

Deadline-Aware Offloading for High-Throughput Accelerators

Tsung Tai Yeh*,^ Matthew D. Sinclair+,|| Bradford M. Beckmann|| Timothy G. Rogers*

|| AMD Research * Purdue University ^ National Chiao Tung University + University of Wisconsin

ttyeh@cs.nctu.edu.tw sinclair@cs.wisc.edu Brad.Beckmann@amd.com timrogers@purdue.edu

Abstract

Contemporary GPUs are widely used for throughput-ori-

ented data-parallel workloads and increasingly are being

considered for latency-sensitive applications in datacenters.

Examples include recurrent neural network (RNN) inference,

network packet processing, and intelligent personal assis-

tants. These data parallel applications have both high

throughput demands and real-time deadlines (40µs-7ms).

Moreover, the kernels in these applications have relatively

few threads that do not fully utilize the device unless a large

batch size is used. However, batching forces jobs to wait,

which increases their latency, especially when realistic job

arrival times are considered.

Previously, programmers have managed the tradeoffs as-

sociated with concurrent, latency-sensitive jobs by using a

combination of GPU streams and advanced scheduling algo-

rithms running on the CPU host. Although GPU streams al-

low the accelerator to execute multiple jobs concurrently,

prior state-of-the-art solutions use the relatively distant CPU

host to prioritize the latency-sensitive GPU tasks. Thus, these

approaches are forced to operate at a coarse granularity and

cannot quickly adapt to rapidly changing program behavior.

We observe that fine-grain, device-integrated kernel sched-

ulers efficiently meet the deadlines of concurrent, latency-

sensitive GPU jobs. To overcome the limitations of software-

only, CPU-side approaches, we extend the GPU queue

scheduler to manage real-time deadlines. We propose a novel

laxity-aware scheduler (LAX) that uses information collected

within the GPU to dynamically vary job priority based on

how much laxity jobs have before their deadline. Compared

to contemporary GPUs, 3 state-of-the-art CPU-side sched-

ulers and 6 other advanced GPU-side schedulers, LAX meets

the deadlines of 1.7X – 5.0X more jobs and provides better

energy-efficiency, throughput, and 99-percentile tail latency.

Keywords – GPGPU, job scheduling, laxity

1 Introduction

GPUs are the programmable accelerator of choice for mas-

sively data-parallel applications that do not have strict latency

requirements. However, there is a growing class of latency-

sensitive, data-parallel workloads that can benefit from the

GPU’s throughput. Examples include machine learning (ML)

inference for RNNs [24]-[28][51], network packet processing

[61]-[63], and natural language processing (NLP) in intelli-

gent personal assistants (IPAs) [65][70]. These latency-sen-

sitive applications have become a staple of contemporary dat-

acenters, which increasing include GPUs and other high-

throughput accelerators. Given the availability of GPUs in the

datacenter, and the data-parallel nature of the applications,

there is significant potential to offload work from overbur-

dened CPUs to an accelerator. However, contemporary GPUs

are deadline-blind and have no mechanism to predict which

work can be offloaded and completed in time.

Many deadline-driven applications exhibit a middling

amount of data-parallelism [43]. Enough to justify GPU ac-

celeration, but not enough to fully utilize the GPU’s resources

[69][70]. As a result, executing one job on the GPU at a time

causes severe underutilization. To alleviate this issue, pro-

grammers batch similar jobs together [28], greatly improving

throughput and utilization at the expense of additional la-

tency. This increase in latency is usually unacceptable for

tasks with tight deadlines [3], especially when realistic job

arrival rates are considered. GPU programs can avoid batch-

ing, while still executing multiple jobs at once with streams.

Streams allow kernels from independent jobs to be scheduled

concurrently on multiple command queues located between

the CPU and GPU [45][49][52]. However, as we discuss fur-

ther in Section 2, software cannot efficiently manage the rel-

ative priority of these queues at short time scales, which

makes it difficult to efficiently re-prioritize jobs with differ-

ent deadlines as contention in the GPU changes.

State-of-the-art GPU solutions for managing latency-sensi-

tive tasks are restricted to varying priorities at a coarse gran-

ularity on the host CPU [53]-[55], and thus do not fully utilize

the GPU’s integrated queue scheduling logic. Consequently,

the precision of information available to these CPU-side

Figure 1: Characteristics of many-kernel latency-sensitive jobs

versus few-kernel latency-sensitive jobs, listed in Table 4.

1
0

20

40

60

80

100

120

A
vg

. #
 o

f
ke

rn
e

ls
 p

e
r

jo
b 104

25

0

100

200

300

400

500

600

A
vg

. k
e

rn
e

l l
at

e
n

cy
 (

µ
s) 494

7

0

1

2

3

4

5

6

7

8

A
vg

. d
e

ad
lin

e
 (

m
s)

0.6

2

mechanisms is limited. Dynamic, microsecond-scale infor-

mation about GPU-side contention, which some latency-sen-

sitive applications require, is difficult to track from host-side

software. As a result, these software-only techniques are less

effective when scheduling many latency-sensitive jobs and

primarily focus on mixing latency-insensitive and latency-

sensitive work. We discuss related work further in Section 7.

In contrast, we target a common situation where datacenters

execute homogenous, latency-sensitive jobs in parallel [80].

Figure 1 demonstrates how quickly scheduling decisions

must be made when executing concurrent latency-sensitive

jobs. To better understand their demands, we subdivide our

latency-sensitive applications into two categories: many-ker-

nel and few-kernel. The many-kernel applications we study,

which come from ML inference, are composed of several rel-

atively small, short kernels, and typically have deadlines on

the order of milliseconds. The few-kernel applications, which

come from network packet processing and IPAs, execute a

single, much longer kernel, but have more aggressive dead-

lines (usually < 1 ms). To efficiently manage both many-ker-

nel and few-kernel applications, per-kernel scheduling deci-

sions must be made at the microsecond timescale.

We argue that dynamic, integrated stream scheduling is

necessary to meet the low-latency scheduling demands of

these workloads. An analogy can be made to the memory hi-

erarchy in modern CPUs. At the lower-levels of the CPU

memory hierarchy, the operating system is responsible for

managing the replacement of relatively large pages in physi-

cal memory from the relatively high-latency disk. However,

smaller cache blocks, which require nanosecond-scale re-

sponse times, are managed by hardware. In throughput-ori-

ented GPUs, scheduling relatively few, millisecond- or sec-

ond-scale kernels in software is acceptable. However, man-

aging many short-running kernels to meet sub-millisecond or

millisecond-scale deadlines can be enhanced with improved

scheduling within the GPU, which to our knowledge no prior

work evaluating compute workloads has proposed.

Integrated GPU stream scheduling in contemporary com-

pute-oriented GPUs operates in a deadline-blind manner.

Typically, the GPU driver statically assigns priority levels to

each command queue [76], although some APIs allow prior-

ities to be set by the application [16] on stream allocation. In

contrast, an effective deadline-aware scheduler must: (1) be

aware of each job’s deadline, (2) estimate each job’s remain-

ing execution time, and (3) frequently adjust job priority as

time progresses and the contention level in the GPU changes.

We propose an integrated laxity-aware stream scheduler

(LAX) that achieves all three of these requirements.

LAX leverages the idea that stream-based GPU applica-

tions enqueue all their kernels in quick succession. In many-

kernel jobs, although each kernel launch is dependent on the

data output by the previous kernel, all kernels associated with

a particular job are known before the GPU begins execution.

Thus, LAX uses the GPU’s queue scheduler [or command

processor (CP)], to perform a novel stream inspection tech-

nique that estimates the amount of work in each job. LAX’s

scheduling algorithm then combines this information, the

job’s deadline, and fine-grain information about current per-

kernel work completion rates to accurately estimate how

much laxity the job has. A job’s laxity is an estimate of how

much earlier than its deadline it will finish given current con-

ditions [46]. Based on each job’s estimated laxity, LAX re-

prioritizes jobs to complete as many as possible by their re-

spective deadlines. With the rich, fine-grained information

available to GPU stream schedulers, LAX also prevents job

oversubscription with a Little’s Law-based queuing delay es-

timate [30][50] to reject work predicted to miss its deadline.

Contemporary GPUs perform device-side stream schedul-

ing in a round-robin fashion, which ignores deadlines and the

amount of remaining work. To our knowledge, no prior work

has considered both job deadline and remaining work for

real-time prioritization techniques on GPU compute applica-

tions. We compare LAX against 6 other advanced schedulers

in the command processor (described in Table 3). LAX out-

performs all other advanced schedulers by leveraging stream

inspection and the work completion rate to judiciously reject

jobs and prioritize critical work, demonstrating that deadline-

aware scheduling is possible and practical in GPUs.

Prior work on real-time systems in the CPU space has used

laxity to schedule jobs (discussed further in Section 7). How-

ever, the GPU’s task-based (a.k.a, kernel-based) program-

ming model presents a unique set of challenges and opportu-

nities compared to applying laxity to OS-managed CPU

threads. GPUs use a hierarchical execution model, where jobs

contain one or more executed kernels that are themselves

composed of workgroups. To leverage laxity scheduling

within the GPU, we propose a novel job estimation mecha-

nism based on workgroup completion times that naturally ad-

justs as both workgroups and kernels scale (discussed further

in Section 4). Another unique challenge in applying laxity to

GPUs is quickly and appropriately adapting to the extreme

contention in massively parallel workloads. Our workgroup-

centric estimation mechanism adapts to contention by moni-

toring the fine-grained workgroup completion rate.

Prior work on GPU kernel preemption or re-execution [56]-

[59][79] are alternative mechanisms that can be used in com-

bination with better stream scheduling. However, for latency-

sensitive workloads, the overheads associated with preempt-

ing GPU kernel contexts, whose aggregate registers and

scratchpad size can be 100s of KBs (Table 1), may be prohib-

itive. Additionally, the benefits of preemption are muted for

short running kernels that finish long before the cost of

preemption and rescheduling can be amortized. Specifically,,

Table 1 indicates that the vast majority of kernels in our eval-

uated latency-sensitive workloads complete within 10 µs. Re-

cently proposed preemption-based techniques, such as

PREMA, are effective at intelligently preempting and sched-

uling relatively coarse-grained tasks [79]. However, LAX is

able to outperform PREMA by 2.0X geomean on fine-grain

3

tasks, by making intelligent fine-grained scheduling deci-

sions without preemption (Section 6). We compare against

additional preemption-based techniques in Section 7.

Overall, this paper makes the following contributions:

1. We observe that emerging, latency-sensitive applica-

tions use a many-kernel execution pattern and few-

kernel jobs have very tight deadlines, both of which

require microsecond-level scheduling decisions.

2. We propose a novel stream inspection mechanism,

which is used in combination with a dynamic, per-

kernel work completion rate to generate accurate es-

timates of work and time remaining in each job,

given current contention conditions.

3. We propose a laxity-aware algorithm (LAX) and

compare it to a continuum of solutions that range

from doing all scheduling in host-side software to en-

tirely within the GPU’s CP. Given a per-job deadline

provided by the programmer, LAX dynamically var-

ies job priorities to improve throughput while at-

tempting to meet real-time latency requirements.

4. LAX’s combination of access to fine-grained infor-

mation, more accurate queuing delay model, tight CP

integration, and ability to rapidly adapt to contention

completes more jobs by their deadlines and signifi-

cantly improves GPU job throughput over a variety

of contemporary and advanced schedulers by 1.7X-

5.0X. LAX also provides a better combination of en-

ergy and performance, as well as throughput and 99-

percentile latency, making latency-sensitive RNN in-

ference [12][13], networking [61]-[63][66], and IPA

[65][70] applications more practical on GPUs.

2 GPU Stream Scheduler Background

Unlike CPUs, GPUs contain multiple levels of hardware

scheduling to manage the large number of in-flight threads.

Contemporary GPUs contain multiple queues to manage in-

dependent work submitted asynchronously with streams

[45][49][52]. This independent work can be executed concur-

rently when GPU resources are available. We next describe

current stream scheduling architecture and operation.

2.1 GPU Command Processor

The CP is an integrated microprocessor within a GPU,

which parses the kernel contexts and schedules streams. In

Figure 2, each stream is mapped to a queue and each queue

holds multiple kernels from a single stream. Inter-kernel de-

pendencies between kernels in the same stream are main-

tained, but GPUs can asynchronously execute kernels from

different streams simultaneously. Each queue entry describes

a separate kernel and includes details such as thread dimen-

sions, register usage, and local data store (LDS) size. The

work-group (WG) scheduler reads these fields to dispatch

work groups to compute units (CUs). Generally, GPU WG

schedulers issue all WGs from one kernel before switching to

WGs from another kernel. Despite this restriction, WGs from

kernels in different queues often interleave execution.

Normally, the CP in modern GPUs schedules kernels

within these queues in a round robin (RR) manner [48]. This

deadline-blind scheduling policy improves throughput, but

makes it harder to complete jobs by their real-time deadlines.

The top half of Figure 3 illustrates the problem with RR. In

this example, the GPU is running three jobs with varying ar-

rival times such that the deadline of each job varies. Each job

contains two kernels with different execution times. For sim-

plicity, we assume that at most two kernels can be concur-

rently executed. RR will schedule kernel 1 from job 1 (J1:K1)

and kernel 1 from job 2 (J2:K1) first because they arrive be-

fore job 3. When job 3 arrives, its first kernel is scheduled

after J1:K1, and then J3 is not scheduled again until both

J1:K2 and J2:K2 have executed. Since J3 is the longest job,

if it had been prioritized over J1 and J2, all the jobs could

have made their deadlines. However, since RR is unaware of

this, J3 misses its deadline.

2.2 Priority-based GPU Programming

At the application level, programmers can specify a limited

number of priorities (e.g., high and low) typically immedi-

ately after allocating the stream [16]. Contemporary drivers

and CPs are not designed to dynamically vary the priority of

streams, which limits their ability to adapt to tight deadlines.

First, the priority level submitted by programmers simply in-

dicates the kernel’s relative importance and does not indicate

Figure 2: GPU Queue Scheduler Architecture.

Compute Queues
Queue 0

G
rap

h
ics

Q
u

eu
e

Command Processor

Work-group Scheduler

Compute Units

Queue 1 Queue n

Stream 0 Stream 1 Stream n

Figure 3: Comparison of Round Robin and Laxity-aware

Schedulers for a GPU that can simultaneously execute 2 jobs.

J2:K1

J2:K2

J1:K2

J3:K1

Round-Robin Scheduler

J1:K1

J2:K1 J2:K2J1:K2

J3:K1 J3:K2

Laxity-aware Scheduler

J3:K2

J3 Missed
deadline

Time

Job 1
arrives

Job 2
arrives

Job 3
arrives

J1:K1

Job 1
deadline

Job 2
deadline

Job 3
deadline

Time

Job 1
arrives

Job 2
arrives

Job 3
arrives

Job 1
deadline

Job 2
deadline

Job 3
deadline

4

when the kernel must be completed. Second, priorities as-

signed to individual streams do not provide the GPU a global

view of when to complete a chain of dependent kernels. Pro-

grammers conservatively set a job’s priority to ensure that its

deadline is met. Finally, jobs can have different amounts of

work despite potentially having the same static priority level.

We propose to dynamically adjust the priorities of each job

(and its associated queue) based on the job’s estimated exe-

cution time. By adjusting the priorities, kernel launches are

re-ordered to increase the number of jobs completed by their

deadlines. The bottom half of Figure 3 demonstrates that with

reasonably accurate execution time estimates, a deadline-

aware scheduler can optimize the scheduling of deadline-sen-

sitive jobs (similar to prior work for CPUs [74][75]). The bot-

tom example begins like the top example, with the GPU

scheduling J1 and J2 first, because they arrive earlier than J3.

However, the LAX scheduler is aware of the deadlines and

durations of all 3 jobs, so it prioritizes J3 since it will miss its

deadline if not immediately scheduled (i.e., it has zero laxity).

As a result, all jobs completed by the deadlines.

3 Latency-sensitive GPU Applications

 This section characterizes important, latency-sensitive ap-

plications by their response time, level of parallelism and ker-

nel composition. It then examines the tradeoff of increasing

batch size versus the number of streams, and the impact of

realistic arrival times on latency-sensitive GPU applications.

3.1 Applications

 We study a wide group of latency-sensitive GPU applica-

tions that represent different use cases and access patterns to

understand how they perform on contemporary GPUs.

3.1.1 Recurrent Neural Networks

 RNNs are well suited for domains such as language trans-

lation [8][9] and speech recognition [10][11] where prior

events persist and influence subsequent ones. RNNs contain

loops that allow this information to persist across multiple it-

erations (or time steps). The number of times the loop is un-

rolled represents the RNN’s sequence length, which varies

across jobs and determines the length of the recurrent step.

As a result, RNNs behave very differently than convolutional

neural networks (CNNs) [4][5][7][44]. The hidden state is

calculated by looking at the previous hidden state and the in-

put at the current step. RNN models such as long-short-term-

memory (LSTM) [32] and gated recurrent unit (GRU) [42]

add memory cells to improve accuracy.

Each RNN time step contains multiple kernels with varying

degrees of parallelism and execution time. As shown in Table

1, a single-batched LSTM job with a sequence length of 13

consists of 6 unique kernels and each kernel is called multiple

times (we only show LSTM due to space constraints, Vanilla

and GRU are similar). Unlike the training phase where la-

tency is less critical [1][71]-[73], RNN inference jobs have

real-time constraints [2][3][28][31][69]. It is challenging to

fully utilize the GPU while minimizing the end-to-end la-

tency of RNN inference applications.

3.1.2 Network Packet Processing

Network packet processing increasingly utilizes GPUs to

take advantage of their massive parallelism. For example,

IPV6 performs a Longest Prefix Matching computation used

in IPV6 network packet table lookups and has a stringent 40

µs deadline [61][66]. Similarly, Cuckoo must complete

cuckoo hash table lookups to map MAC address to output

ports within 600 µs [61][66]. Unlike RNNs, these networking

applications are composed of a single kernel, and their input

sizes are determined by the speed of the network. In Table 1,

the input size of 8K represents the number of network packets

that arrived per 100 µs in 40 Gbps networks.

3.1.3 Intelligent Personal Assistants

IPAs also have significant real-time constraints. Although

prior work explores a series of algorithms used in an auto-

matic speech recognition (ASR) pipeline by IPAs, we focus

on Gaussian mixture model (GMM) and Stemmer (STEM),

two single kernel pieces that consume the most time in IPAs

and thus present the biggest challenge [70]. GMM maps input

feature vectors to multi-dimensional space and consumes

85% of ASR’s computational time [65][70]. STEM reduces

inflected words to a certain word stem and takes up to 85%

of the remaining time in the ASR pipeline [65][70].

3.2 Small Data-Parallel Kernels

Table 1 characterizes each kernel in a single HIP [17][18]

RNN LSTM inference job where its batch size is 1 and its

hidden layer is 128. Both LSTM and GRU use 5 unique MI-

Open [14] kernels and one rocBLAS [19] GEMM kernel that

are called multiple times in an RNN forward pass. The MI-

Open kernels perform tensor and activation operations. Each

Figure 4: Comparing response times with varying job arrival

rates, normalized to batch size 1.

0

20

40

60

80

100

120

LSTM GRU VAN IPV6 CUCKOO GMM STEM HYBRID

N
o

rm
al

iz
ed

 a
vg

.
re

sp
o

n
se

 t
im

e

batch size

1 2 4 8 16 32 64 128

213210147180 293

Table 1: Summary of kernels in latency-sensitive benchmarks.
Applications Kernel name # of calls Exec time Threads Context size

LSTM [12][13]

TensorKernel 1 3 3.96 µs 16384 397 KB

TensorKernel 2 5 1.79 µs 128 3.1 KB

TensorKernel 3 2 4.45 µs 2048 106.8 KB

TensorKernel 4 40 4.74 µs 64 9.1 KB

ActivationKernel 5 39 8.87 µs 128 11.1 KB

rocBLASGEMMKernel 1 13 127.48 µs 1024 562.4 KB

IPV6 [66] IPV6Kernel 1 25 µs 8192 329 KB

CUCKOO [66] cuckooKernel 1 300 µs 8192 566 KB

GMM [65] GMMKernel 1 1.5 ms 2048 195.5 KB

STEM [65] STEMKernel 1 150 µs 4096 317 KB

5

kernel has a varying number of threads. However, most ker-

nels have few threads, and do not occupy the entire GPU.

The number of threads, registers, and LDS size of kernels

determine the GPU utilization. In an AMD Radeon RX 580

GPU with 36 CUs based on the GCN architecture [22], each

CU can concurrently execute 2560 threads, has 256 KB 32-

bit vector registers, and has 64 KB of LDS. However,

LSTM’s GEMM kernel only uses 1.11% of thread contexts,

1.26% of registers, and 2.78% of the LDS space. The other

LSTM kernels similarly use relatively few resources. Hence,

a single RNN job significantly under-utilizes the GPU, as

prior work has also shown for other sequence lengths, hidden

sizes, and batch size combinations [27][69]. Moreover, alt-

hough IPV6, Cuckoo, GMM, and STEM are single kernel ap-

plications, they also complete very quickly and have narrow

kernels with few threads that also under-utilize the GPU.

3.3 Impact of Job Arrival Rate

In a real system, the GPU receives job requests from differ-

ent users or processes with varying arrival rates. Batching im-

proves GPU utilization and throughput when requests arrive

at the same time. However, it will delay individual jobs when

requests arrive at varying rates. Streams alleviate this aspect

of batching by allowing work to begin as soon as it arrives.

 Figure 4 measures our application’s response time on an

AMD Radeon RX 580 GPU. We use streams to launch 32K

jobs for the networking and IPA benchmarks and 512 jobs for

the RNN benchmarks based on our GPU’s maximum

memory space. For the RNNs, we also show data for Hybrid

RNNs (described in Section 5.2). In this experiment, all

streams use the same static priority. We issue 10000 short ex-

ecution time jobs per second for IPV6, CUCKOO, and STEM

and 1000 jobs per second for RNNs and GMM with an expo-

nential arrival rate. Each RNN job may have a different se-

quence length (see Section 5.2). We add padding and addi-

tional waiting time for the arrival of all jobs in a batch when

the batch size is greater than 1 as needed.

In general, the high degree of parallelism within large

batches increases resource contention and job execution time.

For example, the response time of applications with a batch

size of 128 can be 20-293X slower than the single-batched

job due to the overhead of waiting for additional jobs to ar-

rive. Thus, larger batch sizes may improve utilization for

these applications, but this often comes at the cost of not

meeting its deadline. In contrast, using multiple streams re-

duces normalized runtime and allows the GPU to process

multiple jobs simultaneously. However, closer inspection of

these results reveals that individual job execution times vary

tremendously. For example, RNN jobs with long sequence

lengths complete much slower than RNN jobs with shorter

sequence lengths. The observation exposes an opportunity for

a more advanced GPU scheduler to prioritize longer running

jobs and allow more overall jobs to meet a given deadline.

1 If additional work is later enqueued to the job’s stream, LAX will update its prediction.

4 LAX: Laxity-Aware GPU Job Scheduling

4.1 LAX System Overview

Figure 5 presents an overview of our LAX framework. In

multi-job GPU applications, all kernels associated with a sin-

gle job are enqueued on the same stream or underlying GPU

compute queue. Before running a job, as discussed in Section

1, LAX performs stream inspection to look ahead, parsing all

the kernels in a queue to determine their names and associ-

ated number of WGs. For example, for the RNNs the se-

quence length determines the number of kernels in the job.

To store this information, LAX introduces a Job Table that

stores information about the work remaining in each compute

queue. After parsing the WG information for every kernel in

a queue, this information is added to the corresponding

WGList for the queue. Stream inspection can be performed

entirely in the CP, by reading the contents of the command

queues, or by having the CPU driver insert a custom packet

at the head of the queue indicating the work behind it.

LAX computes the estimated time remaining in each job

using the number of WGs from the WGList and a per-kernel

work completion rate stored in a Kernel Profiling Table.

Given the estimated time remaining and a programmer-spec-

ified deadline (passed when initializing a job on a stream),

LAX computes the laxity of each job using Equation 1.1 The

LaxityTime tells us how close to its deadline a job is predicted

to finish. Jobs with less LaxityTime have higher priority.

Similar to prior work, LAX uses a pull-based model for of-

floading work from a CPU server [53][54][80]. As jobs arrive

at the server, LAX successfully offloads as many jobs as pos-

sible. However, unlike prior work, LAX uses its per-job com-

pletion time estimates to generate a queuing delay estimate

for new jobs entering the system. Based on current contention,

if LAX estimates that the new job will not meet its deadline,

it will not attempt to offload the job to the GPU.

4.1.1 Implementing LAX

Although modern GPUs have CPs, their software is not easily

modified, and GPU vendors have not publicly released an

API to reprogram them. Moreover, LAX requires fast access

Figure 5: LAX procedure and system overview.

𝐿𝑎𝑥𝑖𝑡𝑦𝑇𝑖𝑚𝑒 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − (𝑇𝑖𝑚𝑒𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)

Equation 1: Laxity Time Calculation.

6

to custom performance counters since LAX frequently recal-

culates job priorities based on dynamic information (Sections

4.2 – 4.4). LAX also utilizes a customized per-kernel WG

completion rate as part of its calculations (Section 4.2). Ac-

cordingly, we extend the CP as necessary. First, we extend

the CP software to store the Job Table that tracks important

information per kernel and make scheduling decisions based

on information passed from the hardware. Next, we modify

the GPU to add a new counter that tracks the WG completion

rate and extend the existing counters to allow them to be fre-

quently read by the CP, which stores and uses these counter

values when making its scheduling decisions.

4.2 Job Remaining and Laxity Time Estimates

To estimate the laxity of currently executing jobs and the

queuing delay for incoming jobs, LAX generates an estimate

of the time remaining in each job with the help of an in-

memory Job Table. As shown in Figure 5, each table entry

has six fields: 1) QueueID (QID); 2) Priority (used by the CP

to make scheduling decisions); 3) WGList (the list of the

job’s kernels and the number of WGs in each kernel); 4)

Deadline (provided by the programmer); 5) StartTime; and 6)

State (either init, ready, or running). In addition to the Job

Table, LAX stores the per-kernel WG completion rates in a

Kernel Profiling Table which is periodically updated (empir-

ically set at 100 µs) to reflect the GPU’s contention condi-

tions. Overall, LAX requires only 4240 bytes of memory to

store this information for a 128-compute queue system.

To predict a job’s remaining time, LAX scans the WGList

to generate an estimate for how long each kernel in the job

will take. For each entry in the list, LAX looks up the current

WG completion rate for this particular kernel in the Kernel

Profiling Table. By dividing the number of WGs in each ker-

nel by the current WG completion rate for that kernel type,

LAX generates a time estimate for the kernel. The kernels in

our evaluated jobs have sequential dependencies and thus

must be executed sequentially, thus LAX simply sums the es-

timated execution time of each kernel to generate the per-job

estimate. As WGs complete, the WGCount entry in the Job

Table is decremented to reflect the fact that the job has less

work remaining. LAX combines the job’s remaining time es-

timate with the user-specified Deadline and the job’s Start-

Time to generate the estimated LaxityTime. We describe the

State and Priority fields in more detail in Sections 4.3 and 4.4.

4.3 Preventing Oversubscription with Queuing Delay

Estimation

When designing a GPU to accept multiple jobs, each of

which has a tight deadline, preventing oversubscription is

critical. As discussed in Section 4.1, LAX only accepts jobs

predicted to complete before their deadlines. To make this

prediction, LAX must: (1) estimate how long a job J will take

on the GPU under current conditions and (2) estimate how

long J may be delayed behind other jobs already sent to the

GPU, i.e. its queuing delay. Using each job’s time remaining

estimate from Section 4.2, LAX first computes how long J

should take, given current completion rates. This allows

LAX’s estimates to adapt quickly and effectively to changing

contention levels. If no estimate exists yet for a given kernel,

LAX optimistically assumes it takes no time, to avoid reject-

ing work it could potentially complete.

Estimating J’s queuing delay is more challenging because

the deadlines and arrival rates of latency-sensitive jobs vary

significantly. However, Little’s Law works well independent

of arrival rate [30][50]. Thus, LAX uses Little’s Law to

model the queuing delay of the jobs running on the GPU. Ac-

cordingly, Algorithm 1 uses Little’s Law to sum up the pre-

dicted remaining time of all jobs currently execution in the

system, including jobs that are ready but not running. Com-

bining this estimate with the runtime estimate, if LAX pre-

dicts J will complete by its deadline, it accepts J and changes

its state from init to ready, informing the CP that J’s first ker-

nel is ready to be executed on the GPU. Algorithm 1 shows

the steady-state behavior; before enough WGs complete (line

12, Algorithm 1), we use the programmer-provided deadline.

4.4 Laxity-Aware Job Scheduling Algorithm

 Next LAX needs to determine which job(s) should be run

next. A job’s laxity determines its priority in the laxity-aware

job scheduler. The scheduler assigns each queue (job) a pri-

ority level and may adjust it over time. The job with the

smallest current laxity is assigned the highest priority.

Algorithm 2 describes LAX’s priority update mechanism,

where priority zero is the highest priority level. Every 100 µs,

the priorities are updated, as we empirically found this im-

proved performance. Since we want to prioritize jobs with the

least laxity, any job that is predicted to complete by its dead-

line is assigned its laxity value as its priority (Line 12, Algo-

rithm 2). LAX decreases a job’s priority when it predicts the

job will not reach the deadline (Line 18, Algorithm 2). When

Algorithm 1: Steady State Queuing Delay Calculation.
1. totRemTime = 0

2. // new jobs are pushed to the end of the queue

3. For i = JobQ.begin() to JobQ.end()

4. holdJobTime = 0

5. durTime = curTick() – JobQ[i].startTime

6. For (j = 0; j < JobQ[i].WGList.size; j++)

7. kernelID = JobQ[i].WGList[j].kernelID

8. If (JobQ[i].state != init)

 /* sum the total remaining time of jobs */

9. totRemTime += JobQ[i].WGList[j].numWG

10. / kernelTable[kernelID].WGCompRate

11. Else /* initialize new job’s estimate */

12. holdJobTime += (JobQ[i].WGList[j].numWG /

 kernelTable[kernelID].WGCompRate)

13. End /*end if*/

14. End /*end for*/

15. If (totRemTime + (holdJobTime + durTime) <

 JobQ[i].Deadline)

16. /* New-invoked job’s priority is the highest */

17. If (JobQ[i].state == init) JobQ[i].prior = 0

18. JobQ[i].state = readyState

19. totRemTime += holdJobTime

20. Else /* Cannot complete job in time, tell CPU */

21. rejectJob()

22. End /*end if*/

23. End /*end for*/

7

a job is predicted to miss a deadline, its completionTime (re-

mainingTime + durationTime, where durationTime is the

time since this job was enqueued) is greater than the deadline.

To de-prioritize the job, LAX sets its priority to be equal to

the completionTime (Line 14, Algorithm 2), because it is

greater than the deadline, guaranteeing that the job has a

lower priority than any other job that still has positive laxity.

After adjusting all job’s priority, LAX issues all WGs from

the highest priority job. If additional WG slots are available,

it moves on to the next highest priority ready job, and so on

until all WG slots are filled. After issuing the WGs from a

kernel, LAX updates the associated job’s status to running.

5 Methodology

We use the gem5 simulator [20][29], which offers native

GPU ISA support [20]-[23] and a high fidelity, cycle-level

GPU microarchitecture model [29] to evaluate the latency-

driven applications (Table 2). The simulated system assumes

the CPU and GPU share a single unified cache coherent ad-

dress space and do not require explicit copies [77]. Since the

original benchmark’s codes assume discrete memory spaces

between the CPU and GPU and use device copies, we modi-

fied the benchmarks to remove the device copies wherever

possible. We analyze energy consumption with per-instruc-

tion energies [6][81]. Finally, we assume the CP can parse

four streams in parallel every 2 µs [29][48], including the la-

tency of any memory accesses required by the scheduler.

5.1 Evaluated Compute Queue Scheduling Policies

 We compare our laxity-based scheduler against ten other

queue scheduling policies, which are detailed in Table 3 and

implemented in gem5. These schedulers leverage various pol-

icies with static and dynamic information to schedule kernels

and can be broken into three groups: state-of-the-art CPU-

side schedulers [28][53][54], GPU approaches that extend the

CP, and variants of our laxity-based scheduler.

CPU-side scheduling mechanisms such as BAT [28], BAY

[54], and PRO [53] (see Table 3 for details) improve through-

put without requiring hardware changes. However, BAT,

BAY, and PRO incur overheads for communicating between

the CPU and GPU. For a tightly coupled GPU like the one in

our system, this adds 4 µs of host-device communication

overhead per kernel in a job. Similarly, we add 50 µs of over-

head to BAY for calls to its regression model, based on re-

ported data [54].

Modern GPUs perform deadline-blind RR scheduling (Sec-

tion 2.1), but since the CP is programmable (although GPU

vendors have not disclosed an API), it is possible to extend

the CP for other widely used schedulers like LJF, MLFQ,

SJF, and SRF. Like LAX, SJF, SRF, and LJF utilize predicted

runtime information to decide what to schedule; however,

they do not model queuing delay or laxity. MLFQ performed

better with two priority levels, demoting jobs to lower prior-

ity level [64] when runtime exceeds 1/3 of the jobs’ deadline,

and promoting back to the higher priority when its runtime

exceeded 2/3 of its deadline. We also compare against EDF

[91], which prioritizes the job with the earliest deadline. Alt-

hough some EDF implementations strictly ensure that the

job(s) with the earliest deadline is always executing, this re-

quires preemption. For jobs with longer deadlines such as

those studied in prior work [91], this context switching over-

head can be amortized. However, given the short deadlines in

Algorithm 2: Laxity-aware Scheduling.

1. For i = JobQ.begin() to JobQ.end()

2. JobQ[i].RemTime = 0

3. For j = 0; j < JobQ[i].WGList.size; j++

4. kernelID = JobQ[i].WGList[j].kernelID

5. JobQ[i].RemTime += JobQ[i].WGList[j].numWG

6. / kernelTable[kernelID].WGCompRate

7. End /*end for*/

8. JobQ[i].durTime = curTick() – JobQ[i].startTime

9. ComplTime = JobQ[i].RemTime + JobQ[i].durTime

10. If (JobQ[i].deadline > ComplTime)

11. /*laxityTime = deadline – ComplTime*/

12. JobQ[i].prior = JobQ[i].deadline – ComplTime

13. Else

14. JobQ[i].prior = ComplTime

15. End /*end if*/

16. /*deprioritize job if LAX cannot make deadline */

17. If (JobQ[i].durTime > JobQ[i].deadline)

18. JobQueue[i].prior = INF

19. End /*end if*/

20. End /*end for*/

Table 3: Scheduling Policies.
Scheduler Description

Prior CPU-Side Scheduling

BatchMaker (BAT) [28] A dynamic batching technique where each stream can have a

different batch size.

Baymax (BAY) [54] Uses pre-trained models to predict a jobs execution time and

re-orders the priorities of jobs based on their QoS headroom.

Prophet (PRO) [53] Uses offline profiling to choose which concurrent jobs to issue

in order to fully utilize the GPU and improve QoS.

Contemporary GPU Command Processor Scheduling

Round-Robin (RR) The baseline scheduler that processes compute queues in a cy-

clic manner.

Advanced GPU Command Processor Scheduling

Multi-Level Feedback

Queue (MLFQ) [64]

Moves jobs between two priority queues based on their runtime

and uses RR to schedule jobs in the high priority queue.

Earliest Deadline First

(EDF) [91]

A dynamic scheduling policy that schedules kernels from the

job with the earliest deadline first.

Shortest-Job First (SJF) A static scheduling policy that schedules kernels with the short-

est job first.

Shortest Remaining Time

Job First (SRF)

A dynamic policy that uses LAX’s remaining execution time

estimator to assign job priorities. It then assigns the job with

the shortest estimated remaining time the highest priority.

Longest-Job First (LJF) A static scheduling policy that schedules kernels from the long-

est jobs first.

PREMA [79] A multi-task scheduler for heterogeneous systems that predicts

job priorities and preempts lower priority jobs.

Proposed Laxity-Aware Scheduling Variants

LAX Our laxity-aware scheduling policy described in Section 4.

LAX-SW A variant of LAX that uses CPU-side scheduling.

LAX-CPU A variant of LAX that does CPU-side scheduling but changes

the API to allow rapid changing of the priority of the jobs.

Table 2: Key simulated system parameters.
GPU Clock 1500 MHz

The number of CUs 8

Number of SIMD units per CU 4

Max wavefronts per SIMD unit 10

Vector register size per CU 256KB

The number of compute queues 128

CPU Clock 4000MHz

CPUs 2

GPU L1-D$ per CU 16 KB, 64B line

GPU L1-I$ per 2 CUs 32KB, 64B line, 16 way

GPU L2 cache per 64 CUs 4MB, 64B line

Main Memory 16 GB DDR4 [92], 16 channels, 16 banks/channel,

1000 MHz

8

our workloads and the fine-grained scheduling granularity we

use, strict EDF with preemption would perform poorly. For

example, prior work assumes preemption incurs around 1 ms

of overhead [91], which exceeds some of our workload’s

deadlines (CUCKOO, IPV6, and STEM) and consumes a sig-

nificant portion of the deadline for the remainder (GMM and

the RNNs). Thus, we instead implement EDF by prioritizing

jobs with the earliest deadlines first, without preemption.

Finally, we compare against PREMA, which utilizes user-

defined prioritizes and slowdown calculations to preempt

lower priority jobs [79]. Like the authors, we use a 250 µs

preemption interval. Although PREMA was designed for

TPUs running a single, large job, we extended it to run mul-

tiple jobs since our workloads do not fully utilize the GPU.

We also extended PREMA to use LAX’s frequent updates for

PREMA’s calculations.

Finally, since LAX changes multiple components (Section

4), we also design the three variants to identify if laxity-aware

scheduling could provide the same benefits without extend-

ing the CP: LAX, which extends the CP as discussed in Sec-

tion 4; LAX-SW, which performs CPU-side scheduling (and

incurs overheads for host-device communication); and LAX-

CPU, which also does CPU-side scheduling, but changes the

API to allow dynamic job priority updates from user-level

software. To do this, we update the API to write updated pri-

orities to memory-mapped registers that control each queue’s

priorities [29]. Finally, for all LAX variants we initialize the

job priority to the highest priority, as this empirically gave

the best results.2

5.2 Benchmarks

 To evaluate the schedulers, we use the eight latency-sensi-

tive benchmarks discussed in Section 3. Table 4 details their

input size, deadline, and arrival rates. Where available, we

use deadlines from recent work: 7 ms for RNNs

[2][3][28][31], 40 µs for IPV6 [61][63], and 600 µs for

Cuckoo [61]. For the many-kernel RNNs, deadlines are set

for the entire multi-layer computation. For the IPA bench-

marks, we used the same methodology as the authors: we ran

each benchmark in isolation, then doubled the worst case la-

tency [53][54]. LAX does not affect latency-insensitive ap-

plications because the programmer does not provide a dead-

line for them.

 To demonstrate how GPUs can simultaneously execute ker-

nels with different degrees of parallelism, we also include a

Hybrid RNN benchmark that includes the two most popular

RNN variants, LSTM and GRU, with a mixed hidden layer

size of 128 and 256, respectively. The input for all RNNs is

based on the WMT ’15 language translation trace [47], which

has an average sequence length of 16. Furthermore, we share

weight data across RNN inference jobs with the same hidden

size [6][28]. Although our technique is applicable to any data

2 Initializing each job with the lowest priority or running an initial laxity estimate upon

each job’s arrival degraded performance by 10% and 1% on average, respectively, com-

pared to initializing with the highest priority.

width, we use DeepBench’s provided precision for the RNNs.

Additionally, our schedulers do not affect the RNN inference

accuracy since they do not change the underlying algorithms,

just how they are scheduled (as described in Section 4).

5.3 Job Arrival Rate

We simulate 128 jobs per benchmark with different arrival

times and map one job to one GPU stream. Our simulated

server only processes one type of job at a time, similar to

modern datacenters [78]. Real world systems continually re-

ceive requests with varying arrival rates. As with determining

the deadlines, wherever possible we used the same arrival

rates as previous work. For CUCKOO, GMM, and STEM,

we modified these rates to account for the difference in sys-

tem size. Moreover, we sweep multiple levels of contention

(high, medium, and low arrival rates) for each benchmark to

evaluate how contention affects the scheduler, where jobs

with fewer kernels have faster arrival rates due to their shorter

Table 4: LAX Benchmarks.

Benchmark Deadline

Input / hid-

den layer

size

High Job Ar-

rival Rate

(jobs/s)

Medium Job

Arrival Rate

(jobs/s)

Low Job Ar-

rival Rate

(jobs/s)

Many Kernels per Job

LSTM [12][13] 7 ms 128 8000 5000 3000

GRU [12][13] 7 ms 128 8000 5000 3000

VAN [12][13] 7 ms 256 8000 5000 3000

HYBRID [12][13] 7 ms 128/256 8000 5000 3000

Few Kernels per Job

IPV6 [61]-[63] 40 µs 8192 64000 32000 16000

CUCKOO [61]-[63] 600 µs 8192 8000 5000 3000

GMM [65][70] 3 ms 2048 32000 16000 8000

STEM [65][70] 300 µs 4096 64000 32000 16000

Figure 6: Jobs completed by their deadlines for CPU-side

schedulers, RR, and LAX, normalized to RR.

0

2

4

6

8

10

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEANN
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

m
p

le
te

d
 jo

b
s

(a) High job arrival rate

RR BAT BAY PRO LAX14 20

0

2

4

6

8

10

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEANN
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

m
p

le
te

d
 jo

b
s

(b) Medium job arrival rate

0

2

4

6

8

10

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

N
o

rm
al

iz
ed

 n
u

m
b

er

o
f

co
m

p
le

te
d

 jo
b

s

(c) Low job arrival rate

9

deadlines. For each arrival rate, we randomly generate spe-

cific job arrival times based on an exponential distribution.

6 Experimental Results

Overall, LAX successfully offloads more jobs than prior ap-

proaches. At the highest arrival rate LAX completes a geo-

metric mean (geomean) of 2.8X – 4.8X and 1.7X – 5.0X more

jobs by their deadlines than CPU-side schedulers and sched-

ulers that extend the CP, respectively. Moreover, CPU-side

laxity-aware scheduling outperforms other CPU-side sched-

ulers but requires CP extensions to obtain laxity’s full bene-

fits. Finally, LAX wastes less work, accurately predicts job

laxity, provides a better combination of energy consumption

and performance, and provides a better combination of

throughput and 99-percentile latency.

6.1 Completing Jobs by Their Deadlines

6.1.1 CPU-Side Schedulers

For the CPU-side schedulers, RR, and LAX, Figure 6 plots

the number of jobs successfully offloaded to the GPU for

each arrival rate, normalized to RR. In general, most sched-

ulers do well for the lower arrival rates, where contention is

low. At the high job arrival rate, contention increases, and all

schedulers start missing more deadlines.

RR: As expected, RR does not do very well because it

schedules jobs in deadline-blind fashion. However, for few

kernel benchmarks (IPV6, CUCKOO, GMM, and STEM),

which also have equal job sizes, RR does better, especially at

higher arrival rates, because a new job will sometimes be cho-

sen to run soon if RR is near the end of the queue when the

job is added, reducing queuing delay. Although this also oc-

curs for the jobs with many kernels, since these jobs may

have inter-kernel dependency chains, the benefit is smaller.

BAT: BAT dynamically combines kernels in a batch. When

jobs arrive simultaneously, and are executing the same ker-

nel, this significantly improves efficiency. However, BAT

executes these kernels in a lock-step manner and is not aware

of the job’s deadlines. As a result, BAT performs poorly for

many of these latency-sensitive workloads, especially as con-

tention increases. Overall, BAT completes a geomean of 23%

fewer jobs than RR by their deadlines.

BAY: BAY generally outperforms deadline-blind schedulers

like RR and BAT by effectively predicting the execution time

of jobs and using its QoS headroom calculations to control

the number of concurrent jobs. However, BAY’s 50 µs pre-

diction overhead (Section 5.1) prevents it from completing

any IPV6 jobs by their 40 µs deadlines – which significantly

decreases BAY’s overall performance such that RR and BAY

complete the same geomean number of jobs by deadline. Oth-

erwise, BAY is the top performing CPU-side scheduler for

latency-sensitive workloads. Compared to LAX, the host-de-

vice and prediction overheads hamper BAY’s ability to dy-

namically respond, especially at the high arrival rate for ap-

plications with many kernels, where LAX’s accurate queuing

delay estimate and increased responsiveness help it complete

a geomean 3.1X more jobs than BAY by their deadlines.

PRO: PRO leverages offline profiling to infer the QoS of

kernels, which reduces prediction overhead compared to

BAY. However, since PRO focuses on co-scheduling

memory- and compute-intensive workloads, it suffers with

the purely latency-sensitive workloads we are studying. As a

result, it only completes a geomean of 1.02X more jobs by

their deadlines than RR. As contention increases, PRO espe-

cially suffers for LSTM, GRU, and GMM, where the in-

creased contention exacerbates its focus on co-scheduling.

LAX: LAX completes a geomean of 1.7X, 3.1X, and 4.2X

more jobs by their deadlines compared to RR, respectively,

for the low, medium, and high arrival rates. Unlike other

schedulers, LAX utilizes the laxity of jobs, which increases

the number of medium and large size jobs it can complete by

their deadlines, especially as contention increases. Addition-

ally, extending the CP helps LAX adjust more quickly and

accurately to dynamically changing conditions. Finally,

LAX’s accurate queuing delay model helps it avoid oversub-

scription. Thus, the combination of accurate queuing delay

modeling, rapid, accurate responsiveness, and laxity allow

LAX to significantly outperform the CPU-side schedulers.

 Overall, LAX significantly outperforms state-of-the-art

CPU-side schedulers for both many- and few-kernel work-

loads. Although some of these schedulers also model job

runtime or utilize QoS calculations to avoid oversubscription,

LAX’s combination of laxity, rapid responsiveness, and ac-

curate queuing delay modeling help it successfully offload

more jobs, especially for jobs with fewer kernels and dead-

lines < 1ms. We focus on the high arrival rate since it magni-

fies the differences between the schedulers.

6.1.2 Extending the Command Processor Schedulers

For each scheduler that extends the CP (Section 5), Figure

7 compares the number of jobs completed by their deadlines.

SJF and SRF: SJF and SRF greedily schedule kernels from

the shortest jobs (e.g., RNN jobs with the shortest sequence

lengths). As a result, SJF and SRF complete 2.46X and 2.54X

more jobs by geomean, respectively, over RR at the highest

job arrival rate. However, SJF and SRF perform poorly for

benchmarks with fewer kernels per job because all jobs have

the same input size. This causes SJF and SRF to default to

first-come-first-serve (FCFS) order, so queuing delay domi-

nates for these applications. Nevertheless, exploiting runtime

Figure 7: Jobs completed by their deadlines at the high job ar-

rival rate, for schedulers that extend the CP, normalized to RR.

0

5

10

15

20

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

m
p

le
te

d
 jo

b
s

RR MLFQ SJF SRF LJF PREMA EDF LAX

10

information allows SJF and SRF to complete more jobs than

any other schedulers beside LAX. Moreover, compared to the

CPU-side schedulers, extending the CP allows SJF and

SRF’s to improve performance over BAY, the top perform-

ing CPU-side scheduler, by 1.6X at the highest arrival rate.

MLFQ: MLFQ performs poorly – only geomean 0.85X jobs

complete by their deadlines compared to RR. For both many-

and few-kernel jobs like RNNs, CUCKOO, and IPV6, MLFQ

completes relatively few jobs because once long-running jobs

get promoted back to the higher priority queue, they take up

high priority resources even after their deadline [67]. How-

ever, in GMM and STEM, deprioritizing jobs long running

jobs (e.g., from queuing delay), schedules newer jobs sooner.

EDF: By greedily scheduling the job with the next deadline,

EDF completes geomean 1.5X more jobs than RR. However,

EDF performs poorly for jobs with uniform deadlines and

varying lengths (e.g., the RNNs). LAX uses the work remain-

ing in jobs to dynamically adjust job priorities and complete

2.9X more jobs by their deadlines. Thus, by considering both

remaining work and job deadline, LAX outperforms EDF,

which only considers job deadline.

LJF: Compared to RR, LJF completes 1.24X more jobs by

their deadlines because it reorders jobs and schedules the

longest jobs (e.g., RNN jobs with many kernels and long se-

quence lengths) first. Although this allows some longer jobs

to complete by the deadline, in general LJF does not perform

well because it sacrifices the smaller jobs to complete longer

ones (for jobs like the RNNs with different sized jobs).

PREMA: PREMA’s user-defined priorities and slowdown

calculations help it complete geomean 2.2X more jobs than

RR. PREMA performs particularly well for the low-latency

(250 µs) jobs, like STEM. However, overall LAX completes

a geomean 2.0X more jobs than PREMA because LAX pre-

dictively uses WG completion and queuing delay estimates

to make more accurate predictions, while PREMA reactively

predicts based on feedback from running jobs.

 Overall, extending the CP can significantly improve the

number of jobs that meet their real-time deadlines versus

CPU-side schedulers, especially for CP schedulers that are

able to predict the remaining runtime or amount of work.

However, these advantages alone are insufficient: LAX com-

pletes a geomean of 1.7X more jobs by their deadlines than

SJF and SRF (the next highest performing CP schedulers) be-

cause it also utilizes laxity and an accurate queuing delay

model to better schedule the jobs. LAX outperforms all other

schedulers except on STEM, indicating that a hybrid solution

which combines elements of LAX and PREMA could be in-

teresting future work. However, this may complicate the de-

sign for relatively small gain, since LAX also outperforms

PREMA in terms of energy (Section 6.4), throughput (Sec-

tion 6.5) and tail latency (Section 6.5).

6.1.3 Is CPU-Side LAX Scheduling Sufficient?

 Figure 8 compares the number of jobs completed by their

deadlines for the three laxity-aware schedulers. Although

LAX-SW suffers from host-device overheads like BAT,

BAY, and PRO, and is neither obtains nor rapidly responds

to GPU information as quickly as the CP schedulers, it still

performs well. BAY, the top performing CPU-side scheduler

(Figure 6), outperforms LAX-SW for jobs with many kernels

and deadlines > 1 ms (GMM and the RNNs) by 26%. How-

ever, for the jobs with fewer kernels and deadlines < 1 ms

(IPV6, CUCKOO, and STEM), LAX-SW successfully of-

floads significantly more jobs due to its more accurate queu-

ing delay model. Overall, LAX-SW completes geomean 1.8X

more jobs by their deadlines than BAY. Thus, LAX-SW im-

proves on the state-of-the-art even without hardware support.

 LAX-CPU and LAX successfully offload 1.5X and 1.7X

more jobs, respectively, than LAX-SW. Interestingly, LAX-

CPU, where applications use a user-level API to dynamically

adjust job priorities, provides most of LAX’s benefits. Over-

all, LAX completes a geomean 1.1X more jobs than LAX-

CPU, because it responds more rapidly and has access to

higher fidelity information. Thus, to obtain all the benefits of

laxity-aware scheduling, extending the CP is necessary, alt-

hough API changes can provide most of the benefits.

6.2 Scheduling Effectiveness

 To measure how efficiently the schedulers utilized GPU re-

sources, Figure 9 plots the percentage of the WGs completed

that are part of jobs that meet the deadline. This metric shows

how effective the schedulers were at identifying and perform-

Figure 8: Jobs completed by their deadlines over different lax-

ity-aware implementations, normalized to LAX-SW.

0

1

2

3

4

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

m
p

le
te

d
 jo

b
s

LAX-SW LAX-CPU LAX

(a) CPU-side schedulers, RR, and LAX

(b) Schedulers that extend CP

Figure 9: Percentage of completed WGs from jobs that meet

their deadlines at the high job arrival rate.

0%

20%

40%

60%

80%

100%

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

P
e

rc
en

ta
ge

 o
f

ex
ec

u
te

d

W
G

s
in

 c
o

m
p

le
te

d
 jo

b
s

RR BAT BAY PRO LAX

0%

20%

40%

60%

80%

100%

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

P
e

rc
en

ta
ge

 o
f

ex
ec

u
te

d

W
G

s
in

 c
o

m
p

le
te

d
 jo

b
s

RR MLFQ SJF SRF LJF PREMA EDF LAX

11

ing useful work. Unsurprisingly, the deadline-blind sched-

ulers (RR, BAT) waste a geomean of 67% - 71% of their re-

sources on jobs that will not make the deadline, reinforcing

their poor performance in Section 6.1.1. BAY’s QoS predic-

tion model reduces contentions and wastes fewer compute re-

sources (27% geomean). Finally, PRO wastes geomean 65%

of its effort on jobs that cannot make their deadlines. In par-

ticular, PRO struggles with the RNNs. PRO has conservative

QoS estimates that do not consider overlapping kernels.

 Since SJF and SRF issue small jobs first, they waste less

work than deadline-blind schedulers (only 41% and 38%, re-

spectively). Intuitively, since LJF schedules large jobs first,

which are less likely to be completed, LJF wastes more work

(56% at the highest job arrival rate). LAX’s queuing delay

model helps it waste the least work of all schedulers – a ge-

omean 22% of compute resources.

6.3 Execution Time Prediction & Priority Over Time

To examine how well LAX’s execution time predictions

track over time, Figure 10 plots the the predicted job execu-

tion time and the priority of a sample job versus time for each

of the 4 RNN workloads. The dashed red line is the job’s ac-

tual execution time (i.e., time the job is in the running state,

where its WGs were actively being executed). The x-axis in-

dicates the duration time of the job and the endpoint of the x-

axis shows the job’s actual completion time (i.e., time in

ready and running). Initially, the LSTM job’s priority stays

relatively steady until its laxity starts to decrease. For the Hy-

brid RNN (d), which is more computationally intense, the

job’s priority starts off very low, then increases toward P0 as

the job gets closer to the deadline, finishing the job just before

its 7ms deadline. This shows that LAX successfully deprior-

itizes jobs when they still have plenty of slack, then correctly

Figure 10: LAX’s Job Time and Priority Prediction. P0 is the

highest priority. Prediction has a mean absolute error of 8%.

0

10

20

0

2

4

0.
00

0.
21

0.
41

0.
62

0.
82

1.
03

1.
24

1.
44

1.
65

1.
86

2.
06

2.
26

2.
46

2.
67

2.
88

3.
08

3.
29

3.
51

3.
71

3.
92

4.
13

4.
35

4.
55 P

ri
o

ri
ty

 L
ev

el

P
re

d
ic

ti
o

n
 t

im
e

(m
s)

(a) LSTM

prediction time priority

True completed time 2.47 ms

0

5

10

15

0

1

2

3

4

0.
00

0.
21

0.
41

0.
62

0.
82

1.
02

1.
23

1.
44

1.
64

1.
84

2.
06

2.
26

2.
48

2.
68

2.
88

3.
08

3.
29

3.
50

3.
70

P
ri

o
ri

ty
 L

ev
el

P
re

d
ic

ti
o

n
 t

im
e

(m
s)

(b) GRU

True completed time 2.2 ms

0

5

10

15

0
1
2
3
4
5

0.
00

0.
29

0.
58

0.
81

1.
02

1.
26

1.
47

1.
67

1.
88

2.
10

2.
34

2.
63

2.
84

3.
07

3.
30

3.
53

3.
76

4.
05

4.
27

P
ri

o
ri

ty
 L

ev
el

P
re

d
ic

ti
o

n
 t

im
e

(m
s)

(c) VAN

True completed time 3.2 ms

0
2
4
6
8
10

0

1

2

3

4

0.
00

0.
35

0.
68

1.
02

1.
34

1.
71

2.
07

2.
42

2.
76

3.
12

3.
46

3.
81

4.
16

4.
51

4.
84

5.
17

5.
54

5.
89

6.
20

P
ri

o
ri

ty
 L

ev
el

P
re

d
ic

ti
o

n
 t

im
e

(m
s)

(d) Hybrid
Time (ms)

True completed time 2.5 ms

Table 5: The job throughput, latency, and energy.

 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX

LSTM 511 419 458 2651 465 372 2883 3069 1302 1209 3317

GRU 912 700 775 2828 775 1551 3466 3558 2463 1870 3859

VAN 729 515 750 2574 987 472 2832 2960 1416 1158 3226

HYBRID 85 43 85 1147 85 766 1277 1702 511 340 1757

IPV6 13158 13816 11842 0 13816 13158 13158 13158 12500 13157 23953

CUCKOO 289 289 276 651 295 289 289 289 289 289 831

GMM 2242 2841 2242 2446 2242 2242 2242 2242 1921 2038 4646

STEM 3937 3937 2624 1969 2624 3937 3937 3937 23622 3937 20954

(a) Successful job throughput (# of successful jobs per second)
 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX

LSTM 47.7 38.2 51.9 21.4 6.7 50.1 46.4 46.3 43.2 37.8 6.0

GRU 35.1 25.6 37.9 20.4 6.5 36.9 33.7 33.4 27.6 25.7 6.5

VAN 43.9 34.2 38.7 9.4 7.0 47.0 43.6 42.9 38.7 34.9 6.6

HYBRID 84.5 75.7 88.4 20.9 2.4 85.7 81.9 83.9 83.7 75.6 7.2

IPV6 0.2 0.2 0.2 0.0 0.4 0.2 0.2 0.2 0.2 0.2 0.04

CUCKOO 9.7 9.0 9.2 1.0 1.3 9.2 9.2 9.2 9.4 9.2 4.5

GMM 41.5 42.3 42.2 3.3 1.8 42.2 42.2 42.2 40.2 42.3 2.8

STEM 3.1 3.1 3.2 0.3 0.3 3.1 3.1 3.1 4.8 3.1 0.5

(b) 99-percentile job latency (ms)
 RR MLFQ BAT BAY PRO LJF SJF SRF PREMA EDF LAX

LSTM 1.35 1.80 1.47 0.08 0.08 2.32 0.26 0.25 0.58 0.62 0.08

GRU 0.58 0.78 0.69 0.07 0.06 1.30 0.21 0.21 0.43 0.53 0.08

VAN 0.72 0.96 0.90 0.07 0.08 1.30 0.21 0.21 0.43 0.53 0.08

HYBRID 15.4 31.19 15.39 0.21 0.36 1.65 0.89 0.74 2.53 3.94 0.15

IPV6 0.014 0.016 0.014 0.00 0.014 0.014 0.014 0.014 0.014 0.014 0.007

CUCKOO 0.78 0.78 1.04 0.05 0.05 0.79 0.79 0.79 0.79 1.05 0.12

GMM 2.35 1.62 2.78 0.14 0.20 2.55 2.55 2.52 2.75 3.13 0.21

STEM 0.12 0.12 0.16 0.011 0.009 0.08 0.08 0.08 0.21 0.12 0.008

(c) Energy rate (consumed energy over # of successful jobs) (mJ)

12

prioritizes them once their slack is small. Additionally,

LAX’s execution time prediction tracks very closely to its ac-

tual time in the running state. To varying degrees, this trend

holds for the other RNNs in (b) and (c) as well. Overall, these

results show that LAX effectively varies the dynamic priority

of these workloads and tracks the slack effectively, even

when contention is high.

6.4 Energy Consumption

Table 5 compares the schedulers normalized energy con-

sumption per successful job. In general, LAX provides com-

parable or better energy consumption relative to most CPU-

side schemes (0.9X – 13.0X geomean less energy) and sched-

ulers that extend the CP (4.3X – 13.2X geomean less energy).

LAX outperforms all schedulers in this regard except for

BAY (10% less energy per job than LAX, respectively).

However, BAY and PRO are overly conservative and do not

accept larger jobs that consume more energy, whereas LAX

completes many more small and large jobs (Section 6.1.1).

6.5 Throughput and 99-percentile Tail Latency

Table 5 also shows the scheduler’s throughput and 99-per-

centile tail latency. Overall, LAX provides a better blend of

throughput and tail latency. LAX has better or comparable

tail latency than CPU-side schemes (0.8X-7.2X geomean

faster) and has geomean 1.25X-7.2X better throughput.

Moreover, LAX’s throughput is 1.1X-8.9X better than the CP

schedulers and has 5.6X–7.3X better tail latency. BAY and

PRO provide better throughput than LAX – their queueing

models avoid offloading jobs that are unlikely to be com-

pleted by their deadlines. However, PRO and BAY complete

far fewer jobs by their deadlines than LAX (Section 6.1.1).

7 Related Work

Improving Application Latency on Accelerators: Table 6

compares LAX to related work across several key metrics.

Recent work optimized GPUs and accelerators for latency-

sensitive applications like ML algorithms. At the architecture

level, these optimizations include distributing and pipelining

RNNs across FPGAs [2], compressing weights [6], increas-

ing batch size and adding special purpose functional units [3],

designing custom accelerators from domain-specific lan-

guages to improve memory access latency [68] [69][78], and

moving shared weights on-chip [25]-[27]. At the software

and system levels, prior work preemptively schedules kernels

[56]-[59], increases data reuse [31], dynamically combines

same-sized RNN cells [28], or uses persistence [27][55]. Alt-

hough these solutions provide some of LAX’s features, they

focus on different problems.

QoS or Priority-Aware Scheduling Policies: Recent work

applied QoS and prioritization to GPUs. The most relevant

related work is Baymax [54], Prophet [53], and PREMA [79].

Baymax pre-trains regression models to predict job execution

time, then uses its predictions to adjust job priorities to pre-

vent latency-sensitive jobs from missing QoS targets. Prophet

[53] uses offline profiling and prediction models to co-locate

kernels and improve GPU utilization and QoS. Wang et al.

measure the GPU’s IPC to provision GPU resources and meet

QoS targets [60]. Although this work provides some of

LAX’s features, it relies on software-only, CPU-side sched-

ulers, whereas LAX extends the GPU’s CP to better respond

to dynamic changes in behavior and avoid host-device over-

heads. PREMA [79] uses user priorities and slowdown cal-

culations to estimate execution time, but focuses on single

jobs and suffers from preemption overhead. Other work adds

QoS support at the memory controller [67][68], OS- or hy-

pervisor-level scheduling [87]-[90], or uses similar profiling

and prediction mechanisms to BAY, PRO, or PREMA [82]-

[86][93]. Thus, LAX’s provides similar benefits over them.

Real-time Scheduling: Embedded and real-time systems

have also utilized laxity [46], and prior solutions use laxity

on CPUs [33]-[36][74][75]. Others use prioritization on

GPUs [37]-[41]. EVDZL applies laxity to mobile GPUs, but

assumes offline profiling and oracular knowledge, unlike

LAX which uses dynamic, online information to determine

what jobs to schedule [94]. Other work preempts lower pri-

ority kernels in order to execute higher priority kernels

[56][59]. However, preemption schemes are usually guided

by the operating system and have high overhead on GPUs due

to their amount of context state [56]-[58]. Furthermore, com-

munication latency between the OS and GPU makes fine-

grained updates difficult. In comparison, as shown in Table

6, LAX dynamically adjusts job priorities. Prior CPU-side

work such as backfilling also exploits similar ideas [75], in-

cluding predicting job runtime based different job’s runtimes

[74]. Although these CPU-side ideas utilize similar underly-

ing concepts, they suffer from the same inefficiencies as other

CPU-centric solutions.

Modern GPUs allow programmers to provide limited prior-

ity information for jobs in different queues [15][16]. How-

ever, this information is static and associated with an individ-

ual kernel, thus the scheduler cannot determine how its prior-

ity relates to the global situation. LAX mitigates these issues

Table 6: Comparing LAX with other prior work.

B
a
y
m

a
x
 [

5
4

]

P
ro

p
h

et
 [

5
3

]

B
a
tc

h
M

a
k

er
 [

2
8

]

T
im

eG
ra

p
h

 [
4

0
]

G
P

U
S

y
n

c
[4

1
]

B
ra

in
W

a
v
e

[2
]

E
IE

 [
6

]

T
P

U
 [

3
]

G
P

U
 P

re
em

p
ti

o
n

/

R
ee

x
ec

u
ti

o
n

 [
5

6
]-

[5
9

]

P
R

E
M

A
 [

7
9

]

L
A

X

Deadline awareness

Estimates job’s

execution time

Frequent job

priority updates

Improve utilization

Improve latency

Concurrent execution

Avoid host communication

Avoid preemption

overhead

Integrated GPU scheduler

13

by transparently enhancing the queue scheduler to dynami-

cally change job priorities based on deadlines.

8 Conclusion

To address the inefficiency of executing latency-sensitive

workloads on GPU, we propose a new kernel scheduler,

LAX. By tracking the WG completion rates and monitoring

the queuing delay, LAX accurately estimates the overall ex-

ecution of individual latency-sensitive jobs. Our results show

that LAX completes a geomean of 1.7X-5.0X more jobs by

their deadlines compared to ten GPU queue schedulers, while

also having the better combination of both energy and perfor-

mance, as well as throughput and 99-percentile tail latency.

Acknowledgment

The authors would like to thank Sooraj Puthoor and Michael

LeBeane for their contributions to gem5 command processor

model used in our evaluation. This work was supported, in

part, by NSF CCF #1910924 and MOST 109-2222-E-009-

009-MY2.

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

References
[1] A. Jain, et al. Gist: Efficient Data Encoding for Deep Neural Network

Training. In ISCA, pp. 776-789, 2018.

[2] J. Fowers, et al. A Configurable Cloud-Scale DNN Processor for Real-
Time AI. In ISCA, pp. 1- 14, 2018.

[3] N. P. Jouppi, et al. In-Datacenter Performance Analysis of a Tensor
Processing Unit, in ISCA, pp. 1-12, 2017.

[4] J. Yu, et al. Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism. In ISCA, pp. 548-560, 2017.

[5] J. Albericio, et al. Cnvlutin: ineffectual-neuron-free deep neural
network computing. In ISCA, pp. 1-13, 2016.

[6] S. Han, et al. EIE: efficient inference engine on compressed deep
neural network. In ISCA, pp. 243-254, 2016.

[7] K. Hazelwood, et al. Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective. In HPCA, pp. 620-629, 2018,.

[8] D. Britz, et al. Massive Exploration of Neural Machine Translation
Architectures, in EMNLP, pp. 1442-1451, 2017.

[9] Y. Wu, et al. “Google's Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” arXiv preprint
arXiv: 1609.08144, 2016.

[10] D. Amodei, et al. “Deep speech 2: end-to-end speech recognition in
English and mandarin.” In ICML, pp. 173-182, 2016.

[11] A. Hannun, et al. “Deep Speech: Scaling up end-to-end speech
recognition,” arXiv preprint arXiv: 1412:5567, 2014.

[12] S. Narang. DeepBench. https://svail.github.io/DeepBench/. 2016.

[13] S. Narang and G. Diamos. An update to DeepBench with a focus on
deep learning inference. https://svail.github.io/DeepBench-update/.
2017.

[14] J. Khan, et al. “MIOpen: An Open Source Library For Deep Learning
Primitives”, arXiv preprint arXiv: 1910.00078, 2019.

[15] NVIDIA, CUDA Stream Management.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs
/online/group__CUDART__STREAM.html, 2018.

[16] J. Luitjens. CUDA Streams: Best Practices and Common Pitfalls. In
GTC, 2014.

[17] HIP: Heterogeneous-computing Interface for Portability.
https://github.com/ROCm-Developer-Tools/HIP/.

[18] AMD. It’s HIP to be Open. https://www.amd.com/Documents/HIP-
Datasheet.pdf.

[19] AMD. rocBLAS library document. https://rocm-
documentation.readthedocs.io/en/latest/ROCm_Tools/rocblas.html.

[20] N. L. Binkert, et al: The gem5 simulator. SIGARCH Computer
Architecture News 39(2): pp. 1-7, 2011.

[21] AMD Radeon Technology Group. Radeon’s next-generation Vega
architecture. https://www.techpowerup.com/gpu-specs/docs/amd-
vega-architecture.pdf, November 2017.

[22] AMD. AMD Graphics Core Next (GCN) Architecture.
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-
architecture.pdf, June 2012.

[23] AMD. Graphics Core Next Architecture, Generation 3.
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_In
struction_Set_Architecture_rev1.1.pdf. August, 2016.

[24] J. Appleyard, et al. “Optimizing Performance of Recurrent Neural
Networks on GPUs,” arXiv preprint arXiv: 1604.01946, 2016.

[25] S. Narang, et al. Exploiting Sparsity in Recurrent Neural Networks, in
ICLR, 2017.

[26] F. Zhu, et al. Sparse Persistent RNNs: Squeezeing Large Recurrent
Neural Networks On-Chip, in ICLR, 2018.

[27] G. Diamos, et al. Persistent RNNs: Stashing Recurrent Weights On-
Chip. In ICML, pp. 2024-2033, 2016.

[28] P. Gao, et al. Low latency RNN inference with cellular batching,
in EuroSys, pp. 1-15, 2018.

[29] A. Gutierrez, et al. Lost in Abstraction: Pitfalls of Analyzing GPUs at
the Intermediate Language Level, in HPCA, pp. 608-619, 2018.

[30] J. D. C. Little and S. C. Graves, (2008) Little's Law. In: Building
Intuition. International Series in Operations Research & Management
Science, vol 115, pp 81-100.

[31] M. Zhang, et al. DeepCPU: serving RNN-based deep learning models
10x faster, in USENIX ATC, pp. 951-965, 2018.

[32] S. Hochreiter and J. Schmidhuber. "Long short-term memory." Neural
computation 9, no. 8 (1997): 1735-1780.

[33] C. Laung Liu and J. W. Layland. "Scheduling algorithms for
multiprogramming in a hard-real-time environment." JACM, vol. 20,
no. 1, pp. 46-61, 1973.

[34] S. K. Baruah and J. R. Haritsa. "Scheduling for overload in real-time
systems." IEEE TOCS, vol. 46, no. 9, pp. 1034-1039, 1997.

[35] K .S. Hong and J.T. Leung, On-line scheduling of real-time tasks. IEEE
TOCS, vol. 41, no. 10, pp.1326-1331, 1992.

[36] A. K. Mok and D. Chen. "A multiframe model for real-time
tasks." IEEE TOSE, vol. 23, no. 10, pp. 635-645, 1997.

[37] U. Verner, et al, Processing data streams with hard real-time constraints
on heterogeneous systems, in ICS, pp. 120-129, 2011.

[38] K. Sajjapongse, et al. A preemption-based runtime to efficiently
schedule multi-process applications on heterogeneous clusters with
GPUs, in HDPC, pp. 179-190, 2013.

[39] H. Lee, et al. GPU-EvR: Run-time event based real-time scheduling
framework on GPGPU platform, in DATE, pp. 1-6, 2014.

[40] S. Kato, et al. TimeGraph: GPU scheduling for real-time multi-tasking
environments, in USENIX ATC, pp. 17-30. 2011.

[41] G. A. Elliott, et al. GPUSync: A framework for real-time GPU
management, in RTSS, pp. 33-44, 2013.

[42] K. Cho, et al. On the properties of neural machine translation: Encoder-
decoder approaches. In SSST-8, 2014.

[43] T. Tai Yeh, et al, Pagoda: Fine-grained GPU Resource Virtualization
for Narrow Tasks, in PPoPP, pp 221-234, 2017.

[44] J. Hestness, et al. Beyond human-level accuracy: computational
challenges in deep learning, in PPoPP, pp. 1-14, 2019.

https://svail.github.io/DeepBench/
https://svail.github.io/DeepBench-update/
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__STREAM.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__STREAM.html
https://github.com/ROCm-Developer-Tools/HIP/
https://www.amd.com/Documents/HIP-Datasheet.pdf
https://www.amd.com/Documents/HIP-Datasheet.pdf
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocblas.html
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocblas.html
https://www.techpowerup.com/gpu-specs/docs/amd-vega-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-vega-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf

14

[45] AMD’s Asynchronous Shaders White Paper.
https://developer.amd.com/wordpress/media/2012/10/Asynchronous-
Shaders-White-Paper-FINAL.pdf

[46] A. Ka-Lau Mok. "Fundamental design problems of distributed systems
for the hard-real-time environment." PhD diss., Massachusetts Institute
of Technology, 1983.

[47] M-T Luong and C. D. Manning, Achieving Open Vocabulary Neural
Machine Translation with Hybrid Word-Character Models, in ACL, pp.
1054-1063, 2016.

[48] S. Puthoor, et al. Oversubscribed command queues in GPUs,
in GPGPU-11, pp. 50-60, 2018.

[49] NVIDIA, CUDA HyperQ Example.
http://developer.download.nvidia.com/compute/DevZone/C/html_x64
/6_Advanced/simpleHyperQ/doc/HyperQ.pdf, 2013

[50] J. D. C. Little, Introduction to Little's Law as Viewed on Its 50th
Anniversary, Operations Research, vol. 59, no. 3, pp. 535-535, 2011.

[51] X. Zhang, et al. Towards Memory Friendly Long-Short Term Memory
Networks (LSTMs) on Mobile GPUs, in MICRO, pp. 162-174, 2018.

[52] S. Puthoor, et al. Implementing directed acyclic graphs with the
heterogeneous system architecture, in GPGPU-9, pp. 53-62, 2018.

[53] Q. Chen, et al. Prophet: Precise QoS prediction on non-preemptive
accelerators to improve utilization in warehouse-scale computers, in
ASPLOS, pp. 17-32, 2017.

[54] Q. Chen, et al. Baymax: QoS awareness and increased utilization for
non-preemptive accelerators in warehouse scale computers, in
ASPLOS, pp. 681-696, 2016.

[55] C. Holmes, et al. GRNN: Low-Latency and Scalable RNN Inference
on GPUs, in EuroSys, pp. 1-16, 2019.

[56] B. Wu, et al. Flep: Enabling flexible and efficient preemption on GPUs,
in ASPLOS, pp 483-496, 2017 .

[57] I. Tanasic, et al. Enabling preemptive multiprogramming on GPUs, in
ISCA, pp. 193-204, 2014.

[58] J. Jong Kyu Park, et al. Chimera: Collaborative preemption for
multitasking on a shared GPU, in ASPLOS, pp. 593-606, 2015.

[59] G. Chen, et al. Effisha: A software framework for enabling effficient
preemptive scheduling of GPU, in PPoPP, pp 3-16, 2017.

[60] Z. Wang, et al. Quality of service support for fine-grained sharing on
GPUs, In ISCA, pp. 269-281, 2017.

[61] A. Kalia, et al. Raising the bar for using GPUs in software packet
processing, in NSDI, pp. 409-423. 2015.

[62] Y. Go, et al. APUNet: Revitalizing GPU as Packet Processing
Accelerator, in NSDI, pp. 83-96, 2017.

[63] D. Zhou, et al. Scalable, high performance ethernet forwarding with
cuckooswitch, in CoNEXT, pp. 97-108, 2013.

[64] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems:
Three easy pieces. Chapter 8, Multilevel Feedback Queue, 2018.

[65] Lucida Benchmark Suite: https://github.com/jhauswald/lucida, 2016.

[66] G-Opt Benchmark Suite: https://github.com/efficient/gopt, 2017.

[67] M. Kyu Jeong, et al. A QoS-aware memory controller for dynamically
balancing GPU and CPU bandwidth use in an MPSoC, in DAC, pp.
850-855, 2012.

[68] H. Usui, et al. DASH: Deadline-aware high-performance memory
scheduler for heterogeneous systems with hardware accelerators, in
TACO, vol. 12, issue 4, no. 65, pp. 1-28, 2016.

[69] T. Zhao, et al. Serving Recurrent Neural Networks Efficiently with a
Spatial Accelerator, in SysML, 2019.

[70] J. Hauswald, et al. Sirius: An Open End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse Scale
Computers, in ASPLOS, pp. 1-32, 2015.

[71] S. Zhang, et al. Asynchronous stochastic gradient descent for DNN
training, in ICASPP, pp. 6660-6663, 2013.

[72] R. Kaleem, et al. Stochastic gradient descent on GPUs, in GPGPU-8,
pp. 81-89, 2015.

[73] C. Noel and S. Osindero. "Dogwild! - Distributed Hogwild for CPU &
GPU." In NeurIPS Workshop on Distributed Machine Learning and
Matrix Computations, pp. 693-701. 2014.

[74] D. Tsafrir, et al. Backfilling Using System-Generated Predictions
Rather than User Runtime Estimates, in IEEE TPDS, vol. 18, no. 6, pp.
789-803, 2007.

[75] W. Smith, et al. Using Run-Time Predictions to Estimate Queue Wait
Times and Improve Scheduler Performance, in IPPS/SPDP/JSSPP, pp.
202-219, 1999.

[76] AMD Polaris GPU Architecture White Paper,
https://www.amd.com/system/files/documents/polaris-
whitepaper.pdf, 2017.

[77] J. Alsop, et al. Optimizing GPU Cache Policies for MI Workloads,
short paper at IISWC, November 2019.

[78] L. Ke, et al. RecNMP: Accelerating Personalized Recommendation
with Near-Memory Processing. In ISCA, pp. 790-803, 2020.

[79] Y. Choi and M. Rhu, PREMA: A Predictive Multi-task Scheduling
Algorithm For Preemptible Neural Processing Units, in HPCA, 2020.

[80] A. F. Cuervo and S. Chavis, “Site Reliability Engineering: How
Google Runs Production Systems – Chapter 21: Handling Overload”,
https://landing.google.com/sre/sre-book/chapters/handling-overload/,
(2016).

[81] W. J. Dally, Hardware for Deep Learning, keynote at SysML, February
2018.

[82] W. Zhang, et al. Laius: Towards latency awareness and improved
utilization of spatial multitasking accelerators in datacenters, in ICS,
pp. 58–68, 2019.

[83] P. Aguilera, et al. QoS-aware dynamic resource allocation for spatial-
multitasking GPUs, in ASP-DAC, pp. 726-731, 2014

[84] Z. Wang, et al. Simultaneous Multikernel GPU: Multi-tasking
throughput processors via fine-grained sharing, in HPCA, pp. 358-369,
2016.

[85] X. Long, et al. "Towards OS-level and Device-level Cooperative
Scheduling for Multitasking GPUs," in IEEE Access.

[86] Y. Ukidave, et al. Mystic: Predictive Scheduling for GPU Based Cloud
Servers Using Machine Learning, In IPDPS, pp. 353-362, 2016.

[87] V. Gupta, et al. Pegasus: Coordinated Scheduling for Virtualized
Accelerator-based Systems. In USENIX ATC, 2011.

[88] S. Panneerselvam and M. M. Swift. Rinnegan: Efficient Resource Use.
In PACT, pp. 373–386, 2016.

[89] K. Menychtas, et al. Disengaged Scheduling for Fair, Protected Access
to Fast Computational Accelerators. In ASPLOS, pp. 301–316, 2014.

[90] C. J. Rossbach, et al. 2011. PTask: Operating System Abstractions to
Manage GPUs as Compute Devices. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP). 233–
248.

[91] N. Capodieci, et al. "Deadline-Based Scheduling for GPU with
Preemption Support," 2018 IEEE Real-Time Systems Symposium
(RTSS), 2018, pp. 119-130.

[92] K. T. Malladi, et al. "Towards energy-proportional datacenter memory
with mobile DRAM." In ISCA, pp. 37-48, 2012.

[93] U. Ahmed, et al. "A load balance multi-scheduling model for OpenCL
kernel tasks in an integrated cluster." In Soft Computing (2020).

[94] S. Choi, et al., Earliest Virtual Deadline Zero Laxity Scheduling for
Improved Responsiveness of Mobile GPUs. JSTS, Vol.17, No.1,
February, 2017.

https://developer.amd.com/wordpress/media/2012/10/Asynchronous-Shaders-White-Paper-FINAL.pdf
https://developer.amd.com/wordpress/media/2012/10/Asynchronous-Shaders-White-Paper-FINAL.pdf
http://www.stanford.edu/~lmthang
http://nlp.stanford.edu/~manning/
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://github.com/jhauswald/lucida
https://github.com/efficient/gopt
https://www.amd.com/system/files/documents/polaris-whitepaper.pdf
https://www.amd.com/system/files/documents/polaris-whitepaper.pdf
https://landing.google.com/sre/sre-book/chapters/handling-overload/

