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Global Datacenter Electricity Consumption

Escalating Power Demands: Datacenter electricity Shift toward heterogeneity: By 2030, accelerated

consumption expected to triple by 2030, with

servers are projected to deliver ~“50% of total

accel-rich servers driving majority of the growth. %» compute while comprising <10% of server stock
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Heterogeneity is the New Norm
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Heterogeneity is the New Norm

Increasingly complex designs!

[
Non-trivial power/perf characteristics
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Designing for Heterogeneity: What is Needed?

Validated, cycle-
level simulation of
all components

Full-system context Cross-layer
including memory observability to
hierarchy and guide early-stage
software stack co-optimization




The Simulation Gap
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The Simulation Gap
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_______________________________ :
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No unified framework for

simulating heterogeneous SoCs
within the full-system context




The Simulation Gap

[
Simulator CPU GPU Accelerators FS Support
gem5 (v25) - SOTA v v X v
SALAM X X v X
gem5-SALAM v v v v

This work: unify head of gem5, gem5-SALAM
Enables unified simulation of CPUs, GPUs, and accelerators
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Integration Overview
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Integration Overview
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Integration Overview
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Methodology: Incorporating SALAM Components

LLVMInterface: Enables cycle-level datapath simulation via runtime IR parsing.

Comminterface: Exposes accelerators via memory-mapped registers and programmable
interrupts.

Memory Models (SPMs, DMAs, etc): For low-latency access, data movement, and streaming.
AccCluster: Groups accelerators, local memories, and DMAs into modular subsystems.

Hardware Profile Generator: Extended the toolchain to fully automate the generation of
functional units and instruction timing models from user-defined profiles.

Cacti-SALAM Power Models: Modernized the framework to support energy and timing
estimation via config files for SPMs
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Methodology: Refactoring and Aligning Interfaces

SimObject Alignment: Refactored accelerator classes to conform with gem5’s latest SimObject
conventions, ensuring proper initialization and parameter declaration structures.

Type-safety Fixes: Replaced unsafe pointer casts in LLVM instruction simulation with intermediate
32-bit variables. This resolved array bounds and strict aliasing warnings during bitcasting.

Latency Generation Standardization: Migrated custom random latency utilities to gem5’s
standardized random number generation framework for reproducibility and consistency.

Address Range Corrections: Fixed off-by-one errors in address range definitions for scratchpad
and register bank modules to follow gem5’s inclusive-exclusive address semantics.

Environment and ISA Configuration Updates: Updated build environment handling to align with
gemb’s latest ISA-specific configuration mechanism, resolving prior compatibility issues.

Build System Integration for LLVM: Added dynamic LLVM configuration via llvm-config to gem5’s
SCons build system, enabling seamless compilation and linking for datapath simulation
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Methodology: Validating Functional Equivalence

 Validated outputs and confirmed functional equivalence
* Ensured compliance with gem5’s pre-commit and full regression test suite

» Adapted SALAM’s system validation tests; cross-validated outputs against baseline to
confirm functional equivalence
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The Integrated Framework: What it Enables

« Broader heterogeneity studies

AccCluster
e Co-simulate CPUs, GPUs, and custom accelerators. Host System
o ‘ . U g -+ Acc | | Acc | | Acc | | Acc modeled in gem5
* Realistic modeling of heterogeneous systems with | ETTR ETTT (CPUs, GPUs)

diverse compute elements and interactions.

e

« System-level exploration

Commlnterface

e Compare static vs dynamic accelerator scheduling,
shared vs private local memories.

Clock u LLVM Runtime Engine

Memory interfaces and Coherence Ports

* Evaluate placement, offloading, and sync strategies.

A 4

« Domain-specific workload support

gem5 Memory Subsystem

e Use built-in benchmark suite for architectural studies.
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* Model and study new workloads of interest.

17



Modeling and Simulating an Accelerator
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Modeling and Simulating an Accelerator

System-level
Description

Host-side Program
that launches and

(AccCluster, DMA, monitors the Acc.
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Modeling and Simulating an Accelerator

System-level
Description

Host-side Program
that launches and

(AccCluster, DMA, monitors the Acc.

SPM)

C/C++ Functional

. LLVM Intermediate Host-Accelerator Simulate using
Description of Acc. . ot y del b . "
System epresentation System Mode run_system.s
m5out/stats.txt
| Cycle counts, cache stats,
DMA traffic etc.
Hardware Profile m5Sout/SALAM_power.csv
Generated at Energy area breakdown if

Cacti-SALAM is run

Design Time

m5out/system.terminal
Console prints from the host

software
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Case Study: Extreme Frequency Scaling

* Prior studies suggest accelerators are viable candidates for many GHz-scale execution

« Advanced cooling enables transient high-frequency operation (“computational sprinting”).
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Case Study: Extreme Frequency Scaling

 Prior studies suggest accelerators are viable candidates for multi GHz-scale execution

« Advanced cooling enables transient high-frequency operation (“computational sprinting”).
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Case Study: Extreme Frequency Scaling

 Prior studies suggest accelerators are viable candidates for multi GHz-scale execution

« Advanced cooling enables transient high-frequency operation (“computational sprinting”).
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Cooling allows for longer

“sprints” — making them
actually beneficial
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Case Study: Extreme Frequency Scaling

 Prior studies suggest accelerators are viable candidates for multi GHz-scale execution

« Advanced cooling enables transient high-frequency operation (“computational sprinting”).
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« Use the integrated framework to evaluate accelerator performance up to 20 GHz
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Methodology

« Limit study to examine upper bound on performance and energy efficiency gains
* Use small test inputs, configured to fit in accelerator scratchpad.

* Isolates compute, eliminating any memory and interconnect bottlenecks

Simulator Changes: Refined timing logic in LLVM Runtime, DMA, and interfaces to enable
sub-cycle event resolution.

Single accelerator instantiated with ARM DerivO3 CPU as host system.

Sweep accelerator frequency from 0.1 to 20 GHz.

Simulate MachSuite kernels to measure:
* Runtime for Performance

* Dynamic Power for Energy Efficiency
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Preliminary Results: Performance

* 0.1 -2 GHz: Perf. is compute-bound, frequency

helps.

e Small input sizes limit utilization for some
benchmarks, reducing observable gains

e 2—20 GHz: Performance plateaus
» Bottlenecks shift to CPU and DMA latency.

« Takeaway: Benefits of frequency scaling can be
limited by both underutilization and system-level

bottlenecks.
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Preliminary Results: Dynamic Power

[
* 0.1 -2 GHz: Power shaped by active time reduction

 Compute-bound kernels: Power decreases as faster
execution shortens active duration; idle time
dominates the average.

* Others: Power stable/slightly rising; active time is non-
negligible.

« 2—20 GHz: Power converges across all benchmarks

* Active time becomes negligible, idle state dominates.

« Takeaway: Time-averaged power scaling is limited by
shorter active phases and increasing idle time at
higher frequencies.
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Conclusions and Future Work

Modern and future systems increasingly embracing heterogeneity

But tools are struggling to keep pace with the needs of these heterogeneous systems
Solution: create unified full-system simulation framework for heterogeneous SoCs
Case Study: high-frequency simulation for accelerators = shows promise
Integrating support into gem5 mainline (on-going)

Benchmark suite expansion
* Add domain-specific workloads of interest to the SALAM resource set

Multi-ISA enablement
* Extend full-system support beyond ARM:

* Route accelerator interrupts through ISA-specific interrupt controllers
* Core-Local Interrupt Controller (CLIC) for RISC-V (working with NKAU)

 Validate boot flow and benchmark functionality for new ISA
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