

Toward Full-System Heterogeneous Simulation: Merging gem5-SALAM with Mainline gem5

Akanksha Chaudhari and Matthew D. Sinclair

University of Wisconsin-Madison

sinclair@cs.wisc.edu

Global Datacenter Electricity Consumption

consumption expected to **triple by 2030**, with accel-rich servers driving majority of the growth.

Shift toward heterogeneity: By 2030, accelerated servers are projected to deliver ~50% of total compute while comprising <10% of server stock

Heterogeneity is the New Norm

AWS Trainium2 NeuronCore-v3

Servers

Intel Meteor Lake Laptops

Apple A15 Bionic **Phones/Tablets**

Heterogeneity is the New Norm

AWS Trainium2 NeuronCore-v3

Servers

Intel Meteor Lake

Laptops

Increasingly complex designs!

Non-trivial power/perf characteristics

Memory-compute co-optimization

Apple A15 Bionic **Phones/Tablets**

Designing for Heterogeneity: What is Needed?

The Simulation Gap

Simulator	CPU	GPU	Accelerators	FS Support
gem5 (v25) - SOTA	√	√	X	✓
SALAM	X	X	✓	X

The Simulation Gap

Simulator	CPU	GPU	Accelerators	FS Support
gem5 (v25) - SOTA	! ✓	√	X	✓
SALAM	X	X	✓	X

No unified framework for simulating heterogeneous SoCs within the full-system context

The Simulation Gap

Simulator	CPU	GPU	Accelerators	FS Support
gem5 (v25) - SOTA	✓	✓	X	√
SALAM	X	X	✓	X
gem5-SALAM	✓	√	✓	√

This work: unify head of gem5, gem5-SALAM Enables unified simulation of CPUs, GPUs, and accelerators

Outline

- Introduction
- Background
- Integration Methodology
- Frequency Scaling Study
- Results and Analysis
- Conclusions and Future Work

gem5 develop-v25

SALAM Accelerator Simulation Models

Incorporating key Accelerator Modeling and Communication Components

Incorporating key Accelerator Modeling and Communication Components

Refactoring and Aligning Interfaces

Incorporating key Accelerator Modeling and Communication Components

Refactoring and Aligning Interfaces

Validating Functional Equivalence

Methodology: Incorporating SALAM Components

- LLVMInterface: Enables cycle-level datapath simulation via runtime IR parsing.
- **Comminterface**: Exposes accelerators via memory-mapped registers and programmable interrupts.
- Memory Models (SPMs, DMAs, etc): For low-latency access, data movement, and streaming.
- AccCluster: Groups accelerators, local memories, and DMAs into modular subsystems.
- Hardware Profile Generator: Extended the toolchain to fully automate the generation of functional units and instruction timing models from user-defined profiles.
- Cacti-SALAM Power Models: Modernized the framework to support energy and timing estimation via config files for SPMs

Methodology: Refactoring and Aligning Interfaces

- **SimObject Alignment:** Refactored accelerator classes to conform with gem5's latest SimObject conventions, ensuring proper initialization and parameter declaration structures.
- **Type-safety Fixes:** Replaced unsafe pointer casts in LLVM instruction simulation with intermediate 32-bit variables. This resolved array bounds and strict aliasing warnings during bitcasting.
- Latency Generation Standardization: Migrated custom random latency utilities to gem5's standardized random number generation framework for reproducibility and consistency.
- Address Range Corrections: Fixed off-by-one errors in address range definitions for scratchpad and register bank modules to follow gem5's inclusive-exclusive address semantics.
- Environment and ISA Configuration Updates: Updated build environment handling to align with gem5's latest ISA-specific configuration mechanism, resolving prior compatibility issues.
- Build System Integration for LLVM: Added dynamic LLVM configuration via llvm-config to gem5's SCons build system, enabling seamless compilation and linking for datapath simulation

Methodology: Validating Functional Equivalence

- Validated outputs and confirmed functional equivalence
 - Ensured compliance with gem5's pre-commit and full regression test suite
 - Adapted SALAM's system validation tests; cross-validated outputs against baseline to confirm functional equivalence

The Integrated Framework: What it Enables

Broader heterogeneity studies

- Co-simulate CPUs, GPUs, and custom accelerators.
- Realistic modeling of heterogeneous systems with diverse compute elements and interactions.

System-level exploration

- Compare static vs dynamic accelerator scheduling, shared vs private local memories.
- Evaluate placement, offloading, and sync strategies.

Domain-specific workload support

- Use built-in benchmark suite for architectural studies.
- Model and study new workloads of interest.

System-level
Description
(AccCluster, DMA,
SPM)

+

C/C++ Functional
Description of Acc.
System

LLVM Intermediate Representation

Hardware Profile
Generated at
Design Time

Host-side Program that launches and monitors the Acc.

Hardware Profile Generated at Design Time

Host-side Program that launches and monitors the Acc.

Host-Accelerator

System Model

Simulate using run_system.sh

m5out/stats.txt Cycle counts, cache stats, DMA traffic etc.

m5out/SALAM power.csv Energy area breakdown if Cacti-SALAM is run

m5out/system.terminal Console prints from the host software 22

Outline

- Introduction
- Background
- Integration Methodology
- Frequency Scaling Study
- Results and Analysis
- Conclusions and Future Work

- Prior studies suggest accelerators are viable candidates for many GHz-scale execution
- Advanced cooling enables transient high-frequency operation ("computational sprinting").

- Prior studies suggest accelerators are viable candidates for multi GHz-scale execution
- Advanced cooling enables transient high-frequency operation ("computational sprinting").

- Prior studies suggest accelerators are viable candidates for multi GHz-scale execution
- Advanced cooling enables transient high-frequency operation ("computational sprinting").

Cooling allows for longer "sprints" – making them actually beneficial

- Prior studies suggest accelerators are viable candidates for multi GHz-scale execution
- Advanced cooling enables transient high-frequency operation ("computational sprinting").

Use the integrated framework to evaluate accelerator performance up to 20 GHz

Methodology

- Limit study to examine upper bound on performance and energy efficiency gains
 - Use small test inputs, configured to fit in accelerator scratchpad.
 - Isolates compute, eliminating any memory and interconnect bottlenecks
- Simulator Changes: Refined timing logic in LLVM Runtime, DMA, and interfaces to enable sub-cycle event resolution.
- Single accelerator instantiated with ARM DerivO3 CPU as host system.
- Sweep accelerator frequency from 0.1 to 20 GHz.
- Simulate MachSuite kernels to measure:
 - Runtime for Performance
 - Dynamic Power for Energy Efficiency

Outline

- Introduction
- Background
- Integration Methodology
- Frequency Scaling Study
- Results and Analysis
- Conclusions and Future Work

Preliminary Results: Performance

- 0.1 2 GHz: Perf. is compute-bound, frequency helps.
 - Small input sizes limit utilization for some benchmarks, reducing observable gains
- 2 20 GHz: Performance plateaus
 - Bottlenecks shift to CPU and DMA latency.
- Takeaway: Benefits of frequency scaling can be limited by both underutilization and system-level bottlenecks.

Preliminary Results: Dynamic Power

- 0.1 − 2 GHz: Power shaped by active time reduction
 - Compute-bound kernels: Power decreases as faster execution shortens active duration; idle time dominates the average.
 - Others: Power stable/slightly rising; active time is nonnegligible.
- 2 20 GHz: Power converges across all benchmarks
 - Active time becomes negligible, idle state dominates.
- Takeaway: Time-averaged power scaling is limited by shorter active phases and increasing idle time at higher frequencies.

Outline

- Introduction
- Background
- Integration Methodology
- Frequency Scaling Study
- Results and Analysis
- Conclusions and Future Work

Conclusions and Future Work

- Modern and future systems increasingly embracing heterogeneity
- But tools are struggling to keep pace with the needs of these heterogeneous systems
- Solution: create unified full-system simulation framework for heterogeneous SoCs
- Case Study: high-frequency simulation for accelerators → shows promise
- Integrating support into gem5 mainline (on-going)
- Benchmark suite expansion
 - Add domain-specific workloads of interest to the SALAM resource set
- Multi-ISA enablement
 - Extend full-system support beyond ARM:
 - Route accelerator interrupts through ISA-specific interrupt controllers
 - Core-Local Interrupt Controller (CLIC) for RISC-V (working with NKAU)
 - Validate boot flow and benchmark functionality for new ISA