
- 1 -

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi

TAs: Pradip Vallathol and Junaid Khalid

Midterm Examination 3

In Class (50 minutes)

Friday, November 9, 2012

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. Circle your final answers. Plan your time carefully since some

problems are longer than others. You must turn in the pages 1-7.

LAST NAME: ___

FIRST NAME: ___

ID# ___

- 2 -

Problem Maximum Points Points Earned

1 4

2 3

3 3

4 3

5 8

6 4

7 5

Total 30

- 3 -

Problem 1: The following flowchart is being converted into a sequence of LC-3

instructions as represented in the table below. Fill in the missing instructions

and comments. Comments represent a summary of what the instruction

does. (4 Points)

Address Instructions Comments

0x3000 0101 0000 0010 0000 Clear the contents of R0

0x3001 0101 0010 0110 0000 Clear the contents of R1

0x3002 0101 0100 1010 0000 Clear the contents of R2

0x3003 0001 0010 0110 0101 R1 = R1 + 5

0x3004 0101 0000 1000 0011 R0 = R2 AND R3

0x3005 0001 0110 1100 0100 R3 = R3 + R4

0x3006 0001 0010 0111 1100 R1 = R1 – 4

0x3007 0000 0011 1111 1100 If P, branch to x3004

0x3008 1111 0000 0010 0101 HALT

- 4 -

Problem 2: Suppose you are not allowed to use the LC-3 LDI instruction. Write a

sequence of LC-3 instructions (in hex) that would achieve the same result as

the LC-3 LDI instruction 0xA60E. (3 Points)

0x260E ; LD R3, 12

 0x66C0 ; LDR R3, R3, 0

Problem 3: List and briefly explain the three ways to partially run a program while

debugging it. (3 Points)

 Single Stepping: Execute one instruction at a time.

 Breakpoints: Tell the simulator to stop executing at a specific instruction.

 Watchpoints: Tell the simulator to stop when the value of a register or

memory location changes.

Problem 4: Below is a snapshot of the contents of the 8 registers in LC-3 before and after the

instruction at location x3000 is executed. Fill in the bits of the instruction at

location x3000 and the values of the P, N and Z flags after the execution of the

instruction. (3 Points)

Register Before After

R0 0xBBBB 0xBBBB

R1 0xDDDD 0xDDDD

R2 0x2222 0x2222

R3 0x3333 0x3333

R4 0x4444 0x4444

R5 0x5555 0x5555

R6 0x6666 0x6666

R7 0x7777 0x0000

P 0 N 0 Z 1

0x3000: 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1

- 5 -

Problem 5: Answer the flowing questions briefly.

a) What is the largest positive number that can be represented as an immediate

operand in LC-3 AND instruction (OPCODE: 0101)? (1 Point)

15

b) Is there a sequence of LC-3 instructions that will cause the condition codes at the

end of the sequence to be N=0, Z=1 and P=1? Explain. (2 Points)

No, the result of an instruction can only be either positive, negative or zero.

c) What is the largest address that an LC-3 Load PC-Relative (LD) instruction

(OPCODE: 0010), located at 0x5000, can load from? (1 Point)

0x5100

d) Name the three basic constructs that are used to decompose a task. (1 Point)

Sequential, Conditional, Iterative

e) What is the difference between logical errors and syntax errors? (1 Point)

Syntax error: typing error resulting in illegal operation

Logical error: legal program, but results not matching problem statement

f) List any two constituents of the trace of a program’s execution. (2 Points)

Sequence of instructions executed, Results being generated

- 6 -

Problem 6: Consider the following LC-3 program:

Address Instruction

x3000 0010 0010 1001 1111

 x3001 1001 0100 0111 1111

x3002 0001 0100 1010 0010

x3003 0001 0110 1000 0000

x3004 0011 0110 1001 1101

Suppose the contents of registers and memory locations represent the

“State” of the system at any time. The table below shows the state of the

system at various stages of execution of the above program.

State 0: State before executing the program.

State 1: State after executing instruction at location x3001.

State 2: State after executing instruction at location x3004.

Fill in the values for State 1 and State 2 in the table below. (4 Points)

 State 0 State 1 State 2

R0:

R1:

R2:

R3:

R4:

PC:

x1208

x2D7C

xE373

x2053

x33FF

x3000

x1208

x3002

xCFFD

x2053

x33FF

x3002

x1208

x3002

xCFFF

xE207

x33FF

x3005

…

x30A0:

x30A1:

x30A2:

x30A3:

..

x3002

x7A00

x7A2B

xA700

x3002

x7A00

x7A2B

xA700

x3002

x7A00

xE207

xA700

- 7 -

Problem 7: The following table shows a program in part of the LC-3's memory:

Address Instruction Comments

0x3000 0001 011 011 0 00 010 R3 = R3 + R2

0x3001 0000 100 000000010 If N, branch to x3004

0x3002 0001 010 010 1 00001 R2 = R2 + 1

0x3003 0101 011 011 000 010 R3 = R3 AND R2

0x3004 1001 011 011 111111 R3 = NOT(R3)

0x3005 1001 010 010 111111 R2 = NOT(R2)

If the value of R3=0x0009 and R2=0x00B3 after the execution of above

program, what is known about R2 and R3 before the execution of the

program? Fill in the comments column with the summary of what each

instruction does as you work through the problem. (5 Points)

R2 = 0xFF4C

R3 = 0x00AA

- 8 -

Extra page for hand written work, if needed. This page is not required

and will NOT affect your grade. You don’t even need to hand this page

in.

- 9 -

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

