

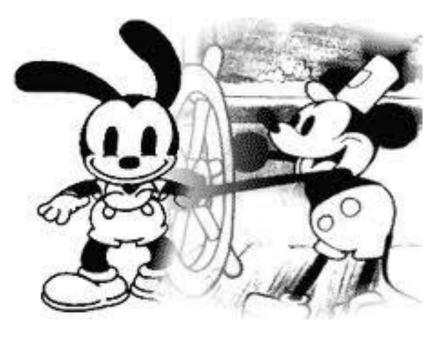
Challenge Benchmarks That Must Be Conquered to Sustain the GPU Revolution

Emily Blem Matt Sinclair Karu Sankaralingam University of Wisconsin-Madison Department of Computer Sciences Vertical Research Group

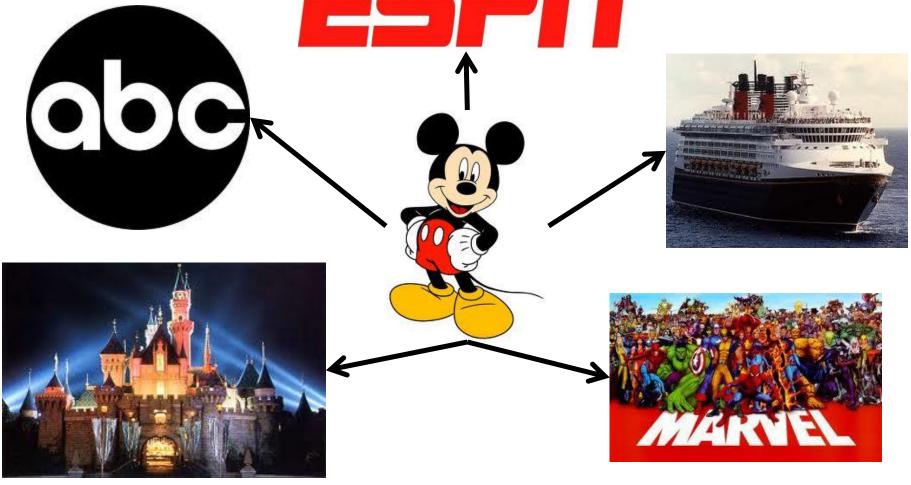
Let's begin by thinking about a mouse.

Walt Disney Co. in the beginning ...

- Walt Disney originally decided to be an animator.
- His initial successes came in the 1920's and 1930's.
- He was doing very well, and wasn't forced to expand into other areas...



Walt Disney Co. as we know it.



Motivation

- GPUs are very good at data parallel programs.
- However, just like Walt Disney Co., for them to continue to grow, they need to expand.
- In this paper we find benchmarks that currently do not perform well on GPUs, but could perform well.

Executive Summary

- We have identified 19 challenge benchmarks.
- Our analysis suggests that there is no simple tweak to get them to perform well on GPUs.

Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions

Identifying Challenging Benchmarks

- Searched common GPU benchmark suites:
 - Rodinia
 - GPGPU-Sim
 - SHOC
 - Others
- Wrote some of our own from the PARSEC suite.
- **Goal**: Identify benchmarks from these suites that perform poorly on GPUs.

Classifying Benchmarks as Challenging

- For all benchmarks that perform at ≤ 40% of peak effective GPU IPC.
 - We classify these benchmarks as **challenging**.
- What is effective IPC?
 - IPC calculated using only useful instructions per cycle (i.e. ignoring masked instructions).
- We use a Tesla C1060-like configuration & GPGPU-Sim version 2.1.1b.

The Challenging Benchmarks

- From GPGPU-Sim (5/14):
 - WP, NN, N-Queens, Mummer, BFS
- From Rodinia (10/20):
 - SC, SRAD1, Backprop, Heartwall, HW Tracking
 - CFD, BFS, NN, NW, Myocyte
- PARSEC:
 - Fluidanimate, Swaptions
- Others:
 - S3D (SHOC)
 - Mummer++

Outline

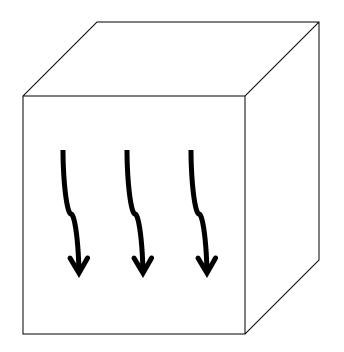
- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions

GPU Bottleneck Categories

- Available Parallelism
- Control Flow
- Memory Access

Available Parallelism

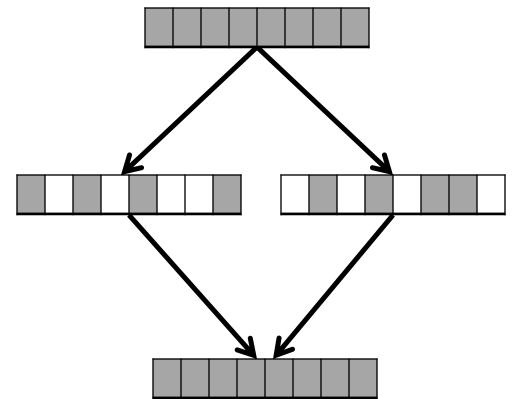
- Limited by:
 - Fraction of algorithm that is parallelizable.
- Subcategories:
 - Block Parallelism (BP)
 - Thread Parallelism (TP)



12/38 kernels.

Control Flow

- Limited By:
 - Thread divergence.
 - Serial execution (due to atomics, barriers, etc.).
- Subcategories:
 - Few active threads per warp (WP)
 - Single active thread per warp (ST)
- 21/38 kernels.



Memory Access

- Limited by:
 - Lack of caching
 - Heavy cache contention.
 - For lightly threaded benchmarks, GPUs can't effectively hide latency of accesses.
- Subcategories:
 - Memory Bandwidth (BW)
 - Long Latency of Memory Access (LAT)
- 19/38 kernels.

Performance Impact of Bottlenecks

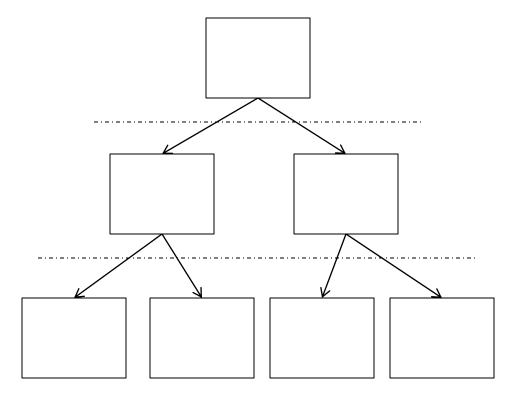
- 32/38 kernels reach peak machine efficiency after bottlenecks are removed.
 - Some require up to 5 bottlenecks be removed before reaching peak.
 - Kernels that do **not** reach peak are limited by synchronization.
- Need to remove different bottlenecks for each benchmark to reach peak efficiency.
- Benchmarks require a 19x geometric mean speedup to reach peak machine efficiency.

Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
 - BFS (Rodinia)
 - Fluidanimate
- Conclusions

Case Study: BFS (Rodinia)

- 2 kernels:
 - Marks which nodes are visited.
 - 2. Marks children as next; updates costs of nodes.
- 1 thread for each node in the tree, but only a few threads do useful work.
 - Little locality in accesses.



BFS Con't

Metric	Kernel 1	
Effective IPC	4.9	
Average Threads/Warp	10	
Serialization	25%	
Memory Access Coalesced	56%	
DRAM Bandwidth (GB/s)	70	
Stalled for Memory	76%	
Bottlenecks	WP, ST, LAT	

Case Study: Fluidanimate

- The fluidanimate GPU implementation requires many calls to global memory to access values.
- Also exhibits thread divergence and register pressure.
- CPU synchronization between each stage in the computation due to lack of efficient global GPU synchronization mechanism.

Fluidanimate Con't

Metric	Kernel 4	
Effective IPC	0.1	
Average Threads/Warp	3	
Serialization	51%	
Memory Access Coalesced	3%	
DRAM Bandwidth (GB/s)	13	
Stalled for Memory	40%	
(All) Bottlenecks	WP, BP, LAT, ST	

Modeled speedups after removing bottlenecks

- We explored different design improvements to improve GPGPU performance.
 - Just adding additional cores or isolating a single bottleneck is not sufficient.

Thus, we look at pairs of design changes.

- Results: (N/35 kernels)
 - Group X: Near peak IPC after any design pair introduced (12).
 - Group Y: Need specific design pair to get near peak IPC (10).
 - Group Z: Don't reach peak IPC even after multiple pairs (13).
 - No single technique to help all benchmarks.

Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions

Conclusions

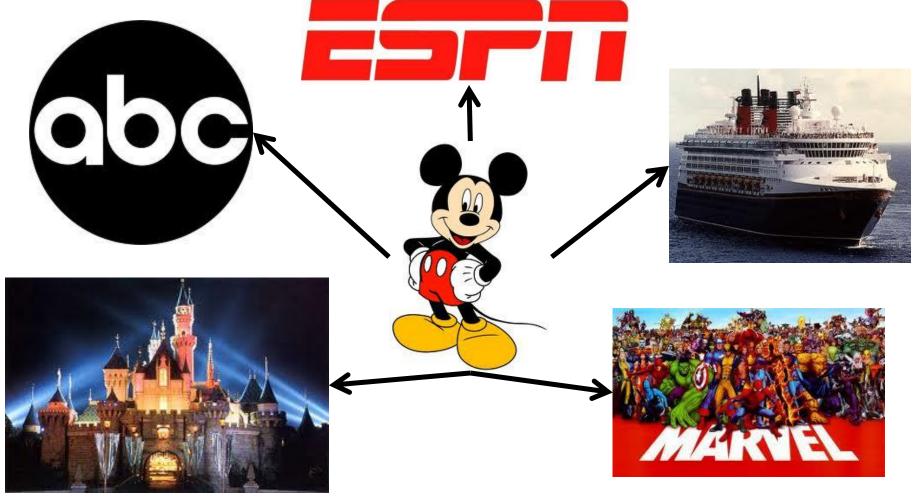
- We've introduced a set of challenging benchmarks
 - These benchmarks represent the issues future GPUs need to overcome to allow GPUs to become more general-purpose.
- We've also explored the bottlenecks for these benchmarks and highlighted how alleviating them will affect performance.
 - Many changes need to be made to the GPU architecture
 - This is a hard problem, 1 or 2 techniques are not sufficient.

Questions?

Paper available at <u>cs.wisc.edu/vertical/</u>

Backup Slides

By solving these challenges, GPUs can continue to expand.



Case Study: Neural Network

- The neural network executes by calling a series of layers, which update the weights of the nuerons.
- Varying number of threads per layer to account for varying number of neurons.
 - Never more than 3000 threads per layer.
- All nuerons access global memory when updating their values and passing them to the next layer.

Neural Network Con't

Metric	Kernel (Layer) 2	
Effective IPC	12	
Average Threads/Warp	25	
Serialization	0%	
Memory Access Coalesced	90%	
DRAM Bandwidth (GB/s)	64	
Stalled for Memory	65%	
(All) Bottlenecks	BW	

Case Study: Mummer++

- Kernel is attempting to align genomes
- Very limited number of threads (256)
- Lots of divergence within the kernel because we're using lots of conditionals in the pairing process.
- Most of references are to global memory.

Mummer++ Con't

Metric	Kernel 4	
Effective IPC	0.3	
Average Threads/Warp	8	
Serialization	37%	
Memory Access Coalesced	77%	
DRAM Bandwidth (GB/s)	52	
Stalled for Memory	58%	
(All) Bottlenecks	WP, BP, ST	

BFS Alternate Data

Metric	Kernel 1	Kernel 2
Effective IPC	4.9	104.3
Average Threads/Warp	10	27
Serialization	25%	4%
Memory Access Coalesced	56%	97%
DRAM Bandwidth (GB/s)	70	34
Stalled for Memory	76%	33%
Bottlenecks	WP, ST,	LAT
	LAT	

The changes with Fermi

Fermi additions:

- Local L1 and shared L2 caching.
- More SPs per SM (doubles effective peak IPC)
- This is a step in the right direction.
- We performed the same hardware profiling study on a Tesla C2050.
- **Result:** Challenge benchmarks were only sped up **1.5x**.
 - Limited parallelism and significant thread divergence are still problems.