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R4DS Chapter 1 & 2 Introduction 
1. What you will learn 

 
 
2. Tidyverse 
  install.packages("tidyverse") 
 
3. R Markdown 
a. Headers 

# Big 
## Small 
### H3 
#### H4 
##### H5 
###### Smallest 
 

b. List 
LIST R Markdown 

1. Item-1 1. Item-1 
2. Item-2 2. Item-2 
 - sub-Item-1 • sub-Item-1 
 - sub-Item-2 • sub-Item-2 
4. Item-3 3. Item-3 
 * sub-Item-1  • sub-Item-1 
 + sub-Item-2 • sub-Item-2 

 
c. Text Format 
  i. Bold: ** Bold Text ** / - Bold Text - 
  ii. Italic: * Italic Text * / _Italic Text _ 
d. Chunks 
// Check real R Markdown file 
e. Display variable 
  `var` 
f. Knitting 
// Check R Studio  
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R4DS Chapter 4 Workflow: Basics 
1. Coding Basics 
a. Calculator 
  1 / 200 * 30 // #> [1] 0.15 

(59 + 73 + 2) / 3 // #> [1] 44.66667 
sin(pi / 2) // #> [1] 1 

b. Create new objects/Assignment Statement 
  x <- 3 * 4 
  object_name <- value 
 
2. Object Names 
a. recommend snake_case 
b. start with letter 
c. can include: number, _ , . , letter 
d. be descriptive 
 
3. Calling functions 
  function_name(arg1 = val1, arg2 = val2, ...) 
  Example:  
  seq(1, 10) // #>  [1]  1  2  3  4  5  6  7  8  9 10 
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R4DS Chapter 3 Data Visualization 
1. Prerequisites 

library(tidyverse) 
 
2. Creating a Plot 

ggplot(data = <DATA>) +  
    geom_function(mapping = aes(x = var1, y = var2, …)) 
 
3. Aesthetic Mapping 
a. Color 
  i. color by group 

 ggplot(data = <DATA>) +  
     geom_function(mapping = aes(x = var1, y = var2, color = group_name) 
  ii. set color 

 ggplot(data = <DATA>) +  
     geom_function(mapping = aes(x = var1, y = var2, color = “color_name”) 
b. Shape 
  i. shape by group 

 ggplot(data = <DATA>) +  
     geom_function(mapping = aes(x = var1, y = var2, shape = group_name) 
  ii. set shape 

     
c. Size 

i. size by group 
 ggplot(data = <DATA>) +  

     geom_function(mapping = aes(x = var1, y = var2, size = group_name) 
  ii. set size 
   * The size of a point in mm 
d. Transparency 

ggplot(data = <DATA>) +  
     geom_function(mapping = aes(x = var1, y = var2, alpha = group_name or value) 
 
3. Facets 
a. To facet your plot by a single variable, use facet_wrap() 
 ggplot(data = <DATA>) +  

    geom_function(mapping = aes(x = var1, y = var2, …)) + 
facet_wrap(~ var) // can set row numbers with facet_wrap(~ var , nrow = num) 

b. To facet your plot on the combination of two variables, use facet_grid() 
ggplot(data = <DATA>) +  

    geom_function(mapping = aes(x = var1, y = var2, …)) + 
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facet_grid(varA ~ varB) 
  * If you prefer to not facet in the rows or columns dimension, use a . instead of a 

variable name like facet_grid(. ~ cyl) 
 
4. Geometric Objects 
a. geom_point() Point 
  i. normal 
   ggplot(data = mpg) +  
     geom_point(mapping = aes(x = displ, y = hwy)) 
  ii. position adjustment (position = "jitter") 
    Adds a small amount of random noise to each point. This spreads the points out to 

avoid overlapping in the graph. 
    ggplot(data = mpg) +  
      geom_point(mapping = aes(x = displ, y = hwy), position = "jitter") 
  * usually used with geom_smooth to show trend. 
b. geom_smooth() Line 
  i. normal 
   ggplot(data = mpg) +  
     geom_smooth(mapping = aes(x = displ, y = hwy)) 
  ii. set line type 
   ggplot(data = mpg) +  
     geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv)) 
  iii. linear model 
   ggplot(data = mpg) +  
     geom_smooth(mapping = aes(x = displ, y = hwy), method = “lm”, se = FALSE) 
  iv. geom_smooth(se=FALSE) 

adds a smooth trend line on the graph which generally adapt to the shape of the 
data and helps reflect the trend of points in the dataset. 

c. geom_bar() Bar 
  Bar charts, calculate new values to plot: bin your data and then plot bin counts, the 

number of points that fall in each bin. 
  i. normal (automatically count) 
   ggplot(data = diamonds) +  
     geom_bar(mapping = aes(x = cut)) 
  ii. map the height of the bars to the raw values of a y variable 
   ggplot(data = demo) + 
     geom_bar(mapping = aes(x = cut, y = freq), stat = "identity") 
  iii. display a bar chart of proportion 
   ggplot(data = diamonds) +  
     geom_bar(mapping = aes(x = cut, y = stat(prop), group = 1)) 
  iv. color the graph 
    1) fill (fill by x variable) 

ggplot(data = diamonds) +  
        geom_bar(mapping = aes(x = cut, fill = cut)) 
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    2) color 
      ggplot(data = diamonds) +  
        geom_bar(mapping = aes(x = cut, colour = cut)) 
       

v. position adjustment (fill by non-x variable) 
    1) raw (stacking) 
      ggplot(data = diamonds) +  
        geom_bar(mapping = aes(x = cut, fill = clarity)) 
       
    2) position adjustment 
      ggplot(data = diamonds) +  
        geom_bar(mapping = aes(x = cut, fill = clarity), position = "XXX") 
      a) position = "identity" 
        place each object exactly where it falls in the context of the graph, which is 

not very useful for bars, because it overlaps them. 

         
      b) position = "fill" 
        works like stacking, but makes each set of 

stacked bars the same height. This makes it 
easier to compare proportions across groups. 

         
      c) position = "dodge" (position = "dodge2") 
        places overlapping objects directly beside one 

another. This makes it easier. to compare 
individual values. 

         
d. geom_boxplot() Boxplot 
  ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +  
    geom_boxplot() 
*define only y -> get single boxplot of distribution of certain variable; 
 define both xy -> get mutiple boxplots. 
e. Coordinate system 

i. coord_flip() switches the x and y axes. 
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    ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +  
      geom_boxplot() + 
      coord_flip() 
  ii. coord_quickmap() sets the aspect ratio correctly for maps. 
  iii. coord_polar() uses polar coordinates. 
 
f. The Layered Grammar of Graphics 

ggplot(data = <DATA>) +  
    <GEOM_FUNCTION>( 
       mapping = aes(<MAPPINGS>), 
       stat = <STAT>,  
       position = <POSITION> 

  ) + 
  <COORDINATE_FUNCTION> + 
  <FACET_FUNCTION> 

 
*When you use several geom_functions() together, please make sure you get the layer 
like colors’ group, aesthetic settings right for each function. 
 
Lecture 
1. residuals: check Week2/Lecture1/last 5 minutes 
  lm1 <- lm(y~x, dataSet) 
  residuals1 <- residuals(lm1) 
  dataSet <- dset %>% 
    mutate(residuals = residuals1) 
  ggplot(dset2, aes(x=x, y=residuals1)) + 
    geom_point() + 
    geom_hline(yintercept = 0, color="gray") + 
    ylab("Residuals") + 
    xlab("x") + 
    ggtitle("Linear Model Residuals") 
 
2. Check Dataset 

spec(data) 
str(data) 

 
3. geom_histogram (also used in geom_bar) 
a. binwidth = num : set bin’s width of histogram. 
b. boundary = num : set boundary of histogram. 
c. center = num : set center of histogram. 
d. bins = num : set number of bins. 
*all defined in mapping = aes(…) 
*histogram each bin is connected horizontally, bar has space between each bin. 
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4. geom_density() Density Plot 
adjust = num : smooth of the graph (num greater, the graph get smoother) 
 
Other about ggplot 
1. Adjust Texts on Labels 
ggplot(data = planets_3) + 

   geom_bar(mapping = aes(x = factor(method), y = stat(prop), group = 1)) + 
   theme(axis.text.x = element_text(angle = 60, hjust = 1)) + 
   xlab("Method") + 
   ylab("Proportions") + 
   ggtitle("Observations of Exoplanet for Each Method") 
 
2. points are jittered horizontally, but not vertically 
  geom_point(position = position_jitter(height = 0, width = 0.03), size = 0.01) 
 
3. geom_freqpoly() performs the same calculation as 

geom_histogram(), but instead of displaying the counts 
with bars, uses lines instead.  
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R4DS Chapter 5 Data Transformation 
1. Prerequisites 
  library(tidyverse) 
 
2. Data Types & Basic Information 
a. Data Types 
  i. int stands for integers. 

ii. dbl stands for doubles, or real numbers. 
iii. chr stands for character vectors, or strings. 
iv. dttm stands for date-times (a date + a time). 
v. lgl stands for logical, vectors that contain only TRUE or FALSE. 
vi. fctr stands for factors, which R uses to represent categorical variables with fixed. 

possible values. 
vii. date stands for dates. 

b. dplyr Basics 
  i. filter() Pick observations by their values. 

ii. arrange() Reorder the rows. 
iii. select() Pick variables by their names. 
iv. mutate() Create new variables with functions of existing variables. 
v. summarise() Collapse many values down to a single summary. 

 
3. filter() 
a. Comparsion & Logical Operators 
  i. comparison operators 
   1) normal: >, >=, <, <=, != (not equal), and == (equal) 
   2) floating points: near(valueA, valueB) 
  ii. logical operators 
    & is “and” 

 | is “or” 
! is “not” 

  iii. Examples 
   filter(flights, month == 11 | month == 12) // finds all flights departed in Nov or Dec 
b. x %in% y 
  select every row where x is one of the values in y 
  filter(flights, month %in% c(11, 12)) // finds all flights departed in Nov or Dec 
  filter(year %in% c(1998,2002,2006,2010,2014,2018) 
c. Missing value (NA) 
  i. Basic information 
    NA represents an unknown value so missing values, almost any operation 

involving an unknown value will also be unknown. 
  ii. determine if a value is NA 
    is.na(value) return true if value is NA 
  iii. Example 
    df <- tibble(x = c(1, NA, 3)) // df is dataSet, x is variable 
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    filter(df, is.na(x) | x > 1) // select value that is NA or greater than 1 
4. arrange() 
  Takes a data frame and a set of column names to order by, and Missing values are. 

always sorted at the end. 
a. increasing order 
  arrange(data, colName) 
b. decending order 
  arrange(data, desc(colName)) 
 
5. select() 
a. Basic 

i. select columns by name 
   select(dataSet, year, month, day) 

ii. select colums between columns 
   select(flights, year:day) // Select all columns between year and day (inclusive) 

iii. select columns except certain columns 
 select(flights, -(year:day)) // Select all columns except those from year to day  

b. Helper functions for selecting 
  i. starts_with("abc"): matches names that begin with “abc”. 

ii. ends_with("xyz"): matches names that end with “xyz”. 
iii. contains("ijk"): matches names that contain “ijk”. 
iv. matches("(.)\\1"): selects variables that match a regular expression. 
v. num_range("x", 1:3): matches x1, x2 and x3 

c. Special use other than selecting 
  i. Rename 
   ??? 

*A better solution: rename(flights, tail_num = tailnum) 
  ii. Move variable to the start of Data Frame / Reorder varaible 

 // Move time_hour, air_time to the start of data frame flights 
    select(flights, time_hour, air_time, everything())  
 
#vars <- c("year", "month", "day", "dep_delay", "arr_delay") 
 
6. mutate() 
a. Basic 

adds new columns that are functions of existing columns at the end of the dataset  
mutate(dataSet, 
  gain = dep_delay - arr_delay, 
  hours = air_time / 60, 
  gain_per_hour = gain / hours 
) 
* only want to keep the new variables, use transmute() or use mutate() with select() 

b. Arithmetic operator for mutate 
  +, -, *, /, ^, %/% (integer division), %% (remainder), logical comparison 
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  log(), log2(), log10() 
c. Useful functions for mutate 
  i. Ranking (mutate a “rank” column) 
   y <- c(1, 2, 2, NA, 3, 4) 

min_rank(y) 
#> [1]  1  2  2 NA  4  5 
min_rank(desc(y)) 
#> [1]  5  3  3 NA  2  1 
row_number(y) 
#> [1]  1  2  3 NA  4  5 
dense_rank(y) 
#> [1]  1  2  2 NA  3  4 
percent_rank(y) 
#> [1] 0.00 0.25 0.25 NA 0.75 1.00 
cume_dist(y) 
#> [1] 0.2 0.6 0.6 NA 0.8 1.0 

  ii. Cumulative calculation 
    cumsum(), cumprod(), cummin(), cummax(), cummean() 

 x // #>  [1]  1  2  3  4  5  6  7  8  9 10 
cumsum(x) // #>  [1]  1 3 6 10 15 21 28 36 45 55 
cummean(x) // #>  [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

 
7. summarise() 
  summarise() is not terribly useful unless we pair it with group_by(). This changes the 

unit of analysis from the complete dataset to individual groups. 
a. Missing value 
  flights %>%  
    group_by(year, month, day) %>%  
    summarise(mean = mean(dep_delay, na.rm = TRUE)) 
b. Counts 
  i. count 
   group_by(tailnum) %>%  
   summarise(n = count(var))) 
  ii. count non-missing value 
    group_by(tailnum) %>%  
    summarise(n = sum(!is.na( ))) 
  iii. count the number of distinct (unique) values n_distinct(x) 
    group_by(tailnum) %>%  
      summarise(carriers = n_distinct(carrier)) 
  iv. n = n() return the size of current group (gives the count of category grouping by) 
c. Useful Functions 
  i. measure of center 

mean(x), median(x) 
  ii. measure of spread 
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    sd(x): standard deviation 
IQR(x): interquartile range 
mad(x): median absolute deviation 

  iii. measure of rank 
   min(x), max(x) 
   quantile(x, 0.25): find a value of x that is greater than 25% of the values in x, and 

less than the remaining 75% 
  iv. measure of position 
   first(x), nth(x, positionNum), last(x) 
  v. sum() 

Counts and proportions of logical values: sum(x > 10), sum(is.na(x)), mean(y == 
0). When used with numeric functions, TRUE is converted to 1 and FALSE to 0. 
This makes sum() and mean() very useful: sum(x) gives the number of TRUEs 
in x, and mean(x) gives the proportion. 
n = sum(logic_condtion) // check num of values in group match certain condition 
n = sum(is.na(x)) // check num of missing value in group 

 
8. group_by() 
a. group_by() multiple variables (progressive) 
  makes it easy to progressively roll up a dataset 
  daily <- group_by(flights, year, month, day) 

per_day <- summarise(daily, flights = n()) 
per_month <- summarise(per_day, flights = sum(flights)) 
per_year  <- summarise(per_month, flights = sum(flights)) 

b. group_by single variable (use single variable to define a row) 
  flights %>%  
    group_by(year) %>%  
    summarise(mean = mean(dep_delay, na.rm = TRUE)) 
c. group_by mutliple variable (use several variables to define a row) 
  flights %>%  
    group_by(year, month, day) %>%  
    summarise(mean = mean(dep_delay, na.rm = TRUE)) 
d. ungrouping 

daily %>%  
  ungroup() %>% 

 
[END] 
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R4DS Chapter 7 Exploratory Data Analysis 
1. Prerequisites 
  library(tidyverse) 
 
2. Basic Terms 
a. variable is a quantity, quality, or property that you can measure. 
b. value is the state of a variable when you measure it. The value of a variable may 

change from measurement to measurement. 
c. observation is a set of measurements made under similar conditions (you usually 

make all of the measurements in an observation at the same time and on the same 
object). An observation will contain several values, each associated with a different 
variable. I’ll sometimes refer to an observation as a data point. 

d. Tabular data is a set of values, each associated with a variable and an observation 
Tabular data is tidy if each value is placed in its own “cell”, each variable in its own 
column, and each observation in its own row. 

e. Variation is the tendency of values of a variable to change from measurement to 
measurement. 

f. A variable is categorical if it can only take one of a small set of values, usually saved 
as factors or character vectors 

g. A variable is continuous if it can take any of an infinite set of ordered values numbers 
and date-times are two examples of continuous variables. 

h. Covariation is the tendency for the values of two or more variables to vary together 
in a related way. 

 
3. Visualization 
a. Variation 
  i. categorical 
   geom_bar() // displays how many observations occurred with each x value 
  ii. continuous 
   1) geom_histogram() // To examine the distribution of a continuous variable 
   2) geom_freqpoly() // overlay multiple histograms in the same plot 
b. Covariation 
  i. categorical & continuous 
   1) geom_freqpoly() 
   2) geom_bar() 
   3) geom_histogram() 
   4) geom_boxplot() 
  ii. categorical & categorical 
   1) geom_count() 
     ggplot(data = diamonds) + 
       geom_count(mapping = aes(x = cut, y = color))  
      
   2) compute the count then visualise with geom_tile() and the fill aesthetic 
     diamonds %>%  
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       count(color, cut) 
     diamonds %>%  
       count(color, cut) %>%   
       ggplot(mapping = aes(x = color, y = cut)) + 
       geom_tile(mapping = aes(fill = n)) 
      

iii. continuous & continuous 
    1) geom_point() then using the alpha aesthetic to add transparency to avoid 

overplot 
      ggplot(data = diamonds) +  
        geom_point(mapping = aes(x = carat, y = price), alpha = 1 / 100) 

2) geom_bin2d() 

   
3) geom_hex() 

       
   4) geom_boxplot() with some adjustments 
 
4. Remove Missing Value 
1. not modify origin data frame 
not_cancelled <- flights %>%  
  filter(!is.na(dep_delay), !is.na(arr_delay)) 
2. modify origin data frame 

i. flights %>%  
     group_by(year, month, day) %>%  

  summarise(mean = mean(dep_delay, na.rm = TRUE)) 
  ii. ggplot(data = diamonds2, mapping = aes(x = x, y = y)) +  
      geom_point(na.rm = TRUE) 
 
5. Remove Unusual Values 
  replacing the unusual values with missing values, then drop_na() 
  diamonds2 <- diamonds %>%  
    mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>% 
    drop_na() 
  * ifelse(logicalVector, arg1, arg2) has three arguments. The first argument test should 

be a logical vector The result will contain the value of the second argument when 
test is TRUE, and the value of the third argument when it is false. 
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6. case_when() 
  case_when() usually used with mutate(), general format: 
  mutate(colName = case_when( 
          logical_condition ~ content_for_col, 
          logical_condition ~ content_for_col, 
          logical_condition ~ content_for_col)) 
  Example: 

mutate(season = case_when( 
          month %in% c("Sep","Oct","Nov") ~ "Fall", 
          month %in% c("Dec","Jan","Feb") ~ "Winter", 
          month %in% c("Mar","Apr","May") ~ "Spring", 
          month %in% c("Jun","Jul","Aug") ~ "Summer")) 
 
7. cut year 
  breaks <- seq(1869, 2019, 30) 
  labels <- str_c((breaks + 1)[-6], breaks[-1], sep = “-”) 
  dataSetNew <- dataSet %>% 
    mutate(period = cut(year, breaks =breaks, labels = labels) 
 
8. as.XXX 
a. as.numeric(col) 
  Converts a column into a numeric value column. 
b. as.factor(col) 
  Specify a column type to be factor (also called categorical or enumerative), rather. 

than numeric. 
c. as.character(col) 
  The function returns a string of 1's and 0's or a character vector of features depending 

on the nature of the fingerprint supplied. 
 
9. separate() 
  separate() turns a single character column into multiple columns. 
  // Check Chapter 12 Tidy Data 
 
10. rename() 
   rename(dataSet, c(“originCol” = “newCol”)) 
 
11. Check Missing Data 
   count_na <- function(x) { 
    return(sum(is.na(x)))} 

dataSet %>% 
     summarize_all(count_na) 
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R4DS Chapter 10 Tibbles 
1. Introduction 
Tibbles are data frames, but they tweak some older behaviours to make life a little easier. 
library(tidyverse) 
 
2. Creating Tibbles 
a. Coerce a Data Frame to a Tibble 
  as_tibble(variable) 

 
b. Create a New Tibble from Individual Vectors 
  tibble( 
  x = 1:5,  
  y = 1,  
  z = x ^ 2 + y 

) 

 
c. Create Customised Tibble 

i. column headings start with ~. 
ii. entries are separated by commas. 
ii. #line is optional, but adding that can make it clear where the header is. 
tribble( 
  ~x, ~y, ~z, 
  #--|--|---- 
  "a", 2, 3.6, 
  "b", 1, 8.5 
) 

*Comparing with data.frame(), tibble() does much less that it never changes the type of 
the inputs, never changes the names of variables, and never creates row names. 
* It’s possible for a tibble to have column names that are not valid R variable names, 
aka non-syntactic names (e.g. `:)`, ` `, `2000`). 
 
3. tibbles() vs. data.frame() 
a. Printing 

i. Tibbles have a refined print method that shows only the first 10 rows, and all the. 
columns that fit on screen, which makes it much easier to work with large data. 

  (1) control the number of rows (n) and the width of the display 
     dataSet %>% 
     print(n = 10, width = Inf) 
  (2) control the default print behaviour 
     options(tibble.print_max = n, tibble.print_min = m) //more than n rows print m rows 
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      options tibble.print_min = Inf) // print all rows 
      options(tibble.width = Inf) // print all colums regardless the width of screen 

(3) use RStudio’s data viewer to get a scrollable view of the complete dataset 
    nycflights13::flights %>%  
    View() 

b. Subsetting ( $ and [[]]) 
i. Extract by name 
  dataFrame$name 
  dataFrame[[“name”]] 
  dataFrame %>% .$name // use these in a pipe need the special placeholder “.” 
ii. Extract by position 

dataFrame[[positionNum]] 
* Compared to a data.frame, tibbles are more strict: they never do partial matching, and 
they will generate a warning if the column you are trying to access does not exist. 
 
4. Interacting with Older Code 
Some older functions don’t work with tibbles. If you encounter one of these functions, 
use as.data.frame() to turn a tibble back to a data.frame. 
class(as.data.frame(tibbles)) 
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R4DS Chapter 11 Data Import 
1. Prerequisites 

library(tidyverse) 
 
2. Functions of readr’s 
a. read_csv() reads comma delimited files.  
b. read_csv2() reads semicolon separated files. 
c. read_tsv() reads tab delimited files. 
d. read_delim() reads in files with any delimiter. 
e. read_fwf() reads fixed width files. 
f. read_table() reads common variation of fixed width files where columns are 

separated by white space. 
g. read_log() reads Apache style log files. 
 
3. Use of read_csv() 
a. read the file through path 
  variable <- read_csv("pathway") 
b. supply an inline csv file 

read_csv("a,b,c 
1,2,3 
4,5,6") 

 
c. skip the first n lines of import files 
  read_csv("The first line of metadata //this line will be ignore 
  The second line of metadata //this line will be ignore 
  x,y,z 
  1,2,3", skip = 2) 
d. drop all lines start with # 
  read_csv("# A comment I want to skip //this line will be ignore 
  x,y,z 
  1,2,3", comment = "#") 
e. not to treat the first row as headings 
  (treat the first row as heading check (b)) 
  read_csv("1,2,3\n4,5,6", col_names = FALSE) 
f. set col_names 
  read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z")) 

   
g. specify value to represent Missing Values 
  read_csv("a,b,c\n1,2,.", na = ".") 
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4. Parsing a Vector (parse_*() functions) 
  These functions take a character vector and return a more specialised vector like a. 

logical, integer, or date. 
a. genral format 

i. variable <- parse_*(c("1", "231", ".", "456"), na = ".") 
  ii. parse_*(c("1", "231", ".", "456"), na = ".") 
b. get problems from parsing (failure parsing will be missing in the output) 
  problems(variable) 
c. parsers 
  i. parse_logical() parses logicals like TRUE, FALSE, NA. 
  ii. parse_integer() parses integers. 
  iii. parse_double() a strict numeric parser. 
  iv. parse_number() a flexible numeric parser by ignoring non-numerical characters. 
  v. parse_character() parses characters, important in “character encodings.” 
  vi. parse_factor() creates factors, the data structure that R uses to represent.          

categorical. variables with fixed and known values. 
  vii. parse_datetime() parse various date & time specifications. 
  viii. parse_date() parse various date & time specifications. 
  ix. parse_time() parse various date & time specifications. 
 
d. Numbers 
  i. why parsing numbers is tricky 
    (1) People write numbers differently in different parts of the world. 
    (2) Numbers are often surrounded by other characters like “10%”. 

(3) Numbers often have grouping marks to make them easier to read like “10,000”. 
  ii. Solution 
    (1) different decimal marks 
       parse_double("1,23", locale = locale(decimal_mark = ",")) 
    (2) ignore non-numerical characters 
       parse_number("$100") 
    (3) ignore the “grouping mark” 
       parse_number("123.456.789", locale = locale(grouping_mark = ".")) 
 
e. Strings 
  i. specify encoding while parsing 
    parse_character(x1, locale = locale(encoding = "Latin1")) 
  ii. find the correct encoding 
    guess_encoding(charToRaw(strings)) // guess_encoding() can also be path to files 
 
f. Factors 

R uses factors to represent categorical variables with a known set of possible. values. 
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g. Dates, date-times, and times 
  i. parse_datetime() 
   expects an ISO8601 date-time, date are organised from biggest to smallest: year, 

month, day, hour, minute, second. 
   parse_datetime("2010-10-01T1915") // "2010-10-01 19:15:00 UTC" 
   parse_datetime("20101010") // "2010-10-10 UTC" 
  ii. parse_date() 
   expects a four digit year, a - or /, the month, a - or /, then the day. 
   parse_date("2010-10-01") // "2010-10-01" 
  iii. parse_time() 
   expects the hour, : , minutes, (optionally : and seconds), and (optionally am/pm 

specifier). 
   parse_time("01:10 am") // 01:10:00 
   parse_time("20:10:01") // 20:10:01 
  iv. personalize format 
    (1) Year 
      %Y (4 digits) 

%y (2 digits) //00-69 -> 2000-2069, 70-99 -> 1970-1999 
(2) Month 

      %m (2 digits) 
%b (abbreviated name, like “Jan”) 
%B (full name, “January”) 

    (3) Day 
      %d (2 digits) 

%e (optional leading space) 
    (4) Time 
      %H 0-23 hour 

%I 0-12, must be used with %p 
%p AM/PM indicator 
%M minutes 
%S integer seconds 
%OS real seconds 
%Z Time zone (as name, e.g. America/Chicago) 
%z (as offset from UTC, e.g. +0800). 

    (5) Non-digits 
      %. skips one non-digit character 

%* skips any number of non-digits 
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    (6) General Form 
      parse_date("01/02/15", "%m/%d/%y") // "2015-01-02" 

parse_date("01/02/15", "%d/%m/%y") // "2015-02-01" 
parse_date("01/02/15", "%y/%m/%d") // "2001-02-15" 

 
5. Parsing a File (readr) 
a. strategy to get types of each column 

i. readr reads the first 1000 rows and uses some (moderately conservative) heuristics 
to figure out the type of each column: using guess_parser() returns readr’s best 
guess, then parse_guess() uses that guess. to parse columns. 

ii. details 
  The heuristic tries each of the following types, stopping when it finds a match: 

(1) logical: contains only “F”, “T”, “FALSE”, or “TRUE”. 
(2) integer: contains only numeric characters (and -). 
(3) double: contains only valid doubles (including numbers like 4.5e-5). 
(4) number: contains valid doubles with the grouping mark inside. 
(5) time: matches the default time_format. 
(6) date: matches the default date_format. 
(7) date-time: any ISO8601 date. 
If none of these rules apply, then the column will stay as a vector of strings. 

b. problems 
i. Don’t always work for larger files: The first thousand rows might be a special case, 

and readr guesses a type that is not sufficiently general; The column might contain 
a lot of missing values. If the first 1000 rows contain only NAs, readr will guess 
that it’s a logical vector. 

    problems(variable) 
  iv. solutions (set types of column by yourself) 
    Every parse_xyz() function has a corresponding col_xyz() function. You use 

parse_xyz() when the data is in a character vector in R already; you use col_xyz() 
when you want to tell readr how to load the data. 

    variable <- read_csv("challenge.csv"),  
      col_types = cols( 
        x = col_double(), 
        y = col_date() 
      ) 
    ) 
c. Other Strategies 

i. look at just one more row than the default 
  variable <- read_csv("challenge.csv"), guess_max = 1001) 
ii. read in all the columns as character vectors 

    variable <- read_csv("challenge.csv"),  
      col_types = cols(.default = col_character()) 

) 
// This is particularly useful in conjunction with type_convert(), which applies the. 
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parsing heuristics to the character columns in a data frame. 
  iii. If you’re reading a very large file, you might want to set n_max to a smallish. 

number like 10,000 or 100,000. That will accelerate your iterations while you 
eliminate common problems. 

  *iv. If you’re having major parsing problems, sometimes it’s easier to just read into 
a character vector of lines with read_lines(), or even a character vector of length 
1 with read_file(). Then you can use the string parsing skills you’ll learn later 
to parse more exotic formats. 

 
6. Writing to a File 
a. write_csv(), write_tsv(), write_excel_csv() 

write_csv(variableStoreData, "fileName.csv") 
*Note that the type information is lost when you save to csv. 

b. write_rds(), read_rds() 
  uniform wrappers store data in R’s custom binary format called RDS. (Type 

information will not get lost) 
write_rds(variableStoreData, "fileName.csv") 

c. write_feather() 
  The feather package implements a fast binary file format that can be shared across 

programming languages. 
  library(feather) 

write_feather(variableStoreData, "fileName.csv") 
 
7. Other Types of Data 
To get other types of data into R, starting with the tidyverse packages listed below: 
a. haven reads SPSS, Stata, and SAS files. 
b. readxl reads excel files (both .xls and .xlsx). 
c. DBI along with a database specific backend (e.g. RMySQL, RSQLite, RPostgreSQL 

etc) allows to run SQL queries against a database and return a data frame. 
d. jsonlite for json 
e. xml2 for XML 
 
Lecture 
1. replace column names of import files 

colnames(dataframe) <- c(“col1”,”col2”,…) 
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R4DS Chapter 16 Dates and Times 
1. Prerequisites 
library(tidyverse) 
library(lubridate) 
 
2. Creating Date/Times 
a. Introduction 
  i. date: Tibbles print this as <date>. 
  ii. time: Tibbles print this as <time>. 
  iii. date-time: date plus a time, uniquely identifies an instant in time (typically to the. 

nearest second). Tibbles print this as <dttm>. 
b. Get the current date or date-time 
  i. current date 
   today() 
  ii. current date-time 
    now() 
c. Create a date/time 

i. from String 
 (1) parse Stings into date-times //Check Chapter11/4/g 
 (2) lubridate functions 
    a) identify the order in which year, month, and day appear in your dates 
      ymd("2017-01-31") // "2017-01-31" 

mdy("January 31st, 2017") // "2017-01-31" 
dmy("31-Jan-2017") // "2017-01-31" 
* These functions also take unquoted numbers. 

      ymd(20170131) // "2017-01-31" 
b) To create a date-time, add an underscore and one or more of “h”, “m”, and.   

“s” to the name of the parsing function. 
  ymd_hms("2017-01-31 20:11:59") // "2017-01-31 20:11:59 UTC" 
  mdy_hm("01/31/2017 08:01") // "2017-01-31 08:01:00 UTC" 
c) force the creation of a date-time from a date by supplying a timezone 
  ymd(20170131, tz = "UTC") // "2017-01-31 UTC" 

ii. from individual date-time components 
(1) Condition 

     have individual components of date-time spread across multiple cols 

      
(2) To create a date/time from this sort of input, use make_date() for dates, or. 

make_datetime() for date-times. 
   a) five-time-cols (year, month, day, hour, minute) 
     make_datetime(year, month, day, hour, minute) 
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   b) four-time-cols (year, month, day, time) 
     var1 <- function(year, month, day, time) { 
     make_datetime(year, month, day, time %/% 100, time %% 100) 

} // use modulus arithmetic to pull out the hour and minute components 
dataSet2 <- originDataSet %>%  

      filter(!is.na(dep_time), !is.na(arr_time)) %>%  
      mutate( 
        … … 

  ) // other steps 
iii. from an existing date/time object 
   (1) offsets from “Unix Epoch” (Unix Epoch: 1970-01-01) 
      a) in seconds 
        as_datetime(60 * 60 * 10) // "1970-01-01 10:00:00 UTC" 
      b) in dats 

as_date(365 * 10 + 2) // "1980-01-01" 
   (2) offsets from costomized date 

as_date("2021-02-25") + ddays(-2) // "2021-02-23" 
 
3. Date-time Components 
a. Getting components 
datetime <- ymd_hms("2016-07-08 12:34:56") 
year(datetime) // 2016 
month(datetime) // 7 
mday(datetime) // 8 (day of the month) 
yday(datetime) //190 (day of the year) 
wday(datetime) // 6 (day of the week) 
*For month() and wday() you can set label = TRUE to return the abbreviated name of 
the month or day of the week. Set abbr = FALSE to return the full name. 
month(datetime, label = TRUE) // Jul 
wday(datetime, label = TRUE, abbr = FALSE) // Friday 
 
b. Rounding 
An alternative approach to plotting individual components is to round the date to a 
nearby unit of time, with floor_date(), round_date(), and ceiling_date(). 
foor_date() // round down 
ceiling_date() // round up 
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round_date() // round to 
c. Setting components 
  i. Basics 

datetime <- ymd_hms("2016-07-08 12:34:56") 
year(datetime) <- 2020 // datetime get "2020-07-08 12:34:56 UTC" 
month(datetime) <- 01 // datetime get "2020-01-08 12:34:56 UTC" 
hour(datetime) <- hour(datetime) + 1 // datetime get "2020-01-08 13:34:56 UTC" 

  ii. create a new date-time 
    (1) update(datetime, year = 2020, month = 2, mday = 2, hour = 2)  

// "2020-02-02 02:34:56 UTC" 
    (2) ymd("2015-02-01") %>%  
       update(mday = 30) // "2015-03-02" 
      * If values are too big, they will roll-over. 
 
4. Time Spans 
a. Three important classes represent time spans, use seconds. 

i. durations represents an exact number of seconds. 
ii. periods represents human units like weeks and months, don’t have a fixed length 

in seconds. 
iii. intervals represents a starting and ending point. 

 
b. Duration 
subtract two dates, you get a difftime object;  
a difftime class object records a time span of seconds, minutes, hours, days, or weeks; 
this ambiguity can make difftimes a little painful to work with; 
duration always uses seconds can be a good alternative. 
  i. General 
    h_age <- today() - ymd(19791014) // get difttime object 
    as.duration(h_age) // get duration "1293494400s (~40.99 years)" 
  ii. Constructors of duration 
    dseconds(n) return n seconds 
    dminutes(n) return n*60 seconds 
    dhours(n) return n*3600 seconds 
    ddays(n) return n*86400 seconds 
    dweeks(n) return n*86400*7 seconds 
    dyears(n) return n*31557600 seconds 
    dxxxx(n:m) return (m-n) output for n*a seconds to m*b seconds 
    dxxxx(c(n, m)) return n*a seconds and m*b seconds 
   *duration can be added and multiplied 
    2 * dyears(1) // "63115200s (~2 years)" 
    tomorrow <- today() + ddays(1) 

last_year <- today() - dyears(1) 
  iii. Because durations represent an exact number of seconds, sometimes may get an 

unexpected result. (be careful with time zone like DST) 
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c. Periods 
  i. Constructors of periods 
    seconds(15) // "15S" 

minutes(10) // "10M 0S" 
hours(c(12, 24)) // "12H 0M 0S" "24H 0M 0S" 
days(7) // "7d 0H 0M 0S" 
months(1:6) // "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d.     

0H 0M 0S" "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S" 
weeks(3) // "21d 0H 0M 0S" 
years(1) // "1y 0m 0d 0H 0M 0S" 

  * periods can be added and multiplied 
ii. Compariosn between Periods and Duration 

      
 
d. Intervals 
To make a more accurate measurement, you’ll have to use an interval, which is a 
duration with a starting point. 
next_year <- today() + years(1) 
today() %--% next_year / ddays(1) // 365 
 
e. Summary 

 
 
5. Time Zones 
a. names of time zones tend to be ambiguous (e.g. Eastern Standard Time in US, but. 

both Australia and Canada also have EST) 
  <continent>/<city> e.g. America/New_York 
b. get current time zone 

Sys.timezone() 
c. In R, the time zone is an attribute of the date-time that only controls printing. 

x1 <- ymd_hms("2015-06-01 12:00:00", tz = "America/New_York") 
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// "2015-06-01 12:00:00 EDT" 
d. c() will often drop the time zone 

   

   
 *modify timezone for gourps 
  (1) Keep the instant in time the same, and change how it’s displayed. (Use this. 

when the instant is correct, but you want a more natural display) 
x4a <- with_tz(x4, tzone = "Australia/Lord_Howe") 

  (2) Change the underlying instant in time. (Use this when you have an instant that. 
has been labelled with the incorrect time zone) 

x4b <- force_tz(x4, tzone = "Australia/Lord_Howe") 
e. Unless otherwise specified, lubridate always uses UTC (Coordinated Universal 

Time) is the standard time zone used by the scientific community. 
 
[END] 
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R4DS Chapter 12 Tidy Data 
1. Prerequisites 
library(tidyverse) 
 
2. Tidy Data 
a. Tidy Dataset 
  i. Each variable must have its own column. 

ii. Each observation must have its own row. 
iii. Each value must have its own cell. 

 
* Three rules are interrelated. 

b. Advantages 
  i. Having a consistent data structure, it’s easier to learn the tools that work with it. 
  ii. Placing variables in columns allows R’s vectorised nature to shine. 
 
3. Pivoting 
a. Longer 

pivot_longer() makes datasets longer by increasing the number of rows and 
decreasing the number of columns. Used in case that variables and values are not in 
their positions. 

  table4a %>%  
    pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases") 

 
b. Wider 

pivot_wider() makes datasets longer by decreasing the number of rows and. 
increasing the number of columns. Used when an observation is scattered across 
multiple rows. 
table2 %>% 

pivot_wider(names_from = key, values_from = value) 
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4. Separating and Uniting 
a. Separate 

i. separate() pulls apart one column into multiple columns, by splitting wherever a 
separator character appears. 

ii. By default, separate() will split values wherever it sees a non-alphanumeric 
character like “/”. 

  table3 %>%  
    separate(rate, into = c("cases", "population")) 

     
  iii. To use a specific character to separate a column, you can pass the character to the 

sep argument of separate(). 
     table3 %>%  
       separate(rate, into = c("cases", "population"), sep = "/") 
  iv. Default behaviour in separate() leaves the type of the column as is, you can ask. 

separate() to try and convert to better types using convert = TRUE. 
    table3 %>%  
       separate(rate, into = c("cases", "population"), sep = "/", convert = TRUE) 
  v. You can also pass a vector of integers to sep in separate() will interpret the integers 

as positions to split at.  
i. Positive values start at 1 on the far-left of the strings; Negative value start at -1. 

on the far-right of the strings. 
ii. The length of sep should be one less than the number of names in into. 

b. Unite 
i. unite() combines multiple columns into a single column. 
ii. The default will place an underscore “_” between the values from different cols. 

table5 %>%  
    unite(newColName, col_1, col_2, sep = "") 

 
5. Missing Values 
a. Forms of missing value in dataset 
  i. Explicitly // i.e flagged with NA. 

ii. Implicitly // i.e simply not present in the data. 
* An explicit missing value is the presence of an absence; an implicit missing value. 
is the absence of a presence. 

b. Turn explicit missing values implicit: values_drop_na = TRUE 
  stocks %>%  
    pivot_wider(names_from = year, values_from = return) %>%  
    pivot_longer( 
      cols = c(`2015`, `2016`),  
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      names_to = "year",  
      values_to = "return",  
      values_drop_na = TRUE 
    ) 
c. Make missing values explicit: complete() / fill() 
  i. complete() takes a set of columns, and finds all unique combinations. It then 

ensures the original dataset contains all those values, filling in explicit NAs where 
necessary. 

    stocks %>%  
      complete(year, qtr) 
  ii. fill() takes a set of columns where you want missing values to be replaced by the 

most recent non-missing value (sometimes called last observation carried forward). 
    treatment %>%  
      fill(colName) 
 
6. Case Studies (Steps for Tidying Dataset) 
a) Find/Specify variables (variables can be everywhere in untidy dataset). 
b) Flip/Convert variables into correct positions. 
c) Find meanings of variables(columns), what data they represent. 
  i) count() variables to get some clues 
  ii) obeserve and compare 
d) Separate columns and drop redundant columns. 
e) Handle missing values. 

 
 
7. Non-Tidy Data 
If your data does fit naturally into a rectangular structure composed of observations and 
variables, I think tidy data should be your default choice. But there are good reasons to 
use other structures; tidy data is not the only way. 
 
[END] 
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R4DS Chapter 13 Relation Data 
1. Introduction 
a. Prerequisites 

library(tidyverse) 
library(nycflights13) // we use the nycflights13 to learn about relational data 

b. Relational Data 
  i. Multiple tables of data are called relational data because it is the relations, not just 

the individual datasets, that are important. 
  ii. Relations are always defined between a pair of tables. 
c. Prepare 
  Find what variables connect one dataset to another. 

e.g 
1) flights connect to planes via tailnum. 
2) flights connect to airlines via carrier. 
3) flights connect to airports via the origin and dest. 
4) flights connect to weather via origin, year, month,  
day, and hour. 
… … 

 
2. Keys 
a. General 

i. The variables used to connect each pair of tables are called keys. 
  ii. A key is a variable (or set of variables) that uniquely identifies an observation. 
      e.g Each plane is uniquely identified by its tailnum. 
b. Types 

i. Primary Key 
uniquely identifies an observation in its own table. 

e.g planes$tailnum is a primary key because it uniquely identifies each plane in. 
the planes table. 

ii. Foreign Key 
uniquely identifies an observation in another table. 
e.g flights$tailnum is a foreign key because it appears in the flights table where it 

matches each flight to a unique plane. 
* A variable can be both a primary key and a foreign key: be primary key in one 

dataset, and be foreign key in another dataset at the same time. 
  iii. Surrogate Key 
     If a table lacks a primary key, it’s sometimes useful to add one with mutate(), 

which is called surrogate key. 
c. Find Primary Key 
  i. Decide possible primary key 
    e.g date & flight / tail number are primary key in the flights table 
  ii. Check 
    flights %>%  
     count(year, month, day, flight) %>%  
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  filter(n > 1) 
// A tibble: 29,768 x 5 which suggests your possible 

primary key is not TRUE 
 A tibble: 0 x n suggests your primary key make 

some sense. 
iii. Sometimes a table doesn’t have an explicit 

primary key: each row is an observation, but no 
combination of variables reliably identifies it. 

   If a table lacks a primary key, it’s sometimes 
useful to add one with mutate(). 

 
3. Mutating Joins 
a. General 

A mutating join allows you to combine variables from two tables. It first matches. 
observations by their keys, then copies across variables from one table to the other. 
e.g flights2 %>% 

      select(-origin, -dest) %>%  
      left_join(airlines, by = "carrier") 

//This can also use mutate() to achieve the same effect (but more complicated) 
flights2 %>% 

      select(-origin, -dest) %>%  
      mutate(name = airlines$name[match(carrier, airlines$carrier)]) 
b. Inner Joins 
  An inner join matches pairs of observations whenever their keys are equal. 
  The output of an inner join is a new data frame that contains the key, the x values, 

and the y values. 

 
  x %>%  
    inner_join(y, by = "key") 
  * Unmatched rows are not included in the result, so that inner joins are usually not. 

appropriate for use in analysis because it’s too easy to lose observations. 
c. Outer Joins 
  i. An outer join keeps observations that appear in at least one of the tables. 
  ii. Types 
    1) Left Joins 
      keeps all observations in x 
    2) Right Joins 
      keeps all observations in y 
    3) Full Joins 
      keeps all observations in x and y 
*The most commonly used join is the left join: you use this whenever you look up 
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additional data from another table, because it preserves the original observations even 
when there isn’t a match. Left join should be your default join. 
    xxx_join (dataset_1, dataset_2, by = “key”) 
d. Duplicate Keys 
  i. General 
   All the diagrams have assumed that the keys are unique, but that’s not the case. 
  ii. Types 
    1) One table has duplicate keys (one-to-many relationship) 

       
    2) Both tables have duplicate keys (Very Possible Error Keys) 

       
  iii. Defining Key Columns 
    1) The default, by = NULL 
      uses all variables that appear in both tables called natural join. 
      flights2 %>%  

  left_join(weather) 
    2) A character vector, by = "com_var" 
      uses only some of the common variables. 
      flights2 %>%  
        left_join(planes, by = "tailnum") 
    3) A named character vector, by = c("var_x" = "var_y") 
      matches variable var_x in table x to variable var_b in table y. 
      flights2 %>%  
        left_join(airports, c("dest" = "faa")) 
      // For example, we want to combine airport info with flights, then we use 

destination as a key to left-join corresponding data in airport. 
e. Other Implementations 

 
 
4. Filtering Joins 
a. Filtering joins match observations in the same way as mutating joins, but affect the. 
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observations, not the variables. 
b. Types 
  i. semi_join(x, y) keeps all observations in x that have a match in y. 
  ii. anti_join(x, y) drops all observations in x that have a match in y. 
  *Only the existence of a match is important other than which observation is. matched. 
c. Semi-joins are useful for matching filtered summary tables back to the original rows. 
  e.g you’ve found the top ten most popular destinations, and now you want to find 

each flight that went to one of those destinations. 
     flights %>%  
       semi_join(top_dest) 
 
5. Join Problems/Solutions 
a. Getting (un)lucky and find a combination that’s unique in your current data but the. 

relationship might not be true in general. 
b. Check that none of the variables in the primary key are missing. If a value is missing. 

then it can’t identify an observation. 
c. Check that your foreign keys match primary keys in another table. The best way to. 

do this is with an anti_join(). 
 
6. Set Operations 
All these operations work with a complete row, comparing the values of every variable. 
a. intersect(x, y): return only observations in both x and y. 
b. union(x, y): return unique observations in x and y. 
c. setdiff(x, y): return observations in x, but not in y. 
 
 
[END] 
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R4DS Chapter 14 Strings 
1. Prerequisites 
library(tidyverse) 
 
2. String Basics 
a. Create Strings 
  i. General 
    e.g string1 <- "This is a string" 
  ii. Single/Double quotation marks 
    1) double: "\""  

2) single: '\' ' 
  iii. Backslash 

"\\" 
  iv. Special characters 
    1) newline 
      “\n” 
    2) tab 
      “\t” 
    3) non-English characters 
      e.g “\u00b5” 
  * see the complete list by requesting help on ": ?'"', or ?"'" 
  v. Multiple strings 
    Multiple strings are often stored in a character vector. 
    c("one", "two", "three") // #> [1] "one"   "two"   "three" 
b. String Lengths 

str_length() tells you the number of characters in a string 
str_length(“fuck”) // #> [1] 4 
str_length(c("a", "R for data science", NA)) // #> [1]  1 18 NA 

c. Combining Strings 
  i. To combine two or more strings, use str_c() 
    str_c("x", "y") // #> [1] "xy" 
  ii. Use the sep argument to control how combines strings separated 
    str_c("x", "y", sep = ", ") // #> [1] "x, y" 
  iii. Print missing value NA as “NA”, use str_replace_na() 
     e.g x <- c("abc", NA) 

str_c("|-", x, "-|") // #> [1] "|-abc-|" NA 
str_c("|-", str_replace_na(x), "-|") // #> [1] "|-abc-|" "|-NA-|" 

  iv. A vector of strings (multiple strings) 
1) Combine for different options with mult-str 

       str_c("pre-", c("a", "b", "c"), "-fix") // #> [1] "pre-a-fix" "pre-b-fix" "pre-c-fix" 
     2) collapse a vector of strings into a single string 
       str_c(c("x", "y", "z"), collapse = ", ") // #> [1] "x, y, z" 
  v. Objects of length 0 are silently dropped by str_c() during combining. 
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d. Subsetting Strings 
extract parts of a string using str_sub(): str_sub() takes start and end arguments which 
give the (inclusive) position of the substring.  

  i. Positive start&end arguments 
    x <- c("Apple", "Banana", "Pear") 

str_sub(x, 1, 3) // #> [1] "App" "Ban" "Pea" 
  ii. Negative start&end arguments 

negative numbers count backwards from end 
str_sub(x, -3, -1) // #> [1] "ple" "ana" "ear" 

*str_sub() won’t fail if the string is too short: it will just return as much as possible 
 e.g str_sub("a", 1, 5) // #> [1] "a" 
*the assignment form of str_sub() to modify strings 

   str_sub(x, 1, 1) <- stringx 
e. Locales 
The locale is specified as a ISO 639 language code, which is a two or three letter 
abbreviation. different languages have different rules for changing case. You can pick 
which set of rules to use by specifying a locale. (R’s default is English) 
  i. Change the text to lower case with locale 
    str_to_lower(strings, locale = “localeAbrv”) 
  ii. Change the text to upper case with locale 
    str_to_upper(c("i", "ı"), locale = "tr") // Turkish I’s uppercase #> [1] "İ" "I" 
  iii. Sorting 
    order() and sort() functions sort strings using the current locale. 
    x <- c("apple", "eggplant", "banana") 
    // Case A English 

str_sort(x, locale = "en") // #> [1] "apple"    "banana"   "eggplant" 
    // Case B Hawaiian 

str_sort(x, locale = "haw") // #> [1] "apple"    "eggplant" "banana" 
 
3. Matching Patterns with Regular Expressions 
To learn regular expressions, we’ll use str_view() and str_view_all(). 
a. Basic Matches 
  i. Simple 
    x <- c("apple", "banana", "pear") 

str_view(x, "an") 

 
  ii. Match any character around assigned one with . 
    str_view(x, ".a.") 
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  iii. Match the character “.” 
     To match an “.”, you need the regexp \.. Unfortunately, this creates a problem: 

We use strings to represent regular expressions, and \ is also used as an escape 
symbol in strings. So, to create the regular expression \. we need the string "\\." 

     str_view(c("abc", "a.c", "bef"), "a\\.c")  

 
iv. Match the character “.” 

    To match a literal \ you need to write "\\\\". 
    x <- "a\\b" 
    str_view(x, "\\\\") 

     
b. Anchors 
  i. ^ to match the start of the string. 
    x <- c("apple", "banana", "pear") 
    str_view(x, "^a") 

     
ii. $ to match the end of the string. 

    str_view(x, "a$") 

     
  *if you begin with power (^), you end up with money ($) 
  iii. Match an exact string 
     x <- c("apple pie", "apple", "apple cake") 

str_view(x, "apple") // This will match the strings contain the word “apple” 
str_view(x, "^apple$") // This will match an EXACT string! 

 
c. Character Classes and Alternatives 
  There are a number of special patterns that match more than one character. 
  i. \d: matches any digit. 

ii. \s: matches any whitespace (e.g. space, tab, newline). 
iii. [abc]: matches a, b, or c. 
iv. [^abc]: matches anything except a, b, or c. 

  * to create a regular expression containing \d or \s, you’ll need to escape the \ for the. 
string, so you’ll type "\\d" or "\\s". 

  v. A character class containing a single character is a nice alternative to backslash. 
escapes when you want to include a single metacharacter in a regex. Many people 
find this more readable. 

    e.g str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c") // a.c 
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    str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c") // a*c 
    str_view(c("abc", "a.c", "a*c", "a c"), "a[ ]") // a c 
  * This works for most (but not all) regex metacharacters: $ . | ? * + ( ) [ {. 

Unfortunately, a few characters have special meaning even inside a character class 
and must be handled with backslash escapes: ] \ ^ -. 

  vi. Pick between one or more alternative patterns with abc|xyz 
    str_view(c("grey", "gray"), "gr(e|a)y") 

     
d. Repetition 

Controlling how many times a pattern matches: 
i. Simple control 
  1) ?: 0 or 1 (select zero or one matched item/ matching the shortest string possible) 

2) +: 1 or more  
3) *: 0 or more 

    e.g x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII" 
str_view(x, "CC?") 

 
  ii. Precise control 
    1) {n}: exactly n 

2) {n,}: n or more 
3) {,m}: at most m 
4) {n,m}: between n and m 

   e.g str_view(x, "C{2}") 

       
      str_view(x, "C{2,}") 

       
      str_view(x, "C{2,3}") 

       
e. Grouping and Backreferences 
  A capturing group stores the part of the string matched by the part of the regular. 

expression inside the parentheses. You can refer to the same text as previously 
matched by a capturing group with backreferences, like \1, \2 etc. 

  e.g str_view(fruit, "(..)\\1", match = TRUE) 
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R4DS Chapter 19 Functions 
1. Prerequisites 
  N/A 
 
2. Create a New Function 
a. pick a name for the function 
b. list the inputs, or arguments, to the function inside function. 
c. place the code you have developed in body of the function, a { block that. 

immediately follows function(...) 
name_of_function <- function(parameters) { 

code for function 
} 

d. Examples: 
  rescale01 <- function(x) { 
    rng <- range(x, na.rm = TRUE) 
    (x - rng[1]) / (rng[2] - rng[1]) 

} 
rescale01(c(0, 5, 10)) // #> [1] 0.0 0.5 1.0 

e. if requirement (like parameters or code) changes, function has to be changed 
  x <- c(1:10, Inf) 

rescale01(x) // #> [1]   0   0   0   0   0   0   0   0   0   0 NaN 
  rescale01 <- function(x) { 
    rng <- range(x, na.rm = TRUE, finite = TRUE) 
    (x - rng[1]) / (rng[2] - rng[1]) 

} 
rescale01(x) // #> [1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444. 

0.5555556 0.6666667 [8] 0.7777778 0.8888889 1.0000000 Inf 
 
3. Naming and Commenting 
a. Naming 

i. the name of function will be short, but clearly evoke what the function does. 
ii. function names should be verbs, and arguments should be nouns. 
iii. If your function name is composed of multiple words using “snake_case”. 
iv. If have a family of functions that do similar things, make sure they have. 

consistent names and arguments. 
v. avoid overriding existing functions and variables. 

b. Commenting 
i. use comments, lines starting with #, to explain the “why” of your code. 
ii. break up your file into easily readable chunks. Use long lines of - and = to make. 

it easy to spot the breaks. 
Example: 

# Load data -------------------------------------- 
# Plot data --------------------------------------- 
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4. Conditional Execution 
a. General Form 
  i. Format (ususally use inside the function()) 
    1) if-else 

if (condition) { 
        # code executed when condition is TRUE 

} else { 
    # code executed when condition is FALSE 

} 
2) if 

if (condition) { 
        # code executed when condition is TRUE 

} 
    3) multiple conditions 
      if (this) { 
        # do that 

} else if (that) { 
  # do something else 
} else { 
  #  
} 

  ii. Details 
    1) The condition must evaluate to either TRUE or FALSE; If it’s a vector, you’ll. 

get a warning message; if it’s an NA, you’ll get an error. 
    2) use || (or) and && (and) to combine multiple logical expressions; never use | 

or & in an if statement: these are vectorised operations that apply to multiple 
values (that’s why you use them in filter()). 

    3) be wary of floating point numbers when using ==; x == NA is useless. 
b. switch() 

if you end up with a very long series of chained if statements, you should consider. 
rewriting. One useful technique is the switch() function. 

  function(x, y, op) { 
   switch(op, 

      plus = x + y, 
      minus = x - y, 
      times = x * y, 
      divide = x / y, 
     stop("Unknown op!") 
   ) 
} 
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5. Function Arguments 
a. General 

i. The arguments to a function typically fall into two broad sets: one set supplies the 
data to compute on, and the other supplies arguments that control the details of the 
computation. 

ii. Generally, data arguments should come first. Detail arguments should go on the 
end. 

iii. specify a default value in the same way you call a function with a named 
argument. function(x, conf = 0.95) function(x, default_value_name = value) 

  iv. When you call a function, if you override the default value of a detail argument, 
you should use the full name. 

b. Names of arguments 
  i. x, y, z: vectors. 

ii. w: a vector of weights. 
iii. df: a data frame. 
iv. i, j: numeric indices (typically rows and columns). 
v. n: length, or number of rows. 
vi. p: number of columns. 

c. Check arguments 
  It’s good practice to check important preconditions, and throw an error (with. 

stop()), if they are not true. 
  wt_mean <- function(x, w) { 
    if (length(x) != length(w)) { 
      stop("`x` and `w` must be the same length", call. = FALSE) 
    } 
    sum(w * x) / sum(w) 

} 
d. Dot-dot-dot 

This special argument captures any number of arguments that aren’t otherwise. 
matched. 
rule <- function(..., pad = "-") { 
  title <- paste0(...) 
  width <- getOption("width") - nchar(title) - 5 
  cat(title, " ", stringr::str_dup(pad, width), "\n", sep = "") 
} 

 * If you just want to capture the values of the ..., use list(...). 
 
6. Return Values 
a. Explicit return statements 
  i. The value returned by the function is usually the last statement it evaluates, but 

you. can choose to return early by using return(). 
    complicated_function <- function(x, y, z) { 
    if (length(x) == 0 || length(y) == 0) { 
      return(0) } 
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  ii. Conditions 
    1) A common reason to do this is because the inputs are empty. 
    2) Another reason is because you have a if statement with one complex block and 

one simple block. (the first block is very long, by the time you get to the else, 
you’ve forgotten the condition. One way to rewrite it is to use an early return 
for the simple case) 

b. Pipeable functions 
  i. transformations 
    With transformations, an object is passed to the function’s first argument and a. 

modified object is returned. 
  ii. side-effects 
    With side-effects, the passed object is not transformed. Instead, the function 

performs an action on the object, like drawing a plot or saving a file. 
    show_missings <- function(df) { 

  n <- sum(is.na(df)) 
  cat("Missing values: ", n, "\n", sep = "") 

      
 invisible(df) 

} 
    invisible() means that the input df doesn’t get printed out 
    mtcars %>%  
      show_missings() %>% // #> Missing values: 0 
      mutate(mpg = ifelse(mpg < 20, NA, mpg)) %>%  
      show_missings() // #> Missing values: 18 
 
7. Environment 
  f <- function(x) { 
    x + y 

} 
  In many programming languages, this would be an error, because y is not defined. 

inside the function. In R, this is valid code because R uses rules called lexical 
scoping to find the value associated with a name. Since y is not defined inside the 
function, R will look in the environment where the function was defined. 
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