concurrent latency-sensitive 

jobs. To better understand their demands, we subdivide our 

latency-sensitive applications into two categories: many-ker-

nel and few-kernel. The many-kernel applications we study, 

which come from ML inference, are composed of several rel-

atively small, short kernels, and typically have deadlines on 

the order of milliseconds. The few-kernel applications, which 

come from network packet processing and IPAs, execute a 

single, much longer kernel, but have more aggressive dead-

lines (usually < 1 ms). To efficiently manage both many-ker-

nel and few-kernel applications, per-kernel scheduling deci-

sions must be made at the microsecond timescale. 

We argue that dynamic, integrated stream scheduling is 

necessary to meet the low-latency scheduling demands of 

these workloads. An analogy can be made to the memory hi-

erarchy in modern CPUs. At the lower-levels of the CPU 

memory hierarchy, the operating system is responsible for 

managing the replacement of relatively large pages in physi-

cal memory from the relatively high-latency disk. However, 

smaller cache blocks, which require nanosecond-scale re-

sponse times, are managed by hardware. In throughput-ori-

ented GPUs, scheduling relatively few, millisecond- or sec-

ond-scale kernels in software is acceptable. However, man-

aging many short-running kernels to meet sub-millisecond or 

millisecond-scale deadlines can be enhanced with improved 

scheduling within the GPU, which to our knowledge no prior 

work evaluating compute workloads has proposed. 

Integrated GPU stream scheduling in contemporary com-

pute-oriented GPUs operates in a deadline-blind manner. 

Typically, the GPU driver statically assigns priority levels to 

each command queue [76], although some APIs allow prior-

ities to be set by the application [16] on stream allocation. In 

contrast, an effective deadline-aware scheduler must: (1) be 

aware of each job’s deadline, (2) estimate each job’s remain-

ing execution time, and (3) frequently adjust job priority as 

time progresses and the contention level in the GPU changes. 

We propose an integrated laxity-aware stream scheduler 

(LAX) that achieves all three of these requirements. 

LAX leverages the idea that stream-based GPU applica-

tions enqueue all their kernels in quick succession. In many-

kernel jobs, although each kernel launch is dependent on the 

data output by the previous kernel, all kernels associated with 

a particular job are known before the GPU begins execution. 

Thus, LAX uses the GPU’s queue scheduler [or command 

processor (CP)], to perform a novel stream inspection tech-

nique that estimates the amount of work in each job. LAX’s 

scheduling algorithm then combines this information, the 

job’s deadline, and fine-grain information about current per-

kernel work completion rates to accurately estimate how 

much laxity the job has. A job’s laxity is an estimate of how 

much earlier than its deadline it will finish given current con-

ditions [46]. Based on each job’s estimated laxity, LAX re-

prioritizes jobs to complete as many as possible by their re-

spective deadlines. With the rich, fine-grained information 

available to GPU stream schedulers, LAX also prevents job 

oversubscription with a Little’s Law-based queuing delay es-

timate [30][50] to reject work predicted to miss its deadline. 

Contemporary GPUs perform device-side stream schedul-

ing in a round-robin fashion, which ignores deadlines and the 

amount of remaining work.  To our knowledge, no prior work 

has considered both job deadline and remaining work for 

real-time prioritization techniques on GPU compute applica-

tions. We compare LAX against 6 other advanced schedulers 

in the command processor (described in Table 3). LAX out-

performs all other advanced schedulers by leveraging stream 

inspection and the work completion rate to judiciously reject 

jobs and prioritize critical work, demonstrating that deadline-

aware scheduling is possible and practical in GPUs.  

Prior work on real-time systems in the CPU space has used 

laxity to schedule jobs (discussed further in Section 7). How-

ever, the GPU’s task-based (a.k.a, kernel-based) program-

ming model presents a unique set of challenges and opportu-

nities compared to applying laxity to OS-managed CPU 

threads. GPUs use a hierarchical execution model, where jobs 

contain one or more executed kernels that are themselves 

composed of workgroups. To leverage laxity scheduling 

within the GPU, we propose a novel job estimation mecha-

nism based on workgroup completion times that naturally ad-

justs as both workgroups and kernels scale (discussed further 

in Section 4). Another unique challenge in applying laxity to 

GPUs is quickly and appropriately adapting to the extreme 

contention in massively parallel workloads. Our workgroup-

centric estimation mechanism adapts to contention by moni-

toring the fine-grained workgroup completion rate. 

Prior work on GPU kernel preemption or re-execution [56]-

[59][79] are alternative mechanisms that can be used in com-

bination with better stream scheduling. However, for latency-

sensitive workloads, the overheads associated with preempt-

ing GPU kernel contexts, whose aggregate registers and 

scratchpad size can be 100s of KBs (Table 1), may be prohib-

itive. Additionally, the benefits of preemption are muted for 

short running kernels that finish long before the cost of 

preemption and rescheduling can be amortized. Specifically,, 

Table 1 indicates that the vast majority of kernels in our eval-

uated latency-sensitive workloads complete within 10 µs. Re-

cently proposed preemption-based techniques, such as 

PREMA, are effective at intelligently preempting and sched-

uling relatively coarse-grained tasks [79]. However, LAX is 

able to outperform PREMA by 2.0X geomean on fine-grain 
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tasks, by making intelligent fine-grained scheduling deci-

sions without preemption (Section 6). We compare against 

additional preemption-based techniques in Section 7. 

Overall, this paper makes the following contributions: 

1. We observe that emerging, latency-sensitive applica-

tions use a many-kernel execution pattern and few-

kernel jobs have very tight deadlines, both of which 

require microsecond-level scheduling decisions. 

2. We propose a novel stream inspection mechanism, 

which is used in combination with a dynamic, per-

kernel work completion rate to generate accurate es-

timates of work and time remaining in each job, 

given current contention conditions. 

3. We propose a laxity-aware algorithm (LAX) and 

compare it to a continuum of solutions that range 

from doing all scheduling in host-side software to en-

tirely within the GPU’s CP. Given a per-job deadline 

provided by the programmer, LAX dynamically var-

ies job priorities to improve throughput while at-

tempting to meet real-time latency requirements. 

4. LAX’s combination of access to fine-grained infor-

mation, more accurate queuing delay model, tight CP 

integration, and ability to rapidly adapt to contention 

completes more jobs by their deadlines and signifi-

cantly improves GPU job throughput over a variety 

of contemporary and advanced schedulers by 1.7X-

5.0X. LAX also provides a better combination of en-

ergy and performance, as well as throughput and 99-

percentile latency, making latency-sensitive RNN in-

ference [12][13], networking [61]-[63][66], and IPA 

[65][70] applications more practical on GPUs. 

2 GPU Stream Scheduler Background  

Unlike CPUs, GPUs contain multiple levels of hardware 

scheduling to manage the large number of in-flight threads. 

Contemporary GPUs contain multiple queues to manage in-

dependent work submitted asynchronously with streams 

[45][49][52]. This independent work can be executed concur-

rently when GPU resources are available. We next describe 

current stream scheduling architecture and operation. 

2.1 GPU Command Processor 

The CP is an integrated microprocessor within a GPU, 

which parses the kernel contexts and schedules streams. In 

Figure 2, each stream is mapped to a queue and each queue 

holds multiple kernels from a single stream. Inter-kernel de-

pendencies between kernels in the same stream are main-

tained, but GPUs can asynchronously execute kernels from 

different streams simultaneously. Each queue entry describes 

a separate kernel and includes details such as thread dimen-

sions, register usage, and local data store (LDS) size. The 

work-group (WG) scheduler reads these fields to dispatch 

work groups to compute units (CUs). Generally, GPU WG 

schedulers issue all WGs from one kernel before switching to 

WGs from another kernel. Despite this restriction, WGs from 

kernels in different queues often interleave execution. 

Normally, the CP in modern GPUs schedules kernels 

within these queues in a round robin (RR) manner [48]. This 

deadline-blind scheduling policy improves throughput, but 

makes it harder to complete jobs by their real-time deadlines. 

The top half of Figure 3 illustrates the problem with RR. In 

this example, the GPU is running three jobs with varying ar-

rival times such that the deadline of each job varies. Each job 

contains two kernels with different execution times. For sim-

plicity, we assume that at most two kernels can be concur-

rently executed. RR will schedule kernel 1 from job 1 (J1:K1) 

and kernel 1 from job 2 (J2:K1) first because they arrive be-

fore job 3. When job 3 arrives, its first kernel is scheduled 

after J1:K1, and then J3 is not scheduled again until both 

J1:K2 and J2:K2 have executed. Since J3 is the longest job, 

if it had been prioritized over J1 and J2, all the jobs could 

have made their deadlines. However, since RR is unaware of 

this, J3 misses its deadline. 

2.2 Priority-based GPU Programming 

At the application level, programmers can specify a limited 

number of priorities (e.g., high and low) typically immedi-

ately after allocating the stream [16]. Contemporary drivers 

and CPs are not designed to dynamically vary the priority of 

streams, which limits their ability to adapt to tight deadlines. 

First, the priority level submitted by programmers simply in-

dicates the kernel’s relative importance and does not indicate 

 
Figure 2: GPU Queue Scheduler Architecture. 
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Figure 3: Comparison of Round Robin and Laxity-aware 

Schedulers for a GPU that can simultaneously execute 2 jobs. 
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when the kernel must be completed. Second, priorities as-

signed to individual streams do not provide the GPU a global 

view of when to complete a chain of dependent kernels. Pro-

grammers conservatively set a job’s priority to ensure that its 

deadline is met. Finally, jobs can have different amounts of 

work despite potentially having the same static priority level.  

We propose to dynamically adjust the priorities of each job 

(and its associated queue) based on the job’s estimated exe-

cution time. By adjusting the priorities, kernel launches are 

re-ordered to increase the number of jobs completed by their 

deadlines. The bottom half of Figure 3 demonstrates that with 

reasonably accurate execution time estimates, a deadline-

aware scheduler can optimize the scheduling of deadline-sen-

sitive jobs (similar to prior work for CPUs [74][75]). The bot-

tom example begins like the top example, with the GPU 

scheduling J1 and J2 first, because they arrive earlier than J3. 

However, the LAX scheduler is aware of the deadlines and 

durations of all 3 jobs, so it prioritizes J3 since it will miss its 

deadline if not immediately scheduled (i.e., it has zero laxity). 

As a result, all jobs completed by the deadlines. 

3 Latency-sensitive GPU Applications 

  This section characterizes important, latency-sensitive ap-

plications by their response time, level of parallelism and ker-

nel composition. It then examines the tradeoff of increasing 

batch size versus the number of streams, and the impact of 

realistic arrival times on latency-sensitive GPU applications. 

3.1 Applications 

  We study a wide group of latency-sensitive GPU applica-

tions that represent different use cases and access patterns to 

understand how they perform on contemporary GPUs.  

3.1.1 Recurrent Neural Networks 

 RNNs are well suited for domains such as language trans-

lation [8][9] and speech recognition [10][11] where prior 

events persist and influence subsequent ones. RNNs contain 

loops that allow this information to persist across multiple it-

erations (or time steps). The number of times the loop is un-

rolled represents the RNN’s sequence length, which varies 

across jobs and determines the length of the recurrent step. 

As a result, RNNs behave very differently than convolutional 

neural networks (CNNs) [4][5][7][44]. The hidden state is 

calculated by looking at the previous hidden state and the in-

put at the current step. RNN models such as long-short-term-

memory (LSTM) [32] and gated recurrent unit (GRU) [42] 

add memory cells to improve accuracy. 

Each RNN time step contains multiple kernels with varying 

degrees of parallelism and execution time. As shown in Table 

1, a single-batched LSTM job with a sequence length of 13 

consists of 6 unique kernels and each kernel is called multiple 

times (we only show LSTM due to space constraints, Vanilla 

and GRU are similar). Unlike the training phase where la-

tency is less critical [1][71]-[73], RNN inference jobs have 

real-time constraints [2][3][28][31][69]. It is challenging to 

fully utilize the GPU while minimizing the end-to-end la-

tency of RNN inference applications. 

3.1.2 Network Packet Processing 

Network packet processing increasingly utilizes GPUs to 

take advantage of their massive parallelism. For example, 

IPV6 performs a Longest Prefix Matching computation used 

in IPV6 network packet table lookups and has a stringent 40 

µs deadline [61][66]. Similarly, Cuckoo must complete 

cuckoo hash table lookups to map MAC address to output 

ports within 600 µs [61][66]. Unlike RNNs, these networking 

applications are composed of a single kernel, and their input 

sizes are determined by the speed of the network. In Table 1, 

the input size of 8K represents the number of network packets 

that arrived per 100 µs in 40 Gbps networks. 

3.1.3 Intelligent Personal Assistants  

IPAs also have significant real-time constraints. Although 

prior work explores a series of algorithms used in an auto-

matic speech recognition (ASR) pipeline by IPAs, we focus 

on Gaussian mixture model (GMM) and Stemmer (STEM), 

two single kernel pieces that consume the most time in IPAs 

and thus present the biggest challenge [70]. GMM maps input 

feature vectors to multi-dimensional space and consumes 

85% of ASR’s computational time [65][70]. STEM reduces 

inflected words to a certain word stem and takes up to 85% 

of the remaining time in the ASR pipeline [65][70]. 

3.2 Small Data-Parallel Kernels 

Table 1 characterizes each kernel in a single HIP [17][18] 

RNN LSTM inference job where its batch size is 1 and its 

hidden layer is 128. Both LSTM and GRU use 5 unique MI-

Open [14] kernels and one rocBLAS [19] GEMM kernel that 

are called multiple times in an RNN forward pass. The MI-

Open kernels perform tensor and activation operations. Each 

 
Figure 4: Comparing response times with varying job arrival 

rates, normalized to batch size 1. 
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Table 1: Summary of kernels in latency-sensitive benchmarks. 
Applications Kernel name # of calls Exec time  Threads Context size 

 

LSTM [12][13] 

 

TensorKernel 1 3 3.96 µs 16384 397 KB 

TensorKernel 2 5 1.79 µs 128 3.1 KB 

TensorKernel 3 2 4.45 µs 2048 106.8 KB 

TensorKernel 4 40 4.74 µs 64 9.1 KB 

ActivationKernel 5 39 8.87 µs 128 11.1 KB 

rocBLASGEMMKernel 1 13 127.48 µs 1024 562.4 KB 

IPV6 [66] IPV6Kernel 1 25 µs 8192 329 KB 

CUCKOO [66] cuckooKernel 1 300 µs 8192 566 KB 

GMM [65] GMMKernel 1 1.5 ms 2048 195.5 KB 

STEM [65] STEMKernel 1 150 µs 4096 317 KB 
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kernel has a varying number of threads. However, most ker-

nels have few threads, and do not occupy the entire GPU. 

The number of threads, registers, and LDS size of kernels 

determine the GPU utilization. In an AMD Radeon RX 580 

GPU with 36 CUs based on the GCN architecture [22], each 

CU can concurrently execute 2560 threads, has 256 KB 32-

bit vector registers, and has 64 KB of LDS. However, 

LSTM’s GEMM kernel only uses 1.11% of thread contexts, 

1.26% of registers, and 2.78% of the LDS space. The other 

LSTM kernels similarly use relatively few resources. Hence, 

a single RNN job significantly under-utilizes the GPU, as 

prior work has also shown for other sequence lengths, hidden 

sizes, and batch size combinations [27][69]. Moreover, alt-

hough IPV6, Cuckoo, GMM, and STEM are single kernel ap-

plications, they also complete very quickly and have narrow 

kernels with few threads that also under-utilize the GPU. 

3.3 Impact of Job Arrival Rate 

In a real system, the GPU receives job requests from differ-

ent users or processes with varying arrival rates. Batching im-

proves GPU utilization and throughput when requests arrive 

at the same time. However, it will delay individual jobs when 

requests arrive at varying rates. Streams alleviate this aspect 

of batching by allowing work to begin as soon as it arrives. 

 Figure 4 measures our application’s response time on an 

AMD Radeon RX 580 GPU. We use streams to launch 32K 

jobs for the networking and IPA benchmarks and 512 jobs for 

the RNN benchmarks based on our GPU’s maximum 

memory space. For the RNNs, we also show data for Hybrid 

RNNs (described in Section 5.2). In this experiment, all 

streams use the same static priority. We issue 10000 short ex-

ecution time jobs per second for IPV6, CUCKOO, and STEM 

and 1000 jobs per second for RNNs and GMM with an expo-

nential arrival rate. Each RNN job may have a different se-

quence length (see Section 5.2). We add padding and addi-

tional waiting time for the arrival of all jobs in a batch when 

the batch size is greater than 1 as needed. 

In general, the high degree of parallelism within large 

batches increases resource contention and job execution time. 

For example, the response time of applications with a batch 

size of 128 can be 20-293X slower than the single-batched 

job due to the overhead of waiting for additional jobs to ar-

rive. Thus, larger batch sizes may improve utilization for 

these applications, but this often comes at the cost of not 

meeting its deadline. In contrast, using multiple streams re-

duces normalized runtime and allows the GPU to process 

multiple jobs simultaneously. However, closer inspection of 

these results reveals that individual job execution times vary 

tremendously. For example, RNN jobs with long sequence 

lengths complete much slower than RNN jobs with shorter 

sequence lengths. The observation exposes an opportunity for 

a more advanced GPU scheduler to prioritize longer running 

jobs and allow more overall jobs to meet a given deadline. 

 
1 If additional work is later enqueued to the job’s stream, LAX will update its prediction.  

4 LAX: Laxity-Aware GPU Job Scheduling  

4.1 LAX System Overview 

Figure 5 presents an overview of our LAX framework. In 

multi-job GPU applications, all kernels associated with a sin-

gle job are enqueued on the same stream or underlying GPU 

compute queue. Before running a job, as discussed in Section 

1, LAX performs stream inspection to look ahead, parsing all 

the kernels in a queue to determine their names and associ-

ated number of WGs. For example, for the RNNs the se-

quence length determines the number of kernels in the job. 

To store this information, LAX introduces a Job Table that 

stores information about the work remaining in each compute 

queue. After parsing the WG information for every kernel in 

a queue, this information is added to the corresponding 

WGList for the queue. Stream inspection can be performed 

entirely in the CP, by reading the contents of the command 

queues, or by having the CPU driver insert a custom packet 

at the head of the queue indicating the work behind it. 

LAX computes the estimated time remaining in each job 

using the number of WGs from the WGList and a per-kernel 

work completion rate stored in a Kernel Profiling Table. 

Given the estimated time remaining and a programmer-spec-

ified deadline (passed when initializing a job on a stream), 

LAX computes the laxity of each job using Equation 1.1 The 

LaxityTime tells us how close to its deadline a job is predicted 

to finish. Jobs with less LaxityTime have higher priority.  

Similar to prior work, LAX uses a pull-based model for of-

floading work from a CPU server [53][54][80]. As jobs arrive 

at the server, LAX successfully offloads as many jobs as pos-

sible. However, unlike prior work, LAX uses its per-job com-

pletion time estimates to generate a queuing delay estimate 

for new jobs entering the system. Based on current contention, 

if LAX estimates that the new job will not meet its deadline, 

it will not attempt to offload the job to the GPU. 

4.1.1 Implementing LAX 

Although modern GPUs have CPs, their software is not easily 

modified, and GPU vendors have not publicly released an 

API to reprogram them. Moreover, LAX requires fast access 

 
Figure 5: LAX procedure and system overview. 

𝐿𝑎𝑥𝑖𝑡𝑦𝑇𝑖𝑚𝑒 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − (𝑇𝑖𝑚𝑒𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒) 
 

Equation 1: Laxity Time Calculation. 
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to custom performance counters since LAX frequently recal-

culates job priorities based on dynamic information (Sections 

4.2 – 4.4). LAX also utilizes a customized per-kernel WG 

completion rate as part of its calculations (Section 4.2). Ac-

cordingly, we extend the CP as necessary. First, we extend 

the CP software to store the Job Table that tracks important 

information per kernel and make scheduling decisions based 

on information passed from the hardware. Next, we modify 

the GPU to add a new counter that tracks the WG completion 

rate and extend the existing counters to allow them to be fre-

quently read by the CP, which stores and uses these counter 

values when making its scheduling decisions.  

4.2 Job Remaining and Laxity Time Estimates 

To estimate the laxity of currently executing jobs and the 

queuing delay for incoming jobs, LAX generates an estimate 

of the time remaining in each job with the help of an in-

memory Job Table. As shown in Figure 5, each table entry 

has six fields: 1) QueueID (QID); 2) Priority (used by the CP 

to make scheduling decisions); 3) WGList (the list of the 

job’s kernels and the number of WGs in each kernel); 4) 

Deadline (provided by the programmer); 5) StartTime; and 6) 

State (either init, ready, or running). In addition to the Job 

Table, LAX stores the per-kernel WG completion rates in a 

Kernel Profiling Table which is periodically updated (empir-

ically set at 100 µs) to reflect the GPU’s contention condi-

tions. Overall, LAX requires only 4240 bytes of memory to 

store this information for a 128-compute queue system. 

To predict a job’s remaining time, LAX scans the WGList 

to generate an estimate for how long each kernel in the job 

will take. For each entry in the list, LAX looks up the current 

WG completion rate for this particular kernel in the Kernel 

Profiling Table. By dividing the number of WGs in each ker-

nel by the current WG completion rate for that kernel type, 

LAX generates a time estimate for the kernel. The kernels in 

our evaluated jobs have sequential dependencies and thus 

must be executed sequentially, thus LAX simply sums the es-

timated execution time of each kernel to generate the per-job 

estimate. As WGs complete, the WGCount entry in the Job 

Table is decremented to reflect the fact that the job has less 

work remaining. LAX combines the job’s remaining time es-

timate with the user-specified Deadline and the job’s Start-

Time to generate the estimated LaxityTime. We describe the 

State and Priority fields in more detail in Sections 4.3 and 4.4. 

4.3 Preventing Oversubscription with Queuing Delay 

Estimation 

When designing a GPU to accept multiple jobs, each of 

which has a tight deadline, preventing oversubscription is 

critical. As discussed in Section 4.1, LAX only accepts jobs 

predicted to complete before their deadlines. To make this 

prediction, LAX must: (1) estimate how long a job J will take 

on the GPU under current conditions and (2) estimate how 

long J may be delayed behind other jobs already sent to the 

GPU, i.e. its queuing delay. Using each job’s time remaining 

estimate from Section 4.2, LAX first computes how long J 

should take, given current completion rates. This allows 

LAX’s estimates to adapt quickly and effectively to changing 

contention levels.  If no estimate exists yet for a given kernel, 

LAX optimistically assumes it takes no time, to avoid reject-

ing work it could potentially complete. 

Estimating J’s queuing delay is more challenging because 

the deadlines and arrival rates of latency-sensitive jobs vary 

significantly. However, Little’s Law works well independent 

of arrival rate [30][50]. Thus, LAX uses Little’s Law to 

model the queuing delay of the jobs running on the GPU. Ac-

cordingly, Algorithm 1 uses Little’s Law to sum up the pre-

dicted remaining time of all jobs currently execution in the 

system, including jobs that are ready but not running. Com-

bining this estimate with the runtime estimate, if LAX pre-

dicts J will complete by its deadline, it accepts J and changes 

its state from init to ready, informing the CP that J’s first ker-

nel is ready to be executed on the GPU. Algorithm 1 shows 

the steady-state behavior; before enough WGs complete (line 

12, Algorithm 1), we use the programmer-provided deadline. 

4.4 Laxity-Aware Job Scheduling Algorithm 

  Next LAX needs to determine which job(s) should be run 

next. A job’s laxity determines its priority in the laxity-aware 

job scheduler. The scheduler assigns each queue (job) a pri-

ority level and may adjust it over time. The job with the 

smallest current laxity is assigned the highest priority. 

Algorithm 2 describes LAX’s priority update mechanism, 

where priority zero is the highest priority level. Every 100 µs, 

the priorities are updated, as we empirically found this im-

proved performance. Since we want to prioritize jobs with the 

least laxity, any job that is predicted to complete by its dead-

line is assigned its laxity value as its priority (Line 12, Algo-

rithm 2). LAX decreases a job’s priority when it predicts the 

job will not reach the deadline (Line 18, Algorithm 2). When 

Algorithm 1: Steady State Queuing Delay Calculation. 
1. totRemTime = 0  

2. // new jobs are pushed to the end of the queue 

3. For i = JobQ.begin() to JobQ.end() 

4.   holdJobTime = 0    

5.   durTime = curTick() – JobQ[i].startTime 

6.   For (j = 0; j < JobQ[i].WGList.size; j++) 

7.     kernelID = JobQ[i].WGList[j].kernelID 

8.     If (JobQ[i].state != init) 

          /* sum the total remaining time of jobs */ 

9.       totRemTime += JobQ[i].WGList[j].numWG  

10.        / kernelTable[kernelID].WGCompRate 

11.    Else /* initialize new job’s estimate */ 

12.      holdJobTime += (JobQ[i].WGList[j].numWG / 

            kernelTable[kernelID].WGCompRate) 

13.    End /*end if*/ 

14.  End /*end for*/ 

15.  If (totRemTime + (holdJobTime + durTime) <  

         JobQ[i].Deadline) 

16.    /* New-invoked job’s priority is the highest */ 

17.    If (JobQ[i].state == init) JobQ[i].prior = 0 

18.    JobQ[i].state = readyState 

19.    totRemTime += holdJobTime 

20.  Else /* Cannot complete job in time, tell CPU */ 

21.    rejectJob() 

22.  End /*end if*/   

23. End /*end for*/ 
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a job is predicted to miss a deadline, its completionTime (re-

mainingTime + durationTime, where durationTime is the 

time since this job was enqueued) is greater than the deadline. 

To de-prioritize the job, LAX sets its priority to be equal to 

the completionTime (Line 14, Algorithm 2), because it is 

greater than the deadline, guaranteeing that the job has a 

lower priority than any other job that still has positive laxity. 

After adjusting all job’s priority, LAX issues all WGs from 

the highest priority job. If additional WG slots are available, 

it moves on to the next highest priority ready job, and so on 

until all WG slots are filled. After issuing the WGs from a 

kernel, LAX updates the associated job’s status to running. 

5 Methodology 

We use the gem5 simulator [20][29], which offers native 

GPU ISA support [20]-[23] and a high fidelity, cycle-level 

GPU microarchitecture model [29] to evaluate the latency-

driven applications (Table 2). The simulated system assumes 

the CPU and GPU share a single unified cache coherent ad-

dress space and do not require explicit copies [77]. Since the 

original benchmark’s codes assume discrete memory spaces 

between the CPU and GPU and use device copies, we modi-

fied the benchmarks to remove the device copies wherever 

possible. We analyze energy consumption with per-instruc-

tion energies [6][81]. Finally, we assume the CP can parse 

four streams in parallel every 2 µs [29][48], including the la-

tency of any memory accesses required by the scheduler. 

5.1  Evaluated Compute Queue Scheduling Policies 

  We compare our laxity-based scheduler against ten other 

queue scheduling policies, which are detailed in Table 3 and 

implemented in gem5. These schedulers leverage various pol-

icies with static and dynamic information to schedule kernels 

and can be broken into three groups: state-of-the-art CPU-

side schedulers [28][53][54], GPU approaches that extend the 

CP, and variants of our laxity-based scheduler. 

CPU-side scheduling mechanisms such as BAT [28], BAY 

[54], and PRO [53] (see Table 3 for details) improve through-

put without requiring hardware changes. However, BAT, 

BAY, and PRO incur overheads for communicating between 

the CPU and GPU. For a tightly coupled GPU like the one in 

our system, this adds 4 µs of host-device communication 

overhead per kernel in a job. Similarly, we add 50 µs of over-

head to BAY for calls to its regression model, based on re-

ported data [54]. 

Modern GPUs perform deadline-blind RR scheduling (Sec-

tion 2.1), but since the CP is programmable (although GPU 

vendors have not disclosed an API), it is possible to extend 

the CP for other widely used schedulers like LJF, MLFQ, 

SJF, and SRF. Like LAX, SJF, SRF, and LJF utilize predicted 

runtime information to decide what to schedule; however, 

they do not model queuing delay or laxity. MLFQ performed 

better with two priority levels, demoting jobs to lower prior-

ity level [64] when runtime exceeds 1/3 of the jobs’ deadline, 

and promoting back to the higher priority when its runtime 

exceeded 2/3 of its deadline. We also compare against EDF 

[91], which prioritizes the job with the earliest deadline. Alt-

hough some EDF implementations strictly ensure that the 

job(s) with the earliest deadline is always executing, this re-

quires preemption. For jobs with longer deadlines such as 

those studied in prior work [91], this context switching over-

head can be amortized. However, given the short deadlines in 

Algorithm 2: Laxity-aware Scheduling. 

1. For i = JobQ.begin() to JobQ.end() 

2.   JobQ[i].RemTime = 0 

3.   For j = 0; j < JobQ[i].WGList.size; j++ 

4.     kernelID = JobQ[i].WGList[j].kernelID 

5.     JobQ[i].RemTime += JobQ[i].WGList[j].numWG  

6.       / kernelTable[kernelID].WGCompRate 

7.   End /*end for*/ 

8.   JobQ[i].durTime = curTick() – JobQ[i].startTime 

9.   ComplTime = JobQ[i].RemTime + JobQ[i].durTime 

10.  If (JobQ[i].deadline > ComplTime) 

11.    /*laxityTime = deadline – ComplTime*/ 

12.    JobQ[i].prior = JobQ[i].deadline – ComplTime 

13.  Else 

14.    JobQ[i].prior = ComplTime 

15.  End /*end if*/ 

16.  /*deprioritize job if LAX cannot make deadline */ 

17.  If (JobQ[i].durTime > JobQ[i].deadline) 

18.    JobQueue[i].prior = INF 

19.  End /*end if*/ 

20. End /*end for*/ 

Table 3: Scheduling Policies. 
Scheduler Description 

Prior CPU-Side Scheduling 

BatchMaker (BAT) [28] A dynamic batching technique where each stream can have a 

different batch size. 

Baymax (BAY) [54] Uses pre-trained models to predict a jobs execution time and 

re-orders the priorities of jobs based on their QoS headroom. 

Prophet (PRO) [53] Uses offline profiling to choose which concurrent jobs to issue 

in order to fully utilize the GPU and improve QoS. 

Contemporary GPU Command Processor Scheduling 

Round-Robin (RR) The baseline scheduler that processes compute queues in a cy-

clic manner. 

Advanced GPU Command Processor Scheduling 

Multi-Level Feedback 

Queue (MLFQ) [64] 

Moves jobs between two priority queues based on their runtime 

and uses RR to schedule jobs in the high priority queue. 

Earliest Deadline First 

(EDF) [91] 

A dynamic scheduling policy that schedules kernels from the 

job with the earliest deadline first. 

Shortest-Job First (SJF)  A static scheduling policy that schedules kernels with the short-

est job first. 

Shortest Remaining Time 

Job First (SRF) 

A dynamic policy that uses LAX’s remaining execution time 

estimator to assign job priorities. It then assigns the job with 

the shortest estimated remaining time the highest priority. 

Longest-Job First (LJF)  A static scheduling policy that schedules kernels from the long-

est jobs first. 

PREMA [79] A multi-task scheduler for heterogeneous systems that predicts 

job priorities and preempts lower priority jobs. 

Proposed Laxity-Aware Scheduling Variants 

LAX Our laxity-aware scheduling policy described in Section 4. 

LAX-SW A variant of LAX that uses CPU-side scheduling. 

LAX-CPU A variant of LAX that does CPU-side scheduling but changes 

the API to allow rapid changing of the priority of the jobs. 

 
 

Table 2: Key simulated system parameters. 
GPU Clock 1500 MHz 

The number of CUs 8 

Number of SIMD units per CU 4 

Max wavefronts per SIMD unit 10 

Vector register size per CU 256KB 

The number of compute queues 128 

CPU Clock 4000MHz 

# CPUs 2 

GPU L1-D$ per CU 16 KB, 64B line 

GPU L1-I$ per 2 CUs 32KB, 64B line, 16 way 

GPU L2 cache per 64 CUs 4MB, 64B line 

Main Memory 16 GB DDR4 [92], 16 channels, 16 banks/channel, 

1000 MHz 
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our workloads and the fine-grained scheduling granularity we 

use, strict EDF with preemption would perform poorly. For 

example, prior work assumes preemption incurs around 1 ms 

of overhead [91], which exceeds some of our workload’s 

deadlines (CUCKOO, IPV6, and STEM) and consumes a sig-

nificant portion of the deadline for the remainder (GMM and 

the RNNs). Thus, we instead implement EDF by prioritizing 

jobs with the earliest deadlines first, without preemption. 

Finally, we compare against PREMA, which utilizes user-

defined prioritizes and slowdown calculations to preempt 

lower priority jobs [79]. Like the authors, we use a 250 µs 

preemption interval. Although PREMA was designed for 

TPUs running a single, large job, we extended it to run mul-

tiple jobs since our workloads do not fully utilize the GPU. 

We also extended PREMA to use LAX’s frequent updates for 

PREMA’s calculations. 

Finally, since LAX changes multiple components (Section 

4), we also design the three variants to identify if laxity-aware 

scheduling could provide the same benefits without extend-

ing the CP: LAX, which extends the CP as discussed in Sec-

tion 4; LAX-SW, which performs CPU-side scheduling (and 

incurs overheads for host-device communication); and LAX-

CPU, which also does CPU-side scheduling, but changes the 

API to allow dynamic job priority updates from user-level 

software. To do this, we update the API to write updated pri-

orities to memory-mapped registers that control each queue’s 

priorities [29]. Finally, for all LAX variants we initialize the 

job priority to the highest priority, as this empirically gave 

the best results.2 

5.2 Benchmarks 

  To evaluate the schedulers, we use the eight latency-sensi-

tive benchmarks discussed in Section 3. Table 4 details their 

input size, deadline, and arrival rates. Where available, we 

use deadlines from recent work: 7 ms for RNNs 

[2][3][28][31], 40 µs for IPV6 [61][63], and 600 µs for 

Cuckoo [61]. For the many-kernel RNNs, deadlines are set 

for the entire multi-layer computation. For the IPA bench-

marks, we used the same methodology as the authors: we ran 

each benchmark in isolation, then doubled the worst case la-

tency [53][54]. LAX does not affect latency-insensitive ap-

plications because the programmer does not provide a dead-

line for them. 

  To demonstrate how GPUs can simultaneously execute ker-

nels with different degrees of parallelism, we also include a 

Hybrid RNN benchmark that includes the two most popular 

RNN variants, LSTM and GRU, with a mixed hidden layer 

size of 128 and 256, respectively. The input for all RNNs is 

based on the WMT ’15 language translation trace [47], which 

has an average sequence length of 16. Furthermore, we share 

weight data across RNN inference jobs with the same hidden 

size [6][28]. Although our technique is applicable to any data 

 
2 Initializing each job with the lowest priority or running an initial laxity estimate upon 

each job’s arrival degraded performance by 10% and 1% on average, respectively, com-

pared to initializing with the highest priority. 

width, we use DeepBench’s provided precision for the RNNs. 

Additionally, our schedulers do not affect the RNN inference 

accuracy since they do not change the underlying algorithms, 

just how they are scheduled (as described in Section 4). 

5.3 Job Arrival Rate 

We simulate 128 jobs per benchmark with different arrival 

times and map one job to one GPU stream. Our simulated 

server only processes one type of job at a time, similar to 

modern datacenters [78]. Real world systems continually re-

ceive requests with varying arrival rates. As with determining 

the deadlines, wherever possible we used the same arrival 

rates as previous work. For CUCKOO, GMM, and STEM, 

we modified these rates to account for the difference in sys-

tem size. Moreover, we sweep multiple levels of contention 

(high, medium, and low arrival rates) for each benchmark to 

evaluate how contention affects the scheduler, where jobs 

with fewer kernels have faster arrival rates due to their shorter 

Table 4: LAX Benchmarks. 

Benchmark Deadline 

Input / hid-

den layer 

size 

High Job Ar-

rival Rate 

(jobs/s) 

Medium Job 

Arrival Rate 

(jobs/s) 

Low Job Ar-

rival Rate 

(jobs/s) 

Many Kernels per Job 

LSTM [12][13] 7 ms 128 8000 5000 3000 

GRU [12][13] 7 ms 128 8000 5000 3000 

VAN [12][13] 7 ms 256 8000 5000 3000 

HYBRID [12][13] 7 ms 128/256 8000 5000 3000 

Few Kernels per Job 

IPV6 [61]-[63] 40 µs 8192 64000 32000 16000 

CUCKOO [61]-[63] 600 µs 8192 8000 5000 3000 

GMM [65][70] 3 ms 2048 32000 16000 8000 

STEM [65][70] 300 µs 4096 64000 32000 16000 

 

 

 

 
Figure 6: Jobs completed by their deadlines for CPU-side 

schedulers, RR, and LAX, normalized to RR. 
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deadlines. For each arrival rate, we randomly generate spe-

cific job arrival times based on an exponential distribution. 

6 Experimental Results 

Overall, LAX successfully offloads more jobs than prior ap-

proaches. At the highest arrival rate LAX completes a geo-

metric mean (geomean) of 2.8X – 4.8X and 1.7X – 5.0X more 

jobs by their deadlines than CPU-side schedulers and sched-

ulers that extend the CP, respectively. Moreover, CPU-side 

laxity-aware scheduling outperforms other CPU-side sched-

ulers but requires CP extensions to obtain laxity’s full bene-

fits. Finally, LAX wastes less work, accurately predicts job 

laxity, provides a better combination of energy consumption 

and performance, and provides a better combination of 

throughput and 99-percentile latency. 

6.1 Completing Jobs by Their Deadlines 

6.1.1 CPU-Side Schedulers 

For the CPU-side schedulers, RR, and LAX, Figure 6 plots 

the number of jobs successfully offloaded to the GPU for 

each arrival rate, normalized to RR. In general, most sched-

ulers do well for the lower arrival rates, where contention is 

low. At the high job arrival rate, contention increases, and all 

schedulers start missing more deadlines. 

RR: As expected, RR does not do very well because it 

schedules jobs in deadline-blind fashion. However, for few  

kernel benchmarks (IPV6, CUCKOO, GMM, and STEM), 

which also have equal job sizes, RR does better, especially at 

higher arrival rates, because a new job will sometimes be cho-

sen to run soon if RR is near the end of the queue when the 

job is added, reducing queuing delay. Although this also oc-

curs for the jobs with many kernels, since these jobs may 

have inter-kernel dependency chains, the benefit is smaller. 

BAT: BAT dynamically combines kernels in a batch. When 

jobs arrive simultaneously, and are executing the same ker-

nel, this significantly improves efficiency. However, BAT 

executes these kernels in a lock-step manner and is not aware 

of the job’s deadlines. As a result, BAT performs poorly for 

many of these latency-sensitive workloads, especially as con-

tention increases. Overall, BAT completes a geomean of 23% 

fewer jobs than RR by their deadlines. 

BAY: BAY generally outperforms deadline-blind schedulers 

like RR and BAT by effectively predicting the execution time 

of jobs and using its QoS headroom calculations to control 

the number of concurrent jobs. However, BAY’s 50 µs pre-

diction overhead (Section 5.1) prevents it from completing 

any IPV6 jobs by their 40 µs deadlines – which significantly 

decreases BAY’s overall performance such that RR and BAY 

complete the same geomean number of jobs by deadline. Oth-

erwise, BAY is the top performing CPU-side scheduler for 

latency-sensitive workloads. Compared to LAX, the host-de-

vice and prediction overheads hamper BAY’s ability to dy-

namically respond, especially at the high arrival rate for ap-

plications with many kernels, where LAX’s accurate queuing 

delay estimate and increased responsiveness help it complete 

a geomean 3.1X more jobs than BAY by their deadlines. 

PRO:  PRO leverages offline profiling to infer the QoS of 

kernels, which reduces prediction overhead compared to 

BAY. However, since PRO focuses on co-scheduling 

memory- and compute-intensive workloads, it suffers with 

the purely latency-sensitive workloads we are studying. As a 

result, it only completes a geomean of 1.02X more jobs by 

their deadlines than RR. As contention increases, PRO espe-

cially suffers for LSTM, GRU, and GMM, where the in-

creased contention exacerbates its focus on co-scheduling. 

LAX: LAX completes a geomean of 1.7X, 3.1X, and 4.2X 

more jobs by their deadlines compared to RR, respectively, 

for the low, medium, and high arrival rates. Unlike other 

schedulers, LAX utilizes the laxity of jobs, which increases 

the number of medium and large size jobs it can complete by 

their deadlines, especially as contention increases. Addition-

ally, extending the CP helps LAX adjust more quickly and 

accurately to dynamically changing conditions. Finally, 

LAX’s accurate queuing delay model helps it avoid oversub-

scription. Thus, the combination of accurate queuing delay 

modeling, rapid, accurate responsiveness, and laxity allow 

LAX to significantly outperform the CPU-side schedulers. 

  Overall, LAX significantly outperforms state-of-the-art 

CPU-side schedulers for both many- and few-kernel work-

loads. Although some of these schedulers also model job 

runtime or utilize QoS calculations to avoid oversubscription, 

LAX’s combination of laxity, rapid responsiveness, and ac-

curate queuing delay modeling help it successfully offload 

more jobs, especially for jobs with fewer kernels and dead-

lines < 1ms. We focus on the high arrival rate since it magni-

fies the differences between the schedulers. 

6.1.2 Extending the Command Processor Schedulers 

For each scheduler that extends the CP (Section 5), Figure 

7 compares the number of jobs completed by their deadlines. 

SJF and SRF: SJF and SRF greedily schedule kernels from 

the shortest jobs (e.g., RNN jobs with the shortest sequence 

lengths). As a result, SJF and SRF complete 2.46X and 2.54X 

more jobs by geomean, respectively, over RR at the highest 

job arrival rate. However, SJF and SRF perform poorly for 

benchmarks with fewer kernels per job because all jobs have 

the same input size. This causes SJF and SRF to default to 

first-come-first-serve (FCFS) order, so queuing delay domi-

nates for these applications. Nevertheless, exploiting runtime 

 
Figure 7: Jobs completed by their deadlines at the high job ar-

rival rate, for schedulers that extend the CP, normalized to RR. 
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information allows SJF and SRF to complete more jobs than 

any other schedulers beside LAX. Moreover, compared to the 

CPU-side schedulers, extending the CP allows SJF and 

SRF’s to improve performance over BAY, the top perform-

ing CPU-side scheduler, by 1.6X at the highest arrival rate. 

MLFQ: MLFQ performs poorly – only geomean 0.85X jobs 

complete by their deadlines compared to RR. For both many- 

and few-kernel jobs like RNNs, CUCKOO, and IPV6, MLFQ 

completes relatively few jobs because once long-running jobs 

get promoted back to the higher priority queue, they take up 

high priority resources even after their deadline [67]. How-

ever, in GMM and STEM, deprioritizing jobs long running 

jobs (e.g., from queuing delay), schedules newer jobs sooner. 

EDF: By greedily scheduling the job with the next deadline, 

EDF completes geomean 1.5X more jobs than RR. However, 

EDF performs poorly for jobs with uniform deadlines and 

varying lengths (e.g., the RNNs). LAX uses the work remain-

ing in jobs to dynamically adjust job priorities and complete 

2.9X more jobs by their deadlines. Thus, by considering both 

remaining work and job deadline, LAX outperforms EDF, 

which only considers job deadline. 

LJF: Compared to RR, LJF completes 1.24X more jobs by 

their deadlines because it reorders jobs and schedules the 

longest jobs (e.g., RNN jobs with many kernels and long se-

quence lengths) first. Although this allows some longer jobs 

to complete by the deadline, in general LJF does not perform 

well because it sacrifices the smaller jobs to complete longer 

ones (for jobs like the RNNs with different sized jobs). 

PREMA: PREMA’s user-defined priorities and slowdown 

calculations help it complete geomean 2.2X more jobs than 

RR. PREMA performs particularly well for the low-latency 

(250 µs) jobs, like STEM. However, overall LAX completes 

a geomean 2.0X more jobs than PREMA because LAX pre-

dictively uses WG completion and queuing delay estimates 

to make more accurate predictions, while PREMA reactively 

predicts based on feedback from running jobs. 

  Overall, extending the CP can significantly improve the 

number of jobs that meet their real-time deadlines versus 

CPU-side schedulers, especially for CP schedulers that are 

able to predict the remaining runtime or amount of work. 

However, these advantages alone are insufficient: LAX com-

pletes a geomean of 1.7X more jobs by their deadlines than 

SJF and SRF (the next highest performing CP schedulers) be-

cause it also utilizes laxity and an accurate queuing delay 

model to better schedule the jobs. LAX outperforms all other 

schedulers except on STEM, indicating that a hybrid solution 

which combines elements of LAX and PREMA could be in-

teresting future work.  However, this may complicate the de-

sign for relatively small gain, since LAX also outperforms 

PREMA in terms of energy (Section 6.4), throughput (Sec-

tion 6.5) and tail latency (Section 6.5). 

6.1.3 Is CPU-Side LAX Scheduling Sufficient? 

  Figure 8 compares the number of jobs completed by their 

deadlines for the three laxity-aware schedulers. Although 

LAX-SW suffers from host-device overheads like BAT, 

BAY, and PRO, and is neither obtains nor rapidly responds 

to GPU information as quickly as the CP schedulers, it still 

performs well. BAY, the top performing CPU-side scheduler 

(Figure 6), outperforms LAX-SW for jobs with many kernels 

and deadlines > 1 ms (GMM and the RNNs) by 26%. How-

ever, for the jobs with fewer kernels and deadlines < 1 ms 

(IPV6, CUCKOO, and STEM), LAX-SW successfully of-

floads significantly more jobs due to its more accurate queu-

ing delay model. Overall, LAX-SW completes geomean 1.8X 

more jobs by their deadlines than BAY. Thus, LAX-SW im-

proves on the state-of-the-art even without hardware support. 

  LAX-CPU and LAX successfully offload 1.5X and 1.7X 

more jobs, respectively, than LAX-SW. Interestingly, LAX-

CPU, where applications use a user-level API to dynamically 

adjust job priorities, provides most of LAX’s benefits. Over-

all, LAX completes a geomean 1.1X more jobs than LAX-

CPU, because it responds more rapidly and has access to 

higher fidelity information. Thus, to obtain all the benefits of 

laxity-aware scheduling, extending the CP is necessary, alt-

hough API changes can provide most of the benefits.  

6.2 Scheduling Effectiveness 

  To measure how efficiently the schedulers utilized GPU re-

sources, Figure 9 plots the percentage of the WGs completed 

that are part of jobs that meet the deadline. This metric shows 

how effective the schedulers were at identifying and perform-

 
Figure 8: Jobs completed by their deadlines over different lax-

ity-aware implementations, normalized to LAX-SW. 
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Figure 9: Percentage of completed WGs from jobs that meet 

their deadlines at the high job arrival rate. 
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ing useful work. Unsurprisingly, the deadline-blind sched-

ulers (RR, BAT) waste a geomean of 67% - 71% of their re-

sources on jobs that will not make the deadline, reinforcing 

their poor performance in Section 6.1.1. BAY’s QoS predic-

tion model reduces contentions and wastes fewer compute re-

sources (27% geomean). Finally, PRO wastes geomean 65% 

of its effort on jobs that cannot make their deadlines. In par-

ticular, PRO struggles with the RNNs. PRO has conservative 

QoS estimates that do not consider overlapping kernels. 

  Since SJF and SRF issue small jobs first, they waste less 

work than deadline-blind schedulers (only 41% and 38%, re-

spectively). Intuitively, since LJF schedules large jobs first, 

which are less likely to be completed, LJF wastes more work 

(56% at the highest job arrival rate). LAX’s queuing delay 

model helps it waste the least work of all schedulers – a ge-

omean 22% of compute resources. 

6.3 Execution Time Prediction & Priority Over Time 

To examine how well LAX’s execution time predictions 

track over time, Figure 10 plots the the predicted job execu-

tion time and the priority of a sample job versus time for each 

of the 4 RNN workloads. The dashed red line is the job’s ac-

tual execution time (i.e., time the job is in the running state, 

where its WGs were actively being executed). The x-axis in-

dicates the duration time of the job and the endpoint of the x-

axis shows the job’s actual completion time (i.e., time in 

ready and running). Initially, the LSTM job’s priority stays 

relatively steady until its laxity starts to decrease. For the Hy-

brid RNN (d), which is more computationally intense, the 

job’s priority starts off very low, then increases toward P0 as 

the job gets closer to the deadline, finishing the job just before 

its 7ms deadline. This shows that LAX successfully deprior-

itizes jobs when they still have plenty of slack, then correctly 

 

 

 

 
Figure 10: LAX’s Job Time and Priority Prediction. P0 is the 

highest priority. Prediction has a mean absolute error of 8%. 
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Table 5: The job throughput, latency, and energy. 

 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX 

LSTM 511 419 458 2651 465 372 2883 3069 1302 1209 3317 

GRU 912 700 775 2828 775 1551 3466 3558 2463 1870 3859 

VAN 729 515 750 2574 987 472 2832 2960 1416 1158 3226 

HYBRID 85 43 85 1147 85 766 1277 1702 511 340 1757 

IPV6 13158 13816 11842 0 13816 13158 13158 13158 12500 13157 23953 

CUCKOO 289 289 276 651 295 289 289 289 289 289 831 

GMM 2242 2841 2242 2446 2242 2242 2242 2242 1921 2038 4646 

STEM 3937 3937 2624 1969 2624 3937 3937 3937 23622 3937 20954 

(a) Successful job throughput (# of successful jobs per second) 
 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX 

LSTM 47.7 38.2 51.9 21.4 6.7 50.1 46.4 46.3 43.2 37.8 6.0 

GRU 35.1 25.6 37.9 20.4 6.5 36.9 33.7 33.4 27.6 25.7 6.5 

VAN 43.9 34.2 38.7 9.4 7.0 47.0 43.6 42.9 38.7 34.9 6.6 

HYBRID 84.5 75.7 88.4 20.9 2.4 85.7 81.9 83.9 83.7 75.6 7.2 

IPV6 0.2 0.2 0.2 0.0 0.4 0.2 0.2 0.2 0.2 0.2 0.04 

CUCKOO 9.7 9.0 9.2 1.0 1.3 9.2 9.2 9.2 9.4 9.2 4.5 

GMM 41.5 42.3 42.2 3.3 1.8 42.2 42.2 42.2 40.2 42.3 2.8 

STEM 3.1 3.1 3.2 0.3 0.3 3.1 3.1 3.1 4.8 3.1 0.5 

(b) 99-percentile job latency (ms) 
 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX 

LSTM 1.35 1.80 1.47 0.08 0.08 2.32 0.26 0.25 0.58 0.62 0.08 

GRU 0.58 0.78 0.69 0.07 0.06 1.30 0.21 0.21 0.43 0.53 0.08 

VAN 0.72 0.96 0.90 0.07 0.08 1.30 0.21 0.21 0.43 0.53 0.08 

HYBRID 15.4 31.19 15.39 0.21 0.36 1.65 0.89 0.74 2.53 3.94 0.15 

IPV6 0.014 0.016 0.014 0.00 0.014 0.014 0.014 0.014 0.014 0.014 0.007 

CUCKOO 0.78 0.78 1.04 0.05 0.05 0.79 0.79 0.79 0.79 1.05 0.12 

GMM 2.35 1.62 2.78 0.14 0.20 2.55 2.55 2.52 2.75 3.13 0.21 

STEM 0.12 0.12 0.16 0.011 0.009 0.08 0.08 0.08 0.21 0.12 0.008 

(c) Energy rate (consumed energy over # of successful jobs) (mJ) 
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prioritizes them once their slack is small. Additionally, 

LAX’s execution time prediction tracks very closely to its ac-

tual time in the running state. To varying degrees, this trend 

holds for the other RNNs in (b) and (c) as well. Overall, these 

results show that LAX effectively varies the dynamic priority 

of these workloads and tracks the slack effectively, even 

when contention is high. 

6.4 Energy Consumption 

Table 5 compares the schedulers normalized energy con-

sumption per successful job. In general, LAX provides com-

parable or better energy consumption relative to most CPU-

side schemes (0.9X – 13.0X geomean less energy) and sched-

ulers that extend the CP (4.3X – 13.2X geomean less energy). 

LAX outperforms all schedulers in this regard except for 

BAY (10% less energy per job than LAX, respectively). 

However, BAY and PRO are overly conservative and do not 

accept larger jobs that consume more energy, whereas LAX 

completes many more small and large jobs (Section 6.1.1). 

6.5 Throughput and 99-percentile Tail Latency 

Table 5 also shows the scheduler’s throughput and 99-per-

centile tail latency. Overall, LAX provides a better blend of 

throughput and tail latency. LAX has better or comparable 

tail latency than CPU-side schemes (0.8X-7.2X geomean 

faster) and has geomean 1.25X-7.2X better throughput. 

Moreover, LAX’s throughput is 1.1X-8.9X better than the CP 

schedulers and has 5.6X–7.3X better tail latency. BAY and 

PRO provide better throughput than LAX – their queueing 

models avoid offloading jobs that are unlikely to be com-

pleted by their deadlines. However, PRO and BAY complete 

far fewer jobs by their deadlines than LAX (Section 6.1.1).  

7 Related Work 

Improving Application Latency on Accelerators: Table 6 

compares LAX to related work across several key metrics. 

Recent work optimized GPUs and accelerators for latency-

sensitive applications like ML algorithms. At the architecture 

level, these optimizations include distributing and pipelining 

RNNs across FPGAs [2], compressing weights [6], increas-

ing batch size and adding special purpose functional units [3], 

designing custom accelerators from domain-specific lan-

guages to improve memory access latency [68] [69][78], and 

moving shared weights on-chip [25]-[27]. At the software 

and system levels, prior work preemptively schedules kernels 

[56]-[59], increases data reuse [31], dynamically combines 

same-sized RNN cells [28], or uses persistence [27][55]. Alt-

hough these solutions provide some of LAX’s features, they 

focus on different problems. 

QoS or Priority-Aware Scheduling Policies: Recent work 

applied QoS and prioritization to GPUs. The most relevant 

related work is Baymax [54], Prophet [53], and PREMA [79]. 

Baymax pre-trains regression models to predict job execution 

time, then uses its predictions to adjust job priorities to pre-

vent latency-sensitive jobs from missing QoS targets. Prophet 

[53] uses offline profiling and prediction models to co-locate 

kernels and improve GPU utilization and QoS. Wang et al. 

measure the GPU’s IPC to provision GPU resources and meet 

QoS targets [60]. Although this work provides some of 

LAX’s features, it relies on software-only, CPU-side sched-

ulers, whereas LAX extends the GPU’s CP to better respond 

to dynamic changes in behavior and avoid host-device over-

heads. PREMA [79] uses user priorities and slowdown cal-

culations to estimate execution time, but focuses on single 

jobs and suffers from preemption overhead. Other work adds 

QoS support at the memory controller [67][68], OS- or hy-

pervisor-level scheduling [87]-[90], or uses similar profiling 

and prediction mechanisms to BAY, PRO, or PREMA [82]-

[86][93]. Thus, LAX’s provides similar benefits over them. 

Real-time Scheduling: Embedded and real-time systems 

have also utilized laxity [46], and prior solutions use laxity 

on CPUs [33]-[36][74][75]. Others use prioritization on 

GPUs [37]-[41]. EVDZL applies laxity to mobile GPUs, but 

assumes offline profiling and oracular knowledge, unlike 

LAX which uses dynamic, online information to determine 

what jobs to schedule [94]. Other work preempts lower pri-

ority kernels in order to execute higher priority kernels 

[56][59]. However, preemption schemes are usually guided 

by the operating system and have high overhead on GPUs due 

to their amount of context state [56]-[58]. Furthermore, com-

munication latency between the OS and GPU makes fine-

grained updates difficult. In comparison, as shown in Table 

6, LAX dynamically adjusts job priorities. Prior CPU-side 

work such as backfilling also exploits similar ideas [75], in-

cluding predicting job runtime based different job’s runtimes 

[74]. Although these CPU-side ideas utilize similar underly-

ing concepts, they suffer from the same inefficiencies as other 

CPU-centric solutions. 

Modern GPUs allow programmers to provide limited prior-

ity information for jobs in different queues [15][16]. How-

ever, this information is static and associated with an individ-

ual kernel, thus the scheduler cannot determine how its prior-

ity relates to the global situation. LAX mitigates these issues 

Table 6: Comparing LAX with other prior work. 
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by transparently enhancing the queue scheduler to dynami-

cally change job priorities based on deadlines. 

8 Conclusion 

To address the inefficiency of executing latency-sensitive 

workloads on GPU, we propose a new kernel scheduler, 

LAX. By tracking the WG completion rates and monitoring 

the queuing delay, LAX accurately estimates the overall ex-

ecution of individual latency-sensitive jobs. Our results show 

that LAX completes a geomean of 1.7X-5.0X more jobs by 

their deadlines compared to ten GPU queue schedulers, while 

also having the better combination of both energy and perfor-

mance, as well as throughput and 99-percentile tail latency. 
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