CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Guri Sohi

TAs: Rebecca Lam and Newsha Ardalani

Midterm Examination 3

In Class (50 minutes)
Friday, November 18, 2011

Weight: 17.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 10 pages, including one page for the LC3 Instruction Set and two blank pages at the end.

Plan your time carefully, since some problems are longer than others. You must turn in pages 1 through
7.

LAST NAME:

FIRST NAME:

SECTION:

ID#

Problem

Maximum Points

Actual Points

1 2
2 4
3 6
q 6
5 6
6 6
Total 30

Problem 1 (2 Points)

When a computer executes an instruction, the state of the computer is changed as a result of that
execution. Is there any difference in the state of LC-3 computer as a result of executing instruction 1
below vs executing instruction 2 below? Explain. We can assume both instructions are located at the
same address and the state of the LC-3 computer before execution is the same in both cases.

Inst1: 0001 000 000 100000 ;RO<-RO+#0

Inst 2: 0000 111 000000000 ; Branch to the next sequential instruction if any of P, Zor N is set

Problem 2 (4 Points)

A program wishes to load a value from memory into R1, and based on the value loaded into R1,
executes code starting at x3040 if the loaded value is positive, executes code starting at x3080 if the
value is negative, or executes code starting at location x3003 if the value loaded is zero. The first
instruction of this program (load a value into R1) is shown at address x3000.

Your job: Write the instructions for locations x3001 and x3002, and comments for the instructions.

ADDRESS INSTRUCTION COMMENT
x3000 0010 001 011111111 Load a value from memory location x3100
into R1
x3001
x3002

Problem 3 (6 Points)

Answer the following short answer questions with no more than 4 sentences each.

a. (1 point) Suppose the number of opcodes for the LC-3 increases to 64. If the instruction size stays the
same, how is the range of addresses that the BR instruction can branch to affected?

b. (1 point) Suppose the number of registers for the LC-3 is decreased by half. If the instruction size stays
the same, how is the AND instruction (register mode) changed?

c. (2 points) Write two of the three constructs that comprise the systematic decomposition model and
define them.

d. (2 points) Write two of the three different types of program errors and define them.

Problem 4 (6 Points)

An LC-3 program is located in memory locations x3000 through x3006. It starts executing at x3000. If we
keep track of all values loaded into the MAR as the program executes, we will get a sequence that starts
as follows. Such a sequence is referred to as a trace.

MAR Trace
x3000
x3005
x3001
x3002
x3006
x4001
x3003
x0021

We have shown below some of the bits stored in locations x3000 to x3006. Your job is to fill in each
blank space with a 0 or 1, as appropriate.

x3000 0O |0 (1 |0 |JO |JO |O

x3001 0O |0 |[0O]J1 |0 JO |O |O |O JO |1 |JO (O (O (O |1

x3002 1]0 |1 (1 |0 |O |O

x3003

x3004 1 (111 |1 (0 (O JO |O (O (O |1 (O (O |1 (O |1

x3005 [0 |O [O (O |JO |O |O |O |JO |O |1 (1 JjO0 JO |O |O

x3006

Problem 5 (6 Points)

Given the following LC-3 program, express the final value of R1 in terms of the initial value of R2
after execution of the last instruction. Show comments for each line. No credit will be given without
comments.

ADDRESS INSTRUCTION COMMENT
x3000 0101 0110 1110 0000
x3001 0001 011011100011
x3002 0001 0010 1010 0000
x3003 0001 0010 0100 0001
x3004 0001 011011111111
x3005 00000011 1111 1101
x3006 1001 0100 1011 1111
x3007 0001 0010 0100 0010
x3008 1111 0000 0010 0101

Problem 6 (6 points)

Suppose we wish to write a program that performs a deletion of one element from a list of elements sorted
in ascending order without duplicates, where the element to be deleted is stored in R1. The total number of
elements in the list is also known. The program works as follows:

Knowing that the element to be deleted is in R1, we load the first value of the list into R2. If the value of R2 is less
than R1, we load the next value in the list into R2, and we keep doing this while R2 is less than R1. If the value of R2
is greater than R1, we halt the program. If the value of R2 is equal to R1, we load the next value in the list into the
memory location that R2 used to be in. And we keep doing this for the rest of the list.

Example: The following table shows the list before and after x0003 is deleted from the list

Address Initial Value Final Value
x4500 x0001 x0001
x4501 x0002 x0002
x4502 x0003 x0004
x4503 x0004 x0005
x4504 x0005 x0006
x4505 x0006 unknown

Fill in the six missing blanks in the following flow chart. (Y = Yes, N = NO)

Start &

R2 <- Mem[RO] Increment RO,
l < Decrement R3

Load address

of first
element in list
into RO
Decrement
v 3
Load # of
elements in l
the list into
R3 R2<- Mem][]
I_ q
Mem[|<-R2
1, 5
End l

Increment RO,
Decrement R3

Extra Page 1

Extra Page 2

LC-3 Instruction Set (eatered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A] :memory contents at address A.
SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT (immediate): zero-extend immediate to 16 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD DR, SR1, SR2 ; Addition

| 0 0 0 1] DR | SR1 |01 0 0| SR2
+ + + + + + + + + + + + + + + + + DR SR1 + SR2 also setcc()
+ + + + + + + + + + + + + + + + + ADD DR, SR1, imm5 ; Addition with Immediate
J]o o0 o0 1| DR | SR1 11 imm5 |
+ + + B i i T B S s Tt et At Sttt g)23 SR1 + SEXT (imm5) also setcc()
+ + + + + + + + + + + + + + + + + AND DR, SR1l, SR2 ; Bit-wise AND
]o 1 o0 1] DR | SR1 1010 0] SR2 |
+ + + + + + + + + + + + + + + + + DR SR1 AND SR2 also setcc()
+ + + + + + + + + + + + + + + + + AND DR,SR1l,imm5 ; Bit-wise AND with Immediate
| 0 1 0 1] DR | SR1 | 1 imm5
+ + + + + + + + + + + + + + + + + DR SR1 AND SEXT (imm5) also setcc()
+ + + + + + + + + + + + + + + + + BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch
| O (] 0 O|ln|z|pl PCoffset9 | GO ((n and N) OR (z AND Z) OR (p AND P))
+ + + + + + + + + + + + + + + + + if (GO is true) then PC PC’+ SEXT (PCoffset9)
+ + + + + + + + + + + + + + + + + JMP BaseR ; Jump
| 1 1 0 [] 0 0 | BaseR | O 0 0 0 0 0 |
+ + + + + + + + + + + + + + + + + PC BaseR
+ + + + + + + + + + + + + JSR label ; Jump to Subroutine

R7 PC’, PC PC’ + SEXT (PCoffsetll)

+---t---t---t---t---t---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
]o 1 0 0]0]0 O] BaseR |0 O 0O O 0 0|
B e A e T e E L LT e S e A 1) PC’, PC BaseR, R7 temp

PCoffset9

LD DR, label ; Load PC-Relative

10 0 1 0] DR | |

+ + + + + + + + + + + + + + + + + DR mem[PC’ + SEXT (PCoffset9)] also setcc()
+ + + + + + + + + + + + + + + + + LDI DR, label ; Load Indirect

| 1 0 1 0| DR | PCoffset9

+ + + + + + + + + + + + + + + + + DR mem[mem[PC’+SEXT (PCoffset9)]] also setcc()
+ + + + + + + + + + + + + + + + + LDR DR, BaseR, offset6 ; Load Base+Offset

| O 1 1 0 | DR | BaseR | offseté6

+ + + + + + + + + + + + + + + + + DR mem[BaseR + SEXT (offset6)] also setcc()
+ + + + + + + + + + + + + + + + + LEA, DR, label ; Load Effective Address

| 1 1 1 0| DR | PCoffset9

+ + + + + + + + + + + + + + + + + DR PC’ + SEXT (PCoffset9) also setcc()

+ + + + + + + + + + + + + + + + + NOT DR, SR ; Bit-wise Complement

11 0 o0 1] DR | SR J1 911 1 1 1 1]
4om—pm——mm—pmmmpo——fmm—po——fm——p———fo——f———f-——f———p-——4--—4-——+ DR NOT(SR) also setcc()

RET ; Return from Subroutine

| 1 1 0 o]0 0 0] 1 1 110 0 0 0 0 0|

+ + + + + + + + + + + + + + + + + PC R7

+ + + + + + + + + + + + + + + + + RTI ; Return from Interrupt

| 1 0 0 0] 0 0 0 0 0 0 0 0 0 0 0 0|

+ + + + + + + + + + + + + + + + + See textbook (2" Ed. page 537).

ST SR, label ; Store PC-Relative

PCoffset9

| 0 0 1 1] SR |

+ + + + + + + + + + + + + + + + + mem[PC’ + SEXT (PCoffset9)] SR

+ + + + + + + + + + + + + + + + + STI, SR, label ; Store Indirect

11 o0 1 1| SR | PCoffsetd |

4o e e e e e m e — e m——f———4———4 mem[mem[PC’ + SEXT (PCoffset9)]] SR

+ + + + + + + + + + + + + + + + + STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1| SR | BaseR | offset6

+ + + + + + + + + + + + + + + + + mem[BaseR + SEXT (offset6)] SR

+ + + + + + + + + + + + + + + + + TRAP ; System Call

| 1 1 1 110 0 0 0 | trapvect8

+ + + + + + + + + + + + + + + + + R7 PC’, PC mem [ZEXT (trapvect8)]
+ + + + + + + + + + + + + + ; Unused Opcode

]1 1 0 1

+— 4
+— +

Initiate illegal opcode exception
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10

