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Let’s begin by thinking about a mouse.
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Walt Disney Co. in the beginning …

 Walt Disney originally 

decided to be an animator.

 His initial successes came 

in the 1920’s and 1930’s.

 He was doing very well, 

and wasn’t forced to 

expand into other areas…
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Walt Disney Co. as we know it.
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Motivation

 GPUs are very good at data parallel programs.

 However, just like Walt Disney Co., for them to continue 

to grow, they need to expand.

 In this paper we find benchmarks that currently do not 

perform well on GPUs, but could perform well.
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Executive Summary

 We have identified 19 challenge benchmarks.

 Our analysis suggests that there is no simple tweak to get 

them to perform well on GPUs.
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Outline

 Introduction

 Identifiying Challenge Benchmarks

 Bottlenecks

 Case Studies

 Conclusions
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Identifying Challenging Benchmarks

 Searched common GPU benchmark suites:

– Rodinia

– GPGPU-Sim

– SHOC

– Others

 Wrote some of our own from the PARSEC suite.

 Goal: Identify benchmarks from these suites that 

perform poorly on GPUs.
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Classifying Benchmarks as Challenging

 For all benchmarks that perform at < 40% of peak 

effective GPU IPC.

– We classify these benchmarks as challenging.

 What is effective IPC?

– IPC calculated using only useful instructions per cycle (i.e. 

ignoring masked instructions).

 We use a Tesla C1060-like configuration & GPGPU-Sim 

version 2.1.1b.
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The Challenging Benchmarks

 From GPGPU-Sim (5/14):

– WP, NN, N-Queens, Mummer, BFS

 From Rodinia (10/20):

– SC, SRAD1, Backprop, Heartwall, HW Tracking

– CFD, BFS, NN, NW, Myocyte

 PARSEC:

– Fluidanimate, Swaptions

 Others:

– S3D (SHOC)

– Mummer++

Sinclair - GPU Challenge Benchmarks - EAMA '11 10



Department of Computer Science

Outline

 Introduction

 Identifying Challenge Benchmarks

 Bottlenecks

 Case Studies

 Conclusions

Sinclair - GPU Challenge Benchmarks - EAMA '11 11



Department of Computer Science

GPU Bottleneck Categories

 Available Parallelism

 Control Flow

 Memory Access
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Available Parallelism

 Limited by:

– Fraction of algorithm that 

is parallelizable.

 Subcategories:

– Block Parallelism (BP)

– Thread Parallelism (TP)

 12/38 kernels.
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Control Flow

 Limited By:

– Thread divergence.

– Serial execution (due to 

atomics, barriers, etc.).

 Subcategories:

– Few active threads per 

warp (WP)

– Single active thread per 

warp (ST)

 21/38 kernels.
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Memory Access

 Limited by:

– Lack of caching

– Heavy cache contention.

– For lightly threaded benchmarks, GPUs can’t effectively hide 

latency of accesses.

 Subcategories:

– Memory Bandwidth (BW)

– Long Latency of Memory Access (LAT)

 19/38 kernels.
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Performance Impact of Bottlenecks

 32/38 kernels reach peak machine efficiency after 

bottlenecks are removed.

– Some require up to 5 bottlenecks be removed before reaching 

peak.

– Kernels that do not reach peak are limited by synchronization.

 Need to remove different bottlenecks for each 

benchmark to reach peak efficiency.

 Benchmarks require a 19x geometric mean speedup 

to reach peak machine efficiency.
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Case Study: BFS (Rodinia)

 2 kernels:

1. Marks which nodes are 

visited.

2. Marks children as next; 

updates costs of nodes.

 1 thread for each node in 

the tree, but only a few 

threads do useful work.

– Little locality in accesses.
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BFS Con’t
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Metric Kernel 1

Effective IPC 4.9

Average Threads/Warp 10

Serialization 25%

Memory Access Coalesced 56%

DRAM Bandwidth (GB/s) 70

Stalled for Memory 76%

Bottlenecks WP, ST, LAT
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Case Study: Fluidanimate

 The fluidanimate GPU implementation requires many 

calls to  global memory to access values.

 Also exhibits thread divergence and register pressure.

 CPU synchronization between each stage in the 

computation due to lack of efficient global GPU 

synchronization mechanism.
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Fluidanimate Con’t
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Metric Kernel 4

Effective IPC 0.1

Average Threads/Warp 3

Serialization 51%

Memory Access Coalesced 3%

DRAM Bandwidth (GB/s) 13

Stalled for Memory 40%

(All) Bottlenecks WP, BP, LAT, ST
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Modeled speedups after removing bottlenecks

 We explored different design improvements to improve 

GPGPU performance.

– Just adding additional cores or isolating a single bottleneck is 

not sufficient.
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Thus, we look at pairs of design changes.

 Results: (N/35 kernels)

– Group X: Near peak IPC after any design pair introduced (12).

– Group Y: Need specific design pair to get near peak IPC (10).

– Group Z:  Don’t reach peak IPC even after multiple pairs (13).

– No single technique to help all benchmarks.
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Conclusions

 We’ve introduced a set of challenging benchmarks

– These benchmarks represent the issues future GPUs need to 

overcome to allow GPUs to become more general-purpose.

 We’ve also explored the bottlenecks for these 

benchmarks and highlighted how alleviating them will 

affect performance.

– Many changes need to be made to the GPU architecture

– This is a hard problem, 1 or 2 techniques are not 

sufficient.
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Questions?
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Paper available at cs.wisc.edu/vertical/
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Backup Slides
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By solving these challenges, GPUs can 

continue to expand.
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Case Study: Neural Network

 The neural network executes by calling a series of layers, 

which update the weights of the nuerons.

 Varying number of threads per layer to account for 

varying number of neurons.

– Never more than 3000 threads per layer.

 All  nuerons access global memory when updating 

their values and passing them to the next layer.
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Neural Network Con’t
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Metric Kernel (Layer) 2

Effective IPC 12

Average Threads/Warp 25

Serialization 0%

Memory Access Coalesced 90%

DRAM Bandwidth (GB/s) 64

Stalled for Memory 65%

(All) Bottlenecks BW
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Case Study: Mummer++

 Kernel is attempting to align genomes

 Very limited number of threads (256)

 Lots of divergence within the kernel because we’re using 

lots of conditionals in the pairing process.

 Most of references are to global memory.
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Mummer++ Con’t
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Metric Kernel 4

Effective IPC 0.3

Average Threads/Warp 8

Serialization 37%

Memory Access Coalesced 77%

DRAM Bandwidth (GB/s) 52

Stalled for Memory 58%

(All) Bottlenecks WP, BP, ST
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BFS Alternate Data
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Metric Kernel 1 Kernel 2

Effective IPC 4.9 104.3

Average Threads/Warp 10 27

Serialization 25% 4%

Memory Access Coalesced 56% 97%

DRAM Bandwidth (GB/s) 70 34

Stalled for Memory 76% 33%

Bottlenecks WP, ST, 

LAT

LAT
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The changes with Fermi

 Fermi additions:

– Local L1 and shared L2 caching.

– More SPs per SM (doubles effective peak IPC)

– This is a step in the right direction.

 We performed the same hardware profiling study on a 

Tesla C2050.

 Result: Challenge benchmarks were only sped up 1.5x.

– Limited parallelism and significant thread divergence are still 

problems.
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