
CPElide: Efficient Multi-Chiplet GPU Coherence

1

Preyesh Dalmia*,^, Rajesh Shashi Kumar#,^, and Matthew D. Sinclair^

* NVIDIA #ARM ^University of Wisconsin-Madison

pdalmia@nvidia.com

mailto:pdalmia@wisc.edu

• Introduction

• Motivation

• Contributions

• Background

• Hardware Design for CPElide

• Software Changes for CPElide

• Results and Analysis

• Conclusion

Outline

2

Emerging GPGPU applications

Modern GPU apps often use data sharing, reuse and fine-grained sync

DNN Training Graph Analytics

3

Move to Multi-Chiplets

Main Memory

Command Processor

CU

L1/Scr

CU…

L1/Scr

L2 Cache

Main Memory

…

Command Processor

Chiplet 0 Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet K

CU

L1/Scr

CU…

L2

L1/Scr

CU

L1/Scr

CU…

L2

L1/Scr

L3 Cache

CU CU CU CU

L1/Scr L1/Scr L1/Scr

Key Takeaway: L2 caches have now become private -> Implicit kernel boundary sync impacts them

L1/Scr

4

Why do we care about this?

5

L2
Cache

Inter-kernel Reuse Matters

❑ [HMG] Ren, et al. [HPCA 2020]

• 4-GPU system (4 chiplets each)

• Study impact of existing coherence schemes

• Entire L2 cache is invalidated at sync points

• Perf 29% worse than idealized caching!

0.0

0.5

1.0

1.5

2.0

S
W

Id
e

a
l

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

N
o

-C
a

c
h

in
g

29%

❑ [LADM] Khairy, et al. [Micro 2020]

• Best thread-block management design had a 18%

slowdown relative to a monolithic GPU of same size

• Reason: Inter-kernel locality loss due to implicit global sync

6

❑ [CARVE] Jaleel, et al. [Micro 2018]

• Study Impact of coherence on performance gains in

NUMA-GPU

• Findings: Important to retain data across kernel

boundaries. Losing this inter-kernel shared L2 reuse hurts

performance by 45% across HPC and ML applications in a

NUMA-GPU system

Graph from Ren, et al. [HPCA 2020]

Contributions

❑ Insight: Tracking inter-kernel dependencies inside the Command
Processor (CP) can elide acquire/release at kernel boundaries

• CP has dynamic scheduling information available

• Programmers/compilers can identify mode of access/ranges for data structures

❑ CPElide adds dependency tracking table inside CP

• Leverages information available in CP to conservatively store state of all data
structures accesses for every chiplet

• Up to 39% less execution time (13% avg), 37% less energy (11% avg), 39% less
N/W traffic (14% avg) across GPGPU, ML, graph analytics and HPC apps

• Reprogrammable to account for future trend changes

7

CPElide

Background: Multi-Chip Architecture

❑ Chiplet-based GPUs add additional

level to the mem hierarchy->L3 cache

❑ L2 cache private to a particular chiplet

❑ Access to data in another chiplet’s L2

• inter-chiplet link

• through memory (preceding WB

req)

8

Main Memory

…

Command Processor

Chiplet 0 Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet K

CU

L1/Scr

CU…

L2

L1/Scr

CU

L1/Scr

CU…

L2

L1/Scr

L3 Cache

CUs + L1$ CUs + L1$

CUs + L1$ CUs + L1$

L2$ L2$

L2$L2$

X
B
A
R

X
B
A
R

X
B
A
R

X
B
A
R

H
B
M

L3

L3 L3

L3

H
B
M

H
B
M

H
B
M

CHIPLET 0 CHIPLET 1

CHIPLET 3CHIPLET 2

9

Background: CP

…

Graphics
Queue

…
Stream 0 Stream 1 Stream N

… … …
Compute Queues

Packet Processor

Queue Scheduler

Dispatcher / WG Scheduler

CP Memory

…

…

Compute Units

❑ CP has two primary components

• Packet Processor

• Workgroup (WG) Dispatcher

❑ CP responsible for dispatching WG’s to

CU’s has dynamic scheduling info

❑ CP receives the kernel packet that has

info the starting addr of DS accessed

• It also initialize the RF and extracts

meta data from binary

10

Design: Two Level CP

HBM

L3 Cache

CU

…L1/Scr

Global Command Processor

CU…

L2

L1/Scr

Chiplet 0

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet KLocal CP Local CP Local CP

❑Multi level Command Processor:

• a global CP

• a local CP per chiplet

❑ Local CP operation similar to monolithic

GPU: controls local scheduling decisions

❑ Local CP passes runtime information back

to global CP

❑Global CP decides the distribution of work

across chiplets and also houses CPElide

11

Design: Global CP

CPElide

CPElide Table

12

Design: CPElide

❑ CPElide updated after each kernel launch

• Gets scheduling info from Global CP

• Gets mode/range info from kernel packet

❑ This table has 4 fields per row:

• DS identifier | Addr range(s) per chiplet | Access mode | bit vector
13

L2

Chiplet 1

Compute

Units

Global Memory

HBM

Local CP

L2

Chiplet 2

Compute

Units

Local CP

L2

Chiplet 3

Compute

Units

Local CP

L2

Chiplet 4

Compute

Units

Local CP

Chiplet Coherency Table

Data

Structure

Access

mode

Chiplet Vector

m-chiplet * (2bits/chiplet)

Array A x - y R 01_01_00_00

Array B i - j R/W 10_10_00_00

... chiplet4_c3_c2_c1

Chiplet

Coherency
Table

DMA

Host interface

(eg: PCIe)

Inter-GPU

interface
(eg: xGMI)

Single GPU package

Array A

Global

Command

Processor
(CP)

Array B Array B

Data Structure

States

00
Not

Present

01 Valid

10 Dirty

11 Stale

Address

Range

Array A

NOT

PRESENT

STALE

VALID

+WriteBack DIRTY

ALR

ALW
Invalidate/ALR/

ALW

ALR/
ALW/

Invalidate

Flush/

ARR

Flush/ ALR/

ARR

ARW

Flush/ ARR /

ARW

ALW

ARW

ARR/

ARW

Invalidate

Legend

ALW: Anticipated Local Write
ALR: Anticipated Local Read

ARW: Anticipated Remote Write
ARR: Anticipated Remote Read

Design: CPElide State Diagram

❑ States Not Present(00), Dirty(10), Stale(11), Valid(01)

❑ State represents state of a data structure at the end of incoming kernel

❑ This state is conservative to ensure correctness

❑ State changes are triggered based on current state and access modes/ranges
defined for the DS 14

Design: Range Tracking

Chiplet 0 Chiplet 1 Chiplet 2 Chiplet 3

Elementwise Kernel on Array A (N)

N/4 N/4 N/4 N/4

❑ CPElide can track different

address ranges for the same

DS

❑ Chiplets commonly work on

disjoint sets of data; range

base tracking allows to elide

rel/acq in these cases

❑ Range base tracking also

helps in case of non disjoint

sets e.g. later

❑ Range Based Tracking is

software based still need to

acq/rel complete cache
15

Design: Software Changes

Labeling Access Mode

Programmer/compiler can specify the access mode/range for a data structure before any kernel launch

Labeling Access Mode and Access Ranges

16

Kernel 1

CPElide Example

6

Kernel 1:
Array A [R]

Array B [R/W]

RangeDS Chiplet Vector

A

B
i0-j0 6

RangeDS Chiplet Vector

A

B

Kernel 2:
Array A [R]
Array B [R]

Array C[R/W]

Scheduling

Information

From GCP

Scheduling

Information

From GCP

01_01_00_00

10_10_00_00

01_01_00_00

10_01_00_00

m-n 10_10_00_00C

j0-j1

x0-y0
y0-y1

x0-y0
x1-y1

i0-j’0
j’0-j1

Release for

chiplet 1

generated

CPElide
Control Logic

CPElide
Control Logic

i0 j1
j0

j’0

i0 j1

B

B

Kernel 2

Evaluation Methodology

❑ System Simulated: AMD Radeon VII GPU

❑ Key Metrics: # chiplets: (2,4,6,7), 60 CUs per chiplet, 16 KB L1 Cache per CU, 8

MB L2 cache per chip, Inter-chiplet B/W 768 MB/S, L3 Size 16MB, 16 GB HBM2

❑ Simulation Environment: gem5 v21.1

Evaluated Metrics: performance, network traffic, and energy consumption

❑ Configs: CPElide, Baseline system, HMG [Ren et al. HPCA 2022]

• HMG Directory based cache coherence, keeps track of all sharers [Focus L2]

❑Workloads

• GPGPU benchmark Suite: Rodinia ; HPC: Lulesh, Pennant and HACC

• Graph Analytics Benchmarks: Color , FW and SSSP

• Machine Learning: 2 layer CNN, GRU, LSTM 18

❑ Write Through L2 with sharer tracking

Write Policy01

HMG

❑ Caches both local and remote
accesses

Allocation Policy02

❑ A simple VI protocol, as updates
always propagated to remote node

❑ Generates remote invalidation
traffic in case of eviction or when
some core writes to the block

Coherence Protocol03

CPElide

❑ Write back cache with no sharer tracking

Write Policy01

❑ Caches Local accesses but does not
cache remote accesses

Allocation Policy02

❑ Uses GPU-VIPER coherence
protocol

❑ Retains line in valid when a dirty
line is written back to main
memory

Coherence Protocol03

CPElide VS HMG Design Choices

HC

N
o

rm
al

iz
ed

 S
p

ee
d

-u
p

 (
H

ig
h

er
 is

 b
et

te
r)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
h

o
ts

p
o

t3
D

h
o

ts
p

o
t

p
en

n
an

t

fw

co
lo

r

lu
d

b
ab

el
st

re
am

lu
le

sh

ss
sp

_e
ll

rn
n

4
(g

ru
)

rn
n

16
 (

gr
u

)

sq
u

ar
e

rn
n

4
(l

st
m

)

rn
n

16
 (

ls
tm

)

ga
u

ss
ia

n

H
A

C
C

b
ac

kp
ro

p

b
fs

p
at

h
fi

n
d

er

cn
n

d
w

t2
d

sr
ad

_v
2

n
w

b
tr

ee

av
er

ag
e

Moderate to high inter-kernel reuse with CPElide Low inter-kernel reuse with CPElide

CPElide: 2 Chiplet HMG: 2 Chiplet CPElide: 4 Chiplet HMG: 4 Chiplet CPElide: 6 Chiplet HMG: 6 Chiplet CPElide: 7 Chiplet HMG: 7 Chiplet

Results: Normalized Performance

❑ CPElide outperforms both HMG (19%) and Baseline (13%)

• Able to capture reuse from most apps with moderate-high inter-kernel reuse

• Apps with little/no reuse suffer perf loss with HMG->additional remote traffic from inv

• HMG also does badly for applications with little to no locality in remote traffic
20

Results: Network Traffic

0%

20%

40%

60%

80%

100%

120%

140%

B C H B C H

hotspot3D hotspot pennant fw color lud babelstream lulesh sssp_ell rnn(gru) square rnn(lstm) gaussian HACC backprop bfs pathfinder cnn dwt2d srad_v2 nw btree average

N
o

rm
al

iz
e

d
 T

ra
ff

ic

L1 to L2 traffic Remote traffic L2 to L3 traffic B: Baseline C: CPCoh H: HMG

• HMG higher remote traffic than CPElide/baseline by 23% because of block

invalidations and less reuse in remote traffic

• Due to no data retention baseline has rel. higher L2->L3 traffic over HMG/CPElide

• CPElide > HMG in reducing L2 to L3 traffic, no WT traffic to maintain sharer list

21

Conclusions
❑Multi-chiplets: Add additional level of mem hierarchy L3 cache, making L2 caches

private to chiplets

❑ Implicit Sync at kernel boundaries leads loss of inter-kernel reuse from L2

❑ Insight:

• Tracking producer consumer dependencies can reduce implicit sync penalty

❑ Solution:

• Redesign CP hierarchy: Global CP houses a dependency tracking table

• CPElide leverages runtime scheduling information's and mode/range infor from

s/w to keep track of data state and elide acquires/releases

• Effective solutions for kernel with mod/high inter-kernel use, outperforms

baseline by 13% and state of the art schemes (HMG) by 19%

• Scales well, can be reprogrammed to adapt to changing app trends 22

CPElide

BACKUP

Related Work: HMG Overview

❑ Directory-based cache coherence, keep track of all sharers

❑ Map synchronization scopes to caches: .cta → L1 cache .gpu/.sys →

L2 cache

❑ L1 cache coherence is software-maintained, they mainly focus on the

L2 cache

24

Design choice Differences from CPElide

❑ Write Policy: HMG-> Writethrough, CPElide-> WriteBack

❑ Allocation Policy: HMG-> Cache local & remote , CPElide: Cache only local

❑ Coherence Protocol: HMG-> VI , CPElide: GPU-VIPER

❑ CPElide retains line in valid when a dirty line is written back to main mem

❑ HMG generates remote invalidations in case of eviction or when there is a write

BACKUP SLIDES

Related Work: HMG Overview

GPU GPU

GPU GPU

NV-Switch

GPM GPM

GPM GPM

MCM-GPU

❑ Directory-based cache coherence, keep track of all sharers

❑ Map synchronization scopes to caches: .cta → L1 cache .gpu/.sys → L2 cache

L2 $

GPM (GPU Module)

CU + L1 $

Directory

State Tag Sharers

❑L1 cache coherence is software-maintained, they mainly focus on the

L2 cache
27

CUs + L1$ CUs + L1$

CUs + L1$ CUs + L1$

L2$ L2$

L2$L2$

X
B
A
R

X
B
A
R

X
B
A
R

X
B
A
R

H
B
M

L3

L3 L3

L3

H
B
M

H
B
M

H
B
M

CHIPLET 0 CHIPLET 1

CHIPLET 3CHIPLET 2

	Slide 1
	Slide 2
	Slide 3: Emerging GPGPU applications
	Slide 4: Move to Multi-Chiplets
	Slide 5: Why do we care about this?
	Slide 6: Inter-kernel Reuse Matters
	Slide 7: Contributions
	Slide 8: Background: Multi-Chip Architecture
	Slide 9
	Slide 10: Background: CP
	Slide 11: Design: Two Level CP
	Slide 12: Design: Global CP
	Slide 13: Design: CPElide
	Slide 14: Design: CPElide State Diagram
	Slide 15: Design: Range Tracking
	Slide 16: Design: Software Changes
	Slide 17: CPElide Example
	Slide 18
	Slide 19: CPElide VS HMG Design Choices
	Slide 20: Results: Normalized Performance
	Slide 21: Results: Network Traffic
	Slide 22: Conclusions
	Slide 23: BACKUP
	Slide 24: Related Work: HMG Overview
	Slide 26
	Slide 27: Related Work: HMG Overview
	Slide 28

