
gem5 GPU Accuracy Profiler (GAP)

Charles d’Andrea Jamieson, Anushka Chandashekar, Ian McDougall, Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

Prior CPU-GPU Support in gem5

•

▪

▪

▪

▪

▪

2

[Gutierrez et al., HPCA ‘18]

HCC

MEM

CU

Application
source

x86 ELF

GCN3 ELF +
Code metadata

ROCr

HCC
Libraries

ROCk

CP

hardware
models

GPU

ROCt

User space

OS kernel space

Runtime loader loads
GCN3 ELF into memory

CPU

x86
Core

Improving Register Allocation Support

• Simple dependence tracking – only 1 wavefront/CU at a time

• Even if sufficient registers are available for more WFs

• Issue: unrealistic relative to real GPUs

• Solution: add dynamic register allocator [Bruce et al. ISPASS ‘20]

• If enough registers available, schedule additional WFs concurrently/CU

• Potentially can utilize all WF slots depending on register requirements

• More complex, higher performance designs possible

3

Intuition: Dynamic allocator significantly improves accuracy

Dynamic Register Allocator Performance

0

0.5

1

1.5

2

2.5

3

3.5

N
ro

m
a
li
z
e
d

 S
p

e
e
d

u
p

Static Register Allocation Dynamic Register Allocation

Reality: dynamic register allocator 6% worse than simple – why?
4

Issue: Dependence Tracking

• GPU model did not track dependencies well → many stalls

• Result: optimizing register allocation in isolation was insufficient

• Issue: Proprietary GPU dependence checking sols unknown

• Solution: simple, in-order scoreboard

• Bit per register to track use status

• Cleared on instruction completion

• Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls
5

How Does GAP Work?

App(s) to Run
and GAP

configuration

Profiler
Metrics

Run
benchmarks

on gem5

Run each app
on real GPU

gem5-stats.txt

prof-metrics.csv

Using GAP to iteratively refine gem5 GPU models

Match
corresponding

metrics

Per App
Comparison

File

• Issue: need standard approach for evaluating new configurations

• Solution: gem5 GPU Accuracy Profiler (GAP)

How to Run GAP?

• Need three things:

1. Executables to run and their input args (for both GPU & gem5)

2. gem5 settings (i.e., input args to simulator)

3. Metrics to collect from real GPU and gem5

• 1 & 2: configuration input file; 3: separate metrics input file

• To run: python3 gap.py –c <configFile>

Example Setup (Vega 20 GPU)

• Example configuration file (1/2)

• Tells GAP what benchmark(s) to run
#List of executables to collect metrics from

#Include any executable specific arguments

[EXECUTABLES]

bench1 = gem5-resources/src/gpu/square/bin/square

bench2 = BabelStream/hip-stream -n 2 -s 16777216 --triad-only

…

Example Setup (Vega 20 GPU)

• Example configuration file (2/2)

• Settings: tell gem5 what and where to run
[SETTINGS]

gem5 = /path/to/gem5 #path to the directory containing gem5

output_dir = ./outdir #output destination directory

docker_image = gcr.io/gem5-test/gcn-gpu:v21-1 #docker image used for gem5

gem5_script = gem5/configs/example/apu_se.py #gem5 python configuration file

Any flags input to the gem5 config file (optional)

script_flags = --num-compute-units=60 --cu-per-sa=15 --num-gpu-complex=4 --reg-alloc-

policy=dynamic --barriers-per-cu=16 --num-tccs=8 --bw-scalor=8 --num-dirs=64 --mem-

size=16GB --mem-type=HBM_1000_4H_1x64 --vreg-file-size=16384 --sreg-file-size=800

#rocprof input file (specifies profiler behavior and which metrics to collect)

rocprof_metrics = metric.txt

Example Setup (Vega 20 GPU)

• Example GPU metrics file
pmc : FetchSize VALUInsts Wavefronts FlatVMemInsts

pmc : WriteSize SALUInsts LDSInsts VWriteInsts

pmc : MemUnitBussy MemUnitStalled TCC_HIT_sum LDSBankConflict

pmc : LDSInsts TCC_MISS_sum VALUUtilization

• “pmc”: tells rocprof which HW counters to collect per run

• May need multiple lines because limited HW counters on GPU

• rocprof will run application once per “pmc” line on real GPU

Example Results (Vega 20 GPU) (1/2)

• Example Output file (for square):
Metric, rocprof measurement, gem5 measurement, Absolute difference, % Difference

VALUInsts,120,120,0,0.0

FlatVMemInsts,15,268,253,1686.6666666666667

Wavefronts,2048,2048,0,0.0

SALUInsts,19,19,0,0.0

LDSInsts,0,0,0,0

VWriteInsts,0,0,0,0

LDSBankConflict,0,0,0,0

TCC_HIT_sum,184,3002034,3001850,1631440.2173913044

LDSInsts,0,0,0,0

VALUUtilization,99,100,1,1.0101010101010102

TCC_MISS_sum,63401,583906,520505,820.9728553177393

Example Results (Vega 20) (2/2)

0

100

200

300

400

500

600

700

800

900

1000

%
 D

if
fe

re
n

c
e

1687% 1631440%

1%

Stats well correlated (<= 1% difference) for vector ALU stats, but poor for memory

Need to isolate stats for specific components to properly fix this

Next Step: Additional Microbenchmarks

• Goal: isolate behavior of different components

• Via GAP, can refine latencies, bandwidths, etc.

• Current tests (handwritten HIP assembly kernels)

• L1 I$ size & latency

• L1 D$ size, latency, & bandwidth

• LDS (scratchpad) latency & bandwidth

• L2 $ latency & bandwidth

• Main memory latency & bandwidth

• GPU STREAM peak bandwidth

• max FLOPs, Arithmetic latency for various operations, …

Conclusions & Future Work

• Having validated gem5 models is important

• Existing GPU model does not always behave intuitively

• Point solutions insufficient

• Solution: More automated framework (GAP)

• Results: memory system seems to need the most attention

• Potentially can be applied to other, non-GPU models

• Goals:

• Use microbenchmarks to tune for minimum absolute error in GPU model

• Release tool (& GPU improvements) publicly

• Performance regression testing integrated into gem5

14

Backup

15

Frequently Asked Questions (1/2)

• What do I need to use GAP?

• A computer with a (supported in gem5) AMD GPU

• What mode(s) work with GAP?

• Currently only SE mode support

• How does GAP run things on hardware?

• Uses rocprof (AMD’s GPU profiling tool) to run application(s)

• User must specify metric(s) they want to compare (input file to GAP)

• Can add a new metric (hardware counter) by updating input file

• Compares hardware counter results to gem5 stats

• We have created a 1-1 mapping between GPU stats and gem5 stats

Frequently Asked Questions (2/2)

• What is output format?

• CSV

• What if gem5 has a metric rocprof doesn’t (or vice-versa)?

• GAP cannot support these at the moment

• Could gather results, but could not compare them

More GAP Setup Info

• To run GAP user must first specify a few items for gem5

• Must be placed under the [SETTINGS] header

• All fields are required unless specified.

Config File Parameter Description

gem5 Absolute path to gem5 directory

output_dir (optional) Relative path to directory to put output in

docker_image (optional) Docker image to run (e.g., with gem5 GPU model)

gem5_config_script Path to gem5 Python configuration script

script_flags Flags to pass into gem5 configuration script

rocprof_metrics File that specifies metrics rocprof should collect

rocprof_flags (optional) Flags to pass into rocprof

