Introduction to Trees

Contents

· Introduction: Trees and Binary Trees

· Representing Trees

· Tree Traversals

· Test Yourself #1

· Test Yourself #2

· Answers to Self-Study Questions

Introduction

Sequences, stacks, and queues, are all linear structures: in all three data structures, one item follows another. Trees will be our first non-linear structure:

· More than one item can follow another.

· The number of items that follow can vary from one item to another.

Trees have many uses:

· representing family genealogies

· as the underlying structure in decision-making algorithms

· to represent priority queues (a special kind of tree called a heap)

· to provide fast access to information in a database (a special kind of tree called a b-tree)

Here is the conceptual picture of a tree (of letters):

·
[image: image1.wmf]A

B

I

C

D

E

F

G

J

· each letter represents one node

· the lines with arrows are called edges

· the topmost node (with no incoming edges) is the root (node A)

· the bottom nodes (with no outgoing edges) are the leaves (nodes D, I, G, H & J)

So a (computer science) tree is kind of like an upside-down real tree...

A path in a tree is a sequence of (zero or more) connected nodes; for example, here are 3 of the paths in the tree shown above:

[image: image2.wmf]A

B

C

D

E

D

The length of a path is the number of nodes in the path, e.g.:

[image: image3.wmf]A

B

C

D

E

D

Path

Length

3

2

1

The height of a tree is the length of the longest path from the root to a leaf; for the above example, the height is 4 (because the longest path from the root to a leaf is
[image: image4.wmf]A

G

E

C

 or
[image: image5.wmf]A

J

F

C

).

The depth of a node is the length of the path from the root to that node; for the above example:

· the depth of J is 4

· the depth of D is 3

· the depth of A is 1

Given two connected nodes like this:

[image: image6.wmf]A

B

Node A is called the parent, and node B is called the child.

A subtree of a given node includes one of its children and all of its descendants. The descendants of a node includes all reachable nodes (its children, its children's children, etc.). In the original example, there are three subtrees of A: B & D, I and C, E, F, G & J.

An important special kind of tree is the binary tree. In a binary tree:

· Each node has 0, 1, or 2 children.

· Each child is either a left child or a right child.

Here are two examples of binary trees that are different:

[image: image7.wmf]A

C

B

F

E

D

A

C

B

F

D

E

They are different because D and E switched places --The left and right child are different. Also not that the arrows are not shown. Often the arrow is implicit from the node higher up to the lower node.

Representing Trees

Since a binary-tree node never has more than two children, a node can be represented using a class with 3 fields: one for the data in the node, plus two child pointers:

class BinearyTreenode {

 Object data;

 BinaryTreenode leftChild;

 BinaryTreenode rightChild;

}

However, since a general-tree node can have an arbitrary number of children, a fixed number of child-pointer fields won't work. To keep a list of children we can use a Sequence, e.g., Sequence children;. Each node in has the structure:

class Treenode {

 Object data;

 Sequence children;

}

As shown before, there are two common ways to represent the sequence: array and linked-list.

For example, consider this general tree (a simplified version of the original example):

[image: image8.wmf]A

B

I

C

D

For the array representation of the Sequence (where the array has an initial size of 4) we would have:

[image: image9.wmf]A

data

children

I

B

data

children

data

children

D

data

children

C

data

children

and the linked-list representation of the Sequence we would have:

[image: image10.wmf]A

data

children

B

data

children

I

data

children

C

data

children

D

data

children

Tree Traversals

It is often useful to iterate through the nodes in a tree:

· to print all values

· to determine if there is a node with some property

· to make a copy

When we iterated through a sequence, we started with the first node and visited each node in turn. Since each node is visited, the best possible complexity is O(N) for a tree with N nodes. All of our traversal methods will achieve this complexity.

For trees, there are many different orders in which we might visit the nodes. There are three common traversal orders for general trees, and one more for binary trees: preorder, postorder, level order, and in-order, all described below. We will use the following tree to illustrate each traversal:

[image: image11.wmf]A

C

B

F

E

D

I

H

G

Preorder

1. A preorder traversal can be defined (recursively) as follows:

2. visit the root

3. perform a preorder traversal of the first subtree of the root

4. perform a preorder traversal of the second subtree of the root

5. etc. for all the subtrees of the root

If we use a preorder traversal on the example tree given above, and we print the letter in each node when we visit that node, the following will be printed: A B D C E G F H I.

Postorder

1. A postorder traversal is similar to a preorder traversal, except that the root of each subtree is visited last rather than first:
2. perform a postorder traversal of the first subtree of the root

3. perform a postorder traversal of the second subtree of the root

4. etc. for all the subtrees of the root

5. visit the root
If we use a postorder traversal on the example tree given above, and we print the letter in each node when we visit that node, the following will be printed: D B G E H I F C A.

Level order

The idea of a level-order traversal is to visit the root, then visit all nodes "1 level away" (depth 2) from the root (left to right), then all nodes "2 levels away" (depth 3) from the root, etc. For the example tree, the goal is to visit the nodes in the following order:

[image: image12.wmf]A

B

C

D

E

F

root

1 level

away

2 levels

away

G

H

I

3 levels

away

A level-order traversal requires using a queue (rather than a recursive algorithm, which implicitly uses a stack). Here's how to print the data in a tree T in level order, using a queue Q:

Q.enqueue(root)

while (!Q.isEmpty()) {

 // show Q here

 n = Q.dequeue();

 System.out.print(n.data);

 s = root.children;

 s.start();

 try {

 while (!s.isCurrent() {

 Q.enqueue(s.getCurrent());

 s.advance();

 }

 } catch (NoCurrentException e) {} // can't happen

}

TEST YOURSELF #1

Show the items in the Queue Q at the start of the outer while in the code above using our standard example for traversals. Also state the output from the code where the data is the key at the node.

solution

In-order

1. An in-order traversal involves visiting the root "in between" visiting its left and right subtrees. Therefore, an in-order traversal only makes for binary trees. The (recursive) definition is:

2. perform an in-order traversal of the left subtree of the root

3. visit the root

4. perform an in-order traversal of the right subtree of the root

If we print the letters in the node's of our example tree using an in-order traversal, the following will be printed: D B A E G C H F I

For the preorder, postorder and in-order traversal, the primary difference between them is where the node is visited in relation to the recursive calls, e.g., before, after or between. The general notes on recursion showed a similar effect where there was one recursive call.

TEST YOURSELF #2

What is printed when the following tree is visited using a (a) preorder traversal, (b) a postorder traversal, (c) a level-order traversal, and (d) an in-order traversal?

[image: image13.wmf]A

C

B

E

D

G

F

H

I

K

J

solution

_1001673826.doc

A

C

B

F

E

D

E

D

F

B

C

A

_1001673827.doc

A

C

B

F

E

D

E

D

F

B

C

A

_1001673829.doc

A

C

B

G

E

D

J

K

I

H

F

_1001673809.doc

A

C

B

F

E

D

E

D

F

B

C

A

_1001670940.doc

children

data

D

children

data

C

children

data

I

children

data

B

children

data

A

_1001671782.doc

D

B

C

A

H

E

F

I

G

_1001672176.doc

A

B

C

D

E

F

root

1 level away

2 levels away

G

H

I

3 levels away

_1001671161.doc

A

children

data

B

children

data

C

I

data

children

children

data

D

children

data

_1001670482.doc

children

data

A

_1001669779.doc

A

children

data

A

children

data

C

children

data

I

data

children

children

data

D

_1001662597.doc

A

G

E

C

_1001662825.doc

A

B

_1001669401.doc

A

B

I

C

D

_1001662636.doc

A

J

F

C

_1001662316.doc

A

B

I

C

D

E

F

G

J

_1001661781.doc

A

B

C

D

E

D

_1001662081.doc

A

B

1

C

D

E

2

3

Length

Path

D

_984476284.doc

A

C

B

F

E

D

E

D

F

B

C

A

