
Implementing Support for Extensible

Power Modeling in gem5

Alex Smith and Matthew D. Sinclair

University of Wisconsin-Madison

sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

Why Is This Important?

2

Faster hardware

Larger Datasets
Improved algorithms

(e.g., deeper DNNs)

Moore’s Law has enabled a virtuous cycle of progress in many fields

… slowing of Moore’s Law also threatens progress

Must co-optimize for performance and power

Modern apps have ravenous (exponential) compute, power needs

What Is Needed?

⇒ Need disruptive, cross-layer changes to meet future sys. reqs.

• Co-design arch, runtime, OS, compiler, network, batch sched.

• For both power and performance (and maybe other factors)

• Increasingly important as transistor sizes shrink

• Typically sim. & modeling tools enable early-stage design
exploration

• Recent work: scalably enable accurate co-design for performance

• But what about power?

• Need credible, open-source modeling infrastructure for both

3

Power Modeling State-of-the-Art
• 5 broad types of power models:

1. Extrapolate first-principal models (e.g., CACTI [Wilton JSSC’96], McPAT [Li MICRO’09])

• Were highly accurate, still widely used … but not updated in 8+ years

2. Empirical measurement-based models (e.g., AccelWattch [Kandiah MICRO’21])

• Difficult to generalize beyond specific devices they are measured on

• Significant accuracy decrease for even minor perturbations

3. ML-based models (e.g., [Kumar MLCAD’19], [Wu HPCA’15])

• Tremendous potential, but accuracy often lacking for previously unseen devices

4. Tools based on tape-out values

• Time consuming, expensive, can only happen later in design process

5. Low-level Spice models

• Accurate, but often require proprietary information, hard to scale to large systems

4

Early-stage power model tools divided, arch-specific, out-of-date

How do we support diverse options in gem5?

What Can We Do?

• Additional Challenges:

• Each power modeling approach may be “best”

• Often certain power models easier to integrate with certain simulators

• Insight: decouple “best” power model from simulator integration

• Don’t pick which power model is the right one

• Abstract away how simulators integrate → plug-and-play power models

• Vision: make power modeling as easy as performance modeling

5

Today’s Focus: Application to gem5 (with McPAT)

Outline

• Motivation

• Background

• Design

• Methodology & Results

• Conclusion & Future Work

6

Current Power Modeling in gem5
• Power modeling API takes user-defined equations as strings

• Simulation statistics passed in as variables (e.g., cache hits)

7

Current Power Modeling in gem5 (Cont.)

8

• Power modeling API takes user-defined equations as strings

• Simulation statistics passed in as variables (e.g., cache hits)

• Limitation: Difficult for users to express complex functions, novel models

• Partial McPAT integration

• But not updated in many years …

• Partial DVFS & thermal support

• Some ISAs have better power support (ARM [Reddy PATMOS‘17])

• But also not updated in many years …

Foundation to build off/learn from

Outline

• Motivation

• Background

• Design

• Methodology & Results

• Conclusion & Future Work

9

Extending Power Modeling API [OSCAR’24]

• How should we extend the
power modeling API?

• Provides users interface
which enables fine-grained
customization

10

Extending the Power Modeling API (Cont.)

• Hierarchical system of components

• Overall power model: sum of components

• Separate simulator, power model

• Break model into 3 Key Pieces:

• Simulator organizes hardware into sub-
groups (e.g., known good models)

• Power model(s): express static, dynamic
power per component

• Interface: pick between power models for
a given component

11

Putting It All Together
• Uses gem5’s Python front-end

• Can change power model choice as easily as cache size (no recompile)

• Richer way to add support, easy to modify

• Could use different power models for different components

• Architecture-agnostic

• New power model “just” provides static, dynamic power values per component

• Simulator handles rest of integration (plug-and-play)

• Can integrate and compare/validate different power models

• Existing power models (e.g., McPAT)

• Pre-built power models

• Custom power models (e.g., in-house)
12

Example: McPAT Power Model

• Integrate McPAT [Li MICRO’09] into our new interface

• Uses first principles for hierarchical modeling

• Models 5 stages (Fetch, Execute, LSU, Memory, Renaming)

• Basic Flow with new interface:

• Grab McPAT activation energies

• Activation energies with gem5 stats → power/component (e.g., BP, RF)

• Hierarchically sum power/component into per stage, then per core, etc.

13

Example: McPAT Power Model

• Integrate McPAT [Li MICRO’09] into our new interface

• Models 5 stages (Fetch, Execute, LSU, Memory, Renaming)

• Uses first principles for hierarchical modeling

• Our interface enables breaking down PM into separate functions!

class O3McPATCPUPowerOn(PowerModelPyFunc):

 def __init__(self, cpu: BaseO3CPU, act_energies):

 ...

 self._fetch = O3McPATFetchPower(cpu, act_energies, 1.0, 0.9)

 self._exec = O3McPATExecutePower(cpu, act_energies, 1.0, 0.76)

 self._lsu = O3McPATLsuPower(cpu, act_energies, 1.0, 0.71)

 self._mmu = O3McPATMmuPower(cpu, act_energies, 1.0, 0.71)

 self._rnu = O3McPATRenamingUnitPower(cpu, act_energies, 1.0)

 def dynamic_power(self):

 return self._fetch.dynamic_power() + ... + self._rnu.dynamic_power()

14

Example: McPAT Power Model (Cont.)

15

• Deeper Dive Into Fetch stage modeling:

class O3McPATDecodePower(McPATPowerModel):

 def __init__(self, cpu, act_energies):

 ...

 def dynamic_power(self):

 return self.to_watts(self.inst_buffer_energy() + self.inst_decode_energy())

 def inst_buffer_energy(self):

 decoded_insts = self.get_stat(decode.decodedInsts)

 return (

 decoded_insts * self.act_energies[“IB”][“Read”]

 + decoded_insts * self.act_energies[“IB”][“Writes”]

)

from mcpat_power_model import McPATPowerModel # Base class defining helper fns

class O3McPATFetchPower(McPATPowerModel):

 def __init__(self, cpu, act_energies, pipeline_act_factor, ifu_act_factor):

 ...

 self._decode = O3McPATDecodePower(cpu, act_energies)

 ...

 def dynamic_power(self):

 return (

 self._decode.dynamic_power()

 + ...

)

Outline

• Motivation

• Background

• Design

• Methodology & Results

• Conclusion & Future Work

16

Methodology

• Benchmarks:

• gem5-Resources (e.g., Hello World)

• a*X + Y (*AX, *AXPY) variants

• CPUs: Timing, Minor, O3 (all 1 core/thread)

• Goal: validate gem5 McPAT integration vs. standalone McPAT

• Use same configuration and statistics as gem5

• Turned off m5ops (ROI markers) due to instr. count variations

17

Preliminary Results

18

Mostly follow expectations (e.g., O3 > Minor > Timing), closely match McPAT!

a*X > a*X + Y?

Ints > FP > DP?

Why Do These Results Occur?

Preliminary Results (Cont.)

• Several unintuitive results … did we integrate McPAT poorly?

• No! Results properly reflect McPAT’s behavior

• Unintuitive results highlight McPAT several flaws:

• Does not model vector instructions

• Does not distinguish between single and double precision

• Takeaways:

• New interface faithfully models McPAT

• Enables rapid prototyping of power models via Python

• Interface allows quality evaluation of known/new power models
19

Outline

• Motivation

• Background

• Design

• Conclusion & Future Work

20

Conclusion
• Future systems need to balance power, performance even more

• But power models are out-of-date, brittle, or proprietary

• Insight: decouple simulator power model integration, power model

• Simulator devs: focus on how power should be integrated …

• … without worrying about specifics of underlying power model

• Potential Benefits:

• Easily support & simple to change between many different power models

• Better maintainability – separate power model and simulator design

• Easier to integrate new power models (e.g., for novel accelerators)

• Integration with mainline gem5 ongoing

• Make power modeling as easy as performance modeling 21

	Slide 1
	Slide 2: Why Is This Important?
	Slide 3: What Is Needed?
	Slide 4: Power Modeling State-of-the-Art
	Slide 5: What Can We Do?
	Slide 6: Outline
	Slide 7: Current Power Modeling in gem5
	Slide 8: Current Power Modeling in gem5 (Cont.)
	Slide 9: Outline
	Slide 10: Extending Power Modeling API [OSCAR’24]
	Slide 11: Extending the Power Modeling API (Cont.)
	Slide 12: Putting It All Together
	Slide 13: Example: McPAT Power Model
	Slide 14: Example: McPAT Power Model
	Slide 15: Example: McPAT Power Model (Cont.)
	Slide 16: Outline
	Slide 17: Methodology
	Slide 18: Preliminary Results
	Slide 19: Preliminary Results (Cont.)
	Slide 20: Outline
	Slide 21: Conclusion

