
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi

TAs: Lisa Ossian, Minsub Shin, Sujith Surendran

Midterm Examination 3

In Class (50 minutes)

Friday, November 14, 2014

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. Circle your final answers. Plan your time carefully since some

problems are longer than others. You must turn in the pages 1-8. Use the blank sides of the

exam for scratch work.

 The LC-3 instruction set is provided on Page 9

 LAST NAME: ___

FIRST NAME: ___

 ID#: ___

2

Problem Maximum Points Points Earned

1 3

2 2

3 3

4 3

5 5

6 7

7 3

8 4

Total 30

3

Problem 1 (3 points)

a) Which of the following LC-3 instructions copies the value of R7 into R1?

1) 0001 001 111 1 11111
2) 0101 001 111 1 11111
3) 0101 111 001 1 11111
4) 0001 111 001 1 00000

b) Excluding the memory access to fetch the instruction, how many memory accesses are made to fetch

and execute the LDI instruction?

1) 1

2) 2

3) 3

4) 4

c) The LC-3 branch instruction 0000 011 000001111 is located at memory address 0x3000. If the

branch is taken, what does that imply about the values of the condition codes before the instruction

executed?

1) Either N = 1 or P = 1, and Z = 0

2) Either P = 1 or Z = 1, and N = 0

3) Both P = 1 and Z = 1, and N = 0

4) Both N = 1 and Z = 1, and P = 0

Problem 2 (2 points)

a) (1 point) Write a single LC-3 instruction to load the number 0x4020 into R2. Assume that your

instruction will be located at 0x4000.

1110 010 000011111

b) (1 point) Write a single LC-3 instruction to load the data stored at memory address 0x4020 into R3.

Assume that your instruction will be located at 0x4001.

0010 011 000011110

4

Problem 3 (3 points)

The table below shows LC-3 instructions starting at 0x3000, which are executed in sequence. Specify the

values at memory locations 0x300F to 0x3012 after executing each instruction.

Assume that the initial contents of R0 = 0x3010 and R1 = 0x3011. Also, assume that the initial values of

the memory locations 0x300F to 0x3012 are all zeros.

Address LC-3 Instruction Values at memory locations after executing the instruction

0x3000 0011 000 000001111

Value at 0x300F: 0x0000

Value at 0x3010: 0x3010

Value at 0x3011: 0x0000

Value at 0x3012: 0x3011

0x3001 0111 001 000 000010 Value at 0x300F: 0x0000

Value at 0x3010: 0x3010

Value at 0x3011: 0x0000

Value at 0x3012: 0x3011

0x3002 1011 001 00001110

Value at 0x300F: 0x0000

Value at 0x3010: 0x3010

Value at 0x3011: 0x0000

Value at 0x3012: 0x3011

Problem 4 (3 points)

 Assume that the following two LC-3 instructions are a part of a large program:

0001 000 000 1 11111

0000 010 000000001

a) (2 points) If the second instruction (which is a branch) is taken, what can you tell about the value of

R0 just before executing these two instructions?

R0 – 1 = 0 => R0 was 1 before execution

b) (1 point) If the branch instruction is located at address 0x3000, specify the range of addresses to

which you can branch using this instruction.

0x2F01 to 0x3100

5

Problem 5 (5 points)

Consider the LC-3 program below.

Address Instruction Comment

0x4000 0101 100 100 1 00000 R4 <- 0

0x4001 0001 011 011 1 11011 R3 <- R3 -5

0x4002 0101 011 011 1 11111 Just sets the condition flags

0x4003 0000 1 0 0 000000010 Branch if n to HALT

0x4004 0001 100 100 1 11110 R4 <- R4 - 2

0x4005 0000 1 1 1 111111000 Branch if N, Z, or P is set to address 0x4001

0x4006 1111 0000 00000000 HALT

a) (2 points) Fill in the four missing comments in the program above.

b) (1 point) If the initial value of R3 is 0x0033, what is the value of R4 when the HALT instruction is

reached?

Answer : -20

c) (1 point) If the initial value of R3 is 0x0004, what is the value of R4 when the HALT instruction is

reached?

Answer : 0

d) (1 point) What is the minimum value of R3 that causes the value of R4 to be -8 upon reaching the

HALT instruction?

Answer : 20

6

Problem 6 (7 points)

We are about to execute the program below. Assume the condition codes before execution of the program are

N=1, Z=0, P=0.

Address Instruction Comments

0x3000 0011 000 000001100 Store R0 into memory location 0x300D

0x3001 0000 100 000000011 If n flag is set, branch to 0x3005

0x3002 0001 000 000 11011 Subtract 5 from R0 and store the result in R0

0x3003 0101 010 010 0 00 000 R2 <- R2 AND R0

0x3004 1111 0000 00000000 HALT

0x3005 1010 010 000000100 LDI: Load the value from a memory location, whose address

is stored in location 0x300A, into R2

0x3006 1111 0000 00000000 HALT

a) (3 points) Fill in the three missing instructions in the program above.

b) 4 points) Suppose a section in memory before execution of the program is as follows:

Address Value

0x300A 0x300D

0x300B 0x300F

0x300C 0xACED

0x300D 0x300B

Given the initial values of the below registers, fill in the values after the program has completed

execution (i.e., reached a HALT). Give your answers in hex.

Register Initial Value Final Value

MAR 0X300B 0x300D (Also accepted 0x300E assuming you would have fetched

HALT instruction)

MDR 0xABCD 0x5555 (Also accepted F025 for the same reason above)

R0 0x5555 0x5555

R1 0x300D 0x300D

R2 0x300A 0x5555

7

Problem 7 (3 points)

Assume that you wrote a program which asks the user to enter a number and then identifies whether it is a

prime number or a composite number. When you run the program, you see that it created an illegal

operation.

(a) (1 point) What kind of error have you committed? Explain.

Syntax error (accepted other errors as long as the explanation was valid)

(b) (1 point) What are the different options available to you to trace this program and identify the

wrong instruction? Explain the options.

Breakpoints, Watchpoints, etc

(c) (1 point) Now assume that you were able to trace the bug in the program and after you modified

it, assume that it ran successfully (without creating any illegal instructions) and gave the correct

output when the user input was 5. However, when the user then gave an input of 50000, it did not

give the correct answer. What kind of error do you think you have committed now? Explain the

error.

Data error (accepted other errors as long as the explanation was valid)

8

Problem 8 (4 points)

Assume that your friend John has written a large LC-3 program which is working correctly. Column A in

the table below shows 4 sets of instructions which are part of his working program. Now, suppose you

replaced one set of instructions in Column A with the corresponding set of instructions in Column B.

Without making assumptions about any register or memory location, specify if the program is still

guaranteed to work correctly. Justify your answer.

Set # Column A

 Column B

1

0101 000 000 1 00000 (R0 <- R0 AND 0)

0101 001 001 1 00000 (R1 <- R1 AND 0)

0000 010 000000010 (Branch if Z to PC’+2)

0101 001 001 1 00000 (R1 <- R1 AND 0)

0101 000 000 1 00000 (R0 <- R0 AND 0)

0000 010 000000010 (Branch if Z to PC’+2)

 Answer/Justification:

Yes, they are identical

2

0001 000 000 1 11111 (R0 <- R0 - 1)

0001 001 001 1 11111 (R1 <- R1 -1)

0000 010 000000010 (Branch if Z to PC’+2)

0001 001 001 1 11111 (R1 <- R1 -1)

0001 000 000 1 11111 (R0 <- R0 - 1)

0000 010 000000010 (Branch if Z to PC’+2)

 Answer/Justification:

No because condition flags on the left column are set based on value of R1. But condition flags on

right are set based on the value of R0. So branch could happen on one and not happen on the other. So

there is no guarantee that the code will still work.

3

0001 000 000 1 11111 (R0 <- R0 - 1)

0011 001 000000011 (R1 <- Mem[PC’+3])

0011 001 000000011 (R1 <- Mem[PC’+3])

0001 000 000 1 11111 (R0 <- R0 - 1)

 Answer/Justification:

No because PC’ is different in both the cases. So, the data loaded into R1 is different.

4

0001 000 001 1 11111 (R0 <- R1 - 1)

0111 001 001 000011 (R1 <- Mem[R1]+3)

0111 001 001 000011 (R1 <- Mem[R1]+3)

0001 000 001 1 11111 (R0 <- R1 - 1)

 Answer/Justification:

No, because value at R0 at the end of execution is different.

9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC  PC’ + EXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

