R4DS Chapter 1 & 2 Introduction

1. What you will learn

![Diagram showing the Data Science Workflow]

2. Tidyverse
 - `install.packages("tidyverse")`

3. R Markdown
 a. Headers
 - # Big
 - ## Small
 - ### H3
 - #### H4
 - ##### H5
 - ####### Smallest

 b. List
LIST	R Markdown
1. Item-1	1. Item-1
2. Item-2	2. Item-2
4. Item-3	3. Item-3
* sub-Item-1	* sub-Item-1
+ sub-Item-2	* sub-Item-2

 c. Text Format
 - i. Bold: **Bold Text** / _Bold Text_
 - ii. Italic: *Italic Text* / _Italic Text_

 d. Chunks
 // Check real R Markdown file

 e. Display variable
 `var`

 f. Knitting
 // Check R Studio
R4DS Chapter 4 Workflow: Basics

1. Coding Basics
 a. Calculator

 \[
 \frac{1}{200} \times 30 \quad \text{// > [1] 0.15}
 \]

 \[
 \frac{59 + 73 + 2}{3} \quad \text{// > [1] 44.6667}
 \]

 \[
 \sin\left(\frac{\pi}{2}\right) \quad \text{// > [1] 1}
 \]

 b. Create new objects/Assignment Statement

 \[x \leftarrow 3 \times 4\]

 \[\text{object_name} \leftarrow \text{value}\]

2. Object Names
 a. recommend snake_case
 b. start with letter
 c. can include: number, _, ., letter
 d. be descriptive

3. Calling functions

 \[\text{function_name}(\text{arg1} = \text{val1}, \text{arg2} = \text{val2}, ...)\]

 Example:

 \[\text{seq}(1, 10) \quad \text{// > [1] 1 2 3 4 5 6 7 8 9 10}\]
R4DS Chapter 3 Data Visualization

1. Prerequisites
   ```r
   library(tidyverse)
   ```

2. Creating a Plot
   ```r
   ggplot(data = <DATA>) +
   geom_function(mapping = aes(x = var1, y = var2, …))
   ```

3. Aesthetic Mapping
 a. Color
 i. color by group
         ```r
         ggplot(data = <DATA>) +
         geom_function(mapping = aes(x = var1, y = var2, color = group_name))
         ```
 ii. set color
         ```r
         ggplot(data = <DATA>) +
         geom_function(mapping = aes(x = var1, y = var2, color = “color_name”))
         ```
 b. Shape
 i. shape by group
         ```r
         ggplot(data = <DATA>) +
         geom_function(mapping = aes(x = var1, y = var2, shape = group_name))
         ```
 ii. set shape
         ```r
         □ 0 □ 4 □ 10 □ 15 □ 22
         ◇ 1 ◇ 6 ◇ 11 ◇ 16 ◇ 21
         △ 2 △ 7 △ 12 △ 17 △ 24
         ❀ 5 ❀ 8 ❀ 13 ❀ 18 ❀ 23
         3 3 9 14 19 20
         ```
 c. Size
 i. size by group
         ```r
         ggplot(data = <DATA>) +
         geom_function(mapping = aes(x = var1, y = var2, size = group_name))
         ```
 ii. set size
         ```r
         * The size of a point in mm
         ```
 d. Transparency
      ```r
      ggplot(data = <DATA>) +
      geom_function(mapping = aes(x = var1, y = var2, alpha = group_name or value))
      ```

3. Facets
 a. To facet your plot by a single variable, use `facet_wrap()`
      ```r
      ggplot(data = <DATA>) +
      geom_function(mapping = aes(x = var1, y = var2, …)) +
      facet_wrap(~ var) // can set row numbers with facet_wrap(~ var, nrow = num)
      ```
 b. To facet your plot on the combination of two variables, use `facet_grid()`
      ```r
      ggplot(data = <DATA>) +
      geom_function(mapping = aes(x = var1, y = var2, …)) +
facet_grid(varA ~ varB)
* If you prefer to not facet in the rows or columns dimension, use a | instead of a variable name like facet_grid(. ~ cyl)

4. Geometric Objects
a. geom_point() Point
   i. normal
      ggplot(data = mpg) +
      geom_point(mapping = aes(x = displ, y = hwy))
   ii. position adjustment (position = "jitter")
      Adds a small amount of random noise to each point. This spreads the points out to avoid overlapping in the graph.
      ggplot(data = mpg) +
      geom_point(mapping = aes(x = displ, y = hwy), position = "jitter")
* usually used with geom_smooth to show trend.
b. geom_smooth() Line
   i. normal
      ggplot(data = mpg) +
      geom_smooth(mapping = aes(x = displ, y = hwy))
   ii. set line type
      ggplot(data = mpg) +
      geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))
   iii. linear model
      ggplot(data = mpg) +
      geom_smooth(mapping = aes(x = displ, y = hwy), method = "lm", se = FALSE)
   iv. geom_smooth(se=FALSE)
      adds a smooth trend line on the graph which generally adapt to the shape of the data and helps reflect the trend of points in the dataset.
c. geom_bar() Bar
   Bar charts, calculate new values to plot: bin your data and then plot bin counts, the number of points that fall in each bin.
   i. normal (automatically count)
      ggplot(data = diamonds) +
      geom_bar(mapping = aes(x = cut))
   ii. map the height of the bars to the \textit{raw values of a y variable}
      ggplot(data = demo) +
      geom_bar(mapping = aes(x = cut, y = freq), stat = "identity")
   iii. display a bar chart of \textit{proportion}
      ggplot(data = diamonds) +
      geom_bar(mapping = aes(x = cut, y = stat(prop), group = 1))
   iv. color the graph
      1) fill (fill by x variable)
         ggplot(data = diamonds) +
         geom_bar(mapping = aes(x = cut, fill = cut))
2) color
   ```r
ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, colour = cut))
   ```

v. position adjustment (fill by non-x variable)
1) raw (stacking)
   ```r
ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, fill = clarity))
   ```

2) position adjustment
   ```r
ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, fill = clarity), position = "XXX")
   ```
   a) position = "identity"
      place each object exactly where it falls in the context of the graph, which is not very useful for bars, because it overlaps them.
      ```r
ggplot(data = diamonds, mapping = aes(x = cut, fill = clarity)) +
 geom_bar(alpha = 1/5, position = "identity")
 ggpplot(data = diamonds, mapping = aes(x = cut, colour = clarity)) +
 geom_bar(fill = NA, position = "identity")
      ```
   b) position = "fill"
      works like stacking, but makes each set of stacked bars the same height. This makes it easier to compare proportions across groups.
   c) position = "dodge" (position = "dodge2")
      places overlapping objects directly beside one another. This makes it easier to compare individual values.

d. `geom_boxplot()` Boxplot
   ```r
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
 geom_boxplot()
   ```
   *define only y -> get single boxplot of distribution of certain variable; define both xy -> get multiple boxplots.

e. Coordinate system
   i. `coord_flip()` switches the x and y axes.
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
  geom_boxplot() +
  coord_flip()

ii. `coord_quickmap()` sets the aspect ratio correctly for maps.
iii. `coord_polar()` uses polar coordinates.

f. The Layered Grammar of Graphics

```r
ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(
 mapping = aes(<MAPPINGS>),
 stat = <STAT>,
 position = <POSITION>
) +
 <COORDINATE_FUNCTION> +
 <FACET_FUNCTION>
```

*When you use several `geom_functions()` together, please make sure you get the layer like colors’ group, aesthetic settings right for each function.

**Lecture**

1. residuals: check Week2/Lecture1/last 5 minutes
   ```r
 lm1 <- lm(y~x, dataSet)
 residuals1 <- residuals(lm1)
 dataSet <- dset %>%
 mutate(residuals = residuals1)
 ggplot(dset2, aes(x=x, y=residuals1)) +
 geom_point() +
 geom_hline(yintercept = 0, color="gray") +
 ylab("Residuals") +
 xlab("x") +
 ggtitle("Linear Model Residuals")
   ```

2. Check Dataset
   ```r
 spec(data)
 str(data)
   ```

3. `geom_histogram` (also used in `geom_bar`)
   a. `binwidth = num`: set bin’s width of histogram.
   b. `boundary = num`: set boundary of histogram.
   c. `center = num`: set center of histogram.
   d. `bins = num`: set number of bins.
   *all defined in `mapping = aes(…)`
   *histogram each bin is connected horizontally, bar has space between each bin.
4. `geom_density()` Density Plot
   adjust = `num`: smooth of the graph (num greater, the graph get smoother)

**Other about ggplot**

1. Adjust Texts on Labels
   ```r
ggplot(data = planets_3) +
 geom_bar(mapping = aes(x = factor(method), y = stat(prop), group = 1)) +
 theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
 xlab("Method") +
 ylab("Proportions") +
 ggtitle("Observations of Exoplanet for Each Method")
   ```

2. points are jittered horizontally, but not vertically
   ```r
 geom_point(position = position_jitter(height = 0, width = 0.03), size = 0.01)
   ```

3. `geom_freqpoly()` performs the same calculation as `geom_histogram()`, but instead of displaying the counts with bars, uses lines instead.
R4DS Chapter 5 Data Transformation

1. Prerequisites
   ```
 library(tidyverse)
   ```

2. Data Types & Basic Information
   a. Data Types
      i. `int` stands for integers.
      ii. `dbl` stands for doubles, or real numbers.
      iii. `chr` stands for character vectors, or strings.
      iv. `dttm` stands for date-times (a date + a time).
      v. `lgl` stands for logical, vectors that contain only TRUE or FALSE.
      vi. `fctr` stands for factors, which R uses to represent categorical variables with fixed possible values.
      vii. `date` stands for dates.
   b. dplyr Basics
      i. `filter()` Pick observations by their values.
      ii. `arrange()` Reorder the rows.
      iii. `select()` Pick variables by their names.
      iv. `mutate()` Create new variables with functions of existing variables.
      v. `summarise()` Collapse many values down to a single summary.

3. `filter()`
   a. Comparison & Logical Operators
      i. comparison operators
         1) normal: `>`, `>=`, `<`, `<=`, `!=` (not equal), and `==` (equal)
         2) floating points: `near(valueA, valueB)`
      ii. logical operators
         & is “and”
         | is “or”
         ! is “not”
      iii. Examples
         ```
 filter(flights, month == 11 | month == 12) // finds all flights departed in Nov or Dec
         ```
   b. `x %in% y`
      select every row where `x` is one of the values in `y`
      ```
 filter(flights, month %in% c(11, 12)) // finds all flights departed in Nov or Dec
      ```
   c. Missing value (NA)
      i. Basic information
         NA represents an unknown value so missing values, almost any operation involving an unknown value will also be unknown.
      ii. determine if a value is NA
         ```
 is.na(value)
         ```
         return true if value is NA
      iii. Example
         ```
 df <- tibble(x = c(1, NA, 3)) // df is dataSet, x is variable
         ```
filter(df, is.na(x) | x > 1) // select value that is NA or greater than 1

4. arrange()
   Takes a data frame and a set of column names to order by, and Missing values are always sorted at the end.
   a. increasing order
      arrange(data, colName)
   b. decending order
      arrange(data, desc(colName))

5. select()
   a. Basic
      i. select columns by name
         select(dataSet, year, month, day)
      ii. select columns between columns
         select(flights, year:day) // Select all columns between year and day (inclusive)
      iii. select columns except certain columns
         select(flights, -(year:day)) // Select all columns except those from year to day
   b. Helper functions for selecting
      i. starts_with("abc"): matches names that begin with “abc”.
      ii. ends_with("xyz"): matches names that end with “xyz”.
      iii. contains("ijk"): matches names that contain “ijk”.
      iv. matches("(.)(\1)\1") : selects variables that match a regular expression.
      v. num_range("x", 1:3): matches x1, x2 and x3
   c. Special use other than selecting
      i. Rename
         *A better solution: rename(flights, tail_num = tailnum)
      ii. Move variable to the start of Data Frame / Reorder varaible
         // Move time_hour, air_time to the start of data frame flights
         select(flights, time_hour, air_time, everything())

#vars <- c("year", "month", "day", "dep_delay", "arr_delay")

6. mutate()
   a. Basic
      adds new columns that are functions of existing columns at the end of the dataset
      mutate(dataSet,
            gain = dep_delay - arr_delay,
            hours = air_time / 60,
            gain_per_hour = gain / hours
      )
      * only want to keep the new variables, use transmute() or use mutate() with select()
   b. Arithmetic operator for mutate
      +, -, *, /, ^, %% (integer division), %%% (remainder), logical comparison
log(), log2(), log10()
c. Useful functions for mutate
i. Ranking (mutate a “rank” column)
```r
y <- c(1, 2, 2, NA, 3, 4)
min_rank(y)
#> [1] 1 2 2 NA 4 5
min_rank(desc(y))
#> [1] 5 3 3 NA 2 1
row_number(y)
#> [1] 1 2 3 NA 4 5
dense_rank(y)
#> [1] 1 2 2 NA 3 4
percent_rank(y)
#> [1] 0.00 0.25 0.25 NA
 0.75 1.00
cume_dist(y)
#> [1] 0.2 0.6 0.6 NA 0.8 1.0
```
ii. Cumulative calculation
```r
cumsum(), cumprod(), cummin(), cummax(), cummean()
x // #> [1] 1 2 3 4 5 6 7 8 9 10
cumsum(x) // #> [1] 1 3 6 10 15 21 28 36 45 55
cummean(x) // #> [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
```
7. `summarise()`

`summarise()` is not terribly useful unless we pair it with `group_by()`. This changes the unit of analysis from the complete dataset to individual groups.
a. Missing value
```r
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
```
b. Counts
i. count
```r
group_by(tailnum) %>%
summarise(n = count(var))
```
ii. count non-missing value
```r
group_by(tailnum) %>%
summarise(n = sum(!is.na()))
```
iii. count the number of distinct (unique) values `n_distinct(x)`
```r
group_by(tailnum) %>%
summarise(carriers = n_distinct(carrier))
```
iv. `n = n()` return the size of current group (gives the count of category grouping by)
c. Useful Functions
i. measure of center
   ```r
 mean(x), median(x)
   ```
ii. measure of spread
sd(x): standard deviation
IQR(x): interquartile range
mad(x): median absolute deviation

iii. measure of rank
min(x), max(x)
quantile(x, 0.25): find a value of x that is greater than 25% of the values in x, and less than the remaining 75%

iv. measure of position
first(x), nth(x, positionNum), last(x)

v. sum()
Counts and proportions of logical values: sum(x > 10), sum(is.na(x)), mean(y == 0). When used with numeric functions, TRUE is converted to 1 and FALSE to 0. This makes sum() and mean() very useful: sum(x) gives the number of TRUEs in x, and mean(x) gives the proportion.

n = sum(logic_condition) // check num of values in group match certain condition
n = sum(is.na(x)) // check num of missing value in group

8. group_by()
a. group_by() multiple variables (progressive)
makes it easy to progressively roll up a dataset
daily <- group_by(flights, year, month, day)
per_day <- summarise(daily, flights = n())
per_month <- summarise(per_day, flights = sum(flights))
per_year <- summarise(per_month, flights = sum(flights))
b. group_by single variable (use single variable to define a row)
flights %>%
group_by(year) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
c. group_by multiple variable (use several variables to define a row)
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
d. ungrouping
daily %>%
ungroup() %>%
R4DS Chapter 7 Exploratory Data Analysis

1. Prerequisites
   library(tidyverse)

2. Basic Terms
   a. **variable** is a quantity, quality, or property that you can measure.
   b. **value** is the state of a variable when you measure it. The value of a variable may change from measurement to measurement.
   c. **observation** is a set of measurements made under similar conditions (you usually make all of the measurements in an observation at the same time and on the same object). An observation will contain several values, each associated with a different variable. I’ll sometimes refer to an observation as a data point.
   d. **Tabular data** is a set of values, each associated with a variable and an observation Tabular data is tidy if each value is placed in its own “cell”, each variable in its own column, and each observation in its own row.
   e. **Variation** is the tendency of values of a variable to change from measurement to measurement.
   f. A variable is **categorical** if it can only take one of a small set of values, usually saved as factors or character vectors
   g. A variable is **continuous** if it can take any of an infinite set of ordered values numbers and date-times are two examples of continuous variables.
   h. **Covariation** is the tendency for the values of two or more variables to vary together in a related way.

3. Visualization
   a. Variation
      i. categorical
         geom_bar() // displays how many observations occurred with each x value
      ii. continuous
         1) geom_histogram() // To examine the distribution of a continuous variable
         2) geom_freqpoly() // overlay multiple histograms in the same plot
   b. Covariation
      i. categorical & continuous
         1) geom_freqpoly()
         2) geom_bar()
         3) geom_histogram()
         4) geom_boxplot()
      ii. categorical & categorical
         1) geom_count()
            ggplot(data = diamonds) +
            geom_count(mapping = aes(x = cut, y = color))
         2) compute the count then visualise with geom_tile() and the fill aesthetic
            diamonds %>%

12
count(color, cut)
diamonds %>%
count(color, cut) %>%
ggplot(mapping = aes(x = color, y = cut)) +
  geom_tile(mapping = aes(fill = n))

iii. continuous & continuous
1) geom_point() then using the alpha aesthetic to add transparency to avoid overplot
   ggpplot(data = diamonds) +
   geom_point(mapping = aes(x = carat, y = price), alpha = 1 / 100)
2) geom_bin2d()
3) geom_hex()
4) geom_boxplot() with some adjustments

4. Remove Missing Value
1. not modify origin data frame
   not_cancelled <- flights %>%
     filter(!is.na(dep_delay), !is.na(arr_delay))
2. modify origin data frame
   i. flights %>%
      group_by(year, month, day) %>%
      summarise(mean = mean(dep_delay, na.rm = TRUE))
   ii. ggplot(data = diamonds2, mapping = aes(x = x, y = y)) +
       geom_point(na.rm = TRUE)

5. Remove Unusual Values
   replacing the unusual values with missing values, then drop_na()
   diamonds2 <- diamonds %>%
     mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
     drop_na()
*ifelse(logicalVector, arg1, arg2) has three arguments. The first argument test should be a logical vector The result will contain the value of the second argument when test is TRUE, and the value of the third argument when it is false.
6. **case_when()**
   - `case_when()` usually used with `mutate()`, general format:
     ```r
 mutate(colName = case_when(
 logical_condition ~ content_for_col,
 logical_condition ~ content_for_col,
 logical_condition ~ content_for_col)
)
     ```
   - **Example:**
     ```r
 mutate(season = case_when(
 month %in% c("Sep","Oct","Nov") ~ "Fall",
 month %in% c("Dec","Jan","Feb") ~ "Winter",
 month %in% c("Mar","Apr","May") ~ "Spring",
 month %in% c("Jun","Jul","Aug") ~ "Summer")
)
     ```

7. **cut**
   - `breaks <- seq(1869, 2019, 30)`
   - `labels <- str_c((breaks + 1)[-6], breaks[-1], sep = "-")`
   - `dataSetNew <- dataSet %>%
     mutate(period = cut(year, breaks = breaks, labels = labels))`

8. **as.XXX**
   a. `as.numeric(col)`
      - Converts a column into a numeric value column.
   b. `as.factor(col)`
      - Specify a column type to be factor (also called categorical or enumerative), rather than numeric.
   c. `as.character(col)`
      - The function returns a string of 1's and 0's or a character vector of features depending on the nature of the fingerprint supplied.

9. **separate()**
   - `separate()` turns a single character column into multiple columns.
   - // Check Chapter 12 Tidy Data

10. **rename()**
    - `rename(dataSet, c("originCol" = "newCol"))`

11. **Check Missing Data**
    - `count_na <- function(x) {
        return(sum(is.na(x)))
    }
    dataSet %>%
        summarize_all(count_na)"
R4DS Chapter 10 Tibbles

1. Introduction
Tibbles are data frames, but they tweak some older behaviours to make life a little easier.
library(tidyverse)

2. Creating Tibbles
a. Coerce a Data Frame to a Tibble
   ```r
 as_tibble(variable)
   ```

b. Create a New Tibble from Individual Vectors
   ```r
tibble(
 x = 1:5,
 y = 1,
 z = x ^ 2 + y
)
   ```

   ![Tibble Example](image.png)

   *Comparing with data.frame(), tibble() does much less that it never changes the type of the inputs, never changes the names of variables, and never creates row names.
   * It’s possible for a tibble to have column names that are not valid R variable names, aka non-syntactic names (e.g. ‘:)’, ‘ ’, ‘2000’).

c. Create Customised Tibble
   i. column headings start with ~.
   ii. entries are separated by commas.
   iii. #line is optional, but adding that can make it clear where the header is.
   ```r
 tribble(~x, ~y, ~z,
 "a", 2, 3.6,
 "b", 1, 8.5
)
   ```

3. tibbles() vs. data.frame()
   a. Printing
      i. Tibbles have a refined print method that shows only the first 10 rows, and all the columns that fit on screen, which makes it much easier to work with large data.
      (1) control the number of rows (n) and the width of the display
      ```r
 dataSet %>%
 print(n = 10, width = Inf)
      ```
      (2) control the default print behaviour
      ```r
 options(tibble.print_max = n, tibble.print_min = m) //more than n rows print m rows
      ```
options tibble.print_min = Inf) // print all rows
options(tibble.width = Inf) // print all columns regardless the width of screen
(3) use RStudio’s data viewer to get a scrollable view of the complete dataset
nycflights13::flights %>%
  View()
b. Subsetting ( $ and [[]])
  i. Extract by name
     dataFrame$name
     dataFrame[["name"]]
     dataFrame %>% .$name // use these in a pipe need the special placeholder "."
  ii. Extract by position
     dataFrame[[positionNum]]
* Compared to a data.frame, tibbles are more strict: they never do partial matching, and
  they will generate a warning if the column you are trying to access does not exist.

4. Interacting with Older Code
Some older functions don’t work with tibbles. If you encounter one of these functions,
use as.data.frame() to turn a tibble back to a data.frame.
class(as.data.frame(tibbles))
R4DS Chapter 11 Data Import

1. Prerequisites

```
library(tidyverse)
```

2. Functions of `readr`’s

a. `read_csv()` reads **comma delimited** files.
b. `read_csv2()` reads **semicolon separated** files.
c. `read_tsv()` reads **tab delimited** files.
d. `read_delim()` reads in files with any delimiter.
e. `read_fwf()` reads **fixed width** files.
f. `read_table()` reads common variation of fixed width files where columns are separated by white space.
g. `read_log()` reads Apache style log files.

3. Use of `read_csv()`

a. read the file through path

```
variable <- read_csv("pathway")
```
b. supply an inline csv file

```
read_csv("a,b,c
1,2,3
4,5,6")
```

![table]

```r
> A table: 2 x 3
> a b c
> 1 2 3
> 4 5 6
```

c. skip the first $n$ lines of import files

```
read_csv("The first line of metadata #this line will be ignore
The second line of metadata #this line will be ignore
x,y,z
1,2,3", skip = 2)
```
d. drop all lines start with #

```
read_csv("# A comment I want to skip #this line will be ignore
x,y,z
1,2,3", comment =
```
```
#")
```
d. drop all lines start with #

```
read_csv("# A comment I want to skip #this line will be ignore
x,y,z
1,2,3", comment =
```
```
#")
```
ed. not to treat the first row as headings

(treat the first row as heading check (b))

```
read_csv("1,2,3\n4,5,6", col_names = FALSE)
```
f. set col_names

```
read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
```

```
> A table: 2 x 3
> x y z
> 1 2 3
> 4 5 6
```

g. specify value to represent Missing Values

```
read_csv("a,b,c\n1,2," na = ")
```


4. Parsing a Vector (parse_*() functions)

These functions take a character vector and return a more specialised vector like a logical, integer, or date.

a. general format
   i. `variable <- parse_*(("1", "231", ",", "456"), na = ",")`
   ii. `parse_*(("1", "231", ",", "456"), na = ",")`

b. get problems from parsing (failure parsing will be missing in the output)
   `problems(variable)`

c. parsers
   i. `parse_logical()` parses logics like TRUE, FALSE, NA.
   ii. `parse_integer()` parses integers.
   iii. `parse_double()` a strict numeric parser.
   iv. `parse_number()` a flexible numeric parser by ignoring non-numerical characters.
   v. `parse_character()` parses characters, important in “character encodings.”
   vi. `parse_factor()` creates factors, the data structure that R uses to represent categorical variables with fixed and known values.
   vii. `parse_datetime()` parse various date & time specifications.
   viii. `parse_date()` parse various date & time specifications.
   ix. `parse_time()` parse various date & time specifications.

d. Numbers
   i. why parsing numbers is tricky
      (1) People write numbers differently in different parts of the world.
      (2) Numbers are often surrounded by other characters like “10%”.
      (3) Numbers often have grouping marks to make them easier to read like “10,000”.
   ii. Solution
      (1) different decimal marks
         `parse_double("1,23", locale = locale(decimal_mark = ","))`
      (2) ignore non-numerical characters
         `parse_number("$100")`
      (3) ignore the “grouping mark”
         `parse_number("123.456.789", locale = locale(grouping_mark = ","))`

e. Strings
   i. specify encoding while parsing
      `parse_character(x1, locale = locale(encoding = "Latin1"))`
   ii. find the correct encoding
      `guess_encoding(charToRaw(strings)) // guess_encoding() can also be path to files`

f. Factors
   R uses factors to represent categorical variables with a known set of possible values.
g. Dates, date-times, and times

i. `parse_datetime()`
   expects an ISO8601 date-time, date are organised from biggest to smallest: year, month, day, hour, minute, second.
   
   ```
 parse_datetime("2010-10-01T19:15") // "2010-10-01 19:15:00 UTC"
 parse_datetime("20101010") // "2010-10-10 UTC"
   ```

ii. `parse_date()`
   expects a four digit year, a - or /, the month, a - or /, then the day.
   ```
 parse_date("2010-10-01") // "2010-10-01"
   ```

iii. `parse_time()`
   expects the hour, : , minutes, (optionally : and seconds), and (optionally am/pm specifier).
   ```
 parse_time("01:10 am") // 01:10:00
 parse_time("20:10:01") // 20:10:01
   ```

iv. personalize format
   1. Year
      ```
 %Y (4 digits)
      ```
   2. Month
      ```
 %m (2 digits)
 %b (abbreviated name, like “Jan”)
 %B (full name, “January”)
      ```
   3. Day
      ```
 %d (2 digits)
 %e (optional leading space)
      ```
   4. Time
      ```
 %H 0-23 hour
 %I 0-12, must be used with %p
 %p AM/PM indicator
 %M minutes
 %S integer seconds
 %OS real seconds
 %Z Time zone (as name, e.g. America/Chicago)
 %z (as offset from UTC, e.g. +0800).
      ```
   5. Non-digits
      ```
 %, skips one non-digit character
 %* skips any number of non-digits
      ```
(6) General Form

```r
parse_date("01/02/15", "%m/%d/%y") // "2015-01-02"
parse_date("01/02/15", "%d/%m/%y") // "2015-02-01"
parse_date("01/02/15", "%y/%m/%d") // "2001-02-15"
```

5. Parsing a File (readr)

a. strategy to get types of each column

i. readr reads the first 1000 rows and uses some (moderately conservative) heuristics to figure out the type of each column: using `guess_parser()` returns readr’s best guess, then `parse_guess()` uses that guess, to parse columns.

ii. details

The heuristic tries each of the following types, stopping when it finds a match:

1. logical: contains only “F”, “T”, “FALSE”, or “TRUE”.
2. integer: contains only numeric characters (and `-`).
3. double: contains only valid doubles (including numbers like 4.5e-5).
4. number: contains valid doubles with the grouping mark inside.
5. time: matches the default time_format.
6. date: matches the default date_format.
7. date-time: any ISO8601 date.

If none of these rules apply, then the column will stay as a vector of strings.

b. problems

i. Don’t always work for larger files: The first thousand rows might be a special case, and readr guesses a type that is not sufficiently general; The column might contain a lot of missing values. If the first 1000 rows contain only NAs, readr will guess that it’s a logical vector.

problems(variable)

iv. solutions (set types of column by yourself)

Every `parse_xyz()` function has a corresponding `col_xyz()` function. You use `parse_xyz()` when the data is in a character vector in R already; you use `col_xyz()` when you want to tell readr how to load the data.

```r
variable <- read_csv("challenge.csv"),
 col_types = cols(
 x = col_double(),
 y = col_date()
)
```

c. Other Strategies

i. look at just one more row than the default

```r
variable <- read_csv("challenge.csv"), guess_max = 1001)
```

ii. read in all the columns as character vectors

```r
variable <- read_csv("challenge.csv"),
 col_types = cols(default = col_character())
)
```

// This is particularly useful in conjunction with `type_convert()`, which applies the.
parsing heuristics to the character columns in a data frame.

iii. If you’re reading a very large file, you might want to set \texttt{n\_max} to a smallish number like 10,000 or 100,000. That will accelerate your iterations while you eliminate common problems.

*iv. If you’re having major parsing problems, sometimes it’s easier to just read into a character vector of lines with \texttt{read\_lines()}, or even a character vector of length 1 with \texttt{read\_file()}. Then you can use the string parsing skills you’ll learn later to parse more exotic formats.

6. Writing to a File
a. \texttt{write\_csv()}, \texttt{write\_tsv()}, \texttt{write\_excel\_csv()}

\begin{verbatim}
write_csv(variableStoreData, "fileName.csv")
\end{verbatim}

*Note that the type information is lost when you save to csv.

b. \texttt{write\_rds()}, \texttt{read\_rds()}

\begin{verbatim}
write_rds(variableStoreData, "fileName.csv")
\end{verbatim}

uniform wrappers store data in R’s custom binary format called RDS. (Type information will not get lost)

c. \texttt{write\_feather()}

The feather package implements a fast binary file format that can be shared across programming languages.

\begin{verbatim}
library(feather)
write_feather(variableStoreData, "fileName.csv")
\end{verbatim}

7. Other Types of Data
To get other types of data into R, starting with the \texttt{tidyverse} packages listed below:

a. \texttt{haven} reads SPSS, Stata, and SAS files.

b. \texttt{readxl} reads excel files (both .xls and .xlsx).

c. \texttt{DBI} along with a database specific backend (e.g. RMySQL, RSQLite, RPostgreSQL etc) allows to run SQL queries against a database and return a data frame.

d. \texttt{jsonlite} for json

e. \texttt{xml2} for XML

\textit{Lecture}

1. replace column names of import files

\begin{verbatim}
colnames(dataframe) <- c("col1","col2",...)
\end{verbatim}
R4DS Chapter 16 Dates and Times

1. Prerequisites

library(tidyverse)
library(lubridate)

2. Creating Date/Times

a. Introduction

i. date: Tibbles print this as <date>.

ii. time: Tibbles print this as <time>.

iii. date-time: date plus a time, uniquely identifies an instant in time (typically to the nearest second). Tibbles print this as <dttm>.

b. Get the current date or date-time

i. current date

   today()

ii. current date-time

   now()

c. Create a date/time

i. from String

   (1) parse Stings into date-times //Check Chapter11/4/g

   (2) lubridate functions

      a) identify the order in which year, month, and day appear in your dates

         ymd("2017-01-31") // "2017-01-31"

         mdy("January 31st, 2017") // "2017-01-31"

         dmy("31-Jan-2017") // "2017-01-31"

         * These functions also take unquoted numbers.

         ymd(20170131) // "2017-01-31"

      b) To create a date-time, add an underscore and one or more of “h”, “m”, and “s” to the name of the parsing function.


         mdy_hm("01/31/2017 08:01") // "2017-01-31 08:01:00 UTC"

   c) force the creation of a date-time from a date by supplying a timezone

         ymd(20170131, tz = "UTC") // "2017-01-31 UTC"

ii. from individual date-time components

   (1) Condition

      have individual components of date-time spread across multiple cols

   (2) To create a date/time from this sort of input, use make_date() for dates, or make_datetime() for date-times.

      a) five-time-cols (year, month, day, hour, minute)

         make_datetime(year, month, day, hour, minute)
b) four-time-cols (year, month, day, time)

```r
var1 <- function(year, month, day, time) {
 make_datetime(year, month, day, time %/% 100, time %% 100)
} // use modulus arithmetic to pull out the hour and minute components
```

dataSet2 <- originDataSet %>%
  filter(!is.na(dep_time), !is.na(arr_time)) %>%
  mutate(.....)
  // other steps

iii. from an existing date/time object

1) offsets from “Unix Epoch” (Unix Epoch: 1970-01-01)
   a) in seconds
      `as_datetime(60 * 60 * 10)` // "1970-01-01 10:00:00 UTC"
   b) in days
      `as_date(365 * 10 + 2)` // "1980-01-01"

2) offsets from customized date
   `as_date("2021-02-25") + ddays(-2)` // "2021-02-23"

3. Date-time Components
a. Getting components

```r
datetime <- ymd_hms("2016-07-08 12:34:56")
year(datetime) // 2016
month(datetime) // 7
mday(datetime) // 8 (day of the month)
yday(datetime) // 190 (day of the year)
wday(datetime) // 6 (day of the week)
```

*For `month()` and `wday()` you can set `label = TRUE` to return the abbreviated name of the month or day of the week. Set `abbr = FALSE` to return the full name.

```r
month(datetime, label = TRUE) // Jul
wday(datetime, label = TRUE, abbr = FALSE) // Friday
```

b. Rounding

An alternative approach to plotting individual components is to round the date to a
nearby unit of time, with `floor_date()`, `round_date()`, and `ceiling_date()`.

`floor_date()` // round down
`ceiling_date()` // round up
c. Setting components

i. Basics

```r
datetime <- ymd_hms("2016-07-08 12:34:56")
year(datetime) <- 2020 // datetime get "2020-07-08 12:34:56 UTC"
month(datetime) <- 01 // datetime get "2020-01-08 12:34:56 UTC"
hour(datetime) <- hour(datetime) + 1 // datetime get "2020-01-08 13:34:56 UTC"
```

ii. create a new date-time

1. ```r
   update(datetime, year = 2020, month = 2, mday = 2, hour = 2)
   // "2020-02-02 02:34:56 UTC"
```

2. ```r
 ymd("2015-02-01") %>%
 update(mday = 30) // "2015-03-02"
 * If values are too big, they will roll-over.
```

4. Time Spans

a. Three important classes represent time spans, use seconds.

   i. **durations** represents an exact number of seconds.

   ii. **periods** represents human units like weeks and months, don’t have a fixed length in seconds.

   iii. **intervals** represents a starting and ending point.

b. Duration

   subtract two dates, you get a difftime object;

   a difftime class object records a time span of seconds, minutes, hours, days, or weeks;

   this ambiguity can make difftimes a little painful to work with;

   **duration** always uses seconds can be a good alternative.

   i. General

      ```r
 h_age <- today() - ymd(19791014) // get difftime object
 as_duration(h_age) // get duration "1293494400s (~40.99 years)"
      ```

   ii. Constructors of duration

      ```r
 dseconds(n) return n seconds
 dminutes(n) return n*60 seconds
 dhours(n) return n*3600 seconds
 -ddays(n) return n*86400 seconds
 dweeks(n) return n*86400*7 seconds
 dyears(n) return n*31557600 seconds
 dxxxx(n:m) return (m-n) output for n*a seconds to m*b seconds
 dxxxx(c(n, m)) return n*a seconds and m*b seconds
 *duration can be added and multiplied
 2 * dyears(1) // "63115200s (~2 years)"
 tomorrow <- today() + ddays(1)
 last_year <- today() - dyears(1)
      ```

   iii. Because durations represent an exact number of seconds, sometimes may get an unexpected result. (be careful with time zone like DST)
c. Periods
i. Constructors of periods
   * seconds(15) // "15S"
   * minutes(10) // "10M 0S"
   * hours(c(12, 24)) // "12H 0M 0S" "24H 0M 0S"
   * days(7) // "7d 0H 0M 0S"
   * months(1:6) // "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d. O0H 0M 0S" "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"
   * weeks(3) // "21d 0H 0M 0S"
   * years(1) // "1y 0m 0d 0H 0M 0S"
* periods can be added and multiplied

ii. Comparison between Periods and Duration

5. Time Zones
a. names of time zones tend to be ambiguous (e.g. Eastern Standard Time in US, but both Australia and Canada also have EST)
   * <continent>/<city> e.g. America/New_York
b. get current time zone
   * Sys.timezone()
c. In R, the time zone is an attribute of the date-time that only controls printing.
   * xl <- ymd_hms("2015-06-01 12:00:00", tz = America/New_York")
// "2015-06-01 12:00:00 EDT"

d. `c()` will often drop the time zone

```r
(x1 <- ymd_hms("2015-06-01 12:00:00", tz = "America/New_York")

(x2 <- ymd_hms("2015-06-01 18:00:00", tz = "Europe/Copenhagen")

(x3 <- ymd_hms("2015-06-01 04:00:00", tz = "Pacific/Auckland")

(x4 <- c(x1, x2, x3)

(x4
```

*modify timezone for gourps*

(1) Keep the instant in time the same, and change how it’s displayed. (Use this when the instant is correct, but you want a more natural display)

```r
x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")
```

(2) Change the underlying instant in time. (Use this when you have an instant that has been labelled with the incorrect time zone)

```r
x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")
```

e. Unless otherwise specified, lubridate always uses UTC (Coordinated Universal Time) is the standard time zone used by the scientific community.
R4DS Chapter 12 Tidy Data

1. Prerequisites
   library(tidyverse)

2. Tidy Data
   a. Tidy Dataset
      i. Each variable must have its own column.
      ii. Each observation must have its own row.
      iii. Each value must have its own cell.

   * Three rules are interrelated.

   b. Advantages
      i. Having a consistent data structure, it’s easier to learn the tools that work with it.
      ii. Placing variables in columns allows R’s vectorised nature to shine.

3. Pivoting
   a. Longer
      pivot_longer() makes datasets longer by increasing the number of rows and decreasing the number of columns. Used in case that variables and values are not in their positions.

         table4a %>%
         pivot_longer(c('1999', '2000'), names_to = "year", values_to = "cases")

   b. Wider
      pivot_wider() makes datasets longer by decreasing the number of rows and increasing the number of columns. Used when an observation is scattered across multiple rows.

         table2 %>%
         pivot_wider(names_from = key, values_from = value)
4. Separating and Uniting

a. Separate

i. `separate()` pulls apart one column into multiple columns, by splitting wherever a separator character appears.

ii. By default, `separate()` will split values wherever it sees a non-alphanumeric character like “/”.

```
table3 %>%
 separate(rate, into = c("cases", "population"))
```

iii. To use a specific character to separate a column, you can pass the character to the `sep` argument of `separate()`.

```
table3 %>%
 separate(rate, into = c("cases", "population"), sep = "/")
```

iv. `Default behaviour in separate()` leaves the type of the column as is, you can ask `separate()` to try and convert to better types using `convert = TRUE`.

```
table3 %>%
 separate(rate, into = c("cases", "population"), sep = "/", convert = TRUE)
```

v. You can also pass a vector of integers to `sep` in `separate()` will interpret the integers as positions to split at.

i. Positive values start at 1 on the far-left of the strings; Negative value start at -1.

ii. The length of `sep` should be one less than the number of names in `into`.

b. Unite

i. `unite()` combines multiple columns into a single column.

ii. The default will place an underscore “_” between the values from different cols.

```
table5 %>%
 unite(newColName, col_1, col_2, sep = "")
```

5. Missing Values

a. Forms of missing value in dataset

i. Explicitly // i.e flagged with NA.

ii. Implicitly // i.e simply not present in the data.

* An explicit missing value is the presence of an absence; an implicit missing value is the absence of a presence.

b. Turn explicit missing values implicit: `values_drop_na = TRUE`

```
stocks %>%
 pivot_wider(names_from = year, values_from = return) %>%
 pivot_longer(
 cols = c(‘2015’, ‘2016’),
)
```
c. Make missing values explicit: `complete() / fill()

i. `complete()` takes a set of columns, and finds all unique combinations. It then ensures the original dataset contains all those values, filling in explicit NAs where necessary.

```r
stocks %>%
 complete(year, qtr)
```

ii. `fill()` takes a set of columns where you want missing values to be replaced by the most recent non-missing value (sometimes called last observation carried forward).

```r
treatment %>%
 fill(colName)
```

6. Case Studies (Steps for Tidying Dataset)

a) Find/Specify variables (variables can be everywhere in untidy dataset).

b) Flip/Convert variables into correct positions.

c) Find meanings of variables(columns), what data they represent.

i) `count()` variables to get some clues

ii) `observe` and compare

d) Separate columns and drop redundant columns.

e) Handle missing values.

```r
who %>%
 pivot_longer("
 cols = new_sp_m014:newrel_f65,
 names_to = "key",
 values_to = "cases",
 values_drop_na = TRUE
)
 %>%
 mutate(
 key = stringr::str_replace(key, "newrel", "new_rel")
)
 %>%
 separate(key, c("new", "var", "sexage"))
 %>%
 select(!new, !iso2, !iso3)
 %>%
 separate(sexage, c("sex", "age"), sep = 1)
```

7. Non-Tidy Data

If your data does fit naturally into a rectangular structure composed of observations and variables, I think tidy data should be your default choice. But there are good reasons to use other structures; tidy data is not the only way.
**R4DS Chapter 13 Relation Data**

1. Introduction
   a. Prerequisites
      ```r
 library(tidyverse)
 library(nycflights13) # we use the nycflights13 to learn about relational data
      ```
   b. Relational Data
      i. Multiple tables of data are called relational data because it is the relations, not just
         the individual datasets, that are important.
      ii. Relations are always defined between a pair of tables.
   c. Prepare
      Find what variables connect one dataset to another.
      ```r
e.g

   ```

2. Keys
   a. General
      i. The variables used to connect each pair of tables are called **keys**.
      ii. A key is a variable (or set of variables) that uniquely identifies an observation.
         ```r
e.g Each plane is uniquely identified by its tailnum.
   ```
   b. Types
      i. Primary Key
         uniquely identifies an observation in its own table.
         ```r
e.g planes$tailnum is a primary key because it uniquely identifies each plane in.
 the planes table.
   ```
      ii. Foreign Key
         uniquely identifies an observation in another table.
         ```r
e.g flights$tailnum is a foreign key because it appears in the flights table where it
 matches each flight to a unique plane.
   ```
         * A variable can be both a **primary key** and a **foreign key**: be primary key in one
           dataset, and be foreign key in another dataset at the same time.
      iii. Surrogate Key
         If a table lacks a primary key, it’s sometimes useful to add one with mutate(),
         which is called **surrogate key**.
   c. Find Primary Key
      i. Decide possible primary key
         ```r
e.g date & flight / tail number are primary key in the flights table
   ```
      ii. Check
         ```r
 flights %>%
 count(year, month, day, flight) %>%
   ```
31

filter(n > 1)

// A tibble: 29,768 x 5 which suggests your possible primary key is not TRUE
A tibble: 0 x 5 suggests your primary key make some sense.

iii. Sometimes a table doesn’t have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it. If a table lacks a primary key, it’s sometimes useful to add one with mutate().

3. Mutating Joins
a. General
A mutating join allows you to combine variables from two tables. It first matches observations by their keys, then copies across variables from one table to the other.

E.g. flights2 %>%
    select(-origin, -dest) %>%
    left_join(airlines, by = "carrier")

// This can also use mutate() to achieve the same effect (but more complicated)
flights2 %>%
    select(-origin, -dest) %>%
    mutate(name = airlines$name[match(carrier, airlines$carrier)])

b. Inner Joins
An inner join matches pairs of observations whenever their keys are equal. The output of an inner join is a new data frame that contains the key, the x values, and the y values.

x %>%
    inner_join(y, by = "key")

* Unmatched rows are not included in the result, so that inner joins are usually not appropriate for use in analysis because it’s too easy to lose observations.

c. Outer Joins
i. An outer join keeps observations that appear in at least one of the tables.
ii. Types
1) Left Joins
   keeps all observations in x
2) Right Joins
   keeps all observations in y
3) Full Joins
   keeps all observations in x and y

* The most commonly used join is the left join: you use this whenever you look up
additional data from another table, because it preserves the original observations even when there isn’t a match. **Left join should be your default join.**

```r
xxx_join(dataset_1, dataset_2, by = "key")
```

d. Duplicate Keys
   i. General
      All the diagrams have assumed that the keys are unique, but that’s not the case.
   ii. Types
      1) One table has duplicate keys (one-to-many relationship)
         ```r
 x
 | y
 | z
 | w
 +---+--+
 | | |
 | | |
 | | |
 | | |
 +---+--+
 x1 x2 x3 x4
 y1 y2 y3 y4
         ```

      2) Both tables have duplicate keys (Very Possible Error Keys)
         ```r
 x
 | y
 | z
 | w
 +---+--+
 | | |
 | | |
 | | |
 | | |
 +---+--+
 x1 x2 x3 x4
 y1 y2 y3 y4
         ```

   iii. Defining Key Columns
      1) The default, `by = NULL` uses all variables that appear in both tables called **natural join**.
         ```r
 flights2 %>%
 left_join(weather)
         ```

      2) A character vector, `by = "com_var"` uses only some of the common variables.
         ```r
 flights2 %>%
 left_join(planes, by = "tailnum")
         ```

      3) A named character vector, `by = c("var_x" = "var_y")` matches variable `var_x` in table x to variable `var_b` in table y.
         ```r
 flights2 %>%
 left_join(airports, c("dest" = "faa"))
         ```
         // For example, we want to combine airport info with flights, then we use destination as a key to left-join corresponding data in airport.

e. Other Implementations

<table>
<thead>
<tr>
<th>dplyr</th>
<th>merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>inner_join(x, y)</td>
<td>merge(x, y)</td>
</tr>
<tr>
<td>left_join(x, y)</td>
<td>merge(x, y, all.x = TRUE)</td>
</tr>
<tr>
<td>right_join(x, y)</td>
<td>merge(x, y, all.y = TRUE)</td>
</tr>
<tr>
<td>full_join(x, y)</td>
<td>merge(x, y, all.x = TRUE, all.y = TRUE)</td>
</tr>
</tbody>
</table>

4. Filtering Joins
   a. Filtering joins match observations in the same way as mutating joins, but affect the.
observations, not the variables.

b. Types
i. `semi_join(x, y)` keeps all observations in x that have a match in y.
ii. `anti_join(x, y)` drops all observations in x that have a match in y.
*Only the existence of a match is important other than which observation is matched.

c. Semi-joins are useful for matching filtered summary tables back to the original rows. e.g. you’ve found the top ten most popular destinations, and now you want to find each flight that went to one of those destinations.

```r
flights %>%
 semi_join(top_dest)
```

5. Join Problems/Solutions
a. Getting (un)lucky and find a combination that’s unique in your current data but the relationship might not be true in general.
b. Check that none of the variables in the primary key are missing. If a value is missing, then it can’t identify an observation.
c. Check that your foreign keys match primary keys in another table. The best way to do this is with an `anti_join()`.

6. Set Operations
All these operations work with a complete row, comparing the values of every variable.
a. `intersect(x, y)`: return only observations in both x and y.
b. `union(x, y)`: return unique observations in x and y.
c. `setdiff(x, y)`: return observations in x, but not in y.

[END]
R4DS Chapter 14 Strings

1. Prerequisites
library(tidyverse)

2. String Basics
a. Create Strings
i. General
e.g string1 <- "This is a string"
ii. Single/Double quotation marks
1) double: """
2) single: ''
iii. Backslash
"\"
iv. Special characters
1) newline
"\n"
2) tab
"\t"
3) non-English characters
e.g "\u00b5"
* see the complete list by requesting help on "?" or "??"
v. Multiple strings
Multiple strings are often stored in a character vector.
c("one", "two", "three") // #> [1] "one" "two" "three"
b. String Lengths
str_length() tells you the number of characters in a string
str_length("fuck") // #> [1] 4
str_length(c("a", "R for data science", NA)) // #> [1] 1 18 NA
c. Combining Strings
i. To combine two or more strings, use str_c()
str_c("x", "y") // #> [1] "xy"
ii. Use the sep argument to control how combines strings separated
str_c("x", "y", sep = ", ") // #> [1] "x, y"
iii. Print missing value NA as "NA", use str_replace_na()
e.g x <- c("abc", NA)
str_c("", x, "") // #> [1] "-abc-" NA
str_c("", str_replace_na(x), "") // #> [1] "-abc-" "-NA-"
v. A vector of strings (multiple strings)
1) Combine for different options with mult-str
str_c("pre-", c("a", "b", "c"), "-fix") // #> [1] "pre-a-fix" "pre-b-fix" "pre-c-fix"
2) collapse a vector of strings into a single string
str_c(c("x", "y", "z"), collapse = ", ") // #> [1] "x, y, z"
v. Objects of length 0 are silently dropped by str_c() during combining.
d. Subsetting Strings
extract parts of a string using `str_sub()`: `str_sub()` takes `start` and `end` arguments which give the (inclusive) position of the substring.

i. Positive start&end arguments
```r
x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3) #> [1] "App" "Ban" "Pea"
```

ii. Negative start&end arguments
negative numbers count backwards from end
```r
str_sub(x, -3, -1) #> [1] "ple" "ana" "ear"
```
*`str_sub()` won’t fail if the string is too short: it will just return as much as possible
  e.g
  ```r
 str_sub("a", 1, 5) #> [1] "a"
  ```
*the assignment form of `str_sub()` to modify strings
```r
str_sub(x, 1, 1) <- stringx
```

e. Locales
The locale is specified as a ISO 639 language code, which is a two or three letter abbreviation. Different languages have different rules for changing case. You can pick which set of rules to use by specifying a locale. (R’s default is English)

i. Change the text to lower case with locale
```r
str_to_lower(strings, locale = "localeAbrv")
```
ii. Change the text to upper case with locale
```r
str_to_upper(c("i", "ı"), locale = "tr") #> [1] "İ" "I"
```
iii. Sorting
```r
order() and sort() functions sort strings using the current locale.
```
```r
x <- c("apple", "eggplant", "banana")
```
// Case A English
```r
str_sort(x, locale = "en") #> [1] "apple" "banana" "eggplant"
```
// Case B Hawaiian
```r
str_sort(x, locale = "haw") #> [1] "apple" "eggplant" "banana"
```

3. Matching Patterns with Regular Expressions
To learn regular expressions, we’ll use `str_view()` and `str_view_all()`.

a. Basic Matches

i. Simple
```r
x <- c("apple", "banana", "pear")
str_view(x, "an")
```

ii. Match any character around assigned one with
```r
str_view(x, ".a.")
```

apple
banana
pear
iii. Match the character “.”
To match an “.”, you need the regexp `. ` Unfortunately, this creates a problem: We use strings to represent regular expressions, and \ is also used as an escape symbol in strings. So, to create the regular expression `. `, we need the string "\"\".

```r
c("abc", "a.c", "bef"), "a\c")

str_view(c("abc", "a.c", "bef"), "a\c")
```

iv. Match the character “.”
To match a literal \ you need to write "\\\".

```r
x <- "a\b"
str_view(x, "\\\\")
```

b. Anchors

i. `^` to match the start of the string.

```r
x <- c("apple", "banana", "pear")
str_view(x, "^a")
```

```r
apple
banana
pear
```

ii. `$` to match the end of the string.

```r
str_view(x, "a$")
```

```r
apple
banana
pear
```

*if you begin with power (^), you end up with money ($)*

iii. Match an exact string

```r
x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple") // This will match the strings contain the word “apple"
```

```r
str_view(x, "^apple$") // This will match an EXACT string!
```

c. Character Classes and Alternatives

There are a number of special patterns that match more than one character.

i. `\d`: matches any digit.

ii. `\s`: matches any whitespace (e.g. space, tab, newline).

iii. `[abc]`: matches a, b, or c.

iv. `[^abc]`: matches anything except a, b, or c.

* to create a regular expression containing `\d` or `\s`, you’ll need to escape the `\` for the.

string, so you’ll type "\d" or "\s".

v. A character class containing a single character is a nice alternative to backslash. escapes when you want to include a single metacharacter in a regex. Many people find this more readable.

```r
e.g str_view(c("abc", "a.c", "a*\c", "a\c"), "a[.]c") // a\.c
```
This works for most (but not all) regex metacharacters: $ . | ? * + ( ) [ {.
Unfortunately, a few characters have special meaning even inside a character class and must be handled with backslash escapes: ], ^ -.

vi. Pick between one or more alternative patterns with

\[\text{str_view(c("grey", "gray"), "gr(e|a)y")}\]

grey
gray

d. Repetition
Controlling how many times a pattern matches:
i. Simple control

1) ? : 0 or 1 (select zero or one matched item/ matching the shortest string possible)
2) + : 1 or more
3) * : 0 or more

e.g \[\text{str_view(x, "CC?")}\]

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

ii. Precise control

1) \{n\} : exactly n
2) \{n,\} : n or more
3) \{,m\} : at most m
4) \{n,m\} : between n and m

e.g \[\text{str_view(x, "C\{2\}\")}\]

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

\[\text{str_view(x, "C\{2,\}\")}\]

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

\[\text{str_view(x, "C\{2,3\}\")}\]

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

e. Grouping and Backreferences
A capturing group stores the part of the string matched by the part of the regular expression inside the parentheses. You can refer to the same text as previously matched by a capturing group with backreferences, like \1, \2 etc.
e.g \[\text{str_view(fruit, "(..)\\1", match = TRUE)}\]
R4DS Chapter 19 Functions

1. Prerequisites
N/A

2. Create a New Function
a. pick a name for the function
b. list the inputs, or arguments, to the function inside function.
c. place the code you have developed in body of the function, a {} block that.
immediately follows function(...)

   name_of_function <- function(parameters) {
       code_for_function
   }

d. Examples:
   rescale01 <- function(x) {
       rng <- range(x, na.rm = TRUE)
       (x - rng[1]) / (rng[2] - rng[1])
   }
   rescale01(c(0, 5, 10))  #> [1] 0.0 0.5 1.0
   rescale01(x)
   rescale01 <- function(x) {
       rng <- range(x, na.rm = TRUE, finite = TRUE)
       (x - rng[1]) / (rng[2] - rng[1])
   }
   rescale01(x)  #> [1] 0.000000 0.111111 0.222222 0.333333 0.444444
                   0.555556 0.666667 [8] 0.777778 0.888889 1.000000 Inf

3. Naming and Commenting
a. Naming
   i. the name of function will be short, but clearly evoke what the function does.
   ii. function names should be verbs, and arguments should be nouns.
   iii. If your function name is composed of multiple words using “snake_case”.
   iv. if have a family of functions that do similar things, make sure they have.
      consistent names and arguments.
   v. avoid overriding existing functions and variables.

b. Commenting
   i. use comments, lines starting with #, to explain the “why” of your code.
   ii. break up your file into easily readable chunks. Use long lines of - and = to make.
      it easy to spot the breaks.

Example:

   # Load data-----------------------------------------------
   # Plot data-----------------------------------------------
4. Conditional Execution
   a. General Form
      i. Format (usually use inside the function())
         1) if-else
            if (condition) {
                # code executed when condition is TRUE
            } else {
                # code executed when condition is FALSE
            }
         2) if
            if (condition) {
                # code executed when condition is TRUE
            }
         3) multiple conditions
            if (this) {
                # do that
            } else if (that) {
                # do something else
            } else {
                #
            }
      ii. Details
         1) The condition must evaluate to either TRUE or FALSE; If it’s a vector, you’ll get a warning message; if it’s an NA, you’ll get an error.
         2) use || (or) and && (and) to combine multiple logical expressions; never use | or & in an if statement: these are vectorised operations that apply to multiple values (that’s why you use them in filter()).
         3) be wary of floating point numbers when using ==; x == NA is useless.
   b. switch()
      if you end up with a very long series of chained if statements, you should consider rewriting. One useful technique is the switch() function.
      function(x, y, op) {
         switch(op,
              plus = x + y,
              minus = x - y,
              times = x * y,
              divide = x / y,
              stop("Unknown op!")
         )
      }
5. Function Arguments
   a. General
      i. The arguments to a function typically fall into two broad sets: one set supplies the
data to compute on, and the other supplies arguments that control the details of the
computation.
   ii. Generally, data arguments should come first. Detail arguments should go on the
end.
   iii. specify a default value in the same way you call a function with a named
argument. function(x, conf = 0.95) function(x, default_value_name = value)
   iv. When you call a function, if you override the default value of a detail argument,
you should use the full name.
   
b. Names of arguments
      i. x, y, z: vectors.
      ii. w: a vector of weights.
      iii. df: a data frame.
      iv. i, j: numeric indices (typically rows and columns).
      v. n: length, or number of rows.
      vi. p: number of columns.
   c. Check arguments
      It’s good practice to check important preconditions, and throw an error (with.
stop()), if they are not true.
      wt_mean <- function(x, w) {
        if (length(x) != length(w)) {
          stop("x` and `w` must be the same length", call. = FALSE)
        }
        sum(w * x) / sum(w)
      }
   d. Dot-dot-dot
      This special argument captures any number of arguments that aren’t otherwise
matched.
      rule <- function(..., pad = "-") {
        title <- paste0(...) 
        width <- getOption("width") - nchar(title) - 5 
        cat(title, " ", stringr::str_dup(pad, width), "\n", sep = "")
      }
      * If you just want to capture the values of the ..., use list(...).

6. Return Values
   a. Explicit return statements
      i. The value returned by the function is usually the last statement it evaluates, but
you. can choose to return early by using return().
      complicated_function <- function(x, y, z) {
        if (length(x) == 0 || length(y) == 0) {
          return(0)
        }
ii. Conditions

1) A common reason to do this is because the inputs are empty.
2) Another reason is because you have a if statement with one complex block and one simple block. (the first block is very long, by the time you get to the else, you’ve forgotten the condition. One way to rewrite it is to use an early return for the simple case)

b. Pipeable functions

i. transformations

With transformations, an object is passed to the function’s first argument and a modified object is returned.

ii. side-effects

With side-effects, the passed object is not transformed. Instead, the function performs an action on the object, like drawing a plot or saving a file.

```r
show_missings <- function(df) {
 n <- sum(is.na(df))
 cat("Missing values: ", n, "n", sep = ")
 invisible(df)
}
```

`invisible()` means that the input df doesn’t get printed out

```r
mtcars %>%
 show_missings() %>% #> Missing values: 0
 mutate(mpg = ifelse(mpg < 20, NA, mpg)) %>%
 show_missings() #> Missing values: 18
```

7. Environment

```r
f <- function(x) {
 x + y
}
```

In many programming languages, this would be an error, because y is not defined inside the function. In R, this is valid code because R uses rules called lexical scoping to find the value associated with a name. Since y is not defined inside the function, R will look in the environment where the function was defined.