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Emerging GPGPU applications

Modern GPU apps often use data sharing, reuse and fine-grained sync

DNN Training Graph Analytics
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Move to Multi-Chiplets
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Key Takeaway: L2 caches  have now become private -> Implicit kernel boundary sync impacts them

L1/Scr
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Why do we care about this?
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Inter-kernel Reuse Matters

❑ [HMG] Ren, et al. [HPCA 2020]

• 4-GPU system (4 chiplets each) 

• Study impact of existing coherence schemes 

• Entire L2 cache is invalidated at sync points

• Perf 29% worse than idealized caching!
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29%

❑ [LADM] Khairy, et al. [Micro 2020]

• Best thread-block management design had a 18% 

slowdown relative to a monolithic GPU of same size

• Reason: Inter-kernel locality loss due to implicit global sync
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❑ [CARVE] Jaleel, et al. [Micro 2018]

• Study Impact of coherence on performance gains in 

NUMA-GPU

• Findings: Important to retain data across kernel 

boundaries. Losing this inter-kernel shared L2 reuse hurts 

performance by 45% across HPC and ML applications in a 

NUMA-GPU system

 

Graph from Ren, et al. [HPCA 2020] 



Contributions 

❑ Insight: Tracking inter-kernel dependencies inside the Command 
Processor (CP) can elide acquire/release at kernel boundaries

• CP has dynamic scheduling information available

• Programmers/compilers can identify mode of access/ranges for data structures

❑ CPElide adds dependency tracking table inside CP

• Leverages information available in CP to conservatively store state of all data 
structures accesses for every chiplet

• Up to 39% less execution time (13% avg), 37% less energy (11% avg), 39% less 
N/W traffic (14% avg) across GPGPU, ML, graph analytics and HPC apps

• Reprogrammable to account for future trend changes
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Background: Multi-Chip Architecture

❑ Chiplet-based GPUs add additional 

level to the mem hierarchy->L3 cache

❑ L2 cache private to a particular chiplet

❑ Access to data in another chiplet’s L2

• inter-chiplet link  

• through memory (preceding WB 

req) 
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Background: CP

…
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Queue
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❑ CP has two primary components 

• Packet Processor

• Workgroup (WG) Dispatcher

❑ CP responsible for dispatching WG’s to 

CU’s has dynamic scheduling info

❑ CP receives the kernel packet that has 

info the starting addr of DS accessed

• It also initialize the RF and extracts 

meta data from binary
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Design: Two Level CP
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❑Multi level Command Processor: 

• a global CP

• a local CP per chiplet

❑ Local CP operation similar to monolithic 

GPU: controls local scheduling decisions

❑ Local CP passes runtime information back 

to global CP

 

❑Global CP decides the distribution of work 

across chiplets and also houses CPElide
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Design: Global CP

CPElide

CPElide Table

12



Design: CPElide

❑ CPElide updated after each kernel launch

• Gets scheduling info from Global CP

• Gets mode/range info from kernel packet

❑ This table has 4 fields per row:

• DS identifier | Addr range(s) per chiplet | Access mode | bit vector
13
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Design: CPElide State Diagram

❑ States Not Present(00), Dirty(10), Stale(11), Valid(01)

❑ State represents state of a data structure at the end of incoming kernel

❑ This state is conservative to ensure correctness

❑ State changes are triggered based on current state and access modes/ranges 
defined for the DS 14



Design: Range Tracking

Chiplet 0 Chiplet 1 Chiplet 2 Chiplet 3

Elementwise Kernel on  Array A (N)

N/4 N/4 N/4 N/4

❑ CPElide can track different 

address ranges for the same 

DS

❑ Chiplets commonly work on 

disjoint sets of data; range 

base tracking allows to elide 

rel/acq in these cases

❑ Range base tracking also 

helps in case of non disjoint 

sets e.g. later

❑ Range Based Tracking is 

software based still need to 

acq/rel complete cache 
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Design: Software Changes 

Labeling Access Mode 

Programmer/compiler can specify the access mode/range for a data structure before any kernel launch

Labeling Access Mode and Access Ranges
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Kernel 1

CPElide Example
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Evaluation Methodology 

❑ System Simulated: AMD Radeon VII GPU 

❑ Key Metrics: # chiplets: (2,4,6,7), 60 CUs per chiplet,  16 KB L1 Cache per CU, 8 

MB L2 cache per chip, Inter-chiplet B/W 768 MB/S, L3 Size 16MB, 16 GB HBM2

❑ Simulation Environment: gem5 v21.1

Evaluated Metrics: performance, network traffic, and energy consumption

❑ Configs: CPElide, Baseline system, HMG [Ren et al. HPCA 2022]

• HMG Directory based cache coherence, keeps track of all sharers [Focus L2]

❑Workloads

• GPGPU benchmark Suite: Rodinia ; HPC: Lulesh, Pennant and HACC

• Graph Analytics Benchmarks: Color , FW and SSSP

• Machine Learning: 2 layer CNN, GRU, LSTM 18



❑ Write Through L2 with sharer tracking 

Write Policy01

HMG

❑ Caches both local and remote 
accesses 

Allocation Policy02

❑ A simple VI protocol, as updates 
always propagated to remote node

❑ Generates remote invalidation 
traffic in case of eviction or when 
some core writes to the block

Coherence Protocol03

CPElide

❑ Write back cache with no sharer tracking

Write Policy01

❑ Caches Local accesses but does not 
cache remote accesses

Allocation Policy02

❑ Uses GPU-VIPER coherence 
protocol 

❑ Retains line in valid when a dirty 
line is written back to main 
memory

Coherence Protocol03

CPElide VS HMG Design Choices

HC
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Moderate to high inter-kernel reuse with CPElide Low inter-kernel reuse with CPElide

CPElide: 2 Chiplet HMG: 2 Chiplet CPElide: 4 Chiplet HMG: 4 Chiplet CPElide: 6 Chiplet HMG: 6 Chiplet CPElide: 7 Chiplet HMG: 7 Chiplet

Results: Normalized Performance

❑ CPElide outperforms both HMG (19%) and Baseline (13%) 

• Able to capture reuse from most apps with moderate-high inter-kernel reuse 

• Apps with little/no reuse suffer perf loss with HMG->additional remote traffic from inv

• HMG also does badly for applications with little to no locality in remote traffic
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Results: Network Traffic
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• HMG higher remote traffic than CPElide/baseline by 23% because of block 

invalidations and less reuse in remote traffic

• Due to no data retention baseline has rel. higher L2->L3 traffic over HMG/CPElide

• CPElide > HMG in reducing L2 to L3 traffic, no WT traffic to maintain sharer list
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Conclusions
❑Multi-chiplets: Add additional level of mem hierarchy L3 cache, making L2 caches 

private to chiplets

❑ Implicit Sync at kernel boundaries leads loss of inter-kernel reuse from L2 

❑ Insight: 

• Tracking producer consumer dependencies can reduce implicit sync penalty

❑ Solution:

• Redesign CP hierarchy: Global CP houses a dependency tracking table

• CPElide leverages runtime scheduling information's and mode/range infor from 

s/w to keep track of data state and elide acquires/releases

• Effective solutions for kernel with mod/high inter-kernel use, outperforms 

baseline by 13% and state of the art schemes (HMG) by 19%

• Scales well, can be reprogrammed to adapt to changing app trends 22
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Related Work: HMG Overview

❑ Directory-based cache coherence, keep track of all sharers

❑ Map synchronization scopes to caches:  .cta → L1 cache   .gpu/.sys → 

L2 cache

❑ L1 cache coherence is software-maintained, they mainly focus on the 

L2 cache

24

Design choice Differences from CPElide

❑ Write Policy: HMG-> Writethrough, CPElide-> WriteBack

❑ Allocation Policy: HMG-> Cache local & remote , CPElide: Cache only local

❑ Coherence Protocol: HMG-> VI , CPElide: GPU-VIPER

❑ CPElide retains line in valid when a dirty line is written back to main mem

❑ HMG generates remote invalidations in case of eviction or when there is a write  
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Related Work: HMG Overview

GPU GPU

GPU GPU

NV-Switch

GPM GPM

GPM GPM

MCM-GPU

❑ Directory-based cache coherence, keep track of all sharers

❑ Map synchronization scopes to caches:  .cta → L1 cache   .gpu/.sys → L2 cache

L2 $

GPM (GPU Module)

CU + L1 $

Directory

State Tag Sharers

❑L1 cache coherence is software-maintained, they mainly focus on the 

L2 cache
27
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