Mentor Graphics VHDL
Reference Manual

July 1994

GMSHEL.

Copyright 0 1991-1994 Mentor Graphics Corporation. All rights reserved.
Confidential. May be photocopied by licensed customers of
Mentor Graphics for internal business purposes only.

The software programs described in this document are confidential and proprietary products of Mentor
Graphics Corporation (Mentor Graphics) or its licensors. No part of this document may be photocopied,
reproduced or translated, or transferred, disclosed or otherwise provided to third parties, without the
prior written consent of Mentor Graphics.

The document is for informational and instructional purposes. Mentor Graphics reserves the right to
make changes in specifications and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Mentor Graphics to determine whether any changes have
been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
the written contracts between Mentor Graphics and its customers. No representation or other
affirmation of fact contained in this publication shall be deemed to be a warranty or give rise to any
liability of Mentor Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN
IT, EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Portions of this manual are based on IEEE Std 1076-1987, IEEE Standard VHDL Language Reference
Manual, copyright (11988 by the Institute of Electrical and Electronics Engineers, Inc.. The IEEE does
not, in whole or in part, endorse the contents of this manual. For information on purchasing the IEEE
Standard, call 1-800-678-IEEE.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

A complete list of trademark names appears in a separate "Trademark Information" document.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070.
Copyright 0 Mentor Graphics Corporation 1993. All rights reserved.
An unpublished work of Mentor Graphics Corporation.

Table of Contents

TABLE OF CONTENTS

About This Manual XV
Section 1
Lexical Elements 1-1
Definition of Lexical Elements 1-3
Character Set 1-5
Replacement Characters 1-6
Identifiers 1-8
Reserved Words 1-9
Comments 1-15
Literals 1-15
Numeric Literals 1-15
Character Literals 1-18
String Literals 1-19
Character and String Literal Differences 1-20
Bit String Literals 1-20
Separators and Delimiters 1-21
Separators 1-21
Delimiters 1-22
Section 2
Expressions 2-1
Definition of Expressions 2-3
General Expression Rules 2-4
Operands (Primaries) 2-6
Names 2-6
Literal 2-7
Aqggregates 2-8
Function Calls 2-10
Qualified Expressions 2-10
Type Conversions 2-12

Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 2 Expressions [continued)]

Allocators 2-13
VHDL Predefined Operators 2-16
Important Notes About Operators 2-17
Miscellaneous Operators 2-18
Multiplying Operators 2-20
Sign 2-22
Adding Operators 2-23
Shift Operators 2-28
Relational Operators 2-28
Predefined Equality and Inequality Operators 2-29
Predefined Ordering Operators 2-30
Logical Operators 2-31
Static Expressions 2-32
Universal Expressions 2-36
Section 3
Naming, Scope, and Visibility 31
Naming 3-3
Simple Names 34
Selected Names 34
Indexed Names 3-8
Slice Names 39
Attribute Names 3-10
Scope and Visibility 3-12
Declarative Region 3-12
Scope 3-13
Scope Rules 3-15
Visibility 3-16
Visibility Rules 3-17
use clause 3-22
Overload Resolution 3-24

iv Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 4

Declarations

type declaration

subtype _declaration
object_declaration

constant declaration

variable_declaration

Signal Declaration Summary

file_declaration

Interface Declarations

interface list

interface constant_declaration

interface_signal_declaration
interface variable declaration

association_list

alias declaration

component_declaration
Type Conversion Functions

Section 5

Types

scalar_type definition
range_constraint

integer_type definition

Predefined Integer Types

floating_type_definition
Predefined Floating Point Types

physical_type definition

Predefined Physical Types

enumeration_type_definition

Predefined Enumeration Types

composite type definition

Mentor Graphics VHDL Reference Manual, July 1994

4-4

4-7
4-10
4-13
4-15
4-17
4-18
4-21
4-22
4-24
4-26
4-29
4-31
4-35
4-36
4-37

o-4

5-5

59
5-11
5-12
5-14
5-15
5-18
5-19
5-21
5-22

Table of Contents

TABLE OF CONTENTS [continued]

Section 5 Types [continued]

array_type_definition 5-22
Summary of Array Type Rules 5-27
Array Operations 5-28

record_type _definition 5-29

access type definition 5-31
Incomplete Types 5-32
file_type_definition 5-34

Section 6

Statements 6-1
Statement Classes 6-2
sequential_statement 6-5
concurrent_statement 6-7
Statement Quick Reference 6-8
assertion_statement 6-10
block statement 6-12
case_statement 6-15
component_instantiation_statement 6-17
concurrent_assertion_statement 6-19
concurrent_procedure_call 6-21
concurrent_signal_assignment_stmnt 6-23
conditional_signal _assignment 6-25
selected signal_assignment 6-27
exit_statement 6-28
generate_statement 6-30
if statement 6-34
loop_statement 6-36
next_statement 6-38
null_statement 6-39
procedure _call_statement 6-40
process_statement 6-41
return_statement 6-44

Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 6 Statements [continued)]

signal_assignment_statement 6-46
variable assignment_statement 6-48
wait_statement 6-49
Section 7
Subprograms 7-1
Definition of a Subprogram 7-3
subprogram_declaration 7-6
formal_parameter_list 7-8
subprogram_body 7-10
Subprogram Calls 7-13
function_call 7-15
The Procedure Call 7-17
Subprograms and Overloading 7-17
Overloading Operators 7-18
Rules for Operator Overloading 7-18
Complete Subprogram Example 7-19
Section 8
Design Entities and Configurations 8-1
Design Entities 8-2
entity_declaration 8-4
entity _header 8-6
generic_clause 8-7
port_clause 8-8
entity _declarative part 8-10
entity_statement_part 8-12
architecture_body 8-14
architecture _declarative part 8-17

Mentor Graphics VHDL Reference Manual, July 1994 Vii

Table of Contents

TABLE OF CONTENTS [continued]

Section 8 Design Entities and Configurations [continued]

architecture_statement_part 8-18
Components 8-20
Component Declarations 8-21
Component Instantiations 8-22
Component Binding 8-23
configuration_specification 8-25
binding_indication 8-29
entity_aspect 8-31
Generic and Port Map Aspects 8-32
Default Binding Indication 8-33
Configurations 8-34
configuration_declaration 8-35
block_configuration 8-39
component_configuration 8-43
Section 9
Design Units and Packages 0-1
Design Unit Overview 9-2
context_clause 9-5
library _clause 9-8
Example of a Design Library 9-10
Packages 9-12
package declaration 9-13
package body 9-15
Predefined Packages 9-18
Package Standard 0-18
std logic 1164 9-21
std logic 1164 ext 9-26
Package Textio 9-30
Mentor Graphics Predefined Packages 9-33
std.math 9-34
mgc_portable.gsim _logic 9-36

viii Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 9 Design Units and Packages [continued]

mgc_portable.gsim _relations

Section 10

Attributes

Attribute Overview

attribute_name
Predefined Attributes

Detailed Predefined Attribute Description

Array Object Attributes

"high{(n)]

'left[(n)]
length[(n)]

"low[(n)]

‘range{(n)]

"reverse_range(n)]

"right[(n)]

Block Attributes

"behavior

'structure

Signal Attributes
"active

"delayed[(1)]

“event

'last_active

"last event

'last value

'quiet] (1)

"stablef(t)]

"transaction

Signal Attribute Example

Type Attributes

"base

Mentor Graphics VHDL Reference Manual, July 1994

9-47

10-1

10-1

10-3

10-5

10-7

10-8
10-11
10-13
10-15
10-17
10-19
10-21
10-23
10-24
10-25
10-26
10-28
10-29
10-30
10-31
10-32
10-33
10-34
10-35
10-36
10-37
10-38
10-40
10-42

Table of Contents

TABLE OF CONTENTS [continued]

Section 10 Attributes [continued]

"high 10-43
"left 10-44
"leftof (x) 10-45
"low 10-46
"pos(X) 10-47
"pred(x) 10-48
"right 10-49
"rightof(x) 10-50
"succ(X) 10-51
"val(x) 10-52
User-Defined Attributes 10-53
attribute_declaration 10-54
attribute _specification 10-55
Section 11
Signals 11-1
Signal Concepts 11-4
Drivers 11-4
Guarded Signals 11-5
disconnection_specification 11-8
Multiple Drivers and Resolution Functions 11-10
signal_declaration 11-14
Default Expression 11-15
Signal Assignments 11-16
Sequential Signal Assignments 11-16
Concurrent Signal Assignments 11-17
Delay Concepts 11-19
DeltaDelay 11-20

Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Appendix A

Syntax Summary

How to Read a Syntax Diagram

Appendix B

L ocating Language Constructs

I ndex

Mentor Graphics VHDL Reference Manual, July 1994

A-1

A-9

B-1

Xi

Table of Contents

LIST OF FIGURES

1-1. Lexical Elements 1-2
1-2. Lexical Element Use 1-4
1-3. Special Characters Syntax 1-5
2-1. Expressions 2-2
2-2. Expression Concept 2-3
3-1. Naming, Scope, and Visibility 3-2
3-2. Slice Name Concept 3-9
3-3. Scope 3-14
3-4. Scope of Entity Plus Architecture 3-15
3-5. Vishility 3-17
3-6. Declaration Hiding and Homographs 3-20
3-7. No Homograph Instance 3-21
3-8. Multiple Use Clauses 3-23
4-1. Declarations 4-2
4-2. Interface Object Concept 4-21
4-3. Association List Concept 4-32
5-1. Types 5-3
5-2. Range Constraintsin Subtype Indications 5-7
5-3. Unconstrained Arrays 5-27
6-1. Statements 6-4
7-1. Subprograms 7-2
7-2. Memory Programmer and Tester Block Diagram 7-5
8-1. Design Entities 8-3
8-2. Components 8-20
9-1. Design Units and Packages 9-2
9-2. Context Clause Concept 9-7
9-3. Input Buffer Schematic 9-10
9-4. Package Concept 9-12
10-1. Attributes 10-2
10-2. Array Direction 10-10
10-3. Signal Attribute Concept 10-28
10-4. Example of All The Signal Attributes 10-39
11-1. Signals 11-2
11-2. Composition of a Signal 11-3
11-3. Resolution Function Concept 11-11
11-4. Inertial and Transport Delay 11-20
11-5. Zero Delay Gates 11-22
11-6. Comparing Traces 11-22
11-7. Unit-delay Modeling 11-23

Xii Mentor Graphics VHDL Reference Manual, July 1994

Table of Contents

LIST OF FIGURES [continued]

A-1. Example Syntax Diagram A-9
A-2. Multiple Syntax Diagram Paths A-10

Mentor Graphics VHDL Reference Manual, July 1994 Xiii

Table of Contents

1-1.
1-2.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-1.
2-8.
2-9.
3-1.
3-2.
4-1.
6-1.
7-1.
7-2.

8-1

10-i. Attributes
11-1. Driver Resolution Table
A-1. VHDL Construct Listing

Xiv

LIST OF TABLES

Type Conversions

Adding Operators

Objects

Replacement Characters 1-7
VHDL Reserved Words 1-9
2-12

Operators by Precedence 2-17
Miscellaneous Operators 2-18
Multiplying Operators 2-21
2-23

VHDL Relationa Operators 2-29
Local Static Operands 2-33
Global Static Operands 2-35
Universal Expression Operators 2-36
Immediate Scope Exceptions 3-16
Visibility by Selection 3-19
4-12

System-1076 Statements 6-8
Comparison of Functions and Procedures 7-3
Subprogram Parameters 7-8
Port Association Rules 8-33
10-6

11-12

A-1

Mentor Graphics VHDL Reference Manual, July 1994

About This Manual

About This Manual

This manual contains reference material for the VHDL* language defined in
|EEE Std 1076-1987, IEEE Sandard VHDL Language Reference Manual.
Mentor Graphics has severa product offerings based on VHDL that allow
system and component designers to create and analyze language models of their
systems and integrated circuits.

Manual Organization

Section 1, "Lexical Elements," describes the most basic items that you use to
form the VHDL language.

Section 2, "Expressions,” describes the items you use to create formulas for
computing values and the operators you use in these formulas.

Section 3, "Naming, Scope, and Visibility," describes how to identify items,
and the region of code in which the item has effect.

Section 4, "Declarations,” describes how to define adesign item.

Section 5, "Types," describes how to specify the kind of a defined design
item.

Section 6, " Statements,” describes all the concurrent and sequential statements
you can use to specify different actions.

Section 7, "Subprograms,” describes the procedure and the function which
allow you to partition descriptions into stand-alone modules.

Section 8, "Design Entities and Configurations,” discusses the major hardware
abstraction in VHDL, the design entity, and it describes how components are
bound together to make a complete design.

*VVHDL stands for VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language.

Mentor Graphics VHDL Reference Manual, July 1994 XV

About This Manual

Section 9, "Design Units and Packages,” describes stand-alone descriptions
that you can place into alibrary and storage facilities for collecting commonly
used declarations and subprograms.

Section 10, "Attributes,” describes the items you use to create your own
attributes and describes the predefined attributes.

Section 11, "Signals," describes the items you use to communicate between
design entities.

Appendix A, "Syntax Summary," shows every language construct in the form
of syntax diagrams arranged in alphabetical order. Each diagram hasa
reference to the appropriate page in this manual to refer to for more
information.

Appendix B, "Locating Language Constructs,” shows how to quickly locate
where you can use particular VHDL language constructs.

Using This Manual

This manual presents the VHDL language in areference format. Each major
topic of VHDL is contained in its own section, alowing you look up the topics at
random. Throughout the manual there are references to other locations where
you can find more detailed information on a particular topic.

This manual documents the language defined in |EEE Std 1076-1987, |EEE
Sandard VHDL Language Reference Manual, not a particular Mentor Graphics
implementation of this language.

S System-1076 readers should watch for paragraphs or sentences in this manual
that are preceded by an S (like the one preceding this paragraph). System-1076
users who see an S beside a topic should consult Appendix C of the System-1076
Design and Model Development Manual. Readers who use the Bold Browser can
click on the S character to bring up the appropriate page in that manual.
Hardcopy readers can find information in that manual by using the table of
contents. Appendix C in the System-1076 Design and Model Devel opment
Manual, which is organized with the same section and subsection names as this
manual, contains important additional information on the marked topic.

E When a paragraph is preceded by an E, Explorer VHDLsIm readers should

XVi

Mentor Graphics VHDL Reference Manual, July 1994

About This Manual

consult the Explorer VHDLsim User’s Manual (Appendix A) for further
information on the marked topic.

For quick access to information you should look up atopic in the index of this
manual. If you areinterested in a certain language construct, consult Appendix
A. Thisappendix contains every language construct in alphabetical order. Each
construct shows a page reference for more information on this subject.

The basic structure of this manual isto present an overview of a concept,
followed by the related BNF description and an example of the topic. Finaly, all
the rules and further information about the topic are discussed.

This manual is designed to be the companion to the Mentor Graphics
Introduction to VHDL. The introduction manual covers the major topics of
VHDL in an overview method, without going into all the rules on agiven
construct. Therefore, there is an overlap of information between these two
manuals.

To tie al the sections of this manual into the language as awhole, a pyramid,
such as the one shown in the following illustration, appears at the beginning of
each section. Thisillustration shows you where in the language the topic of a
given section belongs and gives some details about the section topic.

Design Units

Design Entities
Configurations
Packages

Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions

Lexical Elements

Naming, Scope, and Visibility

Mentor Graphics VHDL Reference Manual, July 1994 XVii

About This Manual

Notational Conventions

This subsection describes the conventions used throughout this manual for
language syntax and the graphical syntax diagrams.

For information about general documentation conventions, refer to Mentor
Graphics Documentation Conventions.

item A syntax-diagram item shown in boldface text is areserved word.
For example, entity and isin the following BNF description are
reserved words. Also see the subsection titled "BNF Syntax
Description Method" on page xixX.

entity entity_simple nameis
entity _header
entity_declarative_part

[begin
entity statement_part |

end [entity ssimple _name] ;

item A lowercase, monospaced item in a program exampleisa
user-specified item. (See the following code example). Thisfont is
also used in text when referring to specific items from a program
example such asthe name count er _ci rcui t inthefollowing code
example.

| TEM An uppercase, monospaced code item in a program exampleisa
reserved word. In the following example, ENTI TY and | S are
reserved words:

ENTITY counter_circuit IS
PORT (a: IN bit_vector(0 TO 3);
c: QUT bit_vector(0 TO 1));
END counter _circuit;

prefix_item Theitalic prefix preceding an item provides supplemental
information on the construct "item". prefix_item isnot considered a
language construct. For example, time_expression indicates a
construct called "expression” that is used for expressing time.

XViii Mentor Graphics VHDL Reference Manual, July 1994

About This Manual

BNF Syntax Description Method

BNF (Backus-Naur Format) is another method used in this manual to describe
the syntax of the VHDL language. The following example shows a BNF method
of showing the syntax of a given construct:

example_construct ::=
construct_one{ , construct_one}
| construct_two [construct_three]
| reserved _word

Certain characters represent specific meaning when reading the BNF syntax
description.

e ;= The::=combination of characterson thefirst line of the BNF description
separates the subject (such as example_construct) from the description.

o regular text - Text that isnot set off with brackets[] or braces{} indicates
that the item is required.

e [construct_three] - Text surrounded by square brackets [] denotes an
optional areathat can be used only once. In this example, construct_threeis
not required in the example_construct syntax. If construct_threeis used
along with construct_two, it can be used only once.

e {,construct_one} - Text surrounded by braces{} denotes an optiona area
that can be used one or more times.

e construct_one - Italic text within a construct name indicates additional
information and does not represent an actual language construct. The words
that follow the italics represent an actual language construct.

o boldfacetext - This convention sets off reserved words and characters that
must be typed literally as presented.

e | - A vertical bar indicatesan "or" situation. Thus, linel | line2 | line3
indicates that either linel or line2 or line3 can be used to describe the syntax.

Mentor Graphics VHDL Reference Manual, July 1994 XiX

About This Manual

Related Publications

The following Mentor Graphics manuals contain important information on
related topics. Thelist isdivided into three parts. one for all Mentor Graphics
VHDL users, one specifically for Explorer VHDLsImU users, and one
specifically for System-107601 users.

In addition to this manual, the following manual relatesto all Mentor Graphics
VHDL solutions:

Mentor Graphics VHDL Reference Manual (this manual) contains reference
information for the language and rel ated packages.

Mentor Graphics Introduction to VHDL contains fundamental VHDL
concepts.

The following manuals pertain to Explorer VHDL sSm users:

Explorer VHDLsIm Quick Reference Booklet provides reference information
for Explorer VHDLsim in a quick-lookp format.

Explorer VHDLsIim User’s and Reference Manual contains task-oriented
operating instructions for Explorer VHDLsim, covering such topics as
compiling and ssmulating VHDL modelsin the Explorer VHDLsIm
environment.

Explorer Lsim User’s Manual describes and explains how to use the Explorer
Lsim Mixed-Signal, Multi-Level Simulator. Since VHDLSsIm is an integral
part of the Lsim simulation environment, you will need to refer to this manual
while using Explorer VHDLsm.

Explorer Lsim Reference Manual describes Explorer Lsim Simulator
commands, menus, and programs.

M Language User’s Guide describes how to use the M hardware description
language.

The following manuals pertain to System-1076 users:

XX

Getting Sarted with System-1076 contains information about creating,
modeling, and debugging hardware designs with Mentor Graphics

Mentor Graphics VHDL Reference Manual, July 1994

About This Manual

System-1076. System-1076 allows system and component designers to create
language models of their systems or chips. System-1076 is based on |IEEE
Std 1076-1987, |IEEE Sandard VHDL Language Reference Manual.

e System-1076 Design and Model Devel opment Manual provides concepts,
procedures, and techniques for using VHDL within the System-1076
environment.

e System-1076 Error Message Manual contains information about the error and
warning messages generated when compiling and simulating System-1076
models.

o AutoLogic VHDL Reference Manual defines the syntax of VHDL constructs
used for logic synthesis and describes their resultant implementations after
synthesis by AutoLogic VHDL.

e AutoLogic VHDL Synthesis Guide describes using VHDL within the
synthesis environment, the coding guidelines for writing VHDL code that can
be synthesized, and the operating procedures for running AutoLogic VHDL.

e BOLD Browser User’s Manual describes the BOLD Browser and covers
basic operations such as locating and viewing online information.

e Design Architect Reference Manual contains information about the functions
used to create and modify schematic and cabling designs, logic symbols, and
VHDL sourcefiles.

e Design Architect User’s Manual provides a basic overview of Design
Architect; key concepts for using the Schematic Editor, Symbol Editor, and
VHDL Editor; and design creation procedures.

¢ Digital Modeling Guide contains basic information for designers and
modelers using the Mentor Graphics digital analysis environment. This
manual can help you make some rudimentary decisionsin model or design
development.

o Digital Smulators Reference Manual contains information about the
commands, functions, userware, and related reference material specific to the
Mentor Graphics digital analysis applications.

Mentor Graphics VHDL Reference Manual, July 1994 XXi

About This Manual

o Getting Sarted with Design Architect Training Workbook is for new users of
Design Architect who have some knowledge about schematic drawing and
electronic design and are familiar with the UNIX or Aegis environment. This
training workbook provides basic instructions on using Design Architect to
create schematics and symbols.

e Getting Sarted with Falcon Framework Training Workbook is for new users
of the Mentor Graphics Falcon Framework. Thisworkbook introduces you to
the components of the Falcon Framework and provides information about and
practice using the Common User Interface, Design Manager, INFORM,
Notepad, and Decision Support System applications.

o Getting Sarted with QuickSmll Training Workbook is for Electrical
Engineers who have not previously used QuickSimll. Thistraining
workbook provides basic instructions on using QuickSiml1 to simulate digital
designs.

o Simview Common Smulation User’s Manual contains information about the
features common to the Mentor Graphics analog and digital analysis
applications.

¢ Smview Common S mulation Reference Manual contains reference
information about the commands, functions, userware, and features common
to the Mentor Graphics analog and digital analysis applications.

o Notepad User’s and Reference Manual describes how to edit files and
documents in Notepad, atext editor. This manual provides examples,
explanations, and an al phabetical listing of AMPLE functions that are
available for customizing Notepad.

e QuickSm Il User’s Manual describes how to use the QuickSim Il logic
simulator. This manual provides background information, a hands-on tutorial
intended for new users, various simulation procedures, and a comprehensive
list of related procedures.

XXii Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Section 1
Lexical Elements

Thelexical element isthe most basic item in VHDL. When combined, these
items form the language. Figure 1-1 shows where lexical elements belong in the
overall language and the items that comprise the lexical elements. The following
list identifies the topics described in this section:

Definition of Lexical Elements 1-3
Character Set 1-5
Replacement Characters 1-6
|dentifiers 1-8
Reserved Words 1-9
Comments 1-15
Literals 1-15
Numeric Literals 1-15
Character Literals 1-18
String Literals 1-19
Character and String Literal Differences 1-20
Bit String Literals 1-20
Separatorsand Delimiters 1-21
Separators 1-21
Delimiters 1-22

Mentor Graphics VHDL Reference Manual, July 1994 1-1

Lexical Elements

Design Units

Design Entities
Configurations

Packages
Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
Lexical Elements
Naming, Scope, and Visibility

Character
Set

Lexical Elements

v
v v v v

Identifier Comment Literal Delimiter

v

Numeric
Character
String

Figure 1-1. Lexical Elements

Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Definition of Lexical Elements

Lexical elements are the items used to form the VHDL language. A lexica
element is one of the following:

e Anidentifier (or areserved word)
e A comment
o A litera
0 Numeric
0 Character
0 String
e A déimiter

VHDL has a character set that contains 95 printable characters. From this
character set, lexical elements are formed. Lexical elements, in turn, form the
language constructs that are the building blocks of VHDL. For acomplete
summary of all the language constructs, see the syntax summary appendix
starting on page A-1.

Y ou combine the language constructs to create design units, which are a group of
specific language constructs that can be compiled independently and placed in a
design library. For information on design units, refer to page 9-1.

Finally, you put the design units together to form the VHDL code description of
your design. Figure 1-2 shows how lexical elementsfit into the coding process.

Mentor Graphics VHDL Reference Manual, July 1994 1-3

Lexical Elements

Character Set

Lexical Elements

Language Constructs

/ Design Units
S Code
RGN /

\\‘:\; ‘ S

Figure 1-2. Lexical Element Use

1-4 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Character Set

Before you can use the lexical elements, you must know the character set
allowed in VHDL. There are 95 printable ASCII graphic characters, and 5
format effectors that you can usein VHDL.

The graphic characters consist of the following:
o letter: uppercase
ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase
abcdefghijklmnopqrstuvwxyz
e digit:
0123456789

e special_characters. Figure 1-3 shows the special characters.

2088588648
60000020008
2000dd90b00E

special_charact

Figure 1-3. Special Characters Syntax

Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

There are five format effectorsused in VHDL. A format effector isa
non-printable control character you use to format the ASCI|I text in your source
file. Thefollowing list showsthe VHDL format effectors:

o Tab
Vertical tab

Carriage return

e Linefeed
e Form feed

Replacement Characters

Y ou may wish to port to a system that does not use the following special
characters:

e Vertica bar ())

e Number sign (#)

e Double quote ()

In this situation, there are replacement characters available that do not alter a

description. Table 1-1 lists the replacement information. Following Table 1-1
are replacement exampl es.

1-6 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Table 1-1. Replacement Characters

Character |Replacement Restrictions

| ! Replacement is allowed only if the! is
to be used as a delimiter.

: The # of based literalsisreplaced by :
only if you replace both # characters.

The" used on both ends of string
literals can be replaced by % only if
" % each embedded " is replaced with %
using the same rules for embedded ".
Replacement is allowed for bit string
literals al so.

Here are some replacement examples:

1. Thefollowing example shows how the vertical-bar choice delimitersin a
case statement can be replaced by exclamation points.

CASE test IS

WHEN store | save | keep => acc :="'1";
WHEN OTHERS = jillop := true;
END CASE;
CASE test IS
WHEN store ! save ! keep => acc :="'1";
WHEN OTHERS = jillop := true;
END CASE;

2. The following example shows how the number sign can be replaced by the

colon in abased literdl.
16#1f #
16: 1f ;

3. Inthefollowing string literals, double quotes have been replaced by the
percent sign.
“lights""will""turn green"
% ights%mmi || %4 urn green%

Mentor Graphics VHDL Reference Manual, July 1994 1-7

Lexical Elements

ldentifiers

Anidentifier isaname that you assign to adesign item. The syntax for an
identifier is asfollows:

identifier ::=
letter {[_] letter | digit}

| dentifiers must conform to the following rules:
S e Thefirst character of an identifier must be aletter.

o ldentifiers are case-insensitive. For example: identl, IDENTZ, and Identl
are all the same identifier in VHDL.

o No spaces are allowed in identifiers, because the space character isa
Separator.

e You cannot usethe" " asaleading or trailing character, and it cannot be

used two or more times in succession, without being separated by aletter or
digit.
Here are some valid identifiers:
d_FF
my_Test _circuit

R169
Exanpl eQut

Here are someinvalid identifiers:

2test _design --first character nust be a letter

jrb - -l eadi ng underscore not all owed
R14_ --trailing underscore not all owed
Exanpl e Qut --no space all owed

1-8 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Reserved Words

S Reserved words have specific meaning to VHDL ; therefore, you cannot use a
reserved word as an identifier. For example, you are not allowed to declare a
variable name "al", as the following example does, because all is areserved

word.

VARI ABLE all: integer; -- "all" is an illegal identifier

Even if you use "All" (with acapital A), you still get an error; the case of the
|etters does not differentiate a name you declare from areserved word, if it isthe
same word.

There are two exceptions to the rules involving reserved words. First, the
reserved word rangeis also the identifier for the predefined attribute ’ range[(N)].
For more information on this predefined attribute, refer to page 10-19. Second,
you can use reserved words in comments and string literals, where they are not
considered reserved words. For example, the use of the word "all" as part of the
comment in the preceding exampleis perfectly legal.

Table 1-2 liststhe VHDL reserved words. The heading descriptions for Table
1-2 are asfollows:

o Name: the name of the reserved word.
¢ Language Constructs: the language constructs that use the reserved word.

o Page: the page in this manual where the reserved word is used in the context
of the listed language construct.

Table 1-2. VHDL Reserved Words

Name L anguage Constructs Page
abs miscellaneous_operator 2-18
factor 2-4
access access _type definition 5-31
after disconnection_specification 11-8
waveform_element 6-46

Mentor Graphics VHDL Reference Manual, July 1994 1-9

Lexical Elements

alias
all
and

ar chitecture
array

assert
attribute

alias declaration
entity_name list
instantiation_list

suffix

expression

logical _operator
architecture_body
constrained_array_definition
unconstrained array definition
assertion_statement
attribute_declaration
attribute _specification

4-35
10-55
8-25
3-5
2-4
2-31
8-14
5-23
5-23
6-10
10-54
10-55

block
body
buffer
bus

architecture_body

block statement

entity _declaration
process_statement
subprogram_body

block statement

package body

mode
interface_signal_declaration
signal_kind

1-10

Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

VHDL Reserved Words [continued]

Name L anguage Constructs Page
case case statement 6-15
component component_declaration 4-36
configuration configuration_declaration 8-35
entity _aspect 8-31
entity class 10-55
constant constant_declaration 4-13
interface_constant_declaration 4-24
disconnect disconnection_specification 11-8
downto direction 5-5
else conditional_waveforms 6-25
If _statement 6-34
elsif If _statement 6-34
end architecture_body 8-14
block statement 6-12
case_statement 6-15
component_declaration 4-36
entity _declaration 8-4
if statement 6-34
loop_statement 6-36
package body 9-15
package declaration 9-13
physical_type_definition 5-15
process_statement 6-41
subprogram_body 7-10
entity entity _aspect 8-31
entity_declaration 8-4
exit exit_statement 6-28

Mentor Graphics VHDL Reference Manual, July 1994

1-11

Lexical Elements

VHDL Reserved Words [continued]

Name L anguage Constructs Page
file file_declaration 4-18
file_type definition 5-34
for configuration_specification 8-25
iteration_scheme 6-36
timeout_clause 6-49
function subprogram_specification 7-6
generate generate _statement 6-30
generic generic_clause 8-7
generic_map_aspect 8-32
guarded options 6-23
if if_statement 6-34
in Interface_constant_declaration 4-24
mode 4-22
parameter _specification 6-36
inout mode 4-22
is type declaration 4-4
package _declaration 9-13
subtype declaration 4-7
label entity class 10-55
library library_clause 9-8
linkage mode 4-22
loop loop_statement 6-36
map generic_map_aspect 8-32
port_map_aspect 8-32
mod multiplying_operator 2-20
nand expression 2-4
logical _operator 2-31
new allocator 2-13
next next_statement 6-38
nor expression 2-4
logical _operator 2-31

1-12 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

VHDL Reserved Words [continued]

on
open

or

others

package
port

procedure
process

L anguage Constructs Page
factor 2-4
miscellaneous _operator 2-18
literal 1-15
null_statement 6-39
waveform_element 6-46
architecture_body 8-14
constrained _array_definition 5-23
file_type_definition 5-34
unconstrained array definition 5-23
sensitivity clause 6-49
actual_designator 4-31
entity_aspect 8-31
expression 2-4
logical _operator 2-31
choice 2-8
entity_name list 10-55
instantiation_list 8-25
mode 4-22
package body 9-15
package declaration 9-13
port_clause 8-8
port_map_aspect 8-32
subprogram_specification 7-6
process_statement 6-41
range_constraint 5-5
record_type _definition 5-29
signal_kind 11-14
multiplying_operator 2-20
assertion_statement 6-10
return_statement 6-44
subprogram_specification 7-6

Mentor Graphics VHDL Reference Manual, July 1994

1-13

Lexical Elements

VHDL Reserved Words [continued]

Name L anguage Constructs Page
select selected signal_assignment 6-27
severity assertion_statement 6-10
signal interface_signal_declaration 4-26
signal_declaration 11-14
subtype subtype declaration 4-7
then If _statement 6-34
to direction 5-5
transport options 6-23
signal_assignment_statement 6-46
type type declaration 4-4
units physical_type definition 5-15
until condition_clause 6-49
use configuration_specification 8-25
use clause 3-22
variable variable _declaration 4-15
wait wait_statement 6-49
when conditional_waveforms 6-25
exit_statement 6-28
next_statement 6-38
selected waveforms 6-27
while iteration_scheme 6-36
with selected signal_assignment 6-27
Xor expression 2-4
logical_operator 2-31
1-14 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

Comments

Y ou can include comments to document your VHDL code. Comments consist of
two adjacent hyphens (--) followed by the text of the comment. Comments
terminate at the end of theline. For example:

-- This is the beginning of the code
counter: PROCESS (clk) -- Counter executes when cl k changes

A comment can appear anywhere in a description without affecting how the code
isprocessed or simulated. Any of the 95 ASCI|I graphic characters can be used in
acomment.

Literals

Literals arelexical elements, such as numbers, characters, and strings, that
represent themselves. VHDL hasfive types of literals, as shown in the following
BNF syntax description:

literal ::=
numeric_literal
| enumeration _literal

| string_literal
| bit_string_literal
| null

The following pages discuss numeric, string, and bit string literals. For
information about the enumeration literal, refer to page 5-19. The null literal
represents the null access value for an accesstype; it is an access value that
points to nothing. For information on access types, refer to page 5-31 .

Numeric Literals

A numeric literal represents an exact integer or real value. Examples of numeric
literals start on page 1-17. Hereisthe BNF description for a numeric literal:

numeric _literal ::=

abstract_literal
| physical_literal

Mentor Graphics VHDL Reference Manual, July 1994 1-15

Lexical Elements

A physical literal is used in a secondary unit declaration, as part of a physical
type definition. For more information on physical type definitions, refer to the
subsection called "physical_type definition” in Section 5. Hereisthe BNF
description for aphysical literal.

physical_litera ::=
[abstract_literal] unit_name

Abstract literals are either integer literals or real literals. Y ou specify integer
literals and real literals either in decimal notation (decimal literal) or using
another base (based literal). A real literal includes a decimal point and is of the
type universal_real. Aninteger literal does not include adecimal point and is of
the type universal_integer. For information about types, refer to Section 5. The
BNF description for an abstract literal is asfollows:

abstract_literal ::=
decimal_literal
| based literal

Y ou can think of type universal _integer as an anonymous type with no bounds,
representing all the integersin the universe. Integer literals are members of this
type. Type universal real isaso an anonymous type, with no bounds, that
represents real numbers with infinite precision. Real literals are members of this
type. Anonymous types have no name, so you cannot refer to them. Therefore,
throughout this manual universal_integer and universal_real appear initalic font
to designate that you cannot actually use these types.

A decimal literal is expressed in base 10, the conventional decimal notation. The
BNF descriptions for the decimal literal and related constructs are as follows:

decimal_literal ::=
integer [. integer] [exponent]

integer ::=
digit {[_] digit}

exponent ::=
E[+] integer | €/+] integer | E - integer | e - integer

An integer literal cannot contain adecimal point, but it can have an exponent.
The character "E" represents an exponent and can be either uppercase or

1-16 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

lowercase. The"+" isoptiona after the"E". A space between the "E" and the
integer isnot allowed. Aninteger literal can have aleading zero or azero
exponent, but not a negative exponent. Spaces are not allowed. Here are some
examples of valid and invalid integer literals:

01468 -- leading zero is |egal
17EO0 -- zero exponent is |egal
769 1 -- space NOT LEGAL

The special character " " in the syntax for integer, has no effect on the value of

the literal. This character provides a method for grouping fields. For example:
100_000_000 -- separates fields for easier reading

The following examples show valid integer literal values:
0 14e3 27E2 2e2 34e+7 91 432_198

The following examples show valid rea literal values:

17.0 23. 65e-10 87. 1E3 7.61le+1l 0.0 0. 1426

Based literals are abstract literals in which you can specify the numeric base.
The base you specify must be in the range of base 2 to base 16, inclusive. The
following diagrams shows the related syntax for a based literal.

based litera ::=
base # based integer [. based integer] # [exponent]

base ::=
integer

based_integer ::=
extended _digit {[_] extended digit}

extended_digit ::=
digit|A|B|C|D|E|F|a|b|c|d]|e]|f

The"#" character must enclose the based integer. The optional underline
character " " in the based integer has no effect on the value of theliteral. This
character is used to group digits for readability. The exponent is always base 10.

Mentor Graphics VHDL Reference Manual, July 1994 1-17

Lexical Elements

An extended digit is a hexadecimal digit. The letters A through F, in the
extended digit, represent the digits 10 through 15. These letters can be uppercase
or lowercase.

Within a based integer, the extended digits must be a value less than the base.
For example, 2#1101_A1B1# isnot allowed because the baseis 2. Therefore, the
extended digits"A" and "B" areillegal.

The following are examples of valid integer literals, using different bases:

2#101_0000# -- base 2 representation of decinml 80
16#50# -- base 16 representation of deciml 80
16#A0# -- base 16 representation of decimal 160

2#1010_0000# -- base 2 representation of decinmal 160

The following are examples of valid real literals, using different bases:
2#1. 0#e3 -- base 2 representation of decinmal 1000.0

16#4. 2# -- base 16 representation of decinmal 4.125

Character Literals

A character literal is asingle graphic character from the 95 printable ASCI|
characters. Y ou must enclose a character literal with single quote marks (*) asthe
following syntax shows:

character_literal ::=
' graphic_character’

The following examples show some possible character literals:
'z’ e ' % o

S A character literal is case-sensitive. Therefore, an’X’ isnot equal to an'x’ and
'Z’ isnot equal to’Z'.

1-18 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

String Literals

A string literal consists of zero or more graphic characters. String literals must
be enclosed between double quote marks (). The following diagram shows the
syntax for astring literal:

string_literal ::=
" {graphic_character} "

When you use the double quote character within a string literal, another double
guote mark must precede it. For example, to include the string "message” within
the string literal "The string will be printed”, you must use the following format:

"The string ""nmessage"" will be printed”

Since astring literal isalexical element, the end of the line format effector is
considered a separator. Therefore, if you wish to use astring literal that exceeds
the length of the line, you can concatenate the graphic characters. You
concatenate by using the ampersand (&) character. For example:

“I'f your string literal is too long, then "&
"use the concatenation character™

Y ou can aso concatenate graphic characters with nongraphic characters. There
are several nongraphical charactersin package "standard" in the predefined type
character. For example, if you want to concatenate the nongraphical character
BEL with two string literals, the format is as follows:

"Concatenating string literals" &bel &
"wi th nongraphi cal characters”

A string literal is case-sensitive because strings are arrays of character literals,
which are case-sensitive. Therefore, the following strings are not equivalent:

"This string" "this string” --NOTI EQUAL

Mentor Graphics VHDL Reference Manual, July 1994 1-19

Lexical Elements

Character and String Literal Differences

In some situations, it might appear to you that there is no difference between a
character literal and a string literal. For example:

X" -- the character literal x

"X" -- the string literal X

The difference between a character literal and a string literal with only one item
istheir type. A character literal is of the type character and a string literal istype

string. Therefore, you cannot mix the types when you perform operations on the
literals. For example:

VARI ABLE x: character; --Declare "x" of subtype character.
x:="a"; --Assign x the string literal "a". The types are
--not the same, therefore this code is not |egal.

Bit String Literals

Bit string literals are strings of extended digits, enclosed by double quotes (*),
with a prefix of abase specifier. Bit string literals represent binary, octal, or

hexadecimal numbers. The following diagram shows the related syntax of the bit
string literal:

bit_string_literal ::=
base _specifier " bit_value"

base specifier ::=
B|O|X|b]o]|x

bit value ::=
extended digit {[_] extended digit}

1-20 Mentor Graphics VHDL Reference Manual, July 1994

Lexical Elements

There are three valid base specifiersfor bit string literals:

o B specifiesthat the extended digits are restricted to the binary
number system (1 and 0).

o O gpecifiesthat the extended digits are restricted to the octal number
system (0, 1, 2, 3,4,5,6, 7).

e X specifiesthat the extended digits are restricted to the hexadecimal
number system (0, 1, 2, 3,4,5,6,7,8,9,4a,b, c, d, g f).

The base specifiers B, O, and X can be uppercase or lowercase. Y ou cannot
place a space between the base specifier and the bit value.

The type "bit" (from package "standard") is limited to the values of zero and one.
Therefore, the O- and X-specified literal converts to the equivalent B-specified
bit string literal. This conversion does not discard leading zeros (aleading digit
isthe left-most array entry). The size of the bit string literal is the number of
digitsin its binary representation.

The following examples show some possible bit string literals:

X*333" -- equivalent to B'001100110011"
0'333" -- equivalent to B*'011011011"

X' OF7" -- equivalent to B*000011110111"
o 72" -- equivalent to B"111010"

Separators and Delimiters

Separators and delimiters are characters that divide and establish the boundaries
of lexical elements.

Separators

When you put lexical elements together, there are situations in which you must
use a separator between the elements. Otherwise, the adjacent lexical elements
could be construed as being asingle element. There are three lexical separators:

e Space character, except when the space isin a comment, string literal, or
character litera

Mentor Graphics VHDL Reference Manual, July 1994 1-21

Lexical Elements

o Format effector, except when the format effector isin a comment or a string
literal

e End of line -- consists of the line feed character

Since the end of the line is always considered a separator, all lexical elements
must appear on asingle line. There must be one or more separators between an
identifier or an abstract literal and an adjacent identifier or abstract literal.

Delimiters

A delimiter is one or more special characters that establish the boundaries of one
or more lexical elements. A compound delimiter consists of two delimiters
together. The delimiters and compound delimiters you can use are as follows:

o Delimiters: & " () * =, - ./ :; <= >|
e Compound delimiters: => ** = [= >= <= <>

The delimiter characters are not delimiters when you use them in comments,
abstract literals, character literals, or string literals.

The following are examples of delimiter use:

SI GNAL yel | ow, green,red : bit; -- Uses "," ":" and ";"
z <= TRANSPORT t AFTER q; -- Uses the conpound delimter <=,
-- the ";" and the space

1-22 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Section 2
Expressions

An expression is an equation or a primary that indicates avalue. This section
defines the items that comprise an expression and discusses the rules for using
expressions. The following list shows the topics covered this section:

Definition of Expressions 2-3
General Expression Rules 2-4
Operands (Primaries) 2-6
Names 2-6
Literal 2-7
Aqggregates 2-8
Function Calls 2-10
Qualified Expressions 2-10
Type Conversions 2-12
Allocators 2-13
VHDL Predefined Operators 2-16
Important Notes About Operators 2-17
Miscellaneous Operators 2-18
Multiplying Operators 2-20
Sign 2-22
Adding Operators 2-23
Relational Operators 2-28
Logica Operators 2-31
Static Expressions 2-32
Universal Expressions 2-36

Figure 2-1 shows the where expressions fit in the overall language and the items
that comprise the expressions.

Mentor Graphics VHDL Reference Manual, July 1994 2-1

Expressions

Design Units
Design Entities
Configurations

Packages

Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
/ Lexical Elements
/ Naming, Scope, and Visibility

Expressions

v
v v

Primaries Predefined Operators
Names Miscellaneous
Literals Multiplying

Aggregates Sign
Function Calls Adding
Qualified Expressions Relational
Type Conversions Logical
(Expressions) VHDL Operators

Figure 2-1. Expressions

2-2 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Definition of Expressions

An expression isaformulathat you use to compute a new value or asingle term
that definesavalue. AsFigure 2-2 shows, abinary expression takes a left
operand and aright operand and operates on them with an operator to form a new
operand.

Operands New
left right - Operator Operand
1 2 | 10+ | 2
(‘O (@) 0 @)

O O O [@)
U /// /;ﬁi/ 3 3
S R W
Lo /

,,,,,,,

Figure 2-2. Expression Concept

A large number of the VHDL constructs make use of expressions in various
forms. Complete examples of their use can be found throughout this manual.
The following source-code excerpts contain examples of expressions.

CASE a >b IS -- "a > Db" is an expression

ASSERT (x AND y AND z) OR r REPORT "race condition";

--Both "(x ANDy AND z) ORr" and "race condition" are

-- expressions.

DI SCONNECT sig_a: bit AFTER 25 ns; --"25 ns" is an expression
VARI ABLE test : integer := 256; --"256" is an expression.

Mentor Graphics VHDL Reference Manual, July 1994 2-3

Expressions

There are severa related language constructs that govern the syntax of an
expression, as the following syntax descriptions show.

expression :
relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation |
| relation [nor relation |

relation :
simple_expression
[relational_operator simple_expression]

simple_expression :
[sign] term { adding_operator term}

term :
factor { multiplying_operator factor }

factor :
primary [** primary |
| abs primary
| not primary

General Expression Rules

The related expression language constructs on page 2-4 show that the associative
logical operators and, or, and xor can bein asequence. For example:

IF (a AND b AND ¢) /= (d AND e AND f) THEN

Y ou cannot write an expression using the logical operatorsnand and nor ina
sequence, because these operators are not associative. For example:

IF (a NAND b NAND ¢) = (d NAND e NAND f) THEN --111 egal
--Sequence

2-4 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

To mix the associative logical operators, you must use parentheses. For example:

IF ((a AND b) ORc) /= ((d ANDe) ORf) THEN --M x | ogi ca
--operators

Logical operators are discussed in detail on page 2-31.

The operand types and the operator determine the expression type. The
following example shows this concept:

VARl ABLE test : real := 5.0; -- variabl e decl arati ons
VARI ABLE check : real := 5.5; - -

The following expression appears later in a description:
answer := test + check;

In the preceding example, the expression "test + check" is of typereal because
the operand types are real.

When you use an overloaded operand, the operand type is determined by the
context in which it appears. When you use an overloaded operator, the operator
identification is also determined by the context. For more information on
overload resolution, refer to page 3-24.

If you enclose an expression in parentheses, you can use it as an operand.
Operands are described in the following subsection.

Mentor Graphics VHDL Reference Manual, July 1994 2-5

Expressions

Operands (Primaries)

An operand, or primary, has avalue and atype -- it isaquantity on which an
operator performs an operation. The following BNF description lists all the valid
primaries.

primary ::=
name
| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)

Following subsections discuss all of these itemsin their roles as primaries. These
items are also discussed in other sections of this manual, in relation to their other
functions within the language. Please consult the index or text references for the
locations of these discussions.

Names

When you use a name as an operand in an expression, it must be one of the
following items:

¢ The name of an attribute that returns avalue
¢ A name that identifies an object or value

The value of aoperand is the value of the object. For more information on
objects, refer to page 4-10. Names are discussed in detail beginning on page 3-3.
The following example shows the use of namesin expressions:

2-6 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

-- "decade", "multiplier", "freq_in", "freqg_out, "x", and "z"
-- are nanes that identify objects; "info" identifies a type.
PROCESS

CONSTANT decade : integer := 10;
VARI ABLE nultiplier, freq_in, freq_out, x : integer
TYPE info IS ARRAY (integer RANGE <>) OF integer
VARI ABLE z : info (1 TO 10);

BEG N

-- expression for output frequency using nanmes for operands
freg_out := (multiplier * freqg_in) / decade;

--Expression using an attribute nane that returns a val ue.
--(Right bound of array "z" is 10. Therefore "x" = 20.)
X :=2zZ'right + 10;
WAIT FOR 1 ns;
END PROCESS;

Literal

A literal consists of one or more characters that represent themselves. There are
three general categories of literals:

e Numeric
e Character
e String

Literals are discussed in detail on page 1-15. Examples of literalsused in
expressions follow:

VARI ABLE result : integer := 1024 * 8; --Variable declaration
--with expression containing nuneric literals "1024" and "8"

VARI ABLE answer : character :="'x'; --Expression assigning
--character literal 'x’
-- to variable "answer"
CONSTANT string 1 : string := "011" & "true"; --Initialize
--"string_1" using an expression to concatenate

--string literals "011" and "true"

Mentor Graphics VHDL Reference Manual, July 1994 2-7

Expressions

Aggregates

An aggregate is the combination of one or more values into a composite value of
an array type. The following BNF description shows the syntax related to

aggregates:

aggregate ::=
(element_association { , element_association })

element_association ::=
[choices =>] expression

choices::=
choice{ | choice}

choice ::=
simple_expression
| discrete_range
| element_simple_name
| others

An example array aggregate follows:

PROCESS
CONSTANT offset: integer := 5;
CONSTANT start: integer := 0O;
TYPE dunp_nenory IS ARRAY (0 to 5) OF integer;
VARI ABLE nem d: dunp_nenory;

BEA N
memd := (start | offset => 1, OTHERS => 0);--array
WAIT FOR 10 ns; --aggregate
END PROCESS;

The result of the preceding example is a one-dimensional array mem d with the
following value:

mem_d 1 0 0 0 0 1

2-8 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

From the previous example, the following code represents the array aggregate:

memd := (start | offset => 1, OTHERS => 0);

The element association in the preceding example relates a choice of start or
offset (that have avalue of "1") to elements"0" and "5" of the array nem d. All
other elements of the array are assigned avalue of "0". Each choice value must
specify index values for the one-dimensional array.

Each element association that you use relates an expression to one or more
elements of an array. A named element association is an e ement association if
you specify the array elements by using the construct "choices", as the previous
example shows. An easy way to determineif there is a named element
association isto look for the delimiter "=>".

A positional element association is an element association in which each
expression implicitly specifies the element of the array by location. For example,
the first expression specifies the first element, and the second expression
specifies the second element.

For record aggregates, you can use both named and positional association in the
same aggregate. However, all positional elements must appear first, followed by
the named associations.

No association can appear after the reserved word others. If you have an
aggregate with only one element association, you must use a named association.
For a compl ete discussion on association methods, refer to page 4-31.

The reserved word other sindicates that other unspecified elements of the array
take on the value specified after the "=>" delimiter. Y ou can use astring or bit
string literal in multidimensional aggregates where you would use a
one-dimensional array that is of type character.

Mentor Graphics VHDL Reference Manual, July 1994 2-9

Expressions

Function Calls

A function call is an expression that causes the execution of afunction body. The
following example shows afunction call.

PROCESS
TYPE state IS (x, z);
VARI ABLE s : state;
FUNCTI ON funcl (st : state) RETURN state IS --The function

BEG N -- is declared
RETURN st ;
END funcl;
BEGA N -- The function is called and s is
s := funcl (2); -- assigned the result of function call
WAIT FOR 10 ns; -- (in this case z)
END PROCESS;

The function name specifies the name of the function you wish to execute. In the
preceding example the function nameisf unci.

The optional actual parameter part specifies the actual parametersthat are
associated with the formal parameters of the function. In the preceding example,
the z inthefunctioncall s : = funcl (z); istheactual parameter part, and st
isthe formal part in the function declaration FUNCTI ON funcl (st : state).

For the details and rules pertaining to function calls, functions, and parameter
passing, refer to Section 7.

Qualified Expressions

A qualified expression is an expression you use to explicitly describe the type or
subtype (using the type_mark) of an operand that is an aggregate or an
expression. The following diagram shows the syntax for a qualified expression:

qualified_expression ::=
type_mark ' (expression)
| type_mark * aggregate

Qualified expressions do not perform type conversions. (For more information
on type conversions, refer to page 2-12.) Qualified expressions give you the
ability to eliminate the ambiguity that occurs when you overload operators,
functions, and operands. For example, assume that a package (my_qgsim_base) is

2-10 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

defined that contains the following definitions:

TYPE ny_gsimstate IS ("X, "0, "1, 'Z);

FUNCTION "=" (L, R: my_qsimstate) RETURN nmy_qgsi m st at e;
FUNCTI ON "and" (L, R: ny_qgsimstate) RETURN ny_gsi m state;
FUNCTION "=" (L, R: ny_qsimstate) RETURN bool ean;

Ambiguity occurs when you call this package in a portion of code and also use an
expression such as the following:

(a=Db) AND (c =d) -- a,b,c, and d are type ny_gsimstate

In this expression, you do not know which overloaded "=" operator isused. To
resolve this ambiguity, you could use the following qualified expression:

boolean * (a = b) AND boolean ' (c = d)
This qualified expression specifies that the boolean operator "=" isto be used.
Here are some guidelines for the use of qualified expressions:
¢ The operand value determines the qualified expression value.

e The expression or aggregate operand must have the same base type as the type
mark.

o At thelocation the qualified expression is evaluated, the expression operand
must belong in the subtype specified by the type mark.

Mentor Graphics VHDL Reference Manual, July 1994 2-11

Expressions

Type Conversions

S A type conversion provides you with a method for converting from one type to
another closely related type. (For more information on types, refer to Section
5.) Table2-1 liststhe valid type conversions that VHDL can perform.

Table 2-1. Type Conversions

Convert Type To Type

Integer Floating point

Floating point I nteger

Integer Different integer
Floating point Different floating point

The following diagram shows the syntax for type conversion.

type_conversion ::=
type_mark (expression)

The following example shows atype conversion:

VARI ABLE x : real := 256.55 ; -- variable declarations
VAR ABLE y, z . integer :=5; --

z :=integer (x) +vy; -- Converts two different types and
-- assigns the value to "z"

In the preceding example, if the variablesx and y are at their default value, the
value of z is262. When afloating point type is converted to an integer type, the
floating point value convertsto the nearest integer. Floating point values that are
halfway between two integers are rounded up.

A type conversion converts the expression to the base type of the type mark. The
type mark designates atype or subtype. If the type mark is a subtype, the range
is checked to determine if the result of the conversion isvalid for the subtype.

Y ou can always convert an expression of any type to its same type.

2-12 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Type conversions are allowed for all expressions except aggregates, string
literals, alocators, and those involving the literal null. Y ou can use an
expression enclosed by parentheses only when the expression itself is not an
aggregate or string literal.

If the conversion result fails to satisfy the type mark you specify, the conversion
fails, creating an error.

Type conversions also allow you to convert integer types to other integer types
and to convert floating point types to other floating point types. The following
example shows you how to use type conversion on an expression to add values of
two different integer types.

PROCESS
TYPE apples I'S RANGE 1 TO 10; --Declare two different
TYPE oranges |S RANGE 1 TO 5; --integer types, "apples" and
--"oranges"
VARI ABLE v1, ans: apples; --Declare "v1" and "ans" as apples
VARl ABLE v2: oranges; --Declare "v2" as type oranges.
BEG N
ans := vl + v2; -- Illegal! "vl1" and "v2" are different types
VWAIT FOR 10 ns;
END PROCESS;

To make this expression valid, you can use the following type conversion:

ans := vl + apples (v2); -- convert v2 to type apples

Allocators

An allocator is an expression that, when evaluated, creates an anonymous object
and yields an access value that designates that object. The access value can be
thought of as the address of the object. The access value may be assigned to an
access-type variable, which then becomes a designator of (hereafter called a
pointer to) the unnamed object. Such pointers allow access to structures like
FIFOs (first in, first out registers) and linked lists that contain unnamed el ements
for which storage is dynamically allocated.

Mentor Graphics VHDL Reference Manual, July 1994 2-13

Expressions

The BNF description for the allocator construct is as follows:

alocator ::=
new subtype indication
| new qualified expression

The following list describes the characteristics of an allocator:

o An alocator creates an object of the type given in the type mark of the
subtype indication or qualified expression.

e Theinitial value of the object created by an alocator is determined as follows:

0 With asubtype indication, the initial value is the same as the default initial
value of any explicitly declared variable of the designated subtype.

0 With aqualified expression, theinitial value is determined by the
expression.

e Only anindex constraint is allowed in the subtype indication of an allocator.
If the created object is an array type, the subtype indication must denote a
constrained subtype or include an explicit index constraint.

e A subtypeindication in an allocator must not include a resolution function.

Declaring an accesstypeis apreliminary step to setting up a pointer. Once an
access type has been declared, you can create a pointer by declaring a variable of
that type and then assigning an access value to that variable using an allocator
expression.

The following example illustrates the process of creating an access type,
assigning an access val ue to a pointer, and assigning a value to the object pointed
to by the pointer:

TYPE buff_elemtype IS (0 TO 255)
TYPE ny_buffer I'S ARRAY (0 TO3) OF buff_elemtype ;
TYPE buff_ptr 1S ACCESS ny_buffer ;

VARI ABLE ptrl : buff_ptr :
VARI ABLE ptr2 : buff_ptr :
VARI ABLE ptr3 : buff_ptr :
VARI ABLE v1 : buff_elemtype

NEW ny buffer ' (1, 2, 3, 4)
NEW ny_buffer ;
ptrl ;

~No o1 bh~ WN -

2-14 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

8 ptr2.ALL := ptril. ALL
9 vi1 := ptrl.ALL(O) ;
10 deallocate (ptrl) ;

The preceding example does the following:

e Line 1l declaresatype buff elem type for elements of an array object that will
be pointed to by an access type.

e Line 2 declaresthe type my buffer, which is defined as afour-element array
with elements of type buff_elem type.

e Line 3 declares an access type, buff_ptr, of type my_buffer. This accesstype
iIsnow available for variables that will be used as designators of (pointers to)
objects of type my_buffer.

e Line4 declaresavariable ptrl of accesstype buff ptr and uses an allocator
expression (the reserved word NEwfollowed by ny_buf f er), which does three
things:

0 Allocates enough memory to store an object of type my_buffer.

0 Creates and assigns avalue to an (unnamed) array object of type
my_buffer. In thiscase, aninitial value of (1, 2, 3, 4) isassigned to the
object. Y ou set this up by inserting atick mark after the type or subtype
name, followed by avalue in parentheses, asfollows:

type name ' (initial_value)

0 Assigns an access value (address) to ptrl, which can then be used to
reference the object.

o Lineb5 creates anew pointer, ptr2, and a new object, but in this case the object
assumes a default value. The default value for each element of this object is
the default value for the type buff _elem_type, whichisO
(buff_elem type LEFT).

e Line6 assigns the access value of ptrl to ptr3; these pointers now point to the
same object.

o Line 8 assignsthe value of the object pointed to by ptrl to the object pointed
to by ptr2. The suffix .ALL "dereferences’ the pointers, causing the values of

Mentor Graphics VHDL Reference Manual, July 1994 2-15

Expressions

the objects to which they point to be assigned instead of the "addresses” of the
objects.

o Line9 assignsthe value of element O of the object pointed to by ptrl to the
variable vl that was declared inline 8. The .ALL is not actually necessary in
this case, but it does document that the value of the element, rather than its
address, is being assigned.

¢ Line 10 deallocates the storage space reserved for the object pointed to by
ptrl. The implicit procedure deallocate exists for each access type you create.
Once storage for an object has been deallocated, it is an error to reference that
object. Pointers that depend on the deallocated pointer (such as ptr3in the
example) can no longer be used.

For additional information on the use of allocators, refer to
access _type definition on page 5-31.

VHDL Predefined Operators

S Predefined operators act upon operands and are grouped into six classes based
on their precedence. Table 2-2 lists all the predefined operators by operator
class. The operator classes are listed in the order of precedence, from highest
to lowest.

All the predefined operatorsin a given operator class have the same precedence.
In an expression, the predefined operator with the highest precedence is applied
to the operands first, following the rules of mathematics. However, you can use
parentheses to control the order of evaluation in an expression (and

non-associ ative operators, such as NAND, require parentheses to determine the
order of evaluation). Y ou cannot change the precedence of a predefined operator.
For examples, refer to page 2-22.

2-16 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Table 2-2. Operators by Precedence

Operator Class

Operators

Miscellaneous operator

** abs not

Multiplying operator

* [mod rem

Sign

+ -

Adding operator

+-&

Relational operator

= /=< <= > >=

Logical operator

and or nand nor xor

The predefined operator not isalogical operator that has the precedence of a
miscellaneous operator. Therefore, it does not appear with the other logical

operators.

In most cases, both the left and right operands are evaluated before the predefined
operator is applied. The exception isthe logical operators defined for the types

bit and Boolean. In this case, the right operand is evaluated only if the left

operand does not possess adequate information to determine the operation result.
These operations are called short-circuit operations. The following subsections
discussin detail each operator classthat Table 2-2 lists.

Important Notes About Operators

e The operands used with an operator (or any expression) must be readable;
they must be of mode in or inout.

o Foating point arithmetic in VHDL is not always exact. The accuracy of the

results depends on machine-specific factors, such as size of storage for
floating point numbers, size of registers, and library routines for

exponentiation and logarithms. For this reason, you should never use the "="

operator to compare two floating point numbers or even afloating point

number with aliteral.

For example, instead of writing as a condition

|F(x = 0.125) THEN ...

Mentor Graphics VHDL Reference Manual, July 1994

2-17

Expressions

a better way to check for this condition is
| F(abs(x - 0.125) < tolerance) THEN ..

wheret ol er ance is some suitable value that you have selected.

and the delimiter for signal assignment "<=" are the same can be confusing in
some situations. For an example of when this can produce valid code that
gives completely different results than you might expect, refer to page 6-25.

Miscellaneous Operators

Miscellaneous operators have the highest precedence of the predefined operators
and have the following syntax:

miscellaneous _operator ::=
** | abs | not

Table 2-3 lists the miscellaneous operators, their operation, and valid types for
the operands and result. For more information on types, refer to Section 5.

Table 2-3. Miscellaneous Operators

Predefined | Operation L eft Right Result Type
Oper ator Operand Operand
Type Type
Exponentiation| Any integer | Predefined Same as | eft
** type typeinteger | operand

Any floating | Predefined Same as | eft
point type typeinteger | operand

abs Absolute value | None Any numeric | Same asright
type operand

The predefined operator not isalogical operator that has the precedence of a
miscellaneous operator. Therefore, not is discussed with the other logical
operators on page 2-31. An example using the miscellaneous operators ** and
absfollows:

2-18 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

PROCESS
VARl ABLE a, b, c, e, result, answer : integer := 2;
CONSTANT d : integer := -2;

BEA N
a:=b + c;
resul t (e ** 8 [/ (ABS d); -- "result" equals +128
answer 8 ** (ABS d); -- "answer" equals +64
answer (ABS d) ** (ABS d); -- "answer" equals +4
WAIT FOR 10 ns;

END PROCESS;

Exponentiation using an integer exponent (right operand) is equivalent to
multiplying the left operand by itself for the number of times specified by the
absolute value of the right operand. It isan error to use a negative integer
exponent.

When you use a negative exponent, the operation result is the reciprocal of the
value returned using the absolute value of the exponent. Y ou can use only
negative exponents with left operands that are floating point types.

p NOTE
Floating point arithmetic in VHDL is not always exact. The
accuracy of a result depends on machine-specific factors such as
size of storage for floating point numbers, size of registers, and
library routines for exponentiation and logarithms. Therefore, an
operation such as (2. 0) ** (- 3) may not always produce a result
of exactly 0.125.

When you use an exponent that has a value of zero, the operation result isavalue
of one. When you use predefined operator abs, the right operand value is always
converted to a non-negative value.

Mentor Graphics VHDL Reference Manual, July 1994 2-19

Expressions

Multiplying Operators

S Thefollowing BNF syntax description shows the multiplying operators. The
multiplication operator "*" and the division operator "/" have their
conventional definitions. Table 2-4 lists the multiplying operators, their
operation, and the operand and result type.

multiplying_operator ::=
*|/|mod | rem

Therem (remainder) operator is defined in terms of integer division by the
following identity:

A = (A/B) * B + (A rem B)

The operation (A rem B) result has the sign of A and has an absolute value less
than the absolute value of B.

Integer division satisfies the following identity, which statesthat if A/B is
negative, the result truncates towards zero:

(-A)/B =-(A/B) = A/(-B)
The mod (modulus) operator satisfies the following relation:
A =B * integer_value + (A mod B)

The operation (A mod B) result has the sign of B and has an absolute value less
than the absolute value of B.

The right operand for the mod, /, and rem operators cannot be a value of zero.
An example of mod and rem follows:

PROCESS (sens_li st)

CONSTANT a : integer := -7,
CONSTANT b : integer := 3;
VARI ABLE x, y : integer;
BEG N

X :=aMDDb;, --x:=+2
y :=a REMb; --vy:=-1
END PROCESS;

2-20 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Table 2-4. Multiplying Operators

Predefined |Operation L eft Right Result type

Oper ator Operand Operand
Type Type

* Multiplication | Any integer | Sameasleft | Same asleft
type operand operand
Any floating | Sameasleft | Sameasleft
point type operand operand
Any physical | Predefined Same as left
type typeinteger | operand
Any physical | Predefined Same as | eft
type type real operand
Predefined Any physical | Same asright
typeinteger | type operand
Predefined Any physical | Same asright
typered type operand

/ Division Anyinteger | Sameasleft | Sameasleft
type operand operand
Any floating | Sameasleft | Sameasleft
point type operand operand
Any physical | Predefined Same as left
type typeinteger | operand
Any physical | Predefined Same as | eft
type type real operand

/ (cont.) Division Any physical | Sameasleft | Universal

(cont.) type operand integer

mod Modulus Anyinteger | Sameasleft | Same asleft
type operand operand

rem Remainder Anyinteger | Sameasleft | Sameasleft
type operand operand

Mentor Graphics VHDL Reference Manual, July 1994 2-21

Expressions

Sign

The predefined sign operators "+" and "-" have their conventional definition. The
positive "+" represents the identity function, and the negative "-" represents the
negation function. For the predefined sign operators, the operand and result have
the same type. The predefined sign operators are also called unary operators (as
areabsand not). Theformal syntax is shown as follows:

The precedence of the predefined sign operators places restrictions on where you
can use them. A signed operand cannot follow these operators:

o A multiplying operator (For information on multiplying operators, refer to
page 2-20.)

o A miscellaneous operator (For information on miscellaneous operators, refer
to page 2-18.)

e An adding operator (For additional information, refer to "Adding Operators').

For example:

A* - B --lllegal exp., sign follows multiplying operator.
B/ +C --Illegal exp., sign follows nultiplying operator.
Z** - B--lllegal exp., sign follows mscell aneous operator.
A+ B --lllegal exp., sign follows an addi ng operator.

If you use parentheses, the previous examples can be written as legal expressions.
For example:

A* (- B) -- legal expression
B/ (+ O -- legal expression
Z** (- B) -- legal expression
A + (-B) -- legal expression

2-22 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Adding Operators

The adding operators are as follows:

adding_operator ::=

& [+

The predefined adding operators "+" and "-" have their conventional definition.
The concatenation operator (&) defines the connection of one-dimensional arrays

and elements.

Table 2-5 lists the adding operators, their operations, and their operand and result

types.
Table 2-5. Adding Operators

Predefined | Operation L eft Right Result Type

Operator Operand Operand
Type Type

+ Addition Any numeric | Sameasleft | Sameasleft
type operand operand

- Subtraction Any numeric | Sameasleft | Same asleft
type operand operand

& Concatenation | Any Same as left- | Same as | eft
single-dim. operand array | operand array
array type type type
Any Same as Same as | eft-
single-dim. element type | operand array
array type of left type

operand
Same as Any Same as
element type | single-dim. right-operand
of right array type array type
operand
Any element | Thesame as | Anarray of
type left-operand | element type
element type
Mentor Graphics VHDL Reference Manual, July 1994 2-23

Expressions

For concatenation, the following three cases apply:

1. Both operands are one-dimensional arrays.

2. Only one operand is a one-dimensional array.

3. Both operands are of the array-element type.
These cases are described in the following paragraphs.

1. Following isan example of concatenation in which the operands are both
one-dimensional arrays:

PROCESS (sens_si gl)
TYPE ref _array IS ARRAY (positive RANGE <>) OF integer;

VARI ABLE vector : ref_array (5 TO 9); --sizeis 5
VARI ABLE nul |l _array: ref_array (5 TO1); --typing error (TO
VARI ABLE one_d : ref_array (6 DOANTO 3); --sizeis 4
VARI ABLE new array : ref_array (9 DOANTO 1); --sizeis 9
BEG N

new array := vector & one_d; --Concatenate arrays, size is 9
END PROCESS;

The concatenation operation and the value of new_ar r ay from the preceding
sens_si g1 process example is equivalent to the following:

9 8 7 6 5 4 3 2 1

The array created by the concatenation of two one-dimensional arrays has the
range and direction of the left operand. Inthesens_si g1 process, the left
operand vect or hasan ascending range (5 TO 9). Therefore, the resultant
array aso has an ascending range. The target variable new_ar r ay has the range

2-24 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

and direction specified in its own declaration, not that of the array created from
the concatenation of the other two variables.

The left bound of the resulting array isthe left bound of the left operand. If the
left operand is anull array*, the resulting concatenated array uses the range and
direction of theright operand. In the previoussens_si g1 process, the resulting
concatenated array has the left bound of 5 as determined by the left bound of the
left operand vect or .

The size of the resulting array matches the total size of the combined right and
left operand array sizes. The elements of the resulting array consist of the
elements of the left operand followed by the elements of the right operand.

2. Following is an example of concatenation in which only one operand is a
one-dimensional array:
PROCESS (sens_si g2)

TYPE ref _array IS ARRAY (positive RANGE <>) OF integer;--

VARI ABLE vector : ref_array (5 TO 9); -- sizeis 5
VARI ABLE next _array : ref_array (6 DOANTO 1); -- sizeis 6
BEG N

next _array := vector & 3; --Concatenate "vector"” with "3",
END PROCESS;

The concatenation operation and the value of next _ar r ay from the preceding
sens_si g2 process is equivalent to the following:
5 6 7 8 9

I
vector & 3
5 6 7 8 9 10
| [[[8f]

*One way to encounter anull array likenul | _array isif therangeis
reversed, in this case typing TOinstead of DOMNTOIN thenul | _array variable
declaration inthe sens_si g1 process.

Mentor Graphics VHDL Reference Manual, July 1994 2-25

Expressions

The resultant array created by the concatenation of a one-dimensional array with
an array element has the range and direction of the index subtype of the left
operand. Inthesens_si g2 process, the resulting array uses an ascending

direction as specified in the left operand (vect or) declaration:
VARI ABLE vector : ref_array (5 TO 9);

The left bound of the resulting array is the left bound of the index subtype of the
left operand. Inthesens_si g2 process, the left bound of the index subtype of
the left operand vect or is5. The elements of the resulting array consist of the
elements of the left operand followed by the elements of the right operand.

Had the concatenation in the sens_si g2 process placed the single element as the

left operand as shown below, the same rules would apply.
next _array := 3 & vector; --Concatenate "3" with "vector"

The single element "3" is viewed as an implied one-dimensional array with one
element. The resultant array created by the concatenation of an array element
with a one-dimensional array has the range and direction of the index subtype of
the left operand. In this case, the resultant array from the concatenation starts
with an index of 1 and hasarange of 1to 6. The following paragraphsinclude a
description of how asingle element is treated as an implied array.

3. Following is an example of concatenation in which both operands are of the
sametype as an array element type:

PROCESS (sens_si g3)

TYPE ref _array IS ARRAY (positive RANGE <>) OF integer;

VARI ABLE x, z : integer;

VARI ABLE el enent _array : ref_array (6 TO 7);
BEG N

X = 3; z .= 5;

el enent _array := x & z; --Concatenate to form2-elem array
END PROCESS;

The concatenation operation and the value of el enent _ar r ay from the
preceding sens_si g3 process is equivalent to the following:

2-26 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

1701 1701
3 Hice
&
1 2
s EoE
resultant array from concatenation
6 7
3 [2
element_array

When you concatenate two non-array objects, each non-array object is treated as
aone-dimensional array containing one element. It isimportant that at least one
array type declaration is visible in the current scope and that this visible array
type declaration contain an element type that matches the type of the elements
you are concatenating. Inthe case of the sens_si g3 process, variables x and z
are both of type integer, which is the same as the elementsin arrays of type

ref _array.

Inthesens_si g3 process, thereis only one visible array type declaration that
has an element type that matches the type of the variables being concatenated.
This means that the left bound and range of each of the implied one-element
arrays are determined by ther ef _arr ay type declaration. Each element of the
implied array has aleft bound of 1 (the left bound of the posi tive <> value set)
and an ascending range as determined by the range of the positive subtype
declaration (SUBTYPE positive IS integer RANGE 1 TO i nteger’ high;).
The range of the implied arraysfor x and z are 1 to 1.

Had the following type declaration also been included in the sens_si g3 process,
overloading rules would determine which array type declaration to use to
determine the left bound and range of the implied arraysfor x and z.

TYPE ref _array2 IS ARRAY (natural <>) OF integer; --unconst.

Now that we have determined what the implied arrays for x and z look like, we
can determine the left bound and range of the array that results from the
concatenation of the two implied arraysfor x and z. The resultant array from the
concatenation of the two implied arrays has the range and direction of the index
subtype of the implied array of the left operand. Inthesens_si g3 process, the
left bound of the index subtype of the implied array is 1 and therangeis

Mentor Graphics VHDL Reference Manual, July 1994 2-27

Expressions

ascending. The elements of the resulting array consist of the left operand
elements followed by the right operand elements.

Y ou can aso concatenate items to form abus. The following example shows the
initialization of afour-bit type called my_qgsim_state vector:

VARI ABLE a_bus: ny_gsimstate_vector(0 TO 3); --variable decl

abus :='0 &’'1 &'Z &’'X ; -- Assign initial values
a_bus := "01zX"; -- (or do it this way)

In the preceding example, the four bits are concatenated to form abus. Thereisa
natural inclination to assign a bus without using the "&" operator, or by using
single quotes, creating an illegal condition, as follows:

a _bus :='01zX ; -- illegal condition

Shift Operators

S The shift operators perform bit shifting and rotation on operands. Thisrelease
of System-1076 fully supports the six shift operators defined in the IEEE Std
1076-1993, |IEEE Standard VHDL Hardware Description Language Manual.
The following BNF description shows the shift operators:

relational_operator ::=
dl |srl|da|sra]ral |[ror

Relational Operators

The relational operators check for equality, inequality, and the ordering of
operands. The following BNF description shows the relational operators:

relational_operator ::=
=|/=]<|<=]>|>=

Table 2-6 shows the standard VHDL relational operators, their operations, and
their operand and result types. When you are using the standard VHDL operators
(not using an overloaded version of one of these operators), the operands you use
must be of the same type, and the result type is always boolean.

2-28 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Table 2-6. VHDL Relational Operators

Operator Operation | Operand Type Result Type

= Equality Any type except filetypes | Boolean

= Inequality | Any type except filetypes | Boolean

< Ordering Any scalar or discrete Boolean
array type

<= Ordering Any scalar or discrete Boolean
array type

> Ordering Any scalar or discrete Boolean
array type

>= Ordering Any scalar or discrete Boolean
array type

Predefined Equality and Inequality Operators

As Table 2-6 shows, the equality and inequality operators are predefined for all
types, except file types.

The equality operator "=" returns avalue of TRUE if the left and right operands
areequal. Otherwise, avalue of FALSE isreturned. Theinequality operator
"/="returns avalue of FALSE if the left and right operands are equal.
Otherwise, avaue of TRUE is returned.

When you use two scalar values of the same type as operands, they are equal only
if their values are the same. When you use two composite values of the same
type as operands, they are equal only if the following conditions exist:

o Each element of the left operand has a matching element in the right operand.
(The left operand is no larger than the right operand.)

e Each element of the right operand has a matching element in the left operand.
(Theright operand is no larger than the left operand.)

e The matching elementsin the left and right operands are equal.

Mentor Graphics VHDL Reference Manual, July 1994 2-29

Expressions

Using the preceding conditions, two null arrays of the same type are aways
considered equal.

When two one-dimensional arrays are compared, matching elements are
determined by matching index values. Index values match if the left bound
element values of the index ranges match. If the left bound element values
match, the next element values to the right are compared. This process continues
until the right bound of one of the arraysis reached.

Predefined Ordering Operators

As Table 2-6 shows, the ordering operators are predefined for any scalar or
discrete array type. A discrete array typeis aone-dimensional array that contains
elements that are of enumeration or integer types. Each ordering operator returns
avalue of TRUE if the specified relation is satisfied. Otherwise, avalue of
FALSE isreturned.

Scalar type ordering operations are defined by the left and right operand relative
values. For discrete array types, the relational operator "less than" (<) means that
the left operand is less than the right operand if the following conditions are
satisfied:

e Theleft operand isanull array and the right operand is not anull array.

e Theleft and right operands are not null arrays. If they are not null arrays, one
of the following conditions must be met:

0 Theleft-most element of the left operand is less than the left-most element
of the right operand.

O Theleft-most element of the left operand is equal to the left-most element
of the right operand, and the tail of the left operand is less than the tail of
the right operand.

The tail of an operand is the remaining elements to the right of the
left-most element. The tail can be null.

The relational operator "less than or equal to" (<=), for discrete array typesistrue
if either "<" or "="istrue for the left and right operands you specify.

2-30 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Using the definition of equality and less than, the remaining relational operators
can be defined as follows:

e "Lessthan" isthe complement to "greater than or equal to".

o "Greater than" isthe complement to "less than or equal to".

Logical Operators

The logical operators are predefined for the types bit and boolean and
one-dimensional arrays of type bit or boolean. The logical operators have their
conventional definitions (0 isfalseand 1 istrue). The following syntax
description shows the logical operators:

logical _operator ::=
and | or | nand | nor | xor | xnor

If the operands are arrays and the logical operator isalogical operator other than
not, then the following information applies to the expression:

¢ The operands must be the same length.

e The operation is accomplished by computing the result of applying the
operator to matching elements of the the arrays.

e Theresultisan array of the same subtype as the | eft operand with the same
index range.

If the operand is an array and the logical operator is not, the not operation is
performed on each array element and the result is an array of the same subtype as
the operand with the same index range.

There are other expressions that are special cases that do not fall into the
expression categories in the previous discussion about expressions. These
expressions are identified as follows and are further described in the following
subsections:

e Static expressions

e Universal expressions

Mentor Graphics VHDL Reference Manual, July 1994 2-31

Expressions

Static Expressions

Static expressions fall into two categories:
e Localy static
e Globally static

A locally static expression is an expression that can be completely evaluated
when the design unit in which it appearsis evaluated. The valuesfor locally
static expressions depend only on those declarations that are local to the design
unit or on any packages used by the design unit.

A locally static expression must use operators that are predefined and all the
operands and results of the expression must be scalar types. Therefore, if you use
an overloaded operator in an expression, it is not alocally static expression.
Every operand in the expression must be alocally static operand. A locally static
operand isone of the itemslisted in Table 2-7.

A globally static expression is an expression that can be evaluated when the
design hierarchy where the expression appearsis elaborated. The valuesfor
globally static expressions may depend upon declarations that appear in other
design units. The valuesfor globally static expressions are determined when the
design unit is elaborated.

A globally static expression must use operators that are predefined. Therefore, if
you use an overloaded operator in an expression, it is not aglobally static
expression. Every operand in the expression must be a globally static operand.
A globally static operand is one of theitemslisted in Table 2-8.

2-32 Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Table 2-7. Local Static Operands

Locally Static Rules For the Locally Static Operand

Operand

Constant No deferred constants are allowed. Constant must be
declared with alocally static subtype and initialized
using alocally static expression.

Predefined Must be an attribute of alocally static subtype that isa

attribute value or afunction with actual parametersthat are
locally static.

Function call The function name must designate a predefined
operator. Actual parameters must be locally static.

Literal Any scalar literal type.

Qualified The type mark must designate alocally static subtype.

expression The operand must be alocally static expression.

Locally static May be enclosed by parentheses.

expression

Mentor Graphics VHDL Reference Manual, July 1994 2-33

Expressions

In this manual, several items are defined aslocally static :

Locally static range: arange with bounds that are locally static expressions.

Locally static range constraint: arange constraint with arange that islocally
static.

Locally static scalar subtype: ascalar type (or subtype) or basetypethat is
formed by restricting alocally static subtype by imposing alocally static
range.

Locally static discrete range: alocally static subtype or locally static range.

Locally static index constraint: an index constraint in which each index
subtype of the corresponding array typeislocally static. Each discrete range
islocally static.

Locally static array subtype: aconstrained array subtype that isformed by
restricting an unconstrained array type using alocally static index constraint.

Ranges are discussed on page 5-5, scalar types are discussed on page 5-4, and
arrays are discussed on page 5-22.

2-34

Mentor Graphics VHDL Reference Manual, July 1994

Expressions

Table 2-8. Global Static Operands

Globally Static | Rules For the Globally Static Operand

Operand

Locally static Any locally static operand is considered a globally

operand static operand.

Constant Deferred and generic constants are allowed. Constants
must be declared with globally static subtype.

Predefined Must be an attribute of a globally static subtype that is

attribute avalue, range, or afunction with actual parameters that
are globally static.

Function call The function name must designate a predefined
operator. Actual parameters must be globally static.

Qualified The type mark must designate a globally static subtype.

expression The operand must be a globally static expression.

Globally static May be enclosed by parentheses.

expression

Aggregate Must have a globally static subtype, and its element
associations can contain only globally static
expressions.

In this manual, several items are defined as being globally static:

Globally static range: arange with bounds that are globally static
expressions.

Globally static range constraint: arange constraint with arange that is
globally static.

Globally static scalar subtype: ascalar type (or subtype) or base type that is
formed by restricting a globally static subtype by imposing aglobally static
range.

Globally static discrete range: aglobally static subtype or globally static
range.

Globally static index constraint: an index constraint in which each index
subtype of the corresponding array typeisglobaly static. Each discrete range
isglobally static.

Mentor Graphics VHDL Reference Manual, July 1994 2-35

Expressions

o Globally static array subtype: a constrained array subtype that is formed by
restricting an unconstrained array type using a globally static index constraint.

Ranges are discussed on page 5-5, scalar types are discussed on page 5-4, and

arrays are discussed on page 5-22.

Universal Expressions

A universal expression is an expression that has aresult type of universal _integer
or universal_real. For adiscussion about universal_integer and universal_real,
refer to pages 5-9 and 5-12, respectively.

For any integer-type predefined operation, there is an equivalent
universal_integer predefined operation. Likewise, for any floating-point type
predefined operation, there is an equivalent universal_real predefined operation.
Table 2-9 lists the additional operand and result types for the multiplication and
division predefined operators.

2-36

Table 2-9. Universal Expression Operators

Operator Operation L eft Right Result Type
Operand Operand
Type Type
* Multiplication | universal universal universal
real integer real
universal universal universal
integer real real
/ Division universal universal universal
real integer real
Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

Section 3

Naming, Scope, and Visibility

S This section discusses two topics: the concept of names and the concept of
scope and visibility. Y ou must identify every design item you declare with some
form of name. The system requires a design item to be named before the system
can manipulate the design item. Each design you create may have hundreds of
names within it. This collection of names forms a name space. There can only
be one declaration of a given name per name space, and the collection of name

spaces forms the compl ete name space.

To make the task of managing the complete name space controllable, VHDL
provides scope and visibility rules. The scope of adesign item is the region of
text in which the declaration of the item has effect. Visibility rules define where
the name from a declaration can be seen. The following ordered list showsthe

topics described in this section:

Naming 3-3
Simple Names 3-4
Selected Names 3-4
Indexed Names 3-8
Slice Names 3-9
Attribute Names 3-10

Scope and Visibility 3-12
Declarative Region 3-12
Scope 3-13
Visibility 3-16
Overload Resolution 3-24

Mentor Graphics VHDL Reference Manual, July 1994 3-1

Naming, Scope, and Visibility

Design Units

Design Entities
Configurations

Packages
Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
Lexical Elements

Naming, Scope, and Visibility
B

v v

Naming Scope & Visibility

v

Simple Names
Selected Names
Indexed Names
Slice Names
Attribute Names
Operator Symbols

Figure 3-1. Naming, Scope, and Visibility

Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

Naming

Your VHDL code must be able to refer to adeclared item to act upon it.

Therefore, each declared item must have a name. Names formally designate one
of the following:

o Explicitly or implicitly declared items
¢ Subelements of composite objects

o Attributes

o Objects denoted by access values

Here are some examples that show the use of names:

VARI ABLE vcc : integer :=5; -- "vcc" is a sinple nane
test’ base’'left -- "test'base'left" is an attribute name

To refer to adesign item, you use the name assigned to that design item.

Declared items such as design entities, packages, and procedures are named using
the ssmple_name construct. In some cases, you may want to reference a certain
portion of an item, such as element of an array or record. In those cases, you
might use an indexed name or selected name. In all, there are six forms of names
you can use, as the following BNF description illustrates.

name ::=
simple_name
| operator_symbol
| selected name
| indexed_name
| lice_name
| attribute_name

The following subsections show you how to use simple names, selected names,
indexed names, slice names and attribute names. The operator symbol isaname
for an operator that you can overload and use to manipulate objects. Thistopicis
discussed in the subprogram declaration description on page 7-6.

Mentor Graphics VHDL Reference Manual, July 1994 3-3

Naming, Scope, and Visibility

Simple Names

When you declare an item using an identifier, you use a simple name. When the
simple name is evaluated, the item to which it refersis determined. Every item
you explicitly declare has a simple name, and some items declared implicitly
have a simple name (such as labels and loop indexes). The following BNF
syntax description shows the related syntax for a smple name:

simple name::=
identifier

identifier ::=
letter {[_] letter | digit}

All declarations require ssmple names. The following are some valid smple
name examples within aline of code:

ARCHI TECTURE behave OF shifter IS
--"behave" is the sinple nane (identifier) in the first line
-- of the architecture_body construct.

ENTITY counter 1S
--"counter" is the sinple nane (identifier) in the first line
-- of the entity_declaration construct.

FUNCTI ON chk_parity
--"chk_parity" is the sinple nane (identifier) in the first
-- line of the subprogram specification construct.

Selected Names

Selected names designate elements of record types, objects pointed to by access
values, and items declared within another item, design library, or package. You
use selected names in use clauses, which are discussed on page 3-22. You can
use a selected name to designate all the items declared in alibrary or package by
using the reserved word all. Y ou can also use selected names to resolve
overloading conflicts.

The use of selected names to access individual elements of records is discussed
under "record_type _definition," beginning on page 5-29. The use of selected
names for objects pointed to by access values is discussed under "Allocators,"
beginning on page 2-13.

3-4 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

The following BNF descriptions show the syntax for a selected name:

selected name ::=

prefix . suffix
suffix ::=
simple_name

| character_literal
| operator_symbol
| all

The following examples show the use of selected names:

USE standard.time; -- The item"tinme" in package standard
USE st andard. ALL; -- Al the itens in package standard

USE primlib.gates.and2; --AND from"gates" in "primlib"
USE gen_lib.or2, gen_lib.exor; --OR and XOR gates fromgen_|ib

The selected, indexed, dice, and attribute names require a prefix. Asthe
following BNF description shows, the prefix can be either aname or a function
call.

prefix ::=
name
| function_call

When a name prefix is afunction call, the suffix designates an attribute, element,
or slice of the function call result. For information on function cals, refer to
page 7-15.

When anameis evaluated, the item designated by the name is determined. If the
name has a prefix, the name or function call designated by the prefix is evaluated.

Throughout this manual, there are several rules that involve a concept called the
longest static prefix. Thelongest static prefix is equivalent to the static signal
name you use. If you do not use a static signal name, the longest static prefix is

Mentor Graphics VHDL Reference Manual, July 1994 3-5

Naming, Scope, and Visibility

the static part of the name you use. For example:

‘ snane(5) (7) ‘ ‘ snane(5) (7) ‘
v v

Static Name Longest Static Prefix

In the preceding example, the signal name contains the static expressions
(5) (7), which designate the name as a static signal name. Therefore, the entire
signal name isthe longest static prefix. Another example follows:

Non-Static Expression

A
N

SnaQE(5)(J) Sn8;‘9(5)

Static Name Longest Static Prefix

In the preceding example, j isavariable. Therefore, the expression (j) is
non-static. The longest static prefix isthe static part sname(5) . Another
example follows:

Non-Static Expression

A
T

@X)(J) Sr;m?

Static Name Longest Static Prefix

In the preceding example, j and x are variables. Therefore, the expression
(x) (j) isnon-static. Thelongest static prefix isthe static part snane.

3-6 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

Another form of the selected name is the expanded name. The expanded name
designates one of the following:

e Primary unitinadesign library. In this case, the prefix designates the library,
and the suffix isa primary unit smple name, which you declare within the
library designated by the prefix. For example:

USE design_lib.and_gate ;

¢ Item declared in apackage. Inthis case, the prefix designates the package,
and the suffix is not the reserved word all. The simple name character literal
or operator symbol declaration you use as the suffix must be declared
immediately within the package designated in the prefix.

o All itemsdeclared in apackage. In this case, the prefix designates the
package, and the suffix isall.

o Item declared immediately within a named construct. In this case, the prefix
designates one of the following:

O Entity

0 Architecture

0 Subprogram

0 Block statement
O Process statement
O Loop statement

The suffix must not be the reserved word all. The simple name character
literal or operator symbol declaration you use as the suffix must be declared
immediately within the construct designated in the prefix.

An expanded name used to designate an item declared immediately within a
named construct is alowed only within the construct named in the prefix.

The suffix isthe item in adesign library or package that you wish to select. This
selection can be asingle item, several items, or all the items that the design

library or package contains. To select al the items, you use the reserved word
all.

Mentor Graphics VHDL Reference Manual, July 1994 3-7

Naming, Scope, and Visibility

Indexed Names

Y ou use an indexed name to designate an element of an array. The following
BNF description shows the syntax for an indexed name.

indexed_name ::=
prefix (expression { , expression })

The prefix you use must be valid for array types. For information on array types,
refer to page 5-22.

Y ou use one or more expressions to designate the index value for an array
element. For example:

PROCESS
TYPE one_array IS ARRAY (positive RANGE <>) OF integer;
TYPE two_array |'S ARRAY (positive RANGE <>,
positive RANGE <>) OF integer;
VARI ABLE ny_matrix : one_array (1 TO 5);
VARI ABLE d_matrix : two_array (1 TO 10, 1 TO 10);
VARI ABLE y, w : integer

BEG N
y :=nmy_mtrix(3); --The elenent in the position of the
--array my_matrix designated by the index value 3
W:=d matrix(2,3); --The elenment in the position of the

--two-di mensi onal array 2d_matrix
--designated by the index 2,3
WAIT FOR 10 ns;
END PROCESS;

Y ou must use a corresponding number of expressions for the dimension of the
array. Inthe preceding example, if you designate an element of d_mat ri x, you
need two expressions (for example (2, 3)). If you use one expression (for
example (3)), an error occurs, because another dimension is needed to locate the
array element.

3-8 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

Slice Names

A dlice name designates a one-dimensional array that is created from a
consecutive portion of another one-dimensional array. A dlice of adesign item
eguates to anew design item of the same type. The following diagram shows the
syntax for aslice name:

dice name::=
prefix (discrete range)

The following example shows the concept of using a slice name:

PROCESS (sens_si gnal)
TYPE ref _array IS ARRAY (positive RANGE <>) OF integer;

VARI ABLE array_a : ref_array (1 TO 12); -- declare "array_a"

VARI ABLE array_b : ref_array (1 TO 4); -- declare "array_b"
BEG N

FORi IN1 TO 12 LOOP --Load array with val ues

array_a (i) :=1i + 10 ; --11 through 22

END LOOP;

array_b := array_a (6 TO9); -- slice of "array_a"
END PROCESS;

Figure 3-2 illustrates the preceding example.

1 2 3 4 5 6 7 8 9 10 11 12

;;;;;;;;;;;;;;;;;;;;;;;

array_a| 11 |12 | 13 | 14 | 15 ~16~~17~~18~~19~%20 21 | 22

;;;;;;;;;;;;;;;;;;;;;;;

array_b| 16 | 17 | 18 |19

Figure 3-2. Slice Name Concept

Mentor Graphics VHDL Reference Manual, July 1994 3-9

Naming, Scope, and Visibility

The prefix you use must be valid for one-dimensional array types. For
information on array types, refer to page 5-22.

Y ou specify the array bounds of the slice by using adiscrete range. The discrete
range you specify must be of the same type as the index of the array you are
dicing. If you specify anull discrete range or a range direction opposite to the
object designated by the slice name prefix, the diceisanull slice.

When adlice name is evaluated, an error occursif you specify a discrete range
with bounds that do not belong to the index range specified in the prefix array.
No error occurs if anull sliceis specified, because the null slice bounds do not
have to be a subtype of the index range specified by the prefix array.

Some slice name examples follow:

-- Begin by declaring a constant, signal, and variabl e:
TYPE this_array IS ARRAY (natural RANGE <>) OF integer;
CONSTANT result: this_array (0 TO 100) := (OTHERS => 0);
SIGNAL traffic_lights: bit_vector (0 TO 7);--Declare a signal
VARI ABLE test: this array (10 DOMNTO 1); --Declare a variable

-- Slices of the constant, signal, and variabl e:

result (25 TO 50) --Slice of the array result

traffic_lights (5 TO4) --Null slice because wong direction
test (5 DOMNTO 1) --Slice of the array test

result (0 DOANTO 100) --Null slice, because range of slice
--is opposite of the range declared for the array result.
--(Also, arange of 0 dowmnto 100 is null by itself.)

Attribute Names

An attribute name consists of a prefix and an attribute designator. For predefined
attributes, the prefix denotes an array, block, signal, or type. The prefix for a
user-defined attribute may denote an entity declaration, an architecture body, a
configuration, a procedure, afunction, a package, atype, a subtype, a constant, a
signal, avariable, acomponent, or alabel.

The attribute designator is the simple name for the predefined attribute. The
attribute returns certain information about the item named in the prefix, such as
length of an array or whether asignal is active. The complete discussion of
attributesis covered in Section 10. The following diagram shows the related

3-10 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

syntax for an attribute name.

attribute_name ::=
prefix * attribute_designator [(expression) |

attribute_designator ::=
attribute_simple_name

The expression in the attribute name may be required or may be optional,
depending on the particular attribute definition.

The following examples show the declaration of two types and the use of
attribute names to determine information on these types. These are source-code
fragments taken out of context.

TYPE color 1S(red, white, blue, orange, purple); --type decl.
TYPE vector IS ARRAY (1 TO 10, 1 TO 15) OF integer;

color’val (2) --Returns the value of elenent in position 2 of
--the type "color"” which is blue (positions
--start at zero)

vector’'right(1) --returns right bound of the specified index
-- "1" in the array "vector" which is 10

There are several terms used to describe to a certain subclass of names, as the
following list shows:

e Static name
e Static expression
e Static signal name

Indexed names have an expression as part of the language construct. If you use a
static expression, the name is a static name.

A static expression* is one whose value is determined either at compile time or at
elaboration time. For example, when you use asignal that isdeclared in a
previous design unit, the signal value is not known in the current design unit.
Therefore, using this signal name in an expression makes it a non-static

*For more information on static expressions, refer to page 2-32.

Mentor Graphics VHDL Reference Manual, July 1994 3-11

Naming, Scope, and Visibility

expression. For detailed information about the design unit, refer to Section 9.

If you use a static name to designate a signal, the name is considered a static
signal name.

Scope and Visibility

S Scope and visihility are concepts that are closely related. The scopeisthe
region of code text over which an item exists (declarative region). Within the
scope, visibility refers to an item that has a unigue name that you can reference.

If anitem is hidden, it is not visible without using a selected name. Thistopicis
discussed on page 3-17.

Using the concepts of scope and visibility and by using the rules of overloading,
you can control the name space. That is, you can control where names have
effect without worrying about the global effects of manipulating a named item.
This becomes avery important factor when your design contains hundreds of
names. The following subsections describe in detail the following items:

e Thedeclarativeregion

e The concept of scope and the scope rules

e The concept of visibility and the visibility rules

o Overloading concepts

Declarative Region

Scope and visihility are defined in terms of declarative regions. The declarative
region isapart of the text of adescription. The declarative region isformed by
the text of the following items:

o Component declaration (page 8-21)

o Entity declaration (combined with an architecture body) (page 8-4)

¢ Package declaration (combined with a package body if it exists) (page 9-13)

e Subprogram declaration (combined with a subprogram body) (page 7-6)

3-12 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

¢ Block statement (page 6-12)
o Loop statement (page 6-36)

e Process statement (page 6-41)

Each declarative region in the preceding list is associated with a corresponding
declaration or statement. The declaration isimmediately within a declarative
region if the corresponding region is the innermost region enclosing the
declaration. Thisinnermost region does not include the declarative region (if it
exists) of the declaration. The following example shows a skeleton of a block

statement and the declarative region:
test bl ock:
BLOCK
-- declarative region
TYPE test 1S 1 TO 10;

BEGA N

-- concurrent statenents

END BLOCK test bl ock;

Scope

Scope is the region of code over which adeclared item has effect. For example,
if you declare objects inside a block statement, the scope of the objects extends
from the point where you first name the objects to the end of the block statement.

Figure 3-3 shows an architecture body that contains a procedure within a process.
Region A shows the scope of the subprogram specification (procedure); region B
shows the scope of the process statement; and region C shows the scope of the

architecture body.

Mentor Graphics VHDL Reference Manual, July 1994 3-13

Naming, Scope, and Visibility

ARCH TECTURE I
SI GNAL

BEG N
PROCESS U B
VARI ABLE

PROCEDURE
BEG N

END;

' 0"

BEG N

END PROCESS;

7 _

END;)

Figure 3-3. Scope

Figure 3-4 shows that even though the architecture body can be stored and
evaluated in afile separate from the entity declaration, an item declared in the
entity declaration (such assi gnal 1) isvisible throughout region C. Anitem
declared in a package header is visible to the package header and the package

body.

3-14 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

. - \
ENTITY enl IS In File "entity1.hdl"
Sl GNAL1
END enil;
ARCHI TECTURE al OF enl IS In File "arch1.hdl"
S| GNAL2
BEG N
PROCESS __/ A
VARI ABLE
PROCEDURE Ui\ >C
BEG N
~B
(A
END; -
BEG N g
END PROCESS;
I ~
END al; %

Figure 3-4. Scope of Entity Plus Architecture

Scope Rules

The scope rules discussed in this subsection are valid for all declaration forms,
implicit or explicit.

Immediate scope is the scope of adeclaration that is directly within a declarative

region. Table 3-1 lists the cases in which a declaration extends beyond its
immediate scope.

Mentor Graphics VHDL Reference Manual, July 1994 3-15

Naming, Scope, and Visibility

Table 3-1. Immediate Scope Exceptions

Declaration Occurring Within
Formal parameter Subprogram declaration *
Declaration Package declaration **
Local generic Component declaration
Local port Component declaration
Formal generic Entity declaration

Formal port Entity declaration

* Thisextensionisalso validif a separate subprogram declaration is
missing and the subprogram body is used as the declaration.

** The declaration must occur immediately within the package
declaration.

The library unit scope and logical library name scope in adesign library extend
beyond the immediate scope.

Visibility

Visibility refers to an item that has a unique name, thereby making it an item you
can refer to in a code description. An item may be hidden from other portions of
code by the nesting of language constructs and by the use of homographs. Figure
3-5 shows the variable declared within the procedure is visible only to the
highlighted area (or its scope).

Anitem declared in the entity declaration such as signall in Figure 3-4 can be

visible to the entire scope identified by region C unlessit is hidden, as described
later.

3-16 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

ARCHI TECTURE
SI GNAL
BEG N

PROCESS N

VARI ABLE

PROCEDURE
VARI ABLE

BEG N

END;

BEG N

END PROCESS;

I

END;

Figure 3-5. Visibility
Visibility Rules

The visibility rules establish the meaning of an identifier. The possible meanings
of the occurrence of this identifier are determined during evaluation. The
following list shows the two possible results of this determination:

¢ One possible meaning: the visibility rules alone find the declaration that
defines the identifier meaning. If this declaration does not exist, the visibility
rules alone determine that the identifier is not legal.

e Multiple meanings. the visibility rules find multiple meanings for the
identifier. In other words, it isoverloaded. Within the related context, one
visible declaration is used if the overloading rules have been met. For
information on overloading rules, refer to page 3-24.

Anidentifier can be made visible by two different means, as the following list
shows:

Mentor Graphics VHDL Reference Manual, July 1994 3-17

Naming, Scope, and Visibility

e Sdlection: if theitem ishidden, it becomes visible only when you use a
selected name. Selected names designate an item declared within another
item. For more information on selected names, refer to page 3-4.

o Directly visible: if theitemisnot hidden, it isdirectly visible. A directly
visible declaration is also visible by selection.

Table 3-2 shows the places where a declaration is visible by selection.

Any declaration that occurs immediately within a declarative region of a
language construct is visible by selection at the suffix of an expanded name. The
prefix of this expanded name must designate the language construct. For more
information on expanded names, refer to page 3-6.

A declaration is directly visible in a specific area of the immediate scope. This
area encompasses the area between the declaration and the end of the immediate
scope, except for areas where the declaration is hidden. You can make a
declaration that occurs immediately within the visible part of a package directly
visible outside the package by using the use clause. For more information on the
use clause, refer to page 3-22.

Two declarations are homographs of each other if they both use acommon
identifier and if overloading is allowed for at most one of the two declarations.
There are two homograph cases. one declaration can be overloaded and the other
cannot; or both declarations can be overloaded and they have the same parameter
and result type profile. Only enumeration literals or subprogram declarations can
be overloaded.

Homographs declared within the same declarative region create an error. With
homographs declared in different regions, the inner declaration hides the
corresponding outer declaration within the inner scope region. In this case, the
homograph declared in the outer region is not visible within the inner region.

Two formal parameter lists have the parameter type profile if they have the same
number of parametersin the list and if the parameters at each position in the list
have the same base type. Two subprograms have the same parameter and result
type profileif they both have the same parameter profile and if they are
functions, the functions return aresult with the same base type. In the case of
enumeration literals, no homograph exists if the base types are different. For
information on overloading, refer to page 3-24.

3-18 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

Table 3-2. Visibility by Selection

Design Item

Selected By

Primary unit in library

Suffix in selected name (prefix designates the
library)

Declaration in package
declaration

Suffix in selected name (prefix designates the
package)

Predefined attribute that
appliesto agiven range
of definition

Attribute designator (after ') in attribute name.

Formal parameter decl.
of specified subprogram
declaration

Formal designator (before =>) in parameter
association list.

Local generic decl. of
specified component
declaration

Formal designator (before =>) in anamed
generic association list of a corresponding
component instantiation statement; or actual
designator (after =>) in generic association list
of a corresponding binding indication

Local port decl. of
specified component
declaration

Formal designator (before =>) in anamed port
association list of a corresponding component
instantiation statement; or actual designator
(after =>) in port association list of a
corresponding binding indication

Formal generic decl. of
specified entity decl.

Formal designator (before =>) in generic assoc.
list of a corresponding binding indication

Formal port decl. of
specified entity decl.

Formal designator (before =>) in port assoc. list
of a corresponding binding indication

Element of arecord

Suffix in selected name (prefix denotes record)

Figure 3-6 shows an example of hidden declarations and homographs.

Mentor Graphics VHDL Reference Manual, July 1994

3-19

Naming, Scope, and Visibility

ARCHI TECTURE
S| GNAL
BEG N
N o
PROCESS
VARI ABLE x : bool ean
PROCEDURE — =
VARI ABLE x : bool ean
BEG N > C
- @&
END; m i
BEG N
END PROCESS; m i
END;
%

Figure 3-6. Declaration Hiding and Homographs

In Figure 3-6 variable x is declared within the procedure in scope A and within
the process in scope B. The variable x declared in the process is hidden within
scope A by the variable x declared in the procedure. The variablein scope A isa
homograph of the variable in scope B, because the variables have the same
identifier.

Figure 3-7 shows an example of hidden declarations and overloading that results
in no homograph.

3-20 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

ARCHI TECTURE
FUNCTI ON x: RETURN i nt eger;
BEG N
\
PROCESS
PROCEDURE X; 0
VARI ABLE x : bool ean
BEG N > C
| &
END;
BEG N
END PROCESS;
. : o
END,; /

Figure 3-7. No Homograph Instance

In Figure 3-7, function x is declared in scope C, and procedure x isdeclared in
scope A. Inthis case, function x and procedure x are not homographs of each
other because the system can determine a difference between the two x values by
the context. Therefore, overloading is allowed for both of the values. If you
replace the function with a procedure, the two procedures are homographs of
each other (if the procedures have the same parameter type), because the system
cannot determine a difference between the two identifiers.

Mentor Graphics VHDL Reference Manual, July 1994 3-21

Naming, Scope, and Visibility

use_clause
The use clause allows you to make directly visible a declaration in a package or
library that is visible by selection.

Construct Placement
block declarative item, context_item, entity declarative item,
package body declarative item, package declarative item,
process declarative item, subprogram_declarative item

Syntax

use clause::=
use selected name({ , selected name} ;

Description
Y ou can specify one or more selected names to identify declarations that you
want to become directly visible. (For more information on selected names, refer
to page 3-4.) You can also specify the use of all of the declarations by using the
reserved word all. For example:

USE package_ 1.test _funcl, package 1.test func2 -- line 1
USE package_ 2. ALL -- line 2

Line 1 makesthe functionst est funcl andtest func2, frompackage 1
directly visible. Line 2 makes all the top level declarations of package_2 visible.
For examples of use clausesin relation to libraries, refer to page 9-5.

There are two cases in which a declaration is not made directly visible by the use
clause:

e The use clause designates a place within the immediate scope of a homograph
of adeclaration.

e Two declarations you wish to make visible have the same designator and are
not a subprogram declaration or an enumeration literal specification.

Any declaration you make directly visible by a use clause does not hide a
previous directly visible declaration in any situation. Thisis assured by the rules
of the use clause.

Thereis asituation you must be aware of when utilizing the use clause. If you
have a use clause in one model (Model A for reference) that references a package

3-22 Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

that also contains a use clause, the items that are made visible to the package are
not made directly visible to the original model (Model A). For more information,
see the following example and Figure 3-8.

Example

Figure 3-8 shows an example of multiple use clauses in packages. Thefigure
shows Model A that contains a use clause that makes all the declarationsin
pkg_b directly visible. Within pkg_b isause clause that makes the function x in
pkg_a visible. Function x isnot directly visible to the Model A code, but
function z in pkg_b isdirectly visible.

Pac

kage: pkg_a

Package: pkg_b

FUNCTI ON Xx:

RETURN bi t ;

FUNCTI ON z:

/ \

RETURN bi t ;

/

USE pkg_a. x

USE pkg_b. al |

Nn_/

Model A

>

Figure 3-8. Multiple Use Clauses

Mentor Graphics VHDL Reference Manual, July 1994

3-23

Naming, Scope, and Visibility

Overload Resolution

When the rules for visibility determine there is more than one acceptable
meaning for an enumeration literal or subprogram name, overload resolution
determines the actual meaning. Overload resolution also determines the actual
meaning of an operator occurrence. All visible declarations are examined to
determine overloading legality. The overloading islegal only if thereis one
interpretation of the innermost declaration, specification, or statement (complete
context).

The actual interpretation of the overloaded, complete context, is governed by the
following rules:

3-24

Scope rules

Syntax rules

Visibility rules

Miscellaneous rules, which include the following:

O Rulesrequiring expressions or names to have a specified type or the same
type as another expression or name

O Rulesrequiring the type of expressions or names to be of a specified type
class

0 Rulesrequiring a specified type to be one of the following:
= Boolean
m Character
m Discrete
= Integer
m Physical
» Red

s Universa

Mentor Graphics VHDL Reference Manual, July 1994

Naming, Scope, and Visibility

0 Rulesrequiring an appropriate prefix for a specified type

0 Rulesrequiring the type of an aggregate to be determined from context
only

0 Rulesrequiring the type of the attribute prefix, of the expression in a case
statement, or of the operand of atype conversion being determined
independent of context

O Rulesfor resolution of subprogram calls that are overloaded or for implicit
universal expression conversion

O Rulesfor interpreting discrete ranges that have universal type bounds

O Rulesfor interpreting an expanded name that has a prefix designating a
subprogram

The preceding rules are discussed in the appropriate sections of thismanual. To
find the exact page location for the subject you wish to explore in detail, refer to
theindex or table of contents. The rulesfor each of these subjects are discussed
in the context of the complete discussion about the item.

For information about overloading enumeration literals, refer to page 5-19; about
overloading subprograms, refer to page 7-17.

Mentor Graphics VHDL Reference Manual, July 1994 3-25

Declarations

Section 4
Declarations

This section discusses the subject of declarations and how to usethem. A
declaration defines a design item and relates an identifier to that design item. For
the system to manipulate design items, you must declare them explicitly or they
must be declared implicitly. The following ordered list shows the topics and
related constructs discussed in this section:

type _declaration 4-4
subtype declaration 4-7
object_declaration 4-10
constant_declaration 4-13
variable_declaration 4-15
Signal Declaration Summary 4-17
file_declaration 4-18
I nterface Declar ations 4-21
interface list 4-22
interface _constant_declaration 4-24
interface_signal_declaration 4-26
interface variable declaration 4-29
association list 4-31
alias_declaration 4-35
component_declaration 4-36
Type Conversion Functions 4-37

Y ou must declare design items before you can operate, assign values, or
otherwise manipulate them. Every declaration has a defined text region called
the declaration scope. (For information on scope and visibility, refer to page

Mentor Graphics VHDL Reference Manual, July 1994 4-1

Declarations

3-12.) Thedeclared items are visible only to certain defined regions of your
description. Figure 4-1 shows where declarations belong in the overall language
and the various declarations that this section discusses.

Design Units

Design Entities
Configurations
Packages

Attributes Components
Types Signals
Statements Subprograms

Declarations

/ Expressions
/ k Lexical Elements
; Naming, Scope, and Visibility

Declarations

v

Constant Type
Variable Subtype
Signal Component
File
Interface

Figure 4-1. Declarations

The itemsin this section that the declaration defines are discussed in various
sections of thismanual. This section concentrates mainly on the declaration of a
design item, not a complete discussion on what the design item is and the rules
for using it. For the actual pages where these topics are discussed, refer to the
index, page references, and the table of contents. Appendix B contains a major
language construct tree that shows you where you can use all the declarations in

4-2 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

VHDL.

Y ou can make several declarations, as shown in the following diagram:

declaration ::=
type_declaration
| subtype_declaration
| object_declaration
| file_declaration
| interface_declaration
| lias_declaration
| attribute_declaration
| component_declaration
| entity declaration
| subprogram_declaration
| package _declaration

The following subsections show you how to declare types, subtypes, objects,
files, interfaces, aliases and components. The following list shows the pages
were you can find information on the remaining declarations:

Entity declaration: page 8-4
Subprogram declaration: page 7-6

Package declaration: page 9-13

Attribute declaration: page 10-54

To determine where you can make a particular declaration, refer to Appendix B.
This appendix contains a diagram showing all the declarations in relation to the

major language constructs.

Mentor Graphics VHDL Reference Manual, July 1994

4-3

Declarations

type declaration
A type declaration specifies a template or skeleton for objects that includes a set

of values and a set of operations.

Construct Placement
declaration, block declarative item, entity declarative item,
package body declarative _item, package declarative item,
process declarative item, subprogram_declarative item

Syntax

type declaration ::=
full _type declaration
| incomplete type declaration

full _type declaration ::=
typeidentifier istype_definition ;

incomplete_type declaration ::=
typeidentifier ;

type_definition ::=
scalar_type definition
| composite _type definition
| access type definition
| file_type definition

Definitions

m identifier
A name that you provide for the type.

m type definition
Specifies one of four classifications (which are described in Section 5).

4-4 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

Description
The full type declaration establishes a name (identifier) for the type and defines
the classification for the type. The incomplete type declaration names the type,
but defers the definition of the type. The subject of typesisdiscussed in detail in
Section 5. The use of incomplete type declarations is treated in that section as
well, under Incomplete Types on page 5-32.

As the preceding syntax descriptions indicate, you can use one of four type
definitions. the scalar type, which includes enumeration, integer, floating, and
physical types,; the composite type, which isan array type that can be constrained
(specific range) or unconstrained; the access type, the values of which designate,
or point to, objects created by allocators; and the file type, which designates
externd files.

The following examples show some possible type declarations:
TYPE add sz IS RANGE 0 TO 255;--integer type decl. (scalar)

TYPE color IS (red, yellow, green, flashing);--enum type
--decl. (scalar)

TYPE mem.info IS ARRAY (0 TO 1024) OF bit; --const. array
-- type decl. (conposite)

TYPE tfd 4 IS ARRAY (integer RANCE <>) OF integer; --unconst.
--array type decl. (conposite)

Type declarations define separate types for each identifier you specify. Thisis
the case even if the type definitions are textually equivalent, except for the
identifier. The following example shows the declaration of two types that ook
similar in definition, followed by the declaration of two variables of these types:

TYPE add_size IS RANGE 0 TO 255; -- add_size and sub_size
TYPE sub_size IS RANGE 0 TO 255; -- are two distinct types

VARI ABLE check : add_si ze; - variabl e decl arations
VARI ABLE next check : sub_si ze; --

In the previous example, the variable check and the variable next _check are of
different types, even though the they have the same definition. Thisallows you
to be confident that when you declare a type with your own unique identifier, that
type, and not a type with asimilar definition, is used.

Mentor Graphics VHDL Reference Manual, July 1994 4-5

Declarations

Y ou can use a simple name to declare both a base type and subtype of the base
type. Inthis case, the base typeis an anonymous (unnamed) type, and the smple
name refersto the subtype. This situation occurs with numeric types (integer,
floating point, and physical) and array types. The following example shows both
an array type declaration and the implicit declarations the system makes:

TYPE data_ar IS ARRAY (positive RANGE 1 TO 1024) OF i nteger;
--Fol l owi ng declarations are inplicitly nade by the system
SUBTYPE i ndex_sbtp IS positive RANGE 1 TO 1024; --index type

TYPE array_type IS ARRAY (i ndex_subtype RANGE <>) OF integer;
SUBTYPE data ar IS array_type (index_subtype);

In the previous example, the base type of dat a_ar isnot defined explicitly, but is
defined by the subtype of dat a_ar . Notice that the range constraint on the array
has its own type.

4-6 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

subtype declaration
A subtype declaration declares a subset of values of a specified type or subtype.

Construct Placement

declaration, block declarative item, entity declarative item,
package body declarative item, package declarative item,
process _declarative item, subprogram_declarative_item

Syntax

subtype declaration ::=
subtype identifier is subtype indication ;

subtype indication ::=
[resolution_function_name] type _mark [constraint]

type mark ::=
type_name
| subtype_name

constraint ::=
range_constraint
| index_constraint

Definitions

m identifier
A name that you provide for the subtype.

m subtype indication
Indicates restrictions placed on the subtype.

Mentor Graphics VHDL Reference Manual, July 1994 4-7

Declarations

Description
When you define a subtype you are not defining a new type, you are defining a
name for a subset of the type with a specific range or index constraint.

There are two major advantages of using subtypes:

1. You save time, because you don’t need to declare a new type when a subset of
alarger type definition will do.

2. You can perform calculations on primaries of different subtypes that have the
same base type. Thisisnot legal for different types.

Hereis an example of taking a subtype of alarger type:

TYPE color 1S (red,yell ow, green, orange, bl ue, vi ol et, purpl e,
pi nk, brown, ol i ve, gr ay, bl ack, whi t e, copper, silver);
SUBTYPE traffic_color IS color RANGE red TO green;

The following examples compare calculations involving different typesto
calculations involving different subtypes:

TYPE result IS ZSUBTYPE result IS integer

TYPE ans |'S RANGE 10 TO 50; NCE ©20;

VAR ABLE a : result: ZSUBTYPE ans | S integer |
VAR ABLE b, z : ans: Z RANGE 10 TO 50;
--any operation with the ZVARI ABLE a : result;
--precedi ng vari abl es ZVARI ABLE b, z : ans;
--illegal Z--Internediate operations with
Z--the preceding variables is
a + b; -- illegal Z--Iega:O J
z:=a+b--illegal
g Za + b; -- legal
Zz := a + b --Range check done to
Z --deternine if legal or illegal

In the preceding example, the left column shows the declaration of two different
types, the declaration of two variables, and an example of an intermediate
calculation using the different types. This calculation is not legal, because
operations must be performed on items that have the same base type.

In the preceding example, the right column shows the declaration of two different
subtypes, the declaration of two variables, and an example of an intermediate
calculation using the different subtypes. Thiscalculation islegal, because the

4-8 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

operations are performed on items that have the same base type, which isinteger.
When you make the assignment, a range check is made to determine if the
calculation result isin the range of the subtype of the target.

Here are some rules and additional information about the subtype declaration:

e The subtype indication designates what restrictions are placed on the subtype
you declare. When you use the optional resolution function name, every
declared signal of the specified subtype is resolved by thisfunction. The
resolution function nameis only for signal objects, with no effect on other
item declarations. A subtype indication designating afile type or access type
must not use aresolution function. For more information on resolution
functions, refer to page 11-10.

¢ When you use a constraint in the subtype indication, it must be compatible
with any constraint implied by the type mark. Range constraints are discussed
on page 5-5. Index constraints are discussed starting on page 5-23.

e Thetype mark designates atype or subtype. In the following subtype
declaration, the type mark isinteger.

SUBTYPE result IS integer RANGE 1 TO 20;

Mentor Graphics VHDL Reference Manual, July 1994 4-9

Declarations

object _declaration

An object isan item that has avalue and atype. Each object can be operated
upon and manipulated.

Construct Placement
declaration

Syntax

object_declaration ::=
constant_declaration
| signal_declaration
| variable _declaration

Definitions

m constant_declaration
Declares an object in which the object value is set and cannot be changed.

m variable declaration
Declares an object in which the object value has a single current value that
can be changed.

m signa_declaration
Declares an object in which the object value has a history, and has current
and projected values.

Description
An object belongs to one of three classes. constant, variable, or signal. You
specify the class of an object when you explicitly declare it by using the reserved
word that corresponds to the classification of the object. The details of how to
declare these objects are discussed in the following "constant_declaration”,
"variable declaration”, and "signal_declaration" subsections.

4-10 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

The following examples show some possible object declarations:

CONSTANT vcc: integer := 5;--"vcc" is object of const. class
VARI ABLE Iimt: real; --"limt" is object of var. class
SIGNAL enable: ny_qgsimstate;--"enable" is obj. of sig. class

The classification of implicitly-declared objects depends on their use. In this
case, the reserved words constant, variable, and signal do not appear in the
declaration. These objects are the objectsin Table 4-1, except for the first entry.
Thefirst entry isthe explicit declaration of objects as the preceding example
shows.

Table 4-1 shows what a VHDL object isand gives apartial code example for that
object. Theitemsin thistable are discussed in detail in various sections in this
manual. Refer to the index for exact page locations.

Keeping in mind the objects that Table 4-1 shows, the following list shows where
you can use these objects:

e You can use explicitly declared objects anywhere they are visible.
e You can use the loop parameter only within the corresponding loop statement.

e Theremaining objects that Table 4-1 shows are declared by interface
declarations. These objects provide channels of communication between
independent portions of your design. For information on interface objects,
refer to page 4-21.

Each of the three object declaration classes have an identifier list language
construct. The syntax for an identifier list is shown in the following diagram:

identifier_list ::=
identifier { , identifier }
An object declaration is a single object declaration if the identifier list has one
identifier. If you use two or more identifiers, the declaration is a multiple object

declaration. The multiple object declaration is equivalent to a series of single
object declarations. For example:

Mentor Graphics VHDL Reference Manual, July 1994 4-11

Declarations

CONSTANT round_off, term

of f set real := 0.5;

The preceding constant declaration is equivalent to:

CONSTANT round_of f real
CONSTANT term r eal
CONSTANT of f set r eal

= 0.5; --single object decl.
= 0.5; --single object decl.
= 0.5; --single object decl.

Table 4-1. Objects

Object Example

Item declared by an object CONSTANT gnd : integer := O;
declaration -- "gnd" is an object

Element or dice of another VARI ABLE x : bit_vector (1 TO 20);
object X (10 TO 15) -- slice

File declared by afile FILE stats : integer IS QUT "tfd";
declaration -- "stats" is an object

A loop parameter FORi IN1 TO 20 LOCP

-- "i" is the | oop paraneter

Formal parameter in a

FUNCTION z (m IN bit) RETURN bit;

subprogram -- "l is a formal paraneter
Formal port in design entity | ENTI TY check IS
PORT (sin : INDit);
-- "sin" is a formal port
A local port COVPONENT and3
PORT (in_1: INDbit);
-- "in_1" is a local port
A formal generic ENTI TY adder 1S
GENERI C (dly : tine);

-- "dly" is a formal generic

A local generic

COVPONENT and?2
GENERIC (Idly : tine);
-- "ldly" is a local generic

The following subsections show you the specific details for declaring each of the

VHDL objects.

4-12

Mentor Graphics VHDL Reference Manual, July 1994

Declarations

constant declaration

A constant declaration declares an object in which the object valueis set and
cannot be changed.

Construct Placement
block declarative item, entity declarative item, object_declaration,
package body declarative _item, package declarative item,
process declarative item, subprogram_declarative item

Syntax

constant_declaration ::=
constant identifier_list : subtype_indication [:= expression] ;

Definitions
m identifier_list
Anidentifier list is one or more names that you provide for each declared
object.

m Subtype indication
Indicates the type and any related restrictions that apply to the object(s) being
declared.

m expression
Defines the value of the constant.

Description
A constant declaration specifies alist of ssmple names, atype, and an optional
value for objects that cannot change value. These objects are constants.

If you use an expression after the ":=" delimiter, this expression defines the value
of the constant. This expression must be of the same type as the constant, and the
expression subtype must be convertible to the subtype indication. The type of the
constant cannot be afiletype. The following examples show some possible
constant declarations that use the constant value expression:

CONSTANT offset : real := 0.5
CONSTANT vcc, high, voltage, logic_1 : integer := 5;
CONSTANT bit_mask : string := "1001";

Mentor Graphics VHDL Reference Manual, July 1994 4-13

Declarations

If you omit the expression and the ":=" delimiter, the constant declaration
specifies adeferred constant. A deferred constant allows you to declare a
constant but not to specify the value of the constant at that point. Deferred
constant declarations can appear only in package declarations. The full constant
declaration, with the value expression, must appear in the corresponding package
body. Thisfull declaration must match the deferred declaration exactly (except
for the value expression). The following example shows a deferred constant
declaration and the corresponding full constant declaration:

PACKAGE common_info IS
CONSTANT xtal value : real; -- deferred constant
END comon_i nf o;

PACKAGE BODY common_info IS
CONSTANT xtal value : real := 1.556E6;--full constant decl.

For more information on packages, refer to page 9-12. The following list shows
the objects that are constants in VHDL.:

e Any object you explicitly declare as a constant using the constant declaration
IS aconstant.

e A dlice or subelement of aconstant is always a constant.
o Formal subprogram parameters that are mode in can be constants.
o Formal and local generics are constants (automatically).

o A loop parameter in aloop statement is a constant (but its value does change
from iteration to iteration).

4-14 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

variable declaration

A variable declaration declares an object in which the object value has asingle
current value that can be changed.

Construct Placement
object_declaration, process declarative item, subprogram_declarative item

Syntax

variable declaration ::=
variableidentifier_list : subtype_indication [:= expression] ;

Definitions
m identifier_list
Anidentifier list is one or more names that you provide for each declared
object.

m Subtype indication
A subtype indication specifies the type and any related restrictions that apply
to the object(s) being declared.

m expression
An expression defines the initial value of the variable.

Description

A variable declaration specifies simple names, atype, and an optional initial
value for objects that have a single current value that can be changed.

If you use an expression after the ":=" delimiter, this expression defines the initia
value of the variable. This expression must be of the same type as the variable,
and the expression subtype must be convertible to the subtype indication. The
type of the variable cannot be afile type. The following examples show some
possible variable declarations that use the initial variable value expression:

VARI ABLE calc_result : integer := 0O;

VARI ABLE x, vy, z : real := 0.707;
VARI ABLE data : integer RANGE O TO 1024 : = 256;

Mentor Graphics VHDL Reference Manual, July 1994 4-15

Declarations

If you do not use the initial value expression, the system determines the default
initial value for the variable. This default isthe left-most value of the variable
type. Thisvalueisdetermined by using the predefined attribute ’left. The
following example shows atype declaration, a variable declaration without the
initial expression, and the equivalent default value the system determines:

TYPE nem addr 1S RANGE O TO 1024; -- type declaration

VARI ABLE up_bit : nmem.addr; --variable decl. with no initial
--vari abl e val ue expression

VARI ABLE up_bit : mem.addr := nem.addr’left; --default

--assunes | eft-npbst value as the default

In the previous example, theinitial default for the variable up_bi t isthe
left-most value of the type mem addr , whichis"0".

Y ou change the current value of variable by using the variable assignment
statement. The variable assignment statement is discussed in detail on page 6-48.
The following examples show some possible variable assignments:

calc result := a * b;
c := out_a AND out b AND out c;
next _add := cur_add + 4;

Here are some additional rules relating to variable declarations:
o Variable assignments take immediate effect.

e Variablesyou declare in a subprogram exist until the subprogram completes
and until control returns to the description that called the subprogram.

e Procedure parameters of modein, out, or inout can be variables.

e Procedure parameters of mode in can befile variables.

4-16 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

Signal Declaration Summary
A signal declaration declares an object whose value has a current value, a history,
and a projected value. Signal declarations are discussed in detail under
"signal_declaration", beginning on page 11-14.

Construct Placement
block declarative_item, entity declarative_item, object declaration,
package declarative item,

Syntax

signa_declaration ::=
signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

Definitions

m identifier_list
Anidentifier list isone or more signal names that you provide for each
declared object. Multiple names must be separated by commas.

m Subtype indication
A subtype indication specifies the subtype of the signal(s) and any resolution
function or constraints that apply. The subtype must not be afile type or
access type.

m signal_kind
Valid entries for asignal kind are bus or register.

m expression
An expression defines theinitial value of the signal.

Description
A signal declaration specifies the ssmple names, type, kind, and default value of a
signal, which is an object that has a current value, a history, and a projected
value.

Mentor Graphics VHDL Reference Manual, July 1994 4-17

Declarations

file declaration

A file declaration creates afile object that can have data written into it or read
from it.

Construct Placement
block declarative item, entity declarative item, declaration
package body declarative _item, package declarative item,
process declarative item, subprogram_declarative item,

Syntax

file_declaration ::=
fileidentifier : subtype indication is[mode] file logical _name;

file logica _name::=
string_expression

Definitions

m identifier
A name that you provide for the file object being defined.

m subtype indication
Indicates the subtype (must be afile type) and any related restrictions that
apply to the object being declared.

= mode
Specifies the direction of information flow.

n file logica name
Maps the name of your file to a system physical file name.

Description
A file declaration specifies a file-object name, a file-data type, optional mode,
and alogical filename that maps to afilesystem. A file object isactually a
member of the variable class of objects; however, an assignment to afile object is
not allowed, as shown in the following examples:

4-18 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

VARI ABLE x : real; -- variable declaration

X :=0.707 * output; -- assignment to a variable is |egal
FILE z int file IS OQUT "test_file"; -- file declaration
z :=8, ~-- assignnment to a file object is not |egal

The following examples show some possible file-type and file-object
declarations:

TYPE romd IS FILE OF integer;

TYPE stat _file IS FILE OF real;

TYPE vectors |S FILE OF bit_vector (0 TO 15);
FILE stats : stat file IS "out_data";

FILE romdata : romd IS IN "romcontents";
FILE test _vectors : vectors IS IN "vectors";

The following rules apply to the file declaration:

e The subtype indication can be only a subtype of afiletype. For information
on file types, refer to page 5-34.

e The optional mode can be only in or out.

o Thefilelogical name must be an expression of type string, defined in package
"standard".

The mode indicates whether the file object is read-only or write-only. When the
modeisin, the external file contents are read but not updated during the
simulation of your design. When the mode is out, the external file contents are
written but cannot be read during the simulation of your design. If you do not
specify amode, the default is modein.

Thefile logical name maps to a physical file name within the file system. Thus,
during simulation, information is read from or written into afile that is externa
to your design.

Multiple concurrent processes can read from afile object of mode IN and write to
afile object of mode OUT. Moreover, any combination of reading and writing
allowed by the operating system can occur concurrently on agiven logical file,
which can have multiple file objects mapped to it.

However, because it isimpossible to predict the order in which concurrent
processes will be executed during simulation, you should be aware that

Mentor Graphics VHDL Reference Manual, July 1994 4-19

Declarations

concurrent file operations could |ead to unexpected results. For example, the
following architecture body contains two concurrent processes that read the same
file object. In thiscase, you never know the order in which the processes read
from the file, and because each read operation moves the pointer to the file data,
you cannot predict what datawill be read by either of processes.

ARCHI TECTURE behave OF controller IS

FILE test: romd IS IN"t";

BEG N

pro_1 :

PROCESS (a, b, c)
BEG N

read (test, datal);

pro_2 :

PROCESS (a, b, c)
BEG N

read (test, data2);

A given file can be sequentially written to and read from in any combination,
with predictable results; this facilitates modeling such devices as RAMs.

4-20 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

Interface Declarations

An interface declaration declares an object that provides a channel for passing
information between a portion of adesign and its environment. The interface

objects can be constants, variables, or signals, depending on their intended use, as
Figure 4-2 shows.

Interface
Object

4
Commane > ST

Generics in design entities

Ports in design entities

Generics in components Ports in components

Parameters in subprograms

Parameters in subprograms

Parameters in
subprograms

Figure 4-2. Interface Object Concept

Mentor Graphics VHDL Reference Manual, July 1994 4-21

Declarations

interface_list
Aninterface list declares one or more interface objects. These objects can be
generics for adesign entity, component, or block; constant parametersfor a
subprogram; ports for a design entity, component, or block; signal parameters for
a subprogram,; or variable parameters for a subprogram.

Construct Placement
See Figure 4-2

Syntax

interface list ::=
interface _declaration { ; interface declaration }

interface _declaration ::=
interface_constant_declaration
| interface_signal _declaration
| interface_variable declaration

Description
The interface list contains one or more interface declarations, separated by
semicolons. Thefollowing rulesare common to all three kinds of interface
declaration:

e For each interface declaration, you can specify amode. The mode specifies
which direction information flows through the communication channel that
the interface object provides. The following BNF description lists the
available modes:

mode ::=
in
| out
| inout
| buffer
| linkage

Modein: The interface object may only be read.

Mode out: Theinterface object value may be updated but not read.

Mode inout: The interface object may be read and updated.

Mode buffer: The interface object may be read, but updated by at most one
source. Any associated actual may have at most one source.

4-22 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

Mode linkage: The interface object may be read and updated, but only by
appearing as an actual corresponding to an object of mode linkage.

If you do not specify amode, in isthe default mode that the system uses. The
interface constant declaration can be only of modein.

o For each interface object, you can specify adefault value using an optional
default expression. This expression, consisting of the symbol := followed by
a static expression, assigns the expression value to an interface object if that
object is not otherwise given avalue within adesign. The type of the
expression must match the type of the interface object. The default expression
cannot be used with an interface object that is afile type, or cannot be used
when the mode of the object islinkage.

o Interface objects are associated with other objects in the design environment
through an association list. The association list establishes actual
communication paths between separate portions of adesign. For more
information on this topic, refer to page 4-31.

The following subsections describe each kind of interface declaration in detail.

Example
The following examples show the use of the interface list in portions of code:

-- conponent decl aration
COMPONENT xor 2

GENERI C (prop_delay : time; --interface constant decl.
tenmp : real);

PORT (SIGNAL a, b : INDbit; --interface signal decl.
z . QUT bit);

END COVPONENT;

-- entity declaration
ENTITY nmux IS

GENERI C (CONSTANT capac : real; --interface constant decl.
real delay : tine);
PORT (a0, al, sel : IN bit; --interface signal decl.
y ¢ QUT bit);
END nux;

-- subprogram specification

PROCEDURE check (VARIABLE x : IN bit_vector (0 TO 7);--intfc.
CONSTANT z : IN bit; - - decl .
SIGNAL tester : INDbit) IS --

Mentor Graphics VHDL Reference Manual, July 1994 4-23

Declarations

interface _constant_declaration
An interface constant declaration declares one or more objects that can serve as
genericsin design entities, generics in component declarations, or constant
parameters in subprograms.

Construct Placement
generic _list, interface declaration, (subprogram_specification)

Syntax

interface_constant_declaration ::=
[constant | identifier list: [in]
subtype indication [:= static_expression]

Definitions

m identifier_list
Lists one or more constant names. Multiple names must be separated by
commeas.

m Subtype indication
Indicates the subtype and any constraints that apply.

m expression
Defines the initial value of the constant.

Description
The interface constant declaration specifies the following interface objects:

o Constants that appear as genericsin entity or component declarations
o Constantsthat are parameters in subprograms

The following list summarizes the rules for using the interface constant
declaration:

e You can optionally use the reserved word constant at the beginning of the
interface constant declaration. A generic is a constant; therefore, using the
reserved word constant is purely for documentation and understandability. If
the constant is a subprogram parameter, you may or may not want to use
constant. Thisissueisdiscussed in detail on page 7-8.

4-24 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

¢ You can optionally use the reserved word in to indicate the mode for the
constant. Again, thisis purely for documentation if the constant is a generic.

If the constant is a subprogram parameter, you may or may not want to usein.

Thisissueisdiscussed in detail on page 7-8.

¢ The subtype indication must not be afile type or access type.

e For each interface constant, you can specify a default value using the optional

default expression (:= followed by a static expression). This expression
assigns the constant a value when it is not otherwise given value within a
design (such as by association through a generic map). The type of the
expression must match the type of the interface constant.

Example
The following examples show the interface constant declaration within a portion
of code:

-- conponent decl aration
COVPONENT nand2
GENERI C (prop_delay : tine; -- interface constant decl
grd : integer :=5);

-- entity declaration
ENTITY controller IS
GENERI C (CONSTANT capac: INreal;--interface constant decl.
real _delay : INtine);

-- subprogram decl arati on
PROCEDURE check (CONSTANT offset : INDbit :="'1") IS --
. --interface constant
--decl aration

Mentor Graphics VHDL Reference Manual, July 1994 4-25

Declarations

interface_signal_declaration
An interface signal declaration declares one or more objects that can serve as
ports in design entities, portsin component declarations, or signal parametersin
subprograms.

Construct Placement
port_list, interface declaration, (subprogram_specification)

Syntax

interface_signal_declaration ::=
[signal] identifier_list: [mode]
subtype indication [bus] [:= static_expression |

Definitions

m identifier_list
Lists one or more signal names. Multiple names must be separated by
commeas.

m Subtype indication
Indicates the subtype of the signal(s) and any resolution function or
constraints that apply. The subtype must not be afile type or accesstype.

m expression
Definestheinitial value of the signal.

Description
The interface signal declaration specifies the following interface objects:

e Signalsthat are ports that appear in entity or component declarations.
e Signalsthat are parameters in subprograms.
The following rules apply to the interface signal declaration:

e You have the option to use the reserved word signal at the beginning of the
interface signal declaration. A portisasignal. Therefore, using the reserved
word signal is purely for documentation and understandability. If you want a
signal in a subprogram parameter, you must use signal. Subprogram
parameters are discussed on page 7-8.

4-26 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

¢ You have the option to specify the mode for the signal. If you do not specify
the mode, the signal defaultsto modein.

e The subtype indication must not be afile type.

o If you use the reserved word bus, this signal declaration indicates asignal that
isguarded and has a signal kind of bus. Thistopic is discussed on page 11-5.

e For each interface signal, you can specify a default value using the optional
default expression (:= followed by a static expression). The default
expression setsthe initial value of the driver for the signal, unlessthe signal is
aport. For additional information on default port values, refer to page 4-34.
For additional information on signals and related topics, refer to Section 11.

0 ThelEEE std 1076/INT-1991 document recommends that within
subprograms, the optional default expression is not allowed. This|EEE
document helps clarify ambiguitiesin the IEEE Std 1076-1987, |IEEE
Sandard VHDL Language Reference Manual. The following notes
document how each Mentor Graphics VHDL implementation handles this
situation:

S Inaninterface signal declaration within subprograms, the System-1076
compiler flags the default expression as an error.

E Inaninterface signal declaration within subprograms, the Explorer
VHDLSim compiler allows use of adefault expression.

Mentor Graphics VHDL Reference Manual, July 1994 4-27

Declarations

Example
The following examples show the interface signal declaration within portions of
code:

-- conponent decl aration
COVPONENT nand?2
GENERIC
PORT (SIGNAL a, b : INDbit; -- interface signal decl
z . OUT bit);

-- entity declaration
ENTITY controller IS
GENERIC
PORT (a0, al, sel : INDbit; -- interface signal decl
y : QUT bit);

-- subprégran1dec|aration
PROCEDURE check (SIGNAL test : INbit) IS --interface
: --signal declaration

-- subprogram decl arati on
PROCEDURE check (SIGNAL test: INbit :="0") IS -- System 1076
: -- ERROR
--Default expression not allowed here
--in all VHDL inplenmentations.
--This case does conpile in Explorer VHDLSI m

4-28 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

interface variable declaration
An interface variable declaration declares one or more variable objects that serve
as variable parameters in subprograms.

Construct Placement
interface_declaration, (subprogram_specification)

Syntax

interface variable declaration ::=
[variable] identifier_list: [mode]
subtype indication [:= static_expression]

Definitions
m identifier_list
Lists one or more variable names. Multiple names must be separated by
commas.

m subtype indication
Indicates the type and any constraints that apply.

m expression
Defines the initial value of the variable.

Description
The following list shows information and the rules for using the interface variable
declaration:

¢ You have the option to use the reserved word variable at the beginning of the
interface variable declaration. There are defaults for subprograms when you
omit thisreserved word. Thisissueisdiscussed in detail on page 7-8.

¢ You have the option to specify amode for the variable parameter. If omitted,
the mode defaults to in.

e The subprogram parameter can be afile type when the interface object isa
variable.

¢ Based on the recommendation in the |EEE std 1076/INT-1991 document, the
optional default expression in a variable interface declaration is allowed for

Mentor Graphics VHDL Reference Manual, July 1994 4-29

Declarations

identifiers of modein. Also based on arecommendation in the |IEEE std
1076/INT-1991 document, the optional default expression in avariable
interface declaration is not allowed for identifiers of mode out or inout. This
| EEE document helps clarify ambiguitiesin the IEEE Std 1076-1987, IEEE
Sandard VHDL Language Reference Manual.

Example
The following example shows the interface variable declaration within a portion
of code:

-- subprogram decl arati on
PROCEDURE check (VARI ABLE IN bit_vector (0 TO 7);
VARI ABLE z : QUT i nteger;
VARI ABLE y : INOQUT bit) IS

N X

-- subprogram decl arati on

PROCEDURE chec2 (VARI ABLE x: [INinteger := 0; --Legal default
VARI ABLE z: INDbit :="0"; - - expressions
VARI ABLE y: INQUT bit:="0"; - - ERROR

VARI ABLE ok: QUT bit) IS

4-30 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

association_list

Association lists provide the mapping between formal or local generics, ports, or
subprogram parameter names and local or actual names or expressions. Figure

4-3 shows this concept.

Construct Placement

actual_parameter_part, (function call, procedure call_statement),
generic_map_aspect, port_map_aspect

Syntax

association list ::=
association_element { , association_element }

association_element ::=
[formal_part =>] actual_part

formal_part ::=
formal _designator
| function_name (formal _designator)

formal_designator ::=
generic_name
| port_name
| parameter_name

actual _part ::=
actual _designator
| function_name (actual _designator)

actual_designator ::=
expression
| signal_name
| variable_name
| open

Definitions

m A formal isageneric or port of adesign entity or a parameter of a
subprogram.

Mentor Graphics VHDL Reference Manual, July 1994

4-31

Declarations

m Anactual isaport, signa, variable, or expression that is associated with a
corresponding formal.

m A local isaspecia name for ageneric or port in acomponent declaration.

Description

FORMAL or LOCAL LOCAL or ACTUAL

: Generic Name
Generic Name
Port Name
Port Name
Subprogram Parameter Name
Subprogram Parameter Name .
Expression

Figure 4-3. Association List Concept

Every association element in an association list relates an actual designator with
a corresponding interface declaration. The interface declaration isin the interface
list of acomponent, entity, or subprogram declaration. This relation can be made
by the following methods:

¢ Named
e Positional

Y ou make a named association when you use the "=>" delimiter to state
explicitly which formal is associated with which actual. This association can be
made in any order.

Y ou make a positional association when you omit the "=>" delimiter. The
association between the formal and the actual is made by the position of the
designators. For example, thefirst formal in the list is associated with the first
actual inthelist and so on.

The following example shows how to associate formal generics and portsto local
and actual generics and ports. The formals for this example are declared in the
following entity declaration:

ENTITY gates IS
GENERI C (x : tine; -- formal generic clause

4-32 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

y : real;
z . real :=5.0);
PORT (inl, in2 : INDbit; -- formal port clause

out3 : QUT bit);
END gat es;

Here isthe declarative part of an architecture body named st ruct that uses
design entity gat es as a component:

ARCHI TECTURE struct OF struct_entity IS
COMPONENT and?2 -- conponent declaration
GENERI C (prop_delay : tine;
tenp : real;
vcc : real :=5.0);
PORT (il, i2 : INDbit;
outl : QOUT bit);
END COVPONENT;
FOR ALL: and2 USE ENTITY gates (gates_arch)--config. spec.

GENERI C MAP (25 ns, 27.0, 4.7) -- association |ist
PORT MAP (inl => i1, out3 => outl, in2 =>12); --assoc.
BEG N --1ist

In this architecture body, the formal generics of design entity gat es are
positionally associated with local genericsin acomponent declaration, beginning
with the line COVPONENT and2. Here, the association list of the generic
declaration maps the local generic pr op_del ay to the formal generic x. The local
generics are, in turn, positionally associated with actuals in the generic map of
the configuration specification; thus, pr op_del ay ismappedto 25 ns. The
formal ports of design entity gat es are positionally associated with the local
ports in the component declaration for and2. However, the association of the
locals with the actuals is a named association; the association is done in the port
map of the configuration declaration.

The preceding example associates formal ports and generics with locals, and
locals with actuals. For adiscussion of association asit applies to subprogram
parameters, refer to page 7-13. For further discussion on the association of
component generics and ports, refer to page 8-23.

The following list shows information and rules for association lists:

¢ When the mode of the formal isin or inout (and the actual is not open), the
type of the actual must match the type of the formal.

Mentor Graphics VHDL Reference Manual, July 1994 4-33

Declarations

4-34

When the mode of the formal isout or inout (and the actual is not open), the
type of the formal must match the type of the corresponding actual.

A formal port associated with the reserved word open means the formal is
unconnected. For more information on unconnected ports, refer to page 8-8.
For an example of using open, refer to page 9-10 .

If you mix named and positional associations in the same association list, all
positional associations must be listed first, and the remainder of the list can
use only named association.

If you omit an association element in the association list, all the associations
after that point must be named.

The default expression in an interface signal declaration for a port determines
the value of the port during simulation, when the port isleft unconnected.
Unlike signals that are not ports, the default expression for a port is not the
value of the implicit association element for the port. Thisis because ports
must be associated with signals not values.

Mentor Graphics VHDL Reference Manual, July 1994

Declarations

allas declaration

An alias declaration defines an alternate name for asignal, variable, or constant.

Construct Placement
block declarative item, entity declarative item, package declarative item,
package body declarative item, process declarative item,
subprogram_declarative item

Syntax

alias declaration ::=
aliasidentifier : subtype indication isname;

Definitions

m identifier
Thealias.

m subtype indication
The name of atype or subtype, with an optional range or index constraint.
The base type must be the same as that of the aliased object, but the subtypes
may differ to the extent of any range or index constraint applied to the alias
subtype. The type of an alias must not be a multidimensional array type.

m Name
The name of the aliased object.

Example
The following example shows two alias declarations:

SI GNAL sbus_data : bit_vector (15 DOANTO 0)

ALI AS sdata_h : bit_vector (7 DOANTOO) IS
sbus_data (15 DOMNTO 8) ;

ALI AS sdata_| : bit_vector (7 DOANTOO) IS
sbus_data (7 DOANTO 0)

Mentor Graphics VHDL Reference Manual, July 1994 4-35

Declarations

component_declaration
A component declaration isthe local interface to a component whose architecture
may be described in another design entity. The component declaration specifies
the name of thislocal component, aswell as the local ports and generics. The

topic of componentsis also discussed on page 8-208.

Construct Placement

declaration, block declarative item, package declarative item

Syntax

component_declaration ::=
component identifier
[local_generic_clause]
[local_port_clause]
end component ;

Example

The following example shows component declarations within an architecture

declarative part:

ARCHI TECTURE struct _descrip OF nux IS

COVPONENT and2 -- --------mmmmmmm oo oo oo oo oo
GENERI C(prop_delay: tinme := 10 ns); --local _generic_clause
PORT(a, b : INbit; z : QOUT bit); --local _port_cl ause

END COVPONENT;

COVPONENT OF 2 == = =mmm oo mmmemme oo oo ieeee e

GENERI C (prop_delay : tine := 14 ns);
PORT (a, b: INbit; z : QUT bit);
END COVPONENT;

COVPONENT i nverter R e

PORT (i : INDbit; z : OUT bit);
END COVPONENT;
BEG N

4-36 Mentor Graphics VHDL Reference Manual, July 1994

Declarations

Type Conversion Functions

Asthe syntax description for association lists on page 4-31 shows, the formal and
actual part in an element association can be afunction call. The function in this
case is a user-defined type conversion function. This function allows you to map
formals of one type to actuals of another type. Thisis especially important for
the mapping of signals, because you want to return a converted signal with al the
corresponding signal attributes included. For information about writing
functions, refer to Section 7.

There are several common type conversion functions provided in the package
"my_qgsim_base". The example following this paragraph shows atypical
situation for the mapping of signals and the use of a conversion function from
"my_qgsim_base" (t o_i nt eger). Inthisexample, there are two design items that
are connected together that have different signal types. The following code
shows a call to the type conversion function for connecting port a with port b
using signal s. The entity declaration st ruct _ent ity does not appear in this
example.

Mentor Graphics VHDL Reference Manual, July 1994 4-37

Declarations

ENTITY a ent IS
PORT (b : INinteger; -- formal port clause
c : QUT integer);
END a_ent;

ENTITY a_com IS
PORT (z : IN bit_vector;
a . QUT bit_vector);
END a_com

ARCHI TECTURE struct OF struct_entity IS
SI GNAL S : bit_vector (0 TO 31);
SIGNAL d, y : integer;
COVMPONENT a_ent -- conponent decl aration
PORT (b : INinteger;
c : QUT integer);
END COWVPONENT;

COVPONENT a_com
PORT (z : IN bit_vector;
a . QUT bit_vector);
END COVPONENT;

BEG N
ul: a_ent PORT MAP (b => to_integer(s), ¢ => d); -- assoc.
u2: a_ comPORT MAP (a =>s, z =>to_bit(y)); --lists

END struct;

4-38 Mentor Graphics VHDL Reference Manual, July 1994

Types

Section 5
Types

This section discusses data types and the different classes into which they are
categorized. A typeislike atemplate that defines the set of valuesthat an object
can take on and the kinds of operations that apply to that object. For example,
the predefined type boolean has a value set of TRUE or FALSE, so objects
declared to be of that type can have either of those two values, and no others.
The following ordered list contains the topics explained in this section:

scalar_type_definition 5-4
range_constraint 5-5
integer_type definition 5-9
floating_type_definition 5-12
physical_type_definition 5-15
enumeration_type_definition 5-19

composite_type_definition 5-22
array_type_definition 5-22
record type definition 5-29

access _type definition 5-31
Incomplete Types 5-32

file_type_definition 5-34

An analogy can be made between VHDL and the English language. Inthe
English language, sentences contain objects, which are the targets of actions. In
VHDL, objects are the targets of actions that, taken together, make up the desired
design behavior. The kinds of actions that can be taken on an object, and the
values that the object can take on, are determined by itstype. Thefollowing
exampl e shows this concept.

Mentor Graphics VHDL Reference Manual, July 1994 5-1

Types

PROCESS
TYPE result 1S RANGE 1 TO 255;-- type decl aration
VARI ABLE a, b : result :=8; -- Declare var. type "result”

BEA N
b .:=a+ 25; --Performoperation with "a" and assign to "b"
WAIT FOR 10 ns;

END PROCESS;

VHDL isastrongly typed language, which means that all objects must possess a
gpecific type. Operations on the typed object are limited to the operations
specified for that type. Therefore, if you make a mistake by trying to illegally
operate on an object of a given type, an error condition is identified when type
checking is performed. For example, if you try to assign a value of type floating
point to avariable of type integer, an error occurs. For more information about
type declarations, refer to page 4-4.

There are occasions when you want to use a subset of values of agiven type. In
this case, you can define a subtype. When you use a subtype, it saves you from
having to declare another type (if you are dealing with alarge set of enumeration
literals). The following example shows a subtype declaration that has three
elements from the type envi r onment .

TYPE environnment IS (op_tenp, stor_tenp, capac, di ssi pat, | oad);
SUBTYPE basic_sim 1S environnent RANGE op_tenp TO capac;

When you define a subtype, you are not defining a new type; you are defining a
name for a subset of the type with a specific range or index constraint. These
constraints are discussed later in this section, beginning on page 5-8.

Every subtype has an associated type called a base type. In the previous
example, the base type of basi ¢_si misenvi ronnent . For consistency, every
type hasitself as a base type. In the previous example, the base type of

envi ronnment iSenvi ronnent . For more information on subtypes, other
benefits of using them, and their declarations, refer to page 4-7.

Y ou can convert avalue of one type to another value of a closely related type by
using the type conversion construct. For example, you can convert afloating
point type object to an integer type object. Detailed information on type
conversion begins on page 2-12.

5-2 Mentor Graphics VHDL Reference Manual, July 1994

Types

VHDL has a mechanism for you to determine information about the

characteristics (attributes) of atype, such as the upper or lower bound, or the

value at a position. This mechanism isthe predefined attribute. All the

predefined attributes are described beginning on page 10-5. Figure 5-1 shows

where types belong in the overall language and the categories of types that are
discussed in this section.

Design Units

Design Entities

Configurations
Packages

Attributes
Types

Statements

Components
Signals

Subprograms

Declarations

Expressions

Lexical Elements

Naming, Scope, and Visibility

TYPES

/

!

SCALAR

COMPOSITE

v

v

&~

FILE

Array Record
Integer Floating Point Physical Enumeration

Figure 5-1. Types

Mentor Graphics VHDL Reference Manual, July 1994

5-3

Types

scalar_type_definition
A scalar type definition creates atemplate for an object that can take on scalar
values. A scalar valueis one that cannot be subdivided and that can be ordered
aong asingle scale.

Construct Placement
type_definition, (type_declaration, block_declarative item,
entity declarative item, package body declarative item,
package declarative item, process declarative item,
subprogram_declarative item)

Syntax

scalar_type definition ::=
enumeration_type_definition
| integer_type definition
| floating_type_definition
| physical_type definition

Description
There are four scalar types, as Figure 5-1 shows. The scalar type definition
defines arange of values that the object can assume. For example:

a :
b :

10 ns; --Physical type "10 ns", conpletely specifies "a"
4.7; --Floating point type "4.7" specifies "b"

Subsets of values for scalar types are specified by arange. If the subset is empty,
the range is defined as anull range. The following subsection shows the related
syntax for arange.

5-4 Mentor Graphics VHDL Reference Manual, July 1994

Types

range_constraint
Subsets of values for scalar types are specified by arange constraint.

Construct Placement

constraint, floating_point_type definition, integer_type definition,
physical_type definition

Syntax

range_constraint ::=
range range

range ::=
range_attribute_name
| smple_expression direction simple_expression

direction ::=
to | downto

Definitions

m sSmple expression
Y ou define the upper and lower range bounds with a simple expression.

m direction
Y ou define arange direction as either ascending or descending.

Description

The relationship between range constraint bounds left, right, low, and high is
important to understand, especially when you use the corresponding predefined
attributes’left, "right, ’low, and * high which are described in Section 10. When
using arange of items, you can specify two directions:

e Ascending: using the reserved word to

e Descending: using the reserved word downto
The following examples show the use of the range.
e TYPE test_integer 1S RANGE -5 TO 4;

In thisexample, test _i nt eger isany of theintegers

Mentor Graphics VHDL Reference Manual, July 1994 5-5

Types

-5-4-3-2-101234 -- ascending
N N

where the left-most integer (-5) isequal to the low range constraint bound and
the right-most integer (4) is equal to the high range constraint bound.

e TYPE next _integer IS RANGE 4 DOMNTO - 5;

In thisexample, next _i nt eger isany of the integers

43210-1-2-3-4-5 -- descending
N N

where the left-most integer (4), in this case, is equal to the high range
constraint bound, and the right-most integer (-5) is equal to the low range

constraint bound.

The same principle of direction applies to composite types (arrays). For an
example of array direction, refer to the discussion starting on page 5-22.

The following table summarizes the relationship between the range and direction.

Range Ascending Range | Descending
Constraint Range

Bound

L eft-most = Lowest value Highest value
Right-most = | Highest value Lowest value
Lowest = L eft-most value Right-most value
Highest = Right-most value | Left-most value

Using arange constraint allows you to specify the range of a certain type only
once in your code description and then use this range elsewhere in your code
without explicitly specifying it. The following example shows atype and
subtype declaration with range constraints, followed by a variable and atype

declaration that could exist later in a description:

TYPE nmy_array |'S ARRAY (positive RANGE <>) OF integer; --

--unconst. array decl.

SUBTYPE ar _ran |S positive RANGE 1 TO 255; --Type decl. wth

VARI ABLE hol d

my_array (ar_ran);

TYPE x IS ARRAY (ar_ran) OF integer

5-6

--range const.
--Use "ar_ran" as the
--range constraint
--Use "ar_ran" as the

Mentor Graphics VHDL Reference Manual, July 1994

Types

--range constraint

The preceding example illustrates a fundamental coding practice you should try
to follow: avoid "hard-coding” values that you use many times in a description.
Having to change just one value is much more desirable than having to change
several "hard-coded" valuesin adescription. For more information on coding
guidelines, refer to the Mentor Graphics Introduction to VHDL.

If you use arange constraint in a subtype indication, the simple expression type
in the language construct "range", must match the type you specify in the subtype
indication. For more information on subtype indications, refer to page 4-7.
Figure 5-2 illustrates this concept.

The following code shows the concept that Figure 5-2 illustrates:

TYPE test |S RANCE 1 TO 10; --Range expr. is type integer
SUBTYPE nmy test IS test RANGE 1 TO 5; --Type nark "test" al so
--integer type

range range_attribute_name
T: simple_expression - direction —» simple_expression L»

AN /

Must have the same base type.

.

subtype_indication % resolution_function _name L»type_mark

%» constraint f >

Figure 5-2. Range Constraints in Subtype Indications

Mentor Graphics VHDL Reference Manual, July 1994 5-7

Types

If each element in arange constraint bound is a member of the range subtype and
the range bounds are not exceeded, then the range constraint is compatible with
the subtype range. If they have different base types or range bounds, then the
range constraint is not compatible with the subtype range. For example:

TYPE tfd I'S RANGE 1 TO 10; --The two ranges are not
SUBTYPE jrd IS tfd RANGE 11 TO 25; --conpati bl e because range
- -bounds exceeded.

If the range constraint is anull range, then any applicable subtype range bound
type can be specified.

Each of the scalar types use the preceding range concepts. The following
subsections discuss each of the scalar typesin detail.

5-8 Mentor Graphics VHDL Reference Manual, July 1994

Types

integer_type_definition
An integer type represents any member of the set of positive and negative whole
numbers, including zero, depending on the range you specify. In 32-bit, two's
complement hardware, thisrangeis usually between -2,147,483,648 and
+2,147,483,647, inclusive (32-bit integer).

Construct Placement
scalar_type definition, (type definition, type declaration -
block declarative item, entity declarative item,
package body declarative item, package declarative item,
process declarative_item, subprogram_declarative item)

Syntax

integer_type_definition ::=
range_constraint

Definitions

m range_constraint
Specifies subset of values for integer type definition.

Description
To define an integer type or subtype you use the integer type definition. An
integer type definition defines both a subtype and an anonymous type. Integer
types are subtypes of an anonymous type. Anonymous types cannot be
referenced directly because they do not have a name.

Each range constraint bound you specify in the integer type definition must be an
expression that can be evaluated during the current design unit analysis (alocally
static expression) and must be of an integer type. The two range constraint
bounds can have different sign values. For example:

TYPE group_integer IS RANGE -1025 TO 1025; --Different signs
The following example shows an illegal range constraint:

TYPE test _int 1S RANGE O TO 255.5; --Illegal high range bound

In the preceding example, the right or high range constraint bound is 225.5,
which is of afloating point type. Since the bound is not of an integer type, it is
not alegal bound. The following example shows another illegal condition:

Mentor Graphics VHDL Reference Manual, July 1994 5-9

Types

TYPE ny_int 1S RANGE O TO nonl ocst; --H gh bound not |oc. stc.

In the preceding example, the right or high range constraint bound is the variable
nonl ocst , which has been declared previously in the same design unit.
Therefore, nonl ocst isnot alocally static expression,and is not legal as arange
constraint bound.

You can use all integer types with the appropriate predefined arithmetic
operators. For information on operators, refer to page 2-16 . If an arithmetic
operation result is not an integer type in the range you specify, an error occurs.
For example:

PROCESS
VARI ABLE x : integer RANGE 0 TO 7;
VARI ABLE j : integer

BEGA N
j =T,
X :=j + 1, -- error condition
VWAIT FOR 10 ns;

END PROCESS;

In this example, the arithmetic operationj + 1 resultsinavauewhichisnotin
the specified range for x. Therefore, arun-time error condition exists when the
assignment to x occurs during simulation. The following examples show some
typical uses of integer types from within VHDL code:

TYPE mem address |'S RANGE 0 TO 1023;
SUBTYPE nmem data | S nmem address RANGE 0 TO 63;
VARI ABLE of fset : nem address;

CONSTANT decade : nmemdata : = 10;

5-10 Mentor Graphics VHDL Reference Manual, July 1994

Types

Predefined Integer Types

Thereis one predefined integer type: integer. Integer is specified in package
"standard" asfollows:

TYPE i nteger |I'S RANGE -2147483648 TO 2147483647; --This
--assunes a 32-bit machi ne

There are two predefined subtypes specified in package "standard":
SUBTYPE natural 1S integer RANGE O TO i nt eger’ hi gh;

SUBTYPE positive IS integer RANGE 1 TO i nteger’ high;

-

O CAUTION
©
O Do not use predefined type or subtype names for your own

definitions. Whileit is possible to do so, it can become very
confusing for you to keep track of when the systemisusing its
definition of a predefined type or is being overwritten to use your
definition.

Mentor Graphics VHDL Reference Manual, July 1994 5-11

Types

floating_type_definition
A floating point type provides real number approximations.

Construct Placeme
scalar_type definition, (type definition, type declaration -
block declarative item, entity declarative item,
package body declarative _item, package declarative item,
process declarative item, subprogram_declarative item)

Syntax

floating_type_definition ::=
range_constraint

Definitions

m range_constraint
Specifies a subset of values for afloating type definition.

Description
An example of afloating point number isthe ratio 5/3, which resultsin the
decimal number 1.66666..., where the numeral six repeats indefinitely. Since
hardware can provide only afinite number of bits, a real-number approximation
IS required.

To define afloating point type or subtype, you use the floating type definition. A
floating type definition defines both a subtype and an anonymous type. Floating
point types are a subtype of an anonymous type. Anonymous types cannot be
referenced directly because they do not have a name.

The range constraint bounds you specify in the floating type definition must be
an expression that can be evaluated during the current design unit analysis
(locally static expression) and must be of afloating point type. The two range
constraint bounds can have different sign values. For example:

TYPE fpt_result 1S RANGE -1.0 TO 1000.0; --Different signs

The following example shows an illegal range constraint bound:

TYPE tst _fpt I'S RANGE 100. 75 DOMWNTO 5; --I1I11. I ow range bound

5-12 Mentor Graphics VHDL Reference Manual, July 1994

Types

In the preceding example, the right or low range constraint bound is"5", whichis
of an integer type. Since the bound is not of afloating point type, it isnot alegal
bound. The following example shows another illegal condition:

TYPE ny_result I'S RANGE 0.5 TO result;--Bound not loc. static

In the preceding example, the right or high range constraint bound is the variable
resul t, which has been declared previously in the same design unit. Therefore,
resul t isnot alocally static expression and is not legal as arange constraint
bound.

Y ou can use al floating point types with the appropriate predefined arithmetic
operators. For information on operators, refer to page 2-16. If an arithmetic
operation result is not afloating point type in the range specified, an error occurs
For example:

PROCESS
VARI ABLE f, z : real RANGE 1.0 TO 100. 0O;
BEG N
f := 10.0;
z :=f + 1988.0; -- error condition
WAIT FOR 10 ns;
END PROCCESS;

In the preceding example, the arithmetic operation z : = f + 1988. 0 resultsin
avalue whichisnot in the specified range for z. Therefore, arun-time error
condition exists when the assignment to z occurs during simulation. The
following examples show some typical uses of floating point types from within
VHDL code.

TYPE result IS RANGE 0.0 TO 11063. 5;

SUBTYPE p result IS result RANGE 2765.88 TO 8297. 63;
VARI ABLE a, b, c : result;

CONSTANT offset : p_result := 3000.5;

Mentor Graphics VHDL Reference Manual, July 1994 5-13

Types

Predefined Floating Point Types

Typereal isthe only predefined floating point type. Real is specified in package
"standard” as:
TYPE real |S RANGE -1.79769E308 TO 1.79769E308; --This
--assunes a machine that follows | EEE
- -doubl e- preci si on standard

CAUTION

000

Do not use predefined type names for your own definitions. While
it ispossible to do so, it can become very confusing for you to keep
track of when the systemis using its definition of a predefined type
or is being overwritten to use your definition.

5-14 Mentor Graphics VHDL Reference Manual, July 1994

Types

physical _type_ definition
Physical types describe measurements of atangible quantity, in amultiple of the
base unit of measurement, within the range you specify.

Construct Placement
scalar_type definition, (type definition, type declaration -
block declarative_item, entity declarative item,
package body declarative item, package declarative item,
process declarative item, subprogram_declarative item)

Syntax

physical_type definition ::=
range_constraint
units
base unit_declaration
{ secondary_unit_declaration }
end units

base unit_declaration ::=
identifier ;

secondary_unit_declaration ::=
identifier = physical_literal ;

physical_litera ::=
[abstract_literal] unit_name

Definitions

m base unit_declaration
The base unit declaration is used to define aunit name. The base unit
declaration can be considered the root measure.

m secondary_unit_declaration
The secondary unit declaration is also used to define aunit name. The
secondary unit declarations are defined in multiples of the root, or multiples
of apreviously defined secondary unit.

Mentor Graphics VHDL Reference Manual, July 1994 5-15

Types

Description
The range you specify as the range constraint must be between -2147483648 and
+2147483647, inclusive on a 32-bit machine.

The range constraint bounds you specify in the physical type definition must be
an expression that can be evaluated during the current design unit analysis (a
locally static expression) and must be an integer type. The range constraint
bounds can have different sign values. For example:

TYPE phy_type IS RANCGE -2147483647 TO 2147483647; --Different
: --signs

The following example shows an illegal range constraint bound:

TYPE test_int IS RANGE O TO 10. 5;

In the preceding example, the right or high range constraint bound is 10.5, which
isof afloating point type. Since the bound is not of an integer type, itisnot a
legal bound. The following example shows another illegal condition:

TYPE ny_int 1S RANGE O TO nem value; -- illegal range bound

In the preceding example, the right or high range constraint bound is the variable
mem val ue, which has been previously declared in the same design unit.
Therefore, mem val ue isnot alocally static expression and is not legal as arange
constraint bound.

The base unit declaration and the secondary unit declaration are used to define a
unit name. The base unit declaration can be considered the root measure. The
secondary unit declarations are defined in multiples of the root or in multiples of
apreviously defined secondary unit. For example:

5-16 Mentor Graphics VHDL Reference Manual, July 1994

Types

PROCESS
TYPE weight 1S RANGE O TO 1E6 -- range constraint
UNI TS
g; -- base_unit_declaration: gram
dg = 10 g; -- secondary_unit_declaration: decagram
hg = 10 dg; -- secondary_unit_declaration: hectogram
kg = 1000 g; -- secondary_unit_declaration: kil ogram
END UNI TS;
VARI ABLE w, z : weight; --Declare variables of type "weight"
BEG N
w:= 100 dg + 1 kg - 10 g; --Use the phy. types in equations
z .= 16 kg + dg; --
VWAIT FOR 10 ns;
END PROCESS;

The following examples show some typical uses of physical types from within
VHDL code.

GENERI C (prop_delay : tinme); --"time" is physical type
CONSTANT drift_freq : frequency := 25 Hz; --"frequency" is

- - physi cal type
SUBTYPE p_weight IS weight RANGE 1 g TO 10 dg; --"weight" is

-- physical type

All physical types can be used with the appropriate predefined arithmetic
operators. For information on operators, refer to page 2-16. If an arithmetic

operation result is not a physical type in the range specified, an error occurs. For
example:

PROCESS (sens_si Q)
TYPE sys_unit IS RANGE 0 TO 1000

UNI TS
tu; -- base_unit_decl aration
tv = 10 tu; -- secondary_unit_decl aration
tz = 20 tv; -- secondary_unit_decl aration
END UNI TS;
VARI ABLE s: sys_unit; --Declare variable of type "sys unit"
BEG N

s := 1000 tu + 2000 tv; --Using physical type sys unit, do
--an arithmetic operation
END PROCESS;

In the previous example, the arithmetic operations : = 1000 tu + 2000 tv

resultsin avaluethat is not in the specified range for sys_uni t . The result of
any expression that uses a physical typeistruncated to the nearest base unit.

Mentor Graphics VHDL Reference Manual, July 1994 5-17

Types

Predefined Physical Types

S Thereisone predefined physical type: time. You must specify all delays with
thetypetime. Thetypetimeis specified in package "standard" as follows:

TYPE tinme | S RANCE -a number TO +a number

5-18

UNI TS

fs;

ps = 1000
ns = 1000
us = 1000
s = 1000
sec = 1000
mn = 60
hr = 60
END UNI TS;

fs;
ps;
ns;
us;
5]
Sec;
m n;

-- a_nunber is machi ne-dependent
f emt oseconds
pi coseconds
nanoseconds
m cr oseconds
mlliseconds
seconds
m nut es
hour s

Mentor Graphics VHDL Reference Manual, July 1994

Types

enumeration_type_definition
An enumeration type consists of alist of values that can be character literals or
identifiers. Using the enumeration type definition, you can define enumeration
types other than those predefined in VHDL.

Construct Placement
scalar_type definition, (type definition, type declaration,
block declarative item, entity declarative item,
package body declarative item, package declarative item,
process declarative item, subprogram_declarative item)

Syntax

enumeration_type_definition ::=
(enumeration_literal { , enumeration_literal })

enumeration_literal ::=
identifier | character_litera

Definitions

m enumeration literal
A list of character literals or identifiers, specified by you.

Description
To define an enumeration type or subtype, you use the enumeration type
definition, which consists of alist of enumeration literals separated by commas.

The enumeration literals each have a distinct enumeration value. Thefirst
enumeration literal listed has the predefined position of zero. The enumeration
literals that follow the first enumeration literal are arranged in ascending
positions. For example:

TYPE light IS (active, off, flashing);
N

N N

Position: 0 1 2

In the preceding example, act i ve, of f, and f | ashi ng are identifiersfor

enumeration literals, each having a distinct enumeration value. Notice that the
position of the enumeration literalsis predefined, starting at O for the first literal
acti ve and ascending to position 2 for f | ashi ng. Position isimportant when

Mentor Graphics VHDL Reference Manual, July 1994 5-19

Types

using the predefined attributes. For more information on attributes, refer to page
10-5.

The following examples show the use of enumeration types.
TYPE logic volt IS ("0 ,'5,"z2", "X');

SUBTYPE ideal v IS logic volt RANGE 0" TO'5’
TYPE shift IS (shr, shl, shrc, shlc);

If you use an identifier or character literal that has been specified in the same
section of code (same scope or outer scoper) and give it adifferent value, you
have overloaded the literal. For example, if previously in a process you wrote,

TYPE traffic IS (car, cab, truck, van);
then you write the following code later in the same process:

TYPE vehicle IS (cab, car, truck, notorcycl e,van); --Overl oaded

the enumeration literalscar, cab, t r uck and van are overloaded by being used
in another enumerated type vehi cl e.

Overloading provides you with a method for using the same identifier name for
different enumerated types within the same process. For more information on
overloading, refer to page 3-24.

*For more information on scope, refer to page 3-12.

5-20 Mentor Graphics VHDL Reference Manual, July 1994

Types

Predefined Enumeration Types
The following enumeration types have been predefined in package "standard":
o Character
e Bit
e Boolean
o Severity level

The equivalent code for package "standard" is discussed on page 9-18. Refer to
that discussion for detailed information on the predefined enumeration types.

O CAUTION
©
@) Do not use predefined type names for your own definitions. While

it ispossible to do so, it may become very confusing for you to keep
track of when the systemis using its definition of a predefined type
or is being overwritten to use your definition.

Mentor Graphics VHDL Reference Manual, July 1994 5-21

Types

composite_ type definition

A composite type specifies groups of values under asingle identifier.

Construct Placement
type definition, (type declaration - block declarative item,
entity declarative item, package body declarative item,
package declarative item, process declarative item,
subprogram_declarative item)

Syntax
composite type definition ::=
array_type_definition
| record_type definition

Definitions

m array_type definition
Declares an array, which is a collection of elements of the same type that are
organized in one or more dimensions. Elements of type file are not
permitted.

m record type definition
Declares arecord which is a collection of named elements.

Description
The composite type allows you to group items that are naturally bundled together
or represented as tables.

array_type_definition
An array isacollection of elements of the same type that are organized in one or
more dimensions. (Elements of type file are not permitted).

Construct Placement
composite type definition, (type definition, type declaration,
block declarative_item, entity declarative item,
package body declarative item, package declarative item,
process declarative item, subprogram_declarative item)

Syntax

5-22 Mentor Graphics VHDL Reference Manual, July 1994

Types

array_type_definition ::=
unconstrained_array_definition
| constrained_array_definition

unconstrained_array_definition ::=
array (index_subtype definition { , index_subtype definition})
of element_subtype indication

constrained array_definition ::=
array index_constraint of element_subtype indication

index_subtype definition ::=
type mark range <>

index_constraint ::=
(discrete range { , discrete range})

discrete range ::=
discrete subtype indication | range

Definitions

m unconstrained_array_definition
Defines an unconstrained array in which you specify the type of the indices,
but do not specify the range.

m constrained array definition
Defines a constrained array which has a specific subset of valuesfor the
range of the array indices.

Description
VHDL does not limit the number of dimensions you can have in an array. The
valuesin an array are referenced by indices that also have a specified type. For
more information on this topic, refer to page 4-5. The following example shows
the code you can use to declare an array.

Mentor Graphics VHDL Reference Manual, July 1994 5-23

Types

TYPE array_frame IS ARRAY (integer RANGE 1 TO 3, 9 DOMNTO 6)
OF positive;
VARI ABLE nem array : array_frame; -- "memarray"” is an array

The preceding code creates a 3 by 4, two-dimensional array. The following
figureis arepresentation of this array:

1 * * * *
2 * * * *
3 * * * *

In the preceding array, the stars represent the value of each array element. When
the array isinitialized, each element value is equal to positive'left, which returns
an integer value "1". (Theleft value of the range of subtype "positive" is"1’.)

Y ou can define the contents of this array with the following code:

FORi IN1 TO 3 LOOP

FORj IN 9 DOMTO 6 LOOP
memarray (i, j) =1 + 1;
END LOOP;

END LQOOP;

Another way to define the values for each of the array elementsis shown as
follows:

memarray := ((2,2,2,2), (3,3,3,3), (4,4,4,4));

Both preceding code examplesfill the array nem ar r ay with values, asthe
following figure shows.

5-24 Mentor Graphics VHDL Reference Manual, July 1994

Types

1 2 2 2 2
2 3 3 3 3
3 4 4 4 4

The preceding array example shows you an example of a constrained array and
some of the syntax for declaring and manipulating a constrained array. An array
can be either constrained or unconstrained, as the following pages describe. The
diagrams on page 5-23 show some of the related syntax for defining a
constrained or unconstrained array.

Asindicated by the BNF descriptions on page 5-23 arrays have the following
characterigtics:

e An array can be constrained or unconstrained.
¢ The range bounds can be of types other than integer types.
¢ You can specify the range bound type of a constrained array.

A constrained array is an array that has a specific subset of values for the range of
the array indices. You saw an example of a constrained array on page 5-24. If
you specify arange using universal _integers or integer literals, the system
assumes these indices are a subset of the type integer (from package "standard").
For example, the first line in the following code is equivalent to the second line
of code:

TYPE int_array IS ARRAY(1 TO 25) OF integer; --This is equiv.
TYPE int _array IS ARRAY(integer RANGE 1 TO 25) --to this
OF integer;

The most common array ranges are integer types. The range type for arrays does
not have to be of type integer. However, the left and right bounds must be of the
sametype. The range bounds can be any discrete type. For example:

Mentor Graphics VHDL Reference Manual, July 1994 5-25

Types

TYPE nonth IS (jan, feb, mar, apr, may, jun, jly, aug, sep
oct, nov, dec);

TYPE hours |I'S RANGE 0.0 TO 23.0;

TYPE vacation IS ARRAY (nmonth RANGE jun TO sep) OF hours;

In the previous example, the array vacat i on isaone-dimensional array type that
is constrained by arange of the enumerated type nont h. The elements of the
array are specified to be of the type hour s, which are floating point numbers.

If constrained arrays were the only arrays allowed in VHDL, you could never
specify two arrays that have the same type but different range bounds. Thisis
why the unconstrained array exists.

An unconstrained array is an array in which you specify the type of the indices
but do not specify the range. In place of specifying the range, you use the box
symbol "<>". Inthisway you can declare the array type without declaring its
range, and then you can declare as many arrays of the same type with the desired
range. Thisalowsyou to pass arrays of arbitrary size as parameters. Figure 5-3
shows this concept of unconstrained arrays.

The following example shows you the declaration of an unconstrained array and
the declaration of two arrays of the same type as the unconstrained array, which
could possibly appear elsewhere in your code description:

TYPE data_array IS ARRAY (i nteger RANGE <>) OF integer;

--Wth the unconst. array declared, the follow ng code can be
--used in a hardware description.

VARI ABLE address : data_array (0 TO 255);
VARI ABLE hex _code : data array (255 TO 1023);

5-26 Mentor Graphics VHDL Reference Manual, July 1994

Types

Constrained Array
Of The Same Type

) (€) (€

Unconstrained Array

) (€ /) (€

Constrained Array
Of The Same Type

Figure 5-3. Unconstrained Arrays
Summary of Array Type Rules
Thefollowing list isasummary of the rules that govern the use of arrays:
¢ All the elementsin an array must be of the same type.

e Theelement typesin an array can be only scalar, other array types, or record
types; no file types are allowed.

o If you use a subtype indication as a discrete range, the subtype indication must
not contain aresolution function. For information on resolution functions,
refer to page 11-10.

e You useindex constraints for arrays, and you use range constraints for
subtypes.

Mentor Graphics VHDL Reference Manual, July 1994 5-27

Types

Array Operations

There are several operations you can perform using arrays, through the use of
expressions and specific array operations. Y ou can extract asingle array element
by specifying an index value in an expression. Y ou specify an index by using an
indexed name. For more information on indexed names, refer to page 3-8.

Y ou can compare two arrays of the same type with relational operators. For
more information on expressions and operators, refer to Section 2.

Y ou can concatenate one-dimensional arraysto form larger one-dimensional
arrays, as the following example shows:

PROCESS (sens_si Q)
TYPE ref _array IS ARRAY (natural RANGE <>) OF integer;

VARI ABLE x : ref_array (0 TO 899); -- Size is 900

VARI ABLE z : ref_array (0 TO 99); -- Size is 100

VARI ABLE conp_arry : ref_array (0 TO 999); -- Size is 1000
BEG N

conp_arry := X & z; -- concatenate the arrays, size is 1000
END PROCESS;

Y ou concatenate the one-dimensional arrays using the concatenation operator
"&". You can also concatenate an array with a single element value of the same
type. For adiscussion on concatenation, refer to page 2-23.

Y ou can also select a contiguous subset of a one-dimensional array by using a
dice name. A dlice name designates a portion of a one-dimensional array, asthe
following example shows:

PROCESS (sens_si Q)
TYPE ref _array |S ARRAY (natural RANGE <>) OF integer;

VARI ABLE mai n_bus : ref_array (0 TO 255); --Declare arrays
VARI ABLE addr, data : ref_array (0 TO 127); --
BEG N

addr := main_bus (0 TO 127);
data := mai n_bus (128 TO 255);
END PROCESS;

For more information on slice names and dlicing arrays, refer to page 3-9.

5-28 Mentor Graphics VHDL Reference Manual, July 1994

Types

record_type_definition
A record is a composite type whose elements can be of various types. The record
type definition specifies a particular record type.

Construct Placement
composite _type definition, (type_definition, type declaration -
block declarative_item, entity declarative item,
package body declarative item, package declarative item,
process declarative item, subprogram_declarative item)

Syntax

record_type definition ::=
record
element_declaration
{ element_declaration }
end record

element_declaration ::=
identifier_list : element_subtype definition ;

element_subtype definition ::= subtype_indication

Definitions

m element_declaration

Declares the subtypes of one or more record el ements named in the identifier
list.

Description
A record type groups objects of different types so they can be operated on asa
single object. The record type definition contains of a series of element
declarations, each of which contains one or more element identifiers and a
subtype indication for those elements. All the element identifiers must be unique.
The following example shows two record type definitions.

Mentor Graphics VHDL Reference Manual, July 1994 5-29

Types

TYPE coordi nates |'S RECORD
xval ue, yval ue : integer
END RECORD;

TYPE half_day IS (am pn);

TYPE clock_tinme IS RECORD
hour : integer RANGE 1 TO 12;
m nut e, second : integer RANGE 1 TO 60;
anpm : hal f _day;

END RECORD;

Y ou can read from and assign data to individual elements of arecord. To access
an individual record element, you use the selected name construct, as shown in
the following examples:

VARI ABLE tinme_of day : clock tine;
iiﬁe;of_day.ninute .= 35; -- loads 35 into el emrent "m nute"

start_hour := time_of_day. hour; -- assigns value of el enent
-- "hour" to "start_hour"

When assigning values to or reading from record elements, the types of the
record elements must match the types of the variables. Y ou can also access a
record as an aggregate, in which case all the elements are assigned at once, as
shown in the following example:

VARI ABLE tinme_of __day : clock_tineg;
VARI ABLE start_hour : integer RANGE 1 TO 12;

time of day := (12, 05, 23, an:

5-30 Mentor Graphics VHDL Reference Manual, July 1994

Types

access_type definition
Access types are types whose values point to other objects; they allow access to
objects such as FIFOs and linked lists that contain unnamed elements for which
storage is dynamically allocated.

Construct Placement
type_definition, (type _declaration - block_declarative item,
entity declarative item, package body declarative item,
package declarative item, process declarative item,
subprogram_declarative item)

Syntax

access _type definition ::=
access subtype indication

Definitions

m Subtype indication
Defines the type of the objects pointed to by the accesstype. This subtypeis
called the designated subtype, and the base type is called the designated type.
The designated type must not be afile type. The only kind of constraint
allowed in the subtype indication is an index constraint.

Description

Declaring an accesstypeis apreliminary step to setting up an object called a
designator; such an object can be assigned access values that designate, or point
to, other unnamed objects containing values of the designated subtype. Once an
access type has been declared, you can create a designator (hereafter called a
pointer) by declaring a variable of that type and then assigning an access value to
that variable using an allocator expression. Only variables can be declared
access types, and only variables may be pointed to by access values.

The following example illustrates the process of creating an access type, access
value, and pointer:

TYPE buff IS RANGE 0 TO 1023 ;
TYPE buff_ptr 1S ACCESS buff ;

VARI ABLE ptrl : buff _ptr := NEWbuff ' (511) ;

Mentor Graphics VHDL Reference Manual, July 1994 5-31

Types

This example accomplishes three things. First, it declares the type buff, that is,
the type of object that will be pointed to. Second, it declares an access type,
buff_ptr, of type buff. Thisaccesstypeisnow available for variables that will be
used as pointers to objects of type buff. Third, it declares avariable ptrl of
access type buff_ptr and uses an allocator expression (the reserved word NEW
followed by buf f), which does three things:

o Allocates enough memory to store an object of type buff.

o Creates and assigns a value to an (unnamed) object of type buff. Inthis case,
an initial value of 511 is assigned to the object.

e Assigns an access value (address) to ptrl, which can then be used to reference
the object. You can aso initialize a pointer variable to avalue of null without
using an allocator expression, as shown in the following example. In this case
the pointer points to no object.

VARI ABLE ptr1 : buff_ptr := NULL ;

The use of allocatorsis discussed in more detail in Section 2 of this manual,
under Allocators, beginning on page 2-13. The following subsection discusses
incomplete type declarations and their use with access typesin creating
self-referencing structures such as linked lists.

Incomplete Types

An incomplete type declaration names atype without specifying anything else
about the type. Y ou can use this kind of type declaration with access types to
create interdependent, self-referencing structures such as linked lists. The
following restrictions apply to incomplete type declarations:

o Each incomplete type declaration must have a corresponding full type
declaration with the same identifier.

e The corresponding full type declaration must occur within the same
declarative part as the incomplete type declaration.

o Between the incomplete type declaration and the end of the corresponding full
type declaration, you can use the name of the incomplete type only as atype
mark in the subtype indication of an access type definition. No constraints are
allowed in the subtype indication.

5-32 Mentor Graphics VHDL Reference Manual, July 1994

Types

The following example shows how an incompl ete type declaration is used:

TYPE dl _data IS RANGE (0 TO 255) ;
TYPE dl _block IS ARRAY (0 TO7) OF dl _data

TYPE dl _pntr ; -- Inconplete type declaration

TYPE dl _record IS RECORD

data_ bl ock : dl bl ock

next rec : dl _pntr; -- The inconplete type is used here.
END RECORD ;

-- The follow ng declaration conpletes the declaration of
-- dl _pntr as an access type to objects of type dl _record.

TYPE dl _pntr IS ACCESS dl _record; -- Conplete type declaration

This example declares arecord type to hold datain alinked-list structure. At
sametimeit sets up a pointer that will be used to gain access to the elements of
the linked list. Notice that the record type for the list elements (beginning TYPE
dl _record | S RECORD) consists of two parts: an array of integers

(dat a_bl ock) that holds the data; and a pointer (next _r ec) to the next element
of thelist. The pointer needs to be an access type, which can be assigned an
access value that pointsto the location of the next list element.

Notice that without an incomplete type declaration, you would be unable to
include the pointer as part of the structure that it refersto. Y ou must first use an
incomplete type declaration to make the name of the access type available to the
record type declaration. Once the record type has been declared, you complete
the declaration of the access type, which can now refer to the record type.

For additional information on access types, refer to the preceding subsection,
access _type definition. For aformal syntax description of both full and
incomplete type declarations, refer to type _declaration on page 4-4.

Mentor Graphics VHDL Reference Manual, July 1994 5-33

Types

file_type definition

The file type definition defines data types for use in file declarations.

Construct Placement
type definition, (type declaration - block declarative item,
entity _declarative_item, package body declarative item,
package declarative item, process declarative item,
subprogram_declarative item)

Syntax

file type definition ::=
file of type mark

Definitions

m type mark
Defines the type of the values contained in thefile.

Description
Files may be read-only or write-only, but not both. Some uses of file types are

the following:

e Logging and tracing error conditions

¢ Collecting datafor statistics

e Loading the contents of memory with data
o Loading test vectors for your model

The following examples show the declaration of file types:

TYPE romdata IS FILE OF integer;
TYPE error _file IS FILE OF string;
TYPE input _data IS FILE OF bit_vector;

When you declare afile type with atype mark that is scalar or a constrained array
subtype, read and write procedures and an endfile function are implicitly defined
immediately following the file type declaration. For more information on file
declarations, refer to page 4-18. The following example shows the declaration of

5-34 Mentor Graphics VHDL Reference Manual, July 1994

Types

afiletype, afile declaration, and the implicit subprogram definitions that are
declared by the system.

TYPE stat IS FILE OF integer; -- file type decl.
FILE my_stats : stat IS "stat _file"; -- file decl.

-- inmplicit definitions

PROCEDURE read (VARI ABLE ny_stats : | NOUT stat;
value : QUT integer);
PROCEDURE write (ny_stats: | NOUT stat;
val ue: IN integer);
FUNCTI ON endfil e(VARI ABLE ny_stats: |IN stat) RETURN bool ean

Ther ead procedure returns a value from the file you specify, allowing you to do
afileread. Thew it e procedure appends a value to the file you specify,
allowing you to do afilewrite. Theendfi I e function returns a Boolean value of
TRUE when aread operation cannot return another value from the file; otherwise
the function returns avalue of FALSE. An error condition existsif aread is
made on afilethat hasan endfi | e value of TRUE.

The content of val ue isthe vaue of theitemin thefile. Thisvalue must be the
sametype asthefile. Inthe preceding example, val ue intheread andwite
procedures must be of type integer. Inthe following example, val ue inther ead
procedure must be an array of type real.

The following example shows afile type that has an unconstrained array type as a
type mark, and the implicit r ead procedure that follows. Thewrite and
endf i | e operations are the same as the previous example.

TYPE rom array IS ARRAY (integer RANGE <>) OF real; --uncons.
TYPE data _values IS FILE OF rom array; --file type decl.
FILE rval : data_values IS ny_file; -- file declaration

PROCEDURE read (VARI ABLE rval: | NOUT data_val ues;
val ue: OQUT rom array;
length: QUT natural); -- inplicit read def.

Ther ead procedure from the preceding example returns a value from the file and
aparameter called | engt h that specifies the actual length of the array value read.
For information on file objects and their declaration, refer to page 4-18.

Mentor Graphics VHDL Reference Manual, July 1994 5-35

Statements

Section 6
Statements

This section discusses the statements that you can usein VHDL. A statementisa
construct you use to specify one or more actions to take place in a hardware
description. These actions can take place one after another (sequentially) or at
the same time (concurrently). The following list shows the topics and constructs
explained in this section:

Statement Classes 6-2
sequential_statement 6-5
concurrent_statement 6-7

Statement Quick Reference 6-8

assertion_statement 6-10

block statement 6-12

case statement 6-15

component_instantiation_statement 6-17

concurrent_assertion_statement 6-19

concurrent_procedure _call 6-21

concurrent_signal_assignment_stmnt 6-23
conditional_signal_assignment 6-25
selected signal_assignment 6-27

exit_statement 6-28

generate _statement 6-30

if _statement 6-34

loop_statement 6-36

Mentor Graphics VHDL Reference Manual, July 1994 6-1

Statements

next_statement 6-38
null_statement 6-39
procedure_call_statement 6-40
process_statement 6-41
return_statement 6-44
signal_assignment_statement 6-46
variable_assignment_statement 6-48
wait_statement 6-49

Statement Classes
There are two classes of statements you can usein your VHDL descriptions:
e Sequential statements
e Concurrent statements

The following example illustrates the difference between sequential and
concurrent statement execution:

pl: PROCESS (a, b, c) bl: BLOCK

BEG N --sequential area BEG N --concurrent area
a <= b AND c; a <= b AND c;
d <= a AND c; d <= a AND c;

END PROCESS p1; END BLOCK b1,

In this example, the code in the left-hand column contains two sequential signal
assignments within a process labeled p1. In the right-hand column of the
example, two concurrent signal assignments within block bl perform the same
functions as the statementsin pl.

Statements within a process must be sequential statements; they are evaluated in
the order in which they appear in the code. In contrast, statements within the
statement part of a block must be concurrent statements. During simulation,

6-2 Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent statements are evaluated as if they occur simultaneously. Thus, the
signal assignmentsin pl occur one after the other, while the signal assignments
in bl occur simultaneously.

For more information on how sequential and concurrent statements are eval uated,
refer to the Mentor Graphics Introduction to VHDL, the "Contrasting Concurrent
and Sequential Modeling subsection”.

Figure 6-1 shows where statements belong in the language hierarchy, and it lists
the available concurrent and sequential statements.

Several of the statements (and other constructs) use the "label" construct. Rules
for using the label with each construct are discussed in the appropriate
subsection. The following BNF description shows that a label is an identifier:

label ::=
identifier

Mentor Graphics VHDL Reference Manual, July 1994 6-3

Statements

Design Units

Design Entities
Configurations
Packages

Attributes
Types
Statements

Declarations

Components
Signals

Subprograms

Expressions
Lexical Elements

Naming, Scope, and Visibility

Statements

v

v

Concurrent Statements

v

v

Sequential Statements

v

Block
Process
Concurrent Procedure Call
Concurrent Assertion

Concurrent Signal Assignment

Component Instantiation
Generate

Wait
Assertion
Signal Assignment
Procedure Call

If Exit
Case Return
Loop Null
Next

Figure 6-1. Statements

Mentor Graphics VHDL Reference Manual, July 1994

Statements

sequential _statement
Sequential statements represent hardware algorithms that define the behavior of a
design.

Construct Placement
process_statement_part, subprogram_statement_part,
sequence_of _statements, (if_statement, loop_statement,
case statement_alternative, - case statement)

Syntax

sequential_statement ::=
wait_statement
| assertion_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure call _statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

Description
Y ou can use sequential statements only inside a process statement or within a
subprogram (procedure or function). Each statement executes in the order in
which it is encountered. The preceding BNF description listed the sequential
statements availablein VHDL.

Sequential statements are divided into categories, based on their operation. The
following list shows the categories for the sequential statements.

e Assignment statements. These statements provide you with a method for
changing the value of variables and signals. The statements include the
following:

0 Variable assignment statement

0 Signal assignment statement

Mentor Graphics VHDL Reference Manual, July 1994 6-5

Statements

6-6

Conditional statements. These statements provide you with a method of
controlling the execution of other sequential statements. This control depends
on the resulting value of an expression. The statements include the following:

0 Case statement
0 If statement
0 Wait statement

Iterative statements. These statements provide you with a method of
executing a sequence of statements repeatedly. The statements include the
following:

0 Loop statement
0 Next statement (Also controls loop iteration)
0 Exit statement (Also controlsloop iteration)

Procedure control statements. These statements provide you with a method of
controlling subprogram execution. The statements include the following:

0 Procedure call statement

O Return statement

Miscellaneous statements. These statements include:
0 Assertion statement

0 Null statement

Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent_statement
Concurrent statements define blocks and processes that are connected together to
describe the general behavior or structure of adesign. You can think of
concurrent statements as processes that exist in parallel, waiting for a specified
condition to be satisfied before executing.

Construct Placement
architecture_statement_part, block statement part

Syntax

concurrent_statement ::=
block _statement
| process_statement
| concurrent_procedure_call
| concurrent_assertion_statement
| concurrent_signal_assignment_stmnt
| component_instantiation_statement
| generate_statement

Description
Y ou use the block statement to group together other concurrent statements. The
main concurrent statement is the process statement, which defines a sequential
operation representing a part of the design. The remaining concurrent statements
(except for the component instantiation statement) provide you with a shorthand
method for specifying processes that commonly occur. These statements use an
implied process that is automatically created by the system.

The preceding BNF description shows the concurrent statements that are
availablein VHDL. The ability to express concurrent action is especially
important when you model logic circuits. The reason for thisisthat logic circuits
often work in parallel, where a change in one signal can propagate through
several devices at the sametime.

Mentor Graphics VHDL Reference Manual, July 1994 6-7

Statements

Statement Quick Reference

Table 6-1 isaquick referencetable that lists al the VHDL statements. The table
heading descriptions for this table follow:

Satement: the name of the statement

Reserved Words: the reserved words used in the statement, if any

Class: "Con." indicates a concurrent statement classification "Seq." indicates
asequential statement classification.

Description: abrief description of the statement

Table 6-1. System-1076 Statements

Reserved
Statement |Words Class | Description
Assertion assert Seq. Checks if specified condition istrue, and
report if S0, reports a message and a severity
severity level
Block block Defines an internal block, and groups
begin Con. | concurrent statements together
end
Case case Selects one of a number of statement
IS Seq. | sequences for execution
end
Component | None I nstantiates a subcomponent within a
I nstantiation Con. | design entity
Concurrent |assert Represents a process statement
Assertion report Con. | containing an assertion statement
severity
Concurrent |None Represents a process containing the
Procedure Con. | corresponding sequential procedure call
Call
Concurrent |guarded Represents an equivalent process
Signal transport |Con. | statement that assigns valuesto asignal
Assignment

6-8

Mentor Graphics VHDL Reference Manual, July 1994

Statements

Table 6-1. System-1076 Statements [continued]

Reserved
Statement |Words Class | Description
Assertion assert Seq. Checks if specified condition istrue, and
report if S0, reports a message and a severity
severity level
Exit exit Seq. Exits from an enclosing loop statement
when
Generate generate | Con. | Generatesaregular structure, such asa
end register, within a structural description
If if Selects 0 or 1 of the enclosed sequential
then Seq. statements for execution
elsf
end
Loop loop Seq. Iteractively executes a sequence of
end statements
Next next Seq. Compl etes the execution of one of the
when iterations of an enclosing loop statement
Null null Seq. Specifies no action isto be performed;
passes execution to the next statement
Procedure |None Seq. Executes a particular procedure body
Call
process Defines an independent sequential
Process begin Con. | process, representing the behavior of a
end portion of adesign
Return return Seq. | Completes execution of the innermost
enclosing function or procedure
Signal None Modifies projected output waveform in
Assignment Seq. | thedriver of asignal
Variable None Seq. | Replaces current variable value with a
Assignment new value
Wait wait Seg. | Suspends aprocess or procedure
on

Mentor Graphics VHDL Reference Manual, July 1994

6-9

Statements

assertion statement
The assertion statement checks a condition you specify to determineif it is true,
and can report a message with a specified severity if the condition is not true.
Thereis aso a concurrent assertion statement, which is defined on page 6-19.

Construct Placement

sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

assertion_statement ;.=
assert condition
[report expression |
[severity expression] ;

Description
When you use areport expression, it must include an expression of the
predefined type string that specifies a message to be reported. If you do not
specify areport expression, a default value of "assertion violation" is used for
this string.

When you use a severity expression, it must specify an expression of the
predefined type severity level that specifies to what degree the severity of the
assertion condition exists. If you do not specify a severity expression, a default
value of ERROR is used for the severity _level.

The types string and severity level are predefined in package "standard”, which
is discussed on page 9-18.

The following list shows the predefined severity levels from least to most
severe.

e NOTE: usefor general information messages.

e WARNING: usefor apossible undesirable condition.

e ERROR: usefor atask completed with the wrong results.
e FAILURE: usefor atask that is not completed.

6-10 Mentor Graphics VHDL Reference Manual, July 1994

Statements

Example
The following example shows how to use assertion statements to report setup-
time and pulse-width violations on a synchronous device.

ASSERT NOT (cl ock’ event AND clock = "1" AND
preset = '1" AND NOT(preset’stable(20 ns)))
REPORT "Setup tine violation" SEVERI TY warni ng;

This statement asserts that when the clock changes to a high and the delayed
preset signal isa"one" and remains stable for 20 ns, the setup timeis not in
violation. However, if the assertion fails, a "Setup time violation” warning is
generated.

ASSERT (preset’delayed = "1 AND preset ='0’
AND preset’ del ayed’ | ast _event >= 25 ns)
REPORT "Pul se width violation" SEVERI TY war ni ng;

The preceding exampl e asserts that when preset changes from a high to alow and
the preset signal staysin the same state for at least 25 ns, the pulse width isnot in
violation. If the assertion fails, a"Pulse width violation" warning is generated.

The items that follow the tic mark (*) are predefined signal attributes. For more
information on signal attributes, refer page 10-28.

Mentor Graphics VHDL Reference Manual, July 1994 6-11

Statements

block statement
The block statement groups together other concurrent statements, forming an
internal block that represents a section of a design description. Y ou can nest
internal blocks hierarchically to organize your design.

Construct Placement
concurrent_statement, (architecture_statement_part, block_statement_part)

Syntax
block statement ::=
block label :
block [(guard_expression) |
block header
block_declarative _part
begin

block statement_part
end block [block label] ;

block header ::=
[generic_clause

[generic_map_aspect ; | |
[port_clause

[port_map_aspect ; | |

block_declarative part ::=
{ block_declarative_item }

6-12 Mentor Graphics VHDL Reference Manual, July 1994

Statements

block declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| configuration_specification
| attribute_specification
| disconnection_specification
| use_clause

block statement part ::=
{ concurrent_statement }

Definitions

m guard_expression
An expression of type boolean that you can use to control the execution of
the concurrent signal assignment statements within a block.

Description
Y ou use a hierarchy of blocks to describe a design entity, which in turn describes
aportion of acomplete design. The highest level block in this hierarchy isthe
design entity itself, which is an external block residing in alibrary. You can use
this external block as an element in other designs. The block statement, however,
describes the internal blocks of your design.

Y ou use the block label to help you keep track of the different internal blocks of
your design. The block label at the end of the block statement is optional.
However, if you use ablock label here, it must match the block label at the
beginning of the block statement.

Y ou can specify aguard expression of type boolean to control the execution of
the concurrent signal assignment statements within ablock. When you use this

Mentor Graphics VHDL Reference Manual, July 1994 6-13

Statements

expression, the system automatically declares a signal with a ssimple name of
"guard" of type boolean. The signal "guard" can be passed as an actual signal in
a component instantiation statement. The topic of guarded signalsisdiscussed in
detail on page 11-5.

In the block header, you can define ports and generics for a block. This definition
allows you to map signals and generics external to the block to those contained
within the block. For additional information refer to the port_clause,
port_map_aspect, generic_clause, and generic_map_aspect discussionsin Section
8.

Y ou can specify zero or more block declarative itemsin a block statement.

These items are declarations that are used within the block. Block declarative
items can also be declared in the architecture declarative part and are discussed in
that subsection on page 8-17.

The block statement part contains zero or more concurrent statements.

Example
The following example shows the possible use of ablock statement:

ARCHI TECTURE data_flow OF test IS
SIGNAL clk, a, b, ¢ : bit;

BEA N
sig_assign: -- block | abel
BLOCK (clk = "1") -- guard expression
SIGNAL z : bit; -- bl ock _declarative item
BEG N
z <= GUARDED a; -- zgets aif "clk" ="7

END BLOCK si g_assi gn;
END data_fl ow,

6-14 Mentor Graphics VHDL Reference Manual, July 1994

Statements

case_sStatement

The case statement selects one or more sets of sequential statements for execution
depending on on the result of an expression.

Construct Placement
sequential_statement, (process statement part, subprogram_statement_part,
sequence_of _statements)

Syntax

case_statement ::=
case expression is
case_statement_alternative
{ case_statement_alternative }
end case;

case statement_alternative ::=
when choices => sequence of _statements

sequence of statements ::=
{ sequential _statement }

Description
The following list shows the rules for using the case statement:

e The expression must be an integer, enumeration, or one-dimensional character
array type.

¢ Each choicein the case statement alternative must be the same type as the
eXpression you use.

o All the possible values of the expression must appear in the choices for the
case statement and must be of the same type as the expression (and locally
static).

e Y ou can use each choice only once.

Y ou use the choice of othersto represent any values of the expression that you
do not list in the case statement alternative. This choice must be the last
aternative. The reserved word other s must be the only choice in this situation.
The following example shows anillegal use of others:

Mentor Graphics VHDL Reference Manual, July 1994 6-15

Statements

CASE slt IS
WHEN ' 1’ => sctl <= fal se;
WHEN 'O’ | OTHERS => sctl <= true; --Illegal. Mre than one
END CASE; --choi ce when usi ng OTHERS
Example

The following example shows a use of the case statement:

CASE (traffic_sensor) IS --"traffic_sensor" is expression
WHEN " 00" => col or <= red,; --Case st at enent
WHEN "01" => col or <= yell ow, --alternatives

WHEN " 10" => col or <= green; - -
WHEN OTHERS => col or <= fl ashing; --
END CASE;

The preceding example states the following:

assign the signal col or avalue depending on the value of the expression
traffic_sensor.

6-16 Mentor Graphics VHDL Reference Manual, July 1994

Statements

component_instantiation_statement
The component instantiation statement creates an instance of a subcomponent
within a design entity, connects signals to that subcomponent, and associates
genericsin the design entity with generics in the subcomponent.

Construct Placement
concurrent_statement, (architecture_statement_part, block_statement_part)

Syntax

component_instantiation_statement ::=
instantiation_|abel :
component_name
[generic_map_aspect |
[port_map_aspect | ;

Definitions

m instantiation |abel
A unique identifier that you supply to identify the component instance.

= component_name
The name of the component (from the component declaration) that is being
Instantiated.

Description
Using component instantiation statements, along with component declarations
and signals, allows you to decompose a structural design into subcomponents.
The instantiated subcomponents must be bound to external design entities that
determine the behavior of the subcomponents. You can alter the characteristics
of adesign at any point in the design process by binding different design entities
to the subcomponents. The topic of components and their use is discussed
beginning on page 8-20.

The following list shows the rules and information for using the component
instantiation statement:

o The component name you use must be the name of a component you declare
in the component declaration.

Mentor Graphics VHDL Reference Manual, July 1994 6-17

Statements

e Theoptional generic map aspect associates a single actual with each local
generic in the component declaration. Each of these local generics must be
associated exactly once.

o The optional port map aspect associates a single actua with each local port in
the component declaration. Each of these local ports must be associated
exactly once.

For information on the generic and port map aspect, refer to page 8-32.

Example
The following example shows the declaration of three components and the
instantiation of these components using component instantiation statements:

ENTITY mux | S

PORT (a0, al, sel : INDbit; y : QUT bit);
END nux;
ARCHI TECTURE structure_descript OF nux IS
COMPONENT and?2 --component decl aration for "and2"
PORT (a, b : INDbit; z : OUT bit); --local port clause

END COVPONENT;

COMPONENT or 2 --component decl aration for "or2"
PORT (a, b : INbit; z : QUT bit);
END COVPONENT;

COMPONENT i nv --component decl aration for "inv"
PORT (i : INDbit; z : OQUT bit);
END COVPONENT;
SI GNAL aa, ab, nsel : bit; -- signal declaration
FOR U1 > inv USE ENTITY WORK. i nvrt (behav);--configuration
FOR U2, U3: and2 USE ENTITY WORK. and_gt (dflw); --specif.
FOR W4, : or2 USE ENTITY WORK. or _gt (archl);--
BEG N
Ul: inv PORT MAP (sel,nsel); --Instantiation of the
U2: and2 PORT MAP (a0, nsel,aa); --conponents using component
U3: and2 PORT MAP (al,sel,ab); --instantiation
U4: or2 PORT MAP (aa, ab,y); --statenents

END structure_descript;

6-18 Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent assertion statement
The concurrent assertion statement is an equivalent process statement generated
by the system that contains a sequential assertion statement and a wait statement
at theend. Thisequivalent processis a passive process, because it has no signal
assignment statements. For more information on the sequential assertion
statement, refer to page 6-10.

Construct Placement
entity _statement, concurrent_statement, (architecture statement part,
block statement_part)

Syntax

concurrent_assertion_statement ::=
[1abel :] assertion_statement

Description
Except for the optional label, the syntax for this statement is the same as for the
sequential assertion statement . The system knows when to create a concurrent
assertion by the location in which the assertion statement appears, because
concurrent statements are allowed only in architectures or blocks.

If you specify an operand that isasignal in the expression of the assertion
statement, the signal’ s longest static prefix name appears in the sensitivity list of
the implied wait statement. If you specify an operand in the expression that is not
asignal, no sengitivity clause, condition clause, or timeout clause appears in the
implied wait statement. For more information on the wait statement, refer to
page 6-49.

A guarded signal has no effect on the assertion evaluation unless the guarded
signal appears in the assertion condition.

Mentor Graphics VHDL Reference Manual, July 1994 6-19

Statements

Example
The following example shows a concurrent assertion statement and the equivalent
process statement that the system creates.

ARCHI TECTURE test OF parts IS
BEG N
si g _check : - - Label
ASSERT preset = 1 AND clk = 1 --Concurrent assertion stmmt
REPORT " Qut put Change Al |l owed” SEVERITY note;
END test;

-- equi val ent process

PROCESS
BEA N
ASSERT preset = 1 AND clk =1

REPORT " Qut put Change Al |l owed" SEVERITY note;
WAIT ON preset, clk; --Sensitivity list forned by signals

END PROCESS; --in the assertion condition expres.

6-20 Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent_procedure_call

The concurrent procedure call statement is an equivalent process statement
generated by the system that contains a sequential procedure call and await
statement at the end. For more information on the sequential procedure call
statement, refer to page 6-40.

Construct Placement
entity _statement, concurrent_statement, (architecture statement part,
block statement_part)

Syntax

concurrent_procedure_call ::=
[label :] procedure call_statement

Description
The syntax for this statement is the same as for the sequential procedure call
statement, except for the optional label. The system knows when to create a
concurrent procedure call by the location of the procedure call statement, because
concurrent statements are allowed only in internal and external blocks.

The concurrent procedure call is a shorthand way to declare procedures that
represent commonly used processes, by calling the procedure as a concurrent
statement; the equivalent process is automatically created by the system. The
implied wait statement gets its sensitivity list from signals of mode in or inout
from the actual part of any association element in the concurrent procedure call.
Any other condition produces no sensitivity clause. For more information on the
wait statement, refer to page 6-49.

A guarded signal has no effect on the concurrent procedure call statement
evaluation unless the guarded signal appears in association list of the actual
parameter part construct.

A concurrent procedure call appearing in an entity-statement part must be
passive.

Mentor Graphics VHDL Reference Manual, July 1994 6-21

Statements

Example
The following example shows a procedure declaration, a concurrent procedure
call, asmall procedure body, and the equivalent process that the system creates:

ARCHI TECTURE test OF parts IS
SI GNAL cl ock, tester : bit;

CONSTANT of fsets : real :=0.5;
PROCEDURE test_vectors (SIGNAL clk : INDbit; - - proced.
SIGNAL test : INOUT bit; --decl.
CONSTANT offset: INreal := 0.5);
PROCEDURE test _vectors (SIGNAL clk : INbit; - - proced.
SIGNAL test : INOQUT bit; --body
CONSTANT offset: INreal := 0.5) IS
BEG N
NULL; -- ummy body for exanple
END;
BEG N
test _vectors (clock, tester, offsets); --con. proced. call
PROCESS -- equival ent process
BEG N
test _vectors (clock, tester, offsets);
WAIT ON clock, tester; --sens. list forned by in and
END PROCESS; --inout signals
END test;

6-22 Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent S|gnal aSS|gnment stmnt

The concurrent signal assi gnment statement is an equivalent process statement
generated by the system that assigns valuesto signals.

Construct Placement

concurrent_statement, (architecture statement_part, block statement part)

Syntax

concurrent_signal_assignment_statement ::=
[label :] conditional _signal _assignment
| [label :] selected signal _assignment

options ::=
[guarded] [transport |

Description
The concurrent signal assignment can take two forms:

o Conditional signal assignment
e Selected signal assignment

The following rules apply to both forms of the concurrent signal assignment
Statement:

¢ You cannot use a null waveform element on the right-hand side of the
concurrent signal assignment. An error occursif thisisthe case.

¢ If you use a concurrent signal assignment that has a static target and static
waveforms, the equivalent process that the system creates includes a wait
statement with no sensitivity list. This means the equivalent process executes
one time during the start of the ssmulation and suspends action permanently.

¢ You can use the reserved word guar ded or transport, or both as optionsin
the concurrent signal assignment statements you use.

The option guar ded controls the execution of the signal assignment through
one of the following:

Mentor Graphics VHDL Reference Manual, July 1994 6-23

Statements

0 Animplied guard signal declared through a guard expression on a block
0 Anexplicitly declared signal of type boolean that you supply

The signal assignment is made when the guard value changes from FALSE to
TRUE, or when the guard is at a TRUE value and an event occurs on aguard
signal input. The topic of guarded signalsis discussed in detail on page 11-5.

When you use the option transport, you specify that the signal assignment
has transport delay. Transport delay means that any pulse is transmitted to the
signal with no regard to how short the pulse width or duration. The topic of
transport delay is discussed in detail on page 11-19.

The following subsections discuss the two forms of the concurrent signal
assignment statements.

6-24 Mentor Graphics VHDL Reference Manual, July 1994

Statements

conditional_signal _assignment
The conditional signal assignment form of the concurrent signal assignment
statement results in an equivalent process statement generated by the system that
assigns values to signals using an "if" statement format.

Construct Placement
concurrent_signal_assignment_statement, (concurrent_statement, -
architecture_statement_part, block statement_part)

Syntax

conditional_signal_assignment ::=
target <= options conditional_waveforms;

conditional_waveforms ::=
{ waveform when condition else }
waveform

Description
Because of the similarity in appearance of the assignment operator and the "less
than or equal” operator, both of which are written <=, you should be careful that
your code does not produce unexpected results. For example, the intent of the
signal assignment statement in the following code was this: "If enlis 1, assign
data atotest. If en2isl, assign data bto test. If neither of the aboveistrue,
assign 1 to test."

ENTITY tester IS
END t ester;

ARCHI TECTURE data_flow OF tester IS
SIGNAL test, data_a, data b : gsimstate;
SIGNAL enl, en2 : bit;

BEG N
test <= data_a AFTER 2 ns WHEN enl = "1’
ELSE
test <= data_b AFTER 2 ns WHEN en2 = "1’
ELSE

test <='1" AFTER 2 ns;

END data_fl ow;

However, the following example shows what the preceding example actually
does. Thisexample evaluates certain relational expressions ("test less than or

Mentor Graphics VHDL Reference Manual, July 1994 6-25

Statements

equal to data b", and so on) and then assigns the boolean result of the expression
to the signal test.

ENTITY tester | S
END t ester;

ARCHI TECTURE data flow OF tester 1S
SIGNAL test, data_a, data_b : gsimstate;
SIGNAL enl, en2 : bit;
BEG N
test <= (data_a) AFTER 2 ns WHEN enl
(test <= data_b) AFTER 2 ns WHEN en2
(test <="'1") AFTER 2 ns;
END data fl ow,

"1 ELSE
"1 ELSE

The following example, although similar to the first example, shows avalid use
of a conditional signal assignment:

ARCHI TECTURE data flow OF tester 1S
SIGNAL test, data_a, data b : ny_qgsimstate,;
SIGNAL enl, en2 : bit;
BEG N
bus_t est
BLOCK
BEG N --The followi ng code shows cond. sig. assignnents
test <= TRANSPORT data_a AFTER 2 ns WHEN enl = "1’
ELSE data_b AFTER 2 ns WHEN en2 = "1’
ELSE ' 1' AFTER 2 ns;
END BLOCK bus_t est;
END data_fl ow,

Using the preceding example, the following example shows the equivalent
process the system creates for the conditional signal assignment.

PROCESS (data_a, data_b, enl, en2) --sens. list created

BEG N --fromall signals
IF enl ="'1 THEN t est <= TRANSPORT data_a AFTER 2 ns;
ELSIF en2 = ' 1" THEN test <= TRANSPORT data b AFTER 2 ns;
ELSE test <= TRANSPORT ' 1’ AFTER 2 ns;
END | F;

END PROCESS;

6-26 Mentor Graphics VHDL Reference Manual, July 1994

Statements

selected_signal _assignment
The selected signal assignment form of the concurrent signal assignment
statement results in an equivalent process statement generated by the system that
assigns values to signals using a"case" statement format.

Construct Placement
concurrent_signal_assignment_statement, (concurrent_statement,
architecture_statement_part, block statement_part)

Syntax

selected signal_assignment ::=
with expression select
target <= options selected waveforms;

selected waveforms ::=
{ waveform when choices, }
waveform when choices

Example
The following example shows a possible use of the selected signal assignment.

ARCHI TECTURE data_flow OF tester 1S
SIGNAL test, data_a, data_ b : nmy_qgsimstate;
SIGNAL enl : bit;
BEG N
W TH enl SELECT
test <= data_a WHEN ' 0’ ,
data_b WHEN ' 1’ ;
END data_fl ow,

Using the previous example, the following example shows the equivalent form
the system creates for the selected signal assignment.

PROCESS (test, data_a, data b, enl) --sens. list created
BEG N --fromall signals
CASE enl1 IS

WHEN ' 0' => test <= data_a;
WHEN ’1' => test <= data_b;
END CASE;
END PROCESS;

Mentor Graphics VHDL Reference Manual, July 1994 6-27

Statements

exit statement
The exit statement relates to the loop statement in that you use this statement to
leave an enclosing loop. After execution of the exit statement, control goesto the
point immediately following the exited loop.

Construct Placement
sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

exit_statement ::=
exit [loop_label] [when condition] ;

Description
Asthe BNF description shows, the exit statement can take several forms. For
example:

EXIT, --Leave the nearest enclosing | oop.
EXIT sumdata; --Leave |oop nanmed by | oop_| abel "sum data"
EXIT WHEN data = 1024; --Leave enclosing loop if condition
--"data = 1024" is true.
EXIT fill _menory WHEN enable = 1; --Leave naned loop if the
--condition "enable = 1" is true

An exit statement with aloop label isvalid only within aloop that has a
corresponding label. You can use an exit statement in aloop that does not have a
loop label. In this case, the statement applies only to the innermost enclosing
loop.

If the condition you use evaluates to FALSE, the exit statement has no effect.

6-28 Mentor Graphics VHDL Reference Manual, July 1994

Statements

Example

The following example shows the exit statement in a nested loop structure.

sum dat a: --Loop | abel for outer |oop
WH LE count < 10 LOOP

-- sequence of sequential statenents

eval _dat a: --Loop | abel for inner |oop
FORi INO TO 10 LOCP

-- sequence of sequential statenents
EXIT sumdata WHEN i = a; --Exit outer | oop on the condition
-- sequence of sequential statenents

END LOOP eval _dat a;
END LOOP sum dat a;

In the preceding example, if you change the exit statement to the following, the
inner loop exits on the condition and remains in the loop sum dat a.

EXIT eval _data WHEN i = a;

Mentor Graphics VHDL Reference Manual, July 1994 6-29

Statements

generate_statement

Generate statements efficiently model regular structures, such as registers and
multiplexers, in structural design descriptions. A generate statement can replicate
ablock of concurrent statements a specified number of times or can conditionally
create a block of concurrent statements.

Construct Placement
concurrent_statement (architecture_statement_part, block statement part,
generate_statement)

Syntax

generate_statement ::=
generate |abel :
generation_scheme generate
{ concurrent_statement }
end generate [generate label] ;

generation_scheme ::=
for generate parameter_specification
| if condition

parameter_specification ::=
identifier in discrete_range

Definitions

m Qenerate label
|dentifies the generate statement. |f alabel appears at the end of the generate
statement, it must repeat the generate label.

m generation_scheme
A for generation scheme specifies how many times a block of concurrent
statementsisto be replicated. An if generation scheme causes one replication
if the condition expression evaluates to TRUE; otherwise, it generates no
repetitions.

m parameter_specification

In afor generation scheme, defines the generate parameter. The generate
parameter takes on each value in the specified discrete range as the

6-30 Mentor Graphics VHDL Reference Manual, July 1994

Statements

concurrent-statement block is replicated (generated) once for each valuein
the specified discrete range. The generate parameter acts as a constant
whose value may be read; it has meaning only within the generate statement
it appliesto.

Description

Y ou can describe repetitive structuresin a structural design by individually
instantiating all the required subcomponents, or you can use generate statements
to build the structure automatically by replication. Beside being more efficient
for large structures, the latter approach is more flexible, since you can make the
structure entirely configurable by using genericsto specify its size.

The following example generates a 16-line to 8-line data selector by repeating a
basic 2-line to 1-line multiplexer eight times. The generate statement (labeled
GL) not only repeats subsections of the multiplexer but maps all the inputs and
ouputs automatically. The generate parameter | takes on each valuein the
discrete range 0 to 7, and the port mapping uses that parameter to map individual
input and output bits to individual sections of the multiplexer. The single select
input, dsel , isconnected in parallel to thesel portsof al the individual
multiplexers.

--Design entity for a 16-line to 8-line data sel ector:
ENTITY nux16to8 IS
PORT (dsel : IN bit;
dinl : INDbit_vector (Oto 7))
din2 : INDbit_vector (Oto 7) ;
dout : QUT bit_vector (O to 7))

END nmux16t 08;

--Architecture for nux16to8
ARCHI TECTURE gen8 OF nuxl16to8 IS
COVPONENT mux2 -- Basic 2-input nux
PORT (a, b, sel : INDbit; y : QUT bit);
END COVPONENT ;

BEG N
-- Instantiate 8 copies of the basic nux:
GL : for I in O to 7 GENERATE
MK nmux2
PORT MAP (dinl(l), din2(l), dsel, dout(l));
END GENERATE ;
END gen8;

Mentor Graphics VHDL Reference Manual, July 1994 6-31

Statements

Notice that no component binding is specified in the architecture of the preceding
example. For components that are instantiated by a generate statement,
component binding must take place in a configuration declaration. For an
example of such a configuration declaration, refer to "block configuration”,
beginning on page 8-39 of this manual.

The following example is an 8-bit synchronous counter consisting of j-k
flip-flops and some AND gates that generate aripple carry. This example shows
how "if-generate” statements can be used to cope with irregularitiesin an
otherwise regular structure. In this case, the counter stages at the ends of the
chain are connected differently than those in the middle. Conditional generate
statements are used to instantiate the counter stages according to their positionsin
the chain.

6-32 Mentor Graphics VHDL Reference Manual, July 1994

Statements

1 ENTI TY counter IS

2 PORT(clock : IN bit ;

3 gout : BUFFER bit_vector(7 DOANTO 0)) ;

4 END counter ;

1 ARCHI TECTURE gen_counter OF counter IS

2

3 COVPONENT j kf f

4 PORT (clk, j, k: bit; q, gb : BUFFER bit) ;

5 END COVPONENT;

6

7 COVPONENT and2

8 PORT (a, b : bit; y: QUT bit) ;

9 END COVPONENT;

10

11 SIGNAL rc : bit_vector(7 DOMTO 0) ;

12 SIGNAL high : bit :="1 ;

13

14 BEG N

15 gl: FOR 1 IN 7 DOMNNTO 0 GENERATE

16 g2: IF 1 =7 GENERATE

17 ff7 . jkff PORT MAP

18 (clock, rc(l-1), rc(l-1), qout(l), OPEN) ;
19 END GENERATE;

20

21 g3: IFI <7 ANDI| > 0 GENERATE

22 andx: and2 PORT MAP (qout(l), rc(l-1), rc(l)) ;
23 ffx: jkff PORT NMAP

24 (clock, rc(l-1), rc(l-1), qout(l), OPEN) ;
25 END GENERATE ;

26

27 g4: IF |1 = 0 GENERATE

28 ff0: jkff PORT MAP (clock, high, high, qout(l), OPEN)
29 rc(l) <= qout(l) ;

30 END GENERATE;

31 END GENERATE ;

32

33 END gen_counter ;

Mentor Graphics VHDL Reference Manual, July 1994 6-33

Statements

If _statement
Theif statement selects one or more groups of sequential statements for
execution (or selects no statements), based on conditions you specify using a
boolean expression.

Construct Placement
sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

if _statement ::=

if condition then
sequence _of _statements

{ elsif condition then
sequence of statements }

[else
sequence of statements |

end if ;

Description

To set up acondition for an if statement, you must use a boolean expression. |f
the expression evaluates to TRUE, the sequence of statementsis executed; if the
expression evaluates to FAL SE, the sequence of statementsis not executed.

There are three basic forms of the if statement:

o Theif-then form selects a statement or sequence of statements for execution
iIf asingle condition istrue, as shown in the following example:

--The if - then statement fornmat

|F sum< 256 THEN sum := sum + 1;
END | F;

6-34 Mentor Graphics VHDL Reference Manual, July 1994

Statements

o Theif-then-else form selects one of two sequences of statement if a condition
istrue, as shown in the following example:

--if - then - else statenent format

|F preset =1 AND clear =0 AND clock ="'1" THEN
output :="1";

ELSE
output :="'0";

END | F;

o Theif-then-elsif-else form selects from aternative sequences of statements,
based on a set of conditions. Hereis an example:

-- Selecting alternative sequences with the ELSIF

IF mmin ="'1 AND cross ='1 AND left ='1" THEN
mai n_col or <= green;
sensor_count := fal se;

ELSIF main = 0" AND cross = '1" AND left ="'1" THEN
mai n_col or <= red;
sensor_count : = true;

ELSE
mai n_col or <= yel |l ow,
sensor_count : = true;

END | F;

Mentor Graphics VHDL Reference Manual, July 1994 6-35

Statements

loop_statement

The loop statement allows you to have a sequence of sequential statements
execute zero or more times, depending on an iteration scheme you specify.

Construct Placement
sequential_statement, (process statement part, subprogram_statement_part,
sequence_of _statements)

Syntax

loop_statement ::=
[loop_label :]
[iteration_scheme] loop
sequence _of _statements
end loop [loop_label | ;

iteration_scheme ::=
while condition
| for loop parameter specification

parameter_specification ::=
identifier in discrete_range

Description
An iteration scheme consists of a"while" or "for" structure, which controls the
execution of the loop. If you do not specify an iteration scheme, the loop will
cycle indefinitely, unless the sequence of statements contains an exit or return
statement. In thiscase, if the condition or expression is satisfied, the statement
executes, and the loop sequence stops.

The "while" iteration scheme controls the loop using a condition you specify.
This condition is a Boolean expression. If the expression evaluates to TRUE, the
sequence of statementsin the loop executes. If the return value is FALSE, the
loop exits and the sequence of statementsis not executed.

The"for" iteration scheme controls the number of times the loop executes using a
discrete range you specify in the loop parameter. Y ou can use only the loop
parameter value inside the loop (for example, as an array index), and this value
cannot be modified within the loop. (An example of modification is when you
use the loop parameter as the target of an assignment statement.) The loop

6-36 Mentor Graphics VHDL Reference Manual, July 1994

Statements

parameter is an implicitly declared object that is declared by the loop statement.

Example
The following examples show possible uses of the loop statement.

--Exanple of an infinite | oop
LOOP
sanpl e_data := sanple_time & result; --Declaration not shown
END LOOP;

--Exanpl e of a possible infinite loop with an "exit" statenent

get _data: --Loop |abe

LOOP

sanple data := sanple tinme & result; --Either exits
EXIT get _data WHEN sanpl e_data > 900256; --first tinme or in
END LOOP get _dat a; --infinite | oop because

--sanple_tinme and result can never change
--Exanpl e using the "while" iteration schene

answer: -- loop |abe
WH LE b < 50 LOOP --while | oop
b := 1024 * 8;
END LOOP answer; --Label nust match correspondi ng | oop | abel

-- exanple using the "for" iteration schene and no | oop | abe

FORi IN1 TO 100 LOOP --"for" | oop
a(i) =1 ** 2; --Use | oop paraneter as an array index
END LOCP

The following example shows the illegal use of the loop parameter in the "for"
loop.

FORi IN1 TO 20 LOOP
i .= 256 * 16; -- cannot use | oop paraneter as target of
-- assi gnnent

END LOOP

Mentor Graphics VHDL Reference Manual, July 1994 6-37

Statements

next statement
The next statement is used to complete the execution of one of the iterations of an
enclosing loop statement. Completion depends on a condition you specify. The
condition must be a Boolean expression.

Construct Placement
sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

next_statement ::=
next [loop_label] [when condition] ;

Description
If you use aloop label, it must be within an enclosing loop with the same label.
If you do not use aloop label, the next statement applies only to the nearest
enclosing loop in which it appears.

Example
The following example shows the next statement in an enclosing loop:

out er: --Quter |oop |abe
VWH LE a < 10 LOCP

--Sequence of statenents
i nner: --Inner | oop | abe
FORi INO TO 10 LOCP

--Sequence of statenents
NEXT outer WHEN i = a;
END LOCP i nner;

--Sequence of statenents
END LOOP out er

6-38 Mentor Graphics VHDL Reference Manual, July 1994

Statements

null statement

The null statement allows you to explicitly state that no action occurs. This
statement has no effect on your description other than causing execution to pass
on to the next construct.

Construct Placement

sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

null _statement ::=
null ;

Description
Y ou can use this statement in your code as a placeholder for readability or to
specify that no action is to be taken when a condition is true.

The most common use of the null statement is within the case statement. Since
an action for all the possible values for a case statement expression is required,
you can use the null statement as a choice for situations that require no action.
For more information on the case statement, refer to page 6-15.

Example
The following example uses a null statement within a case statement.

CASE (opcode) IS

WHEN "00" => instruction := add;
WHEN " 01" => instruction := sub;
WHEN " 10" => instruction := jnp;
WHEN OTHERS => NULL,; -- specify no action

END CASE;

This example assigns the variablei nst r uct i on avalue depending on the
opcode value. Values other than "00", "01", or "10" require no action.

Mentor Graphics VHDL Reference Manual, July 1994 6-39

Statements

procedure_call statement

The procedure call statement causes the execution of a procedure body.

Construct Placement
sequential_statement, (process statement part, subprogram_statement_part,
sequence _of _statements)

Syntax

procedure_call_statement ::=
procedure_name [(actual_parameter_part) | ;

Description
The procedure name is the name of the procedure body that you want to execute.
Y ou use the optional actual parameter part to specify the association of actual
with formal parameters of the procedure. For more information on parameters,
refer to page 7-8 and page 7-13. The concurrent procedure call is aso discussed
on page 6-21.

Example
The following example shows a procedure specification and a call to the
procedure:

-- procedure specification
PROCEDURE exam ne_data (ny_part : IN string;
read_data: OUT bit_vector (0 TO 23);
prop_delay : INtine);

-- procedure call later in a code description
exam ne_data (shifter, data_contents, t_ns);

In the preceding example, the parameter shi ft er correspondsto ny_part,
dat a_contents toread_data,andt _ns toprop_del ay.

6-40 Mentor Graphics VHDL Reference Manual, July 1994

Statements

process_statement

The process statement is a concurrent statement that contains within it a series of
sequentially executed statements that define the behavior of a portion of adesign.

Construct Placement

entity _statement, concurrent_statement, (architecture statement_part,
block_statement_part)

Syntax

process _statement ::=
[process labdl : |
process [(sengitivity list)]
process declarative part
begin
process _statement_part
end process|[process labd | ;

sengitivity _list ::=
signal_name({ , signal_name}

process_declarative part ::=
{ process _declarative_item}

process_declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype declaration
| constant_declaration
| variable_declaration
| file_declaration
| lias_declaration
| configuration_declaration
| attribute_specification
| use_clause

process _statement_part ::=
{ sequentia _statement }

Mentor Graphics VHDL Reference Manual, July 1994

6-41

Statements

Definitions

m process _declarative part
Contains declarations that are local to the process. Signal declarations are
not allowed in this part.

m process _statement_part
Contains one or more sequential statements.

m sengitivity list
Defines alist of signalsthat cause the process to execute when they change.

Description
The sensitivity list defines alist of signals that cause the process to execute when
they change. The sensitivity list for the process statement is optional. However,
if you use one, an implied wait statement is included at the end of the process.
Thisimplied wait statement has a sensitivity list that is the same as the sensitivity
list in the process statement.

Y ou can use only static signal names in the senditivity list of the process
statement, and the signals must be readable.

For simulation, a process without a sensitivity list must contain await statement.
If you use the sensitivity list in the process statement, you cannot use await
statement with a sensitivity list in the process statement part. Y ou also cannot
use await statement within a procedure if the procedureis called by a process
that uses a sensitivity list

When the process statement executes, the sequence of sequential statements
execute. When the last sequential statement executes, the first sequential
statement in the sequence then executes. Thisis analogous to alooping action.

The process declarative part contains declarations that are local to the process.
The declarations allowed are listed in the previous syntax. When you use a
signal assignment statement in the process, this statement defines adriver for the
destination signal. All driversfor asignal in the process are combined into one
source. For adiscussion on signals and drivers, refer to Section 11.

If no signal assignment statement appears in the process or in a procedure called
by the process, the processiis called a passive process. Only a passive process
can appear in the entity statement part of an entity declaration. For more

6-42 Mentor Graphics VHDL Reference Manual, July 1994

Statements

information on this subject, refer to page 8-12.

Example
The following example shows the possible use of a process statement:

ENTITY shifter IS

CENERI C (prop_delay : time := 25 ns);
PORT (sin : IN bit_vector (0 TO 3);
sout : QUT bit_vector (0 TO 3);
sctl : IN bit_vector (0 TO1));
END shifter;

ARCHI TECTURE behav OF shifter IS
TYPE tenp IS ARRAY (1 TO 3) OF integer;
BEG N
shf desc:
PROCESS (sin, sout, sctl)
VARI ABLE shifted: bit_vector (0 TO 3); --proc. decl. part
BEG N
CASE sctl 1S --sequential statements
VWHEN " 00" => shifted in;
VWHEN "01" => shifted : in (1 TO3) &'0;
d
d

[72BN?)]

VWHEN " 10" => shifte "0 & sin (0 TO 2);
WHEN " 11" => shifte sin (0) &sin (0 TO 2);

END CASE;
sout <= shifted AFTER prop_del ay;
END PROCESS shf desc; --Label nust match | abel at
END behav; --begi nni ng of the process

Mentor Graphics VHDL Reference Manual, July 1994 6-43

Statements

return_statement
The return statement terminates execution of a subprogram. A subprogramisa
procedure or afunction. For more information on subprograms, refer to Section
7.

Construct Placement
sequential _statement, (subprogram_statement_part)

Syntax

return_statement ::=
return [expression] ;

Description
The return statement is allowed only within a subprogram. When it executes, it
appliesto the innermost enclosing subprogram in the nested calling structure.

The expression value defines the result that the function returns to the calling
code. Thisexpression isrequired when the return statement appears in afunction
body. The expression is not allowed in a procedure body. The expression type
must be the same as the base type specified in the type mark after the word
return, in the function specification.

When areturn statement is encountered in a subprogram, execution returns to the
calling code (that is, it exits the subprogram).

To avoid an error condition you should do the following:
o Supply areturn statement for every function.

o Make sure the expression-value type is the same as the base type given (by the
type mark) after the reserved word return in the corresponding function
specification.

6-44 Mentor Graphics VHDL Reference Manual, July 1994

Statements

Example

The following examples show the return statement in afunction and in a
procedure.

-- exanple of a return statenent in a function

FUNCTI ON chk_pty (CONSTANT ram data_conc:

IN bit_vector (0 TO 23);
CONSTANT op_code_conc :

IN bit_vector (0 TO 23))
RETURN bool ean IS

VARl ABLE suml, sun? : bool ean := false;

BEG N

FORi INO TO 23 LOCOP
IF ramdata conc(i) = "1 THEN
sunl := NOT sunil; --Conpute parity for ram data
END | F;
| F op_code_conc(i) ='1" THEN
sunm2 := NOT sun®; --Conpute parity for op code data
END | F;

END LOOP;

RETURN suml = sun®; --Return true if suml = sun®,
END chk_pty; --false if not =

-- exanple of a return statenent in a procedure

PROCEDURE r am exam (VARI ABLE ram con: IN bit_vector (0 TO 17);
VARI ABLE address: | N integer;
VARI ABLE new add: OUT integer) IS

CONSTANT count _const : integer := 3;
VARI ABLE incr_count : integer;
BEG N
| F address > 255 THEN
RETURN; --\When encountered, returns to calling code.
ELSE
new add : = address + 3;
END | F;
incr_count := incr_count + count_ const;

END ram exam

Mentor Graphics VHDL Reference Manual, July 1994 6-45

Statements

Slg nal aSSIg nment statement
The signal assi gnment statement changes the values of the projected output
waveforms that are in the driver for one or more signals. Signals are not updated
until a process suspends.

Construct Placement
sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

signal_assignment_statement ::=
target <=[transport | waveform;

target ::=
name
| aggregate

waveform ::=
waveform_element { , waveform_element }

waveform_element ::=
value expression [after time_expression |
| null [after time_expression |

Description
Y ou can think of asignal driver as a container for the projected output waveform.
The value of asignal isrelated to the current values of itsdrivers. For more
information on signals and drivers, refer to Section 11.

The target is the signal to which you wish to assign the value of the expression
that followsthe "<=" delimiter. The"<=" delimiter differentiates a signal
assignment from a variable assignment and can be thought of as the word "gets'.
Therefore, the signal assignment statement reads as follows. The signal getsa
value of the waveform specified by awaveform element Do not confuse the

Y ou can specify a comma-separated series of waveform elements. If you do so,
the sequence of the elements must be in be in ascending time order.

6-46 Mentor Graphics VHDL Reference Manual, July 1994

Statements

Y ou can use the reserved word transport to specify that the delay associated
with the first waveform element is atransport delay. Transport delay causes any
pulse to be transmitted to the signal name you specify, no matter how short the
duration. In other words, transport delay exhibits a frequency response that is
characteristic of transmission lines; thus, it can be used to model interconnect, or
wire, delays.

If you do not use the reserved word transport, the default for the first waveform
element isinertial delay. (All subsequent elements are considered to have
transport delay.) Inertial delay applied to awaveform element prevents pulses
with awidth shorter than the delay time you specify from being transmitted to the
signal name you specify. Thistype of delay is characteristic of switching

circuits. For more detailed information on transport and inertial delay, refer to
page 11-19.

The evaluation of the waveform elements determines the future behavior of the
driversfor the target you specify. The waveform element takes two forms:

e Assign thetarget a specific value at a specified time.
o Specify that the target is turned off after a specified time.

If you specify time expressions in the waveform element, these delay times must
use the time units from package "standard”. If you do not specify atime
expression, the default is zero nanoseconds. A time expression must not evaluate
to negative number. Itisan error if the target of the signal assignment isnot a
guarded signal and you assign the target a null waveform (turn off the signal).

For more information on guarded signals, refer to page 11-5.

Example

The following examples show possible signal assignments:
clk <=1 AFTER 100 ns; --clk gets "1’ after tine specified.
cl ock <= GUARDED NULL AFTER 100 ns; --Clock turned off after
--time specified. "clock™ nust be a guarded signal.

result <= a ORb ORc; --result gets expression value in 0 ns
wire <= TRANSPORT 5 AFTER 25 ns; --Transport delay after tine

-- This assignment includes a series of waveform el enents:
clk <='1" AFTER 1 ns, 0" AFTER 2 ns, 1" AFTER 3 ns;

Mentor Graphics VHDL Reference Manual, July 1994 6-47

Statements

variable assignment_statement
The variable assgnment statement replaces a current variable value, specified by
the target, with anew value, specified by an expression. The target and the
expression must be of the same base type.

Construct Placement
sequential _statement, (process statement_part, subprogram_statement_part,
sequence of _statements)

Syntax

variable_assignment_statement ::=
target := expression ;

Description
Y ou usually use avariable for temporary storage when performing calculations.
Unlike signals, variables have no history and their value cannot be scheduled to
occur in the future. The value of avariable is updated immediately within a
process. Thevalid targets of variable assignment are variable names, array-
variable names, and aggregates. The variable assignment statement cannot assign
anew valueto afile-type variable.

When you use an array variable name as the target of the variable assignment, the
new value of the target is specified by the matching e ement in the corresponding
array-value expression result.

Example
The following examples show possible variable assignments:

PROCESS
TYPE b_array IS ARRAY (positive RANGE <>) OF integer
VARI ABLE z : b_array (1 TO 1023); --Vari abl e decl arati ons
VARI ABLE a, b, c_sqrd : integer :=1;--

BEG N
a .= 25; --Variabl e nane targets
b := 50; - -
csgrd :=a ** 2 + b ** 2, --
FORi IN1 TO 1023 LOCP

z (i) :=1i + c_sqgrd; --Array variable nane as a target

END LOOP;
WAIT FOR 10 ns;

END PROCESS;

6-48 Mentor Graphics VHDL Reference Manual, July 1994

Statements

walt statement

The walt statement suspends a process statement or a process called by a
procedure.

Construct Placement
sequential_statement, (process statement part, subprogram_statement_part,
sequence_of _statements)

Syntax

wait_statement ::=
wait [sensitivity clause] [condition clause] [timeout clause] ;

sengitivity _clause ::= condition_clause ::= timeout_clause ::=
on sengitivity _list until condition for time_expression
condition ::=

boolean_expression

Definitions

m sengitivity clause
Defines the set of signals to which the wait statement responds.

m condition_clause
Uses a Boolean expression to specify a condition to be met before the wait
terminates and the process resumes.

m timeout_clause
Specifies the maximum time that the wait statement suspends a process.

Description
Y ou can control the suspension of a process with the wait statement by using the
sensitivity clause, condition clause, or the timeout clause. For ssimulation
purposes, a process that has no sensitivity list must include await statement, or
the wait statement must be included in a subprogram that is called from the
process.

The sensitivity clause allows you to define the set of signals to which the wait
statement responds. The signal names used in this clause must be static signal
names, and each name must designate areadable signal. If you omit the

Mentor Graphics VHDL Reference Manual, July 1994 6-49

Statements

sensitivity clause, the wait-statement sensitivity defaults to the longest static
prefix of the signal namesin the condition clause, if any.

If you use asignal name in the sensitivity clause, which defines asignal of a
composite type, every element of the composite appears in the sensitivity list.
For more information about signals, refer to Section 11.

The condition clause allows you to use a Boolean expression to specify a
condition to be met before the wait terminates and the process resumes. If you do
not use the condition clause, the default is a condition value of TRUE allowing
the sensitivity and timeout clause to control the wait statement.

Note, the condition construct is part of several other VHDL statements. For page
references to the statements that contain a condition construct, refer to the index
entry "Condition".

The timeout clause allows you to specify the maximum time that the wait
statement suspends a process. The time expression you use cannot evaluate to a
negative number. If you do not use the timeout clause, the maximum wait
defaultsto an infinite value. The process resumes, at the latest, after the timeout
value expires (if no other clauses cause the process to resume).

Thefollowing areillegal uses of the wait statement that generate errors:

e You usethewait statement in afunction.

¢ You usethe wait statement in a procedure that is called from afunction.
e You usethewait statement in process statement that has a sensitivity list.

e You usethewait statement in a procedure that is called by a process with a
sensitivity list.
Example

The following examples show some of the various forms the wait statement can
take:

WAI T ON sync_pul se; --No condition or timeout clause
WAI T UNTIL counter > 7; --Using condition clause

WAIT ON interrupt FOR 25 ns; --Using tineout clause

VWAIT ON cl k, sensor UNTIL counter = 3 FOR 25 ns;--Using all
WAIT FOR 1 ns; --Using only the tinmeout clause

6-50 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Section 7
Subprograms

This section describes subprograms, which can be either procedures or functions.
Subprograms allow you to place computational sequences or behavior
descriptions into stand-alone modules that can be invoked repeatedly from other
locations in your design description. The following list contains the topics and

constructs explained in this section:

Definition of a Subprogram 7-3
subprogram_declaration 7-6
formal_parameter_list 7-8
subprogram_body 7-10
Subprogram Calls 7-13
function_call 7-15
The Procedure Call 7-17
Subprograms and Overloading 7-17
Overloading Operators 7-18
Complete Subprogram Example 7-19
Mentor Graphics VHDL Reference Manual, July 1994 7-1

Subprograms

Figure 7-1 shows where subprograms belong in the overall language and the
items that comprise them.

Design Units

Design Entities
Configurations
Packages

Attributes Components
Types Signals

Statements Subprograms
Declarations

Expressions
Lexical Elements ~

Naming, Scope, and Visibility

Subprograms

v
v v

Subprogram Declaration Subprogram Body
Subprogram Specification Subprogram Specification
Procedure Procedure
Function Function

Subprogram Declarative Part
Subprogram Statement Part

Figure 7-1. Subprograms

7-2 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Definition of a Subprogram

A subprogram consists of algorithms for calculating values, or it consists of
behavior descriptions. Subprograms give you the ability to define an algorithm
once and then call it many times or to write a description that calls an algorithm
that has not be defined yet (but which must be defined before simulation).

A subprogram is afunction or aprocedure. Asaguideline, you use afunction to
calculate and return one value, and you use a procedure to define an algorithm
that describes a behavior. Table 7-1 shows the comparison between functions
and procedures to assist you in determining which subprogram to use.

Table 7-1. Comparison of Functions and Procedures

Functions Procedures

One value is always returned. Multiple values returned as
parameters, or no value isreturned

Formal parameter mode must bein. | Parameter mode can bein, out, or
The parameter object classcan bea | inout. The parameter object class

constant or asignal. can be a constant, signal, or
variable.

Called within an expression Called by a sequential or concurrent
statement.

Must use thereserved word return | Thereserved word return is not
and provide an expression to return. | required.

No side-effects allowed Side-effects are possible

A side-effect refers to the execution of a subprogram that produces a change in an
object value outside of the subprogram.

Mentor Graphics VHDL Reference Manual, July 1994 7-3

Subprograms

The following example is also discussed in the Mentor Graphics Introduction to
VHDL. Itisusedinthis manual to explainin detail the items that compose a
subprogram. The exampleis ahigh-level description of a memory programming
and testing device, without regard to implementation details, such as control
lines.

Thefollowing list contains a brief statement about the subprograms necessary to
describe the example device:

e Memory write: procedure that writes opcodes to the memory device. This
procedure demonstrates that you can write a procedure with only one
parameter that makes changes to an external file without side-effects.

e Memory read: procedure that reads a random three address line section of the
memory device, to check that the write operation performs correctly. This
procedure demonstrates the return of multiple valuesto the calling code
without an input parameter.

o Concatenation: procedure that joins the memory device datato check the
parity. This procedure demonstrates the passing of an input parameter and the
return of an output parameter to the calling code.

e Check parity: function that returnsa TRUE or FALSE value after checking
the parity between the written data and the read data. This function
demonstrates the use of afunction.

Figure 7-2 shows the block diagram for the memory programmer and tester. The
arrows show the necessary parameters that need to pass between the subprogram
calls and the subprograms. Parameters are discussed in detail on page 7-8. The
small figure at the bottom right shows the hierarchical structure of this block
diagram.

The following subsections discuss the items that make up a subprogram and the
rules for using these items, using the memory programmer and tester as an
example.

7-4 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Design Description Code

Procedure Call

Function Call

Subprogram
‘ Code ‘
Op_Code(256)| RAM Op_Code(256)
—— P Load —p
‘ RAM
Procedure File
Addresé
< 3 RAM 3
EAM_Data}(4) Read RAM_Code(4)
Procedure
RAM_Data(4
— “) p Concat
3 RAM Data
RAM_ Data Conc
¢ 1 Procedure

RAM_Data_Conc

1 >
Op_Code_Conc Check
; p Parity
Boolea{n Function
Value

,,,,,,,,,,,,,,,,,,,,,,,,

RAM
Description
Design
Unit

Figure 7-2. Memory Programmer and Tester Block Diagram

Mentor Graphics VHDL Reference Manual, July 1994

7-5

Subprograms

subprogram_declaration

A subprogram declaration defines a convention for calling a subprogram. This
convention is an interface between the subprogram and external descriptions.

Construct Placement
block declarative item, declaration, entity declarative item,
package body declarative _item, package declarative item,
process declarative item, subprogram_declarative item

Syntax

subprogram_declaration ::=
subprogram_specification ;

subprogram_specification ::=
procedureidentifier [(formal_parameter_list)]
| function designator [(formal_parameter_list)]
return type_mark

designator ::=
identifier | operator _symbol

operator_symbol ::=
string_literal

Description
As the BNF description shows, the subprogram declaration consists of a
subprogram specification, which defines the name of the subprogram and the
parameters, if any, to be passed. The subprogram specification determines the

parameter types. |If the subprogram is afunction, the subprogram specification
defines the result type returned.

The following list shows the rules that govern subprogram declarations:

¢ A procedure designator can only be an identifier.

e The subprogram specification must match the subprogram specification in the
subprogram body.

¢ A function designator can be an identifier or an operator symbol (for operator
overloading).

7-6 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

e The operator symbol must be one of the predefined operators discussed on
page 2-16.

e Procedures and functions can be called recursively.

Example

The following subprogram declaration is from the code for the memory
programmer and tester described in the introduction to this section. (It isthe
RAM read procedure).

Address
<«

RAM
EAM_DaIa(“) Read 5AM_Code(4)

Procedure

PROCEDURE ram read(VARI ABLE ram data : OUT ram data_array;

VARI ABLE test_add_start: QOUT integer(0 TO 255));
--ramdata is read fromRAM starting at | ocation specified
--by test_add_start

The subprogram declarations for the remaining subprograms in the memory
programmer and tester follow:

PROCEDURE ram | oad (CONSTANT op_code : I N op_code_array);

PROCEDURE concat _data (CONSTANT ramdata : IN ramdata_array;
VARI ABLE ram data_conc :

QUT bit_vector (0 TO 31));
FUNCTI ON chk_pty (CONSTANT ram dat a_conc:

IN bit_vector (0 TO 31);
CONSTANT op_code_conc:

IN bit_vector (0 TO 31))
RETURN bool ean;

Mentor Graphics VHDL Reference Manual, July 1994 7-7

Subprograms

formal _parameter_list
Subprogram parameters are the items that designate which object type and in
which mode the values in subprograms are passed. These parameters are
gpecified in aformal parameter list. For information on interface lists and modes,
refer to page 4-22.

Construct Placement
subprogram_specification

Syntax

formal_parameter list ::=
parameter _interface list

Description
Table 7-2 shows the valid object type and mode for afunction and a procedure.

Table 7-2. Subprogram Parameters

Procedures Functions
Object constant constant
Classes signal signal

variable
Modes in in

out

inout

When you do not specify an object class in the subprogram declaration, thereisa
default. These defaults are defined by the following list:

e For procedures:
0 If themodeisin, constant isthe default.
0 If the modeisout or inout, variable isthe default.

0 If no modeisgiven, in isthe default mode and constant is the default
class.

7-8 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

e For functions:
0 constant isthe default.
0 If no modeisgiven, in isthe default.

The mode of the formal parameter determines how it is accessed within the
subprogram. The three modes are defined as follows:

e in: The subprogram reads the parameter but does not modify the value.

e out: The subprogram defines a parameter value to be used by the calling
code, but the subprogram is not read.

e inout: The subprogram reads and defines a parameter value.

Example

The following example shows the subprogram declaration from the code of the
memory programmer and tester:

PROCEDURE ram read (VARI ABLE ram data: OUT ram data_array;
VARI ABLE test _add _start: OUT integer(0 TO 255));

The default object class for a procedure with the mode out isvariable.
Therefore, the preceding example can be written as the following:

PROCEDURE ram read (ramdata : OUT ram data_array;
test _add _start : OUT integer (0 TO 255));

The following examples show illegal parameter modes and object classes:

FUNCTI ON tester(chk _data: OUT result)
RETURN i nteger ; --Mde OUT not all owed

FUNCTI ON t oday(date: | NOUT 1s)

RETURN i nteger ; --Mde |INOQUT not all owed

FUNCTI ON tfd_4(VARI ABLE b: I N day)
RETURN i nteger ; --VARI ABLE not all owed

Mentor Graphics VHDL Reference Manual, July 1994 7-9

Subprograms

subprogram body

A subprogram body defines how of a procedure or function behaves, using a
sequence of sequential statements in the subprogram statement part of the body.

Construct Placement

block declarative item, entity declarative item,
package body declarative_item, process declarative item,

subprogram_declarative item

Syntax

subprogram_body ::=
subprogram_specification is
subprogram_declarative part
begin
subprogram_statement_part
end [designator | ;

subprogram_declarative part ::=
{ subprogram_declarative item}

subprogram_declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype declaration
| constant_declaration
| variable_declaration
| file_declaration
| lias_declaration
| attribute_declaration
| attribute_specification
| use_clause

subprogram_statement_part ::=
{ sequential_statement }

7-10

Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Description
If you use adesignator at the end of the subprogram body, it must be the same as
the name you use in the subprogram specification.

The subprogram specification appears in the subprogram body and in the
subprogram declaration. The reason for this duplication is that the declaration of
asubprogram is not required. When you do not declare a procedure or function,
the subprogram specification in the subprogram body is used as the declaration.
The following rules apply:

o When you declare a subprogram, it must have a corresponding subprogram
body.

e The subprogram declaration and corresponding subprogram body must bein
the same declarative region.

¢ When you declare a subprogram and define a subprogram body, the two
subprogram specifications must match.

Because of the visibility rules, you must use a subprogram declaration if you
wish to call a subprogram whose body occurs textually after the call. This
declaration must occur before the call, in your description code. For more
information on visibility rules, refer to page 3-17.

Example

The following subprogram body is from the code for the memory programmer
and tester described in the introduction to this section (in the check parity
function).

RAM_Data Conc

Check
Op_Code Conc Parity
Boolean Function
Vaue

Mentor Graphics VHDL Reference Manual, July 1994 7-11

Subprograms

-- subprogram speci fication
FUNCTI ON chk_pt y(CONSTANT ram data_conc:
IN bit_vector(0 TO 31);
CONSTANT op_code_conc:
IN bit_vector(0 TO 31))
RETURN bool ean | S

- -subprogram decl arati ve_part
VARI ABLE sumil, sun® : bool ean := false;
BEG N

- - subpr ogram st at ement part
FORi INO TO 31 LOOP

| F ramdata_conc(i) = 1" THEN
sunl := NOT suni; --Compute parity for ramdata
END | F;
| F op_code_conc(i) ='1" THEN
sun: = NOT sun®; --Conpute parity for op code data
END | F;
END LOOP;
RETURN suml = sun®; --Return true if parity matches, false
END chk_pty; --if parity does not match

7-12 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Subprogram Calls

A subprogram call causes the execution of a procedure or function and specifies
the parameter passing conventions (if parameters exist). The function call isan
expression, while the procedure call can be a sequential or concurrent statement.
To call asubprogram, use one of the following methods:

o Positional parameter notation
o Named parameter association notation
o Default parameters

Y ou also use these methods for generic and port association. For more
information on this topic, refer to page 4-31.

To illustrate the three subprogram calling methods, the following discussion
refers to the following specification:

PROCEDURE exam ne_data (nmy_part : IN string;
read_data: OUT bit_vector (0 TO 23);
prop_delay: INtinme := 1 ns);

Positional parameter notation is the most common method for calling a
subprogram. In this method, the parameters you specify in the call must match
the order of the parametersin the subprogram. Using the example specification
for exami ne_dat a, the following example shows a positional parameter call.

exam ne_data ("shifter", data_contents, 25 ns);

-- "shifter" corresponds to "nmy_part", "data contents" to
-- "read_data", and "25 ns" to "prop_del ay"

If the type of the parameter in the call does not match the type of the parameter in
the subprogram, an error occurs.

Y ou can aso use named parameter association as a method for calling a
subprogram. In this method, you explicitly relate the parameter in the call to the
parameter in the subprogram. This method alows you to use a different
parameter order in the call than the order in which the parameters appear in the
subprogram.

Mentor Graphics VHDL Reference Manual, July 1994 7-13

Subprograms

Named parameter association is also a good way to document exactly what is
taking placein the call. Using the example specification for exani ne_dat a, the
following example shows a parameter association call.

exam ne_data (ny_part => "shifter"
prop_delay => 25 ns,
read data => data _contents);

-- "shifter" corresponds to "ny_part", "data_contents" to
-- "read_data", and "25 ns" to "prop_del ay"

Y ou can also use default parameters as a method for calling a subprogram. Using
this method, you omit parametersin the call that have default values assigned,
thereby using the default value. The following example shows a default
parameter call for exani ne_dat a.

exam ne_data ("shifter", data_contents);
-- the default value for prop_delay is "1 ns"

Although the documentation of the call may be unclear when using the default
parameter method for calls, you can safely use the default method when the
subprogram values do not change in the majority of calls. For more examples
and the rules for association, refer to page 4-33.

7-14 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

function_call
A function call causes the execution of afunction body.

Construct Placement
primary, prefix

Syntax

function_call ::=
function_name [(actual_parameter_part) |

actual_parameter _part ::=
parameter association list

Description
A function call must have an associated parameter for each formal parameter of
the called function. If you do not specify an actual parameter in the association
list, adefault expression is used. For more information on association lists, refer
to page 4-31.

Before the function call executes, all the actual parameter expressions you
specify are evaluated. For formal parameters that do not have matching actual
parameters, the corresponding default expressions evaluate. The result of the
expression must match the formal parameter type.

If the formal parameter is an unconstrained array, the actual parameter must have
the same base type as the formal parameter. The formal parameter takes the
actual parameter subtype.

When the function body executes, avalueisreturned. Thisvauetypeisthe
result type of the function declaration.

For more information on function call expressions, refer to page 2-10.

Mentor Graphics VHDL Reference Manual, July 1994 7-15

Subprograms

Example
An example of afunction call from the memory programmer and tester follows:

-- subprogram specification for chk_pty function
FUNCTI ON chk_pty (ram. data_conc :

op_code_conc
RETURN bool ean ;

bit_vector (0 TO 23);

I'N
IN bit_vector (0 TO 23))

ASSERT chk_pty (ramdata _conc => a, op_code_conc => h) --
REPORT "Parity Failed"; --function call expres. to chk _pty

7-16 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

The Procedure Call

The procedure call causes the execution of the procedure body. Procedure calls
can be sequential or concurrent. The sequential procedure call is shown on
page 6-40, and the concurrent procedure call is shown on page 6-21.

The following example shows the sequential procedure calls for the memory
programmer and tester.
PROCEDURE ram read(VARI ABLE ram data: OUT bit_vector(0 TO 7);
VARI ABLE test _add start: OUT integer(0 TO 255));

PROCEDURE ram | oad(VARI ABLE op_code: IN bit_vector(0 TO 7));

PROCEDURE concat _dat a(VARI ABLE test _add_start:
IN integer (0 TO 255));
VARI ABLE ram data: IN bit_vector(0 TO 7);
VARI ABLE op_code : IN bit_vector(0 TO 7);
VARI ABLE ram dat a_conc, op_code_concat :
QUT bit_vector (0 TO 23));

-- sequential procedure calls
ramread (ramdata => nem data, test_add_start => address);
ram | oad (codes);

concat _data (test_add_start, ramdata, op_code,
ram dat a_conc, op_code_concat);

Subprograms and Overloading

There are two common uses of overloading related to subprograms:

o Overloading subprogram names, where multiple subprograms declarations
having different parameter- and/or result-type profiles use the same name

o Overloading operators, where an operator such as"+" or "OR" isgiven an
additional meaning by declaring a function that uses the operator symbol asits
name

For a detailed example and discussion about overloading subprogram names,
refer to the Mentor Graphics Introduction to VHDL.

Mentor Graphics VHDL Reference Manual, July 1994 7-17

Subprograms

Overloading Operators

Y ou use afunction to define a new operation for a predefined operator
(overloading). Assume that a package called "my_gsim_base" performs
overloading of predefined operatorsto use values from the "my_gsim" package.
Here are some examples that show overloading of operators with functions from
my_gsim_base:

TYPE ny_gsimstate IS ("x’, "0, "1, "z2');

FUNCTI ON "or "
FUNCTI ON "=" (
FUNCTI ON " +" (

(L, R: ny_gsimstate) RETURN ny_qgsi m st at e;
L, R: ny_gsimstate) RETURN bool ean;
L, R: nmy_qgsimstate) RETURN my_qsi m st at e;

In this example, "L" isthe parameter for the |left operand and "R" is the parameter
for the right operand. The function designator for operator overloading functions
is an operator symbol, which isastring literal. Therefore, the operator you wish
to overload must be enclosed in double quotes. For more information about
predefined operators, refer to page 2-16.

Rules for Operator Overloading

The following rules apply to operator overloading:

The subprogram specification of a unary operator ("abs’, "not", "+", and "-")
must have only one parameter.

The subprogram specification of a binary operator must have two parameters
(thefirst for the left operand, the second for the right operand).

Overloading islegal for "+" and "-" as both unary and binary operators.

Overloading the "=" operator has no effect on choices in the case statement or
the selected signal assignment statement.

Y ou can make a function call by using the function call notation or by using
the operator notation only. For example:

"OR'(a, b) --"OR' function call with paraneters "a" and "b"

a ORb -- operator notation only

7-18 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

Complete Subprogram Example

The following example shows the code description for the memory programmer

and tester. The elements of this code are explained individually in the preceding
subsections. The contents of the package "new_math" and the file "ram_cntnts"

do not appear in this example.

-- The ramwite procedure

PACKAGE nenory_ wite IS

TYPE op_code_array IS ARRAY(O TO 255) OF bit_vector(0 TO 7);
PROCEDURE ram | oad (VARI ABLE op_code : I N op_code_array);
END nenory_wite;

PACKAGE BODY nmenory wite IS
PROCCEDURE ram | oad (VARI ABLE op_code : IN op_code_array) IS

USE ram ALL; -- ramto |oad
BEG N
ram code := op_code;

END ram | oad;
END nenory_wite;

-- The ramread procedure

PACKAGE nenory read IS

TYPE op_code_array IS ARRAY(O TO 255) OF bit_vector(0 TO 7);

TYPE ramfile IS FILE OF op_code_array;

FILE ramcntnts: ramfile IS IN

"/user/sys_1076_lib/raml_file";

PROCEDURE ram read (VAR ABLE ramdata : OUT ram data_array;
VARI ABLE test _add_start: QOUT integer);

END menory_read;

Mentor Graphics VHDL Reference Manual, July 1994 7-19

Subprograms

PACKAGE BODY nmenory read IS
PROCEDURE ram read (VAR ABLE ramdata : OUT ram data_array;
VARI ABLE test _add_start: OUT integer) IS
USE new_mat h. ALL; --Random nunber generator in this package
VARI ABLE address : integer
VARI ABLE op_code : op_code_array;

CONSTANT seed: real := 0.1; --seed for random nunber
BEG N
address : = integer(erand48(seed)* 63.0)* 4;--random address
test _add start := address;
FOR a INO TO (address + 3) LOOP
read (ramcntnts, op_code(a)); --Read file for desired data
| F a >= address THEN
ram data (a- address) := op_code(a); --Extract the data
END | F;
END LOOP

END ram r ead;
END nenory_read,

-- The concatenation for parity check procedure

PACKAGE concat | S
TYPE ram data_array IS ARRAY (0 TO 3) OF bit_vector (0 TO 7);
PROCEDURE concat _data (VARIABLE ramdata : |IN ramdata_array;
VARI ABLE ram dat a_conc
OQUT bit_vector (0 TO 31));
END concat;

PACKAGE BODY concat 1S

PROCEDURE concat _data (VARI ABLE ram data : IN ram data_array;
VARI ABLE ram data_conc: OUT bit_vector(0 TO 31)) IS

BEG N

ramdata conc := ramdata(0) & ramdata(l) & ramdata(2) &
ram dat a(3); -- concatenate the data
END concat _dat a;
END concat;

-- Parity checker function

PACKAGE parity_check IS
FUNCTI ON chk_pty (ram data_conc
op_code_conc
RETURN bool ean
END parity_check;

it_vector (0 TO 23);

IN Db
IN bit_vector (0 TO 23))

7-20 Mentor Graphics VHDL Reference Manual, July 1994

Subprograms

PACKAGE BODY parity_check IS
FUNCTI ON chk_pt y(CONSTANT ram data_conc:
IN bit_vector(0 TO 31);

CONSTANT op_code_conc : IN bit_vector(0 TO 31))
RETURN bool ean | S

VARl ABLE sunml, sun? : bool ean := fal se;

BEG N
FORi INO TO 31 LOCP
IF ramdata_conc(i) = '1 THEN
suml := NOT sunil; --compute parity for ramdata
END | F;
| F op_code _conc(i) ='1" THEN
sun : = NOT sung; --conmpute parity for op code data
END | F;
END LOOP
RETURN suml = sun®; --Return true if suml = sun®,
END chk_pty; --false if not equa

END parity_check;

Mentor Graphics VHDL Reference Manual, July 1994 7-21

Design Entities and Configurations

Section 8

Design Entities and

Configurations

This section describes the mgjor hardware abstraction in VHDL, the design
entity. It also discusses components, which are the basic units of structural
designs, and configurations, which can assemble external design entitiesinto a
higher-level design. The following list summarizes the topics contained in this

section:
Design Entities 8-2
entity declaration 8-4
entity _header 8-6
generic_clause 8-7
port_clause 8-8
entity_declarative_part 8-10
entity statement_part 8-12
ar chitecture_body 8-14
architecture_declarative part 8-17
architecture_statement_part 8-18
Components 8-20
Component Declarations 8-21
Component Instantiations 8-22
Component Binding 8-23
configuration_specification 8-25
binding_indication 8-29
entity_aspect 8-31
Generic and Port Map Aspects 8-32
Default Binding Indication 8-33
Configurations 8-34
configuration_declaration 8-35
block_configuration 8-39
component_configuration 8-43
Mentor Graphics VHDL Reference Manual, July 1994 8-1

Design Entities and Configurations

Design Entities

The design entity is the basic unit of design description. Y ou can create adesign
entity that describes any level of adesign, from acomplex system to asingle
logic gate. A given design entity can be reused as many timesin adesign asyou
wish, and you can substitute different design descriptions (through different
architecture bodies) into a design entity to compare implementation results. The
design entity is composed of two parts.

e Theentity declaration
e The architecture body

Figure 8-1 shows where design entities belong in the overall language and it lists
the items they contain.

8-2 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Design Units

Design Entities
Configurations

Packages
Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
Lexical Elements

Naming, Scope, and Visibility

Design Entities

v
v v

Entity Declaration Architecture Body
Entity Header Architecture Declarative Part
Generics Architecture Statement Part
Ports

Entity Declarative Part
Entity Statement Part

Figure 8-1. Design Entities

Mentor Graphics VHDL Reference Manual, July 1994 8-3

Design Entities and Configurations

entity _declaration

The entity declaration establishes a name for adesign entity, and it defines an
interface for communication with the design entity.

Construct Placement
declaration, primary_unit

Syntax

entity _declaration ::=
entity entity smple_nameis
entity _header
entity declarative part
[begin
entity _statement_part]
end [entity simple name] ;

Definitions

m entity simple_name
Anidentifier that you provide to give the design entity a unique namethat is
referenced by other primary units. If you use the optional name after the
reserved word end, it must match the name that you used between the
reserved words entity and is.

m entity header
Declares the interface for the design entity to communicate with other items
in the design environment.

m entity declarative part
Contains declarations of items that are shared with other architectures having
the same interface.

m entity statement_part
Contains passive concurrent statements that are shared with other
architectures having the same interface.

8-4 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Description

An entity declaration can be used by many architectures. This feature givesyou
the ability to declare one design entity with one interface and then write different
architecture abstractions for that design entity.

The following subsections describe the |language constructs that compose the
entity declaration.

Example
An example of an entity declaration follows:
ENTITY shifter IS -- entity sinple nane is "shifter™
GENERI C (prop_del ay: tine); --These 4 lines until
PORT (sin : INDbit_vector (0 TO 3); --the "TYPE" are the
sout: OUT bit_vector(0 TO 3); --entity header.
sct : INDbit_vector (0 TO1)); --
TYPE tenp 1S ARRAY (1 TO 3) OF integer; --entity decl. part
BEG N

ASSERT sin’ del ayed’ stabl e AND sctl’ active --entity stmimt prt
REPORT "Ti m ng viol ation"; --
END shifter; --1f you use entity nane here, it nust match
--the entity_sinple_name used on the first |ine.

Mentor Graphics VHDL Reference Manual, July 1994 8-5

Design Entities and Configurations

entity _header
The entity header declares the interface for the entity to communicate with other
itemsin the design environment. This interface consists of ports and generics.

Construct Placement
entity_declaration

Syntax

entity _header ::=
[formal _generic clause]
[formal_port_clause]

generic_clause ::=
generic (generic_list) ;

port_clause ::=
port (port_list) ;

Description
All object types used in the entity header must be declared either in package
"standard" or in a user-defined package.

Example
The following examples show entity headers for separate entities:

ENTITY i dea_check IS --An entity decl. with no header,

END i dea_check; --declarative, or statenent part is |egal
ENTITY shifter IS
GENERI C (prop_delay : tine); --Entity header with a generic

PORT (sin : INDbit_vector (0 TO 3); --and port decl.
sout: OUT bit_vector(0 TO 3);
sctl: INbit_vector (0 TO 1));

END shifter;

ENTITY proto IS

PORT (input : IN bit_vector (0O TO7); --Entity header with
output: OUT bit_vector (0 TO 7); --port decl. only
busl : INOQUT bit_vector(0 TO7));

END pr ot o;

In the previous examples, typesti me and bi t _vect or are declared in package
"standard".

8-6 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

generic_clause
Generics provide a method for passing data or fixed design parametersinto
internal and external blocks. Internal blocks are defined within an architecture by
using the block statement and external blocks are defined by other design entities.
For more information on block statements, refer to page 6-12.

Construct Placement
formal_generic_clause, (entity header), local generic_clause,
(component_declaration)

Syntax

generic_clause ::=
generic (generic_list) ;

generic_list ::=
interface_constant_declaration
{; interface_constant_declaration}

Description
Generics alow you to reuse a single design entity by passing in information that
IS unique to that design entity, such as delays, temperature, and capacitance.
They also provide a method for documenting your design.

The interface declarations are discussed in detail beginning on page 4-21.

Example
The following examples show generic declarations from separate entity headers:

GENERI C(propagati on_delay: tinme := 15 ns);--Default to 15 ns
GENERI C(t enperature : real); --No default val ue

GENERI C(capacitance: real; resistance: integer); --multiple
--decl arations

Mentor Graphics VHDL Reference Manual, July 1994 8-7

Design Entities and Configurations

port_clause
A port clause declares one or more ports. A port isasignal that servesasa
communication channel between ablock of a description and its external
environment.

Construct Placement
formal_port_clause, (entity _header), local_port_clause,
(component_declaration)

Syntax

port_clause ::=
port (port_list) ;

port_list ::=
interface_signal_declaration
{ ; interface_signal_declaration }

Description
Internal blocks are defined within an architecture by using the block statement
and external blocks are defined by other design entities. For more information on
block statements, refer to page 6-12.

The port modes are in (read the signal), out (update the signal), inout (read and
update the signal), buffer (read, but update by at most one source), and linkage
(read, but update only by appearing as an actual of an interface object of mode
linkage). The interface declarations and the modes are discussed in detall
beginning on page 4-21.

If you associate aformal port with an actual port or signal, the port is connected.
If you associate the formal port with the reserved word open, the port is
unconnected. For more information about association, refer to page 4-31.

Aninput port (modeisin) cannot be left unconnected if there is no default
expression to handle such a situation. The default expression isdiscussed in
detail on page 11-15. A port that has any other mode can be left unconnected if
itstype is not an unconstrained array.

8-8 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Example
The following examples show port declarations from separate entity headers:

PORT (in_pin : IN bit_vector (0 TO 3);
out_pin : OUT bit_vector (0 TO 3));

PORT (a_line : IN bit;

bus Iines : QUT bit_vector (0 TO 7);
chk_bit : INOUT bit);

Mentor Graphics VHDL Reference Manual, July 1994

8-9

Design Entities and Configurations

entity declarative_part
The entity declarative part contains declarations of items that are shared with
other architectures having the same interface.

Construct Placement
entity_declaration

Syntax

entity _declarative part ::=
{ entity_declarative item }

entity _declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| file_declaration
| lias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use clause

Description
When you declare items in the entity declarative part, the names you use are
visibleto all the architectures that correspond to the design entity. For more
information on visibility, refer to page 3-12.

8-10 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Example
The following example shows some possible entity declarative items:

ENTITY bus _nonitor IS
GENERI C (prop_delay : tine);
PORT (data_bus : IN bit_vector (0 TO 7);

prty : IN bit;

error : QUT bit);
USE parity. ALL; -- use clause
TYPE code IS ARRAY(i nteger RANGE <>) OF integer; --type

- -decl .
SUBTYPE bcode IS code (0 TO 1); -- subtype decl aration

CONSTANT even_check : string := "10000010"; - -const ant
CONSTANT odd_check : string := "00000001"; --decl . s

END bus_nonitor;

Mentor Graphics VHDL Reference Manual, July 1994 8-11

Design Entities and Configurations

entity statement_part
The entity statement part contains passive concurrent statements that are shared

with other architectures having the same interface.

Construct Placement
entity_declaration

Syntax

entity_statement_part ::=
{ entity _statement }

entity statement ::=
concurrent_assertion_statement
| passive_concurrent_procedure _call
| passive_process_statement

Description
Passive concurrent statements are process statements and concurrent procedure
calls that do not make signal assignments or do not execute file operations. (The
concurrent assertion statement isinherently passive.) You can use these
statements to monitor your design during ssmulation. For more information on
concurrent statements, refer to page 6-7.

8-12 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Example

The following example shows some possible entity statement parts:
-- Define the design entity

ENTITY controller IS
PORT (sensor : IN bit;

count : IN Dbit;
output : QUT bit);
--Entity statenent part until "BEGQ N'
BEG N
ASSERT count = '1' REPCRT "The state is changing" --con.
SEVERI TY not €, --assert.
update_l i ghts: -- passive process statenent

PROCESS (sensor)
VARI ABLE sensor _check : character;

BEG N
| F sensor = '0' THEN
sensor _check :="f’;
END | F;

END PROCESS update_|ights;
END controller;

Mentor Graphics VHDL Reference Manual, July 1994

8-13

Design Entities and Configurations

architecture body
An architecture body describes how the inputs and outputs of a design entity
relate to one another. In other words, the architecture body specifies what the
design entity does. You can express an architecture in terms of structural,
behavioral, or data-flow descriptions.

Construct Placement
secondary _unit

Syntax

architecture_body ::=
ar chitecture architecture simple name of entity name is
architecture_declarative part
begin
architecture_statement_part
end [architecture simple name] ;

Definitions

m architecture simple_name
Defines the identifier for the architecture body.

= entity_name
Specifies the entity declaration to use with the architecture body.

m architecture declarative part
Contains declarations of itemsthat are used in ablock that is defined by a
design entity.

m architecture statement_part
Contains concurrent statements that describe the operation and the
relationship between the inputs and outputs in the block defined by the
design entity.

8-14 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Description
The following list briefly describes the three kinds of description methods that
you can use in an architecture:

e Sructural Description: describes a design as an arrangement of
interconnected components.

e Behavioral Description: describes adesign’s functional behavior, using
algorithms, without describing the design structure.

o Data-flow Description: describes design in terms of the flow of information
from one input to another input or output. This method of description is
similar to aregister-transfer language.

Using any combination of the three description methods, you can describe a
design in acomplete or incomplete manner. For detailed information on the three
methods of design description, refer to the Mentor Graphics Introduction to
VHDL.

The architecture simple name defines the identifier for the architecture body.
Thisidentifier allows you to distinguish between different architecture bodies
written for asingle entity declaration. In the architecture body example, the
architecture nameisdat a_f | ow.

The entity name specifies the entity declaration to use with the architecture body.
The entity declaration you specify must be in the same library as the associated
architecture body. In the architecture body example, the entity nameisshifter.

If the design contains more than one architecture body, the architecture bodies
can have the same architecture simple name provided they are associated with
different entity declarations. Thisistrue even if the architecture bodies are in the
same library. For more information on libraries, refer to page 9-8.

Mentor Graphics VHDL Reference Manual, July 1994 8-15

Design Entities and Configurations

Example
An example of an architecture body follows:

ARCHI TECTURE data_flow OF shifter IS

TYPE tenp IS ARRAY (1 TO 3) OF integer; -- arch. decl. part
BEG N
sout <= sin(l1 TO3) &'0 AFTER prop_delay --Fromthis point
VWHEN sctl = "01" --until the "END'
ELSE --is the arch.
"0’ & sin (0 TO 2) AFTER prop_del ay --statenent _part
VWHEN sctl = "10"
ELSE
sin (0) & sin (0 TO 2) AFTER prop_del ay
VWHEN sctl = "11"
ELSE
sin (0 TO 3) AFTER prop_del ay;
END data flow, --1f you use architecture nane here, it

--must nmatch architecture nane used
--on the "ARCH TECTURE" |i ne

8-16 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

architecture_declarative_part

The architecture declarative part contains declarations of itemsthat are used in a

block that is defined by a design entity.

Construct Placement

architecture_body

Syntax

architecture_declarative part ::=
{ block _declarative item}

block declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| file_declaration
| lias_declaration
| component_declaration
| attribute_declaration
| configuration_specification
| attribute_specification
| disconnection_specification
| use_clause

Example

The following example shows a possible architecture declarative part:

ARCHI TECTURE decl are_part OF declared_entity IS

USE parity. ALL; -- use clause

TYPE code IS ARRAY(i nteger RANGE<>) OF integer; --Type decl.

SUBTYPE bcode 1S code (0 TO 1);

CONSTANT even_check : string :
CONSTANT odd_check : string :
SIGNAL x, y : bit;

BEG N

END decl are_part;

Mentor Graphics VHDL Reference Manual, July 1994

-- subtype decl aration
"10000010"; -- constant
"00000001"; -- declarations

-- signal decl.

8-17

Design Entities and Configurations

architecture_statement_part
The architecture statement part contains concurrent statements that describe the
operation and the relationship between the inputs and outputs in the block defined
by the design entity.

Construct Placement
architecture_body

Syntax

architecture_statement_part ::=
{ concurrent_statement }

Description
Concurrent statements execute asynchronously with respect to one another. For
more information on concurrent statements, refer to page 6-7.

8-18 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Example

The following example shows an architecture statement part within a partial code
description for atraffic light controller:

ARCHI TECTURE mi xed OF tlc IS
SIGNAL count : bit_vector (1 TO 3) := B"000";

BEG N --architecture statenent
mai n_gr een: --part fromthis point on
BLOCK(mai n_col or = green)

PORT (SIGNAL ¢, |, m: IN~rf_bit;
SI GNAL cnt : IN bit_vector (1 TO 3);
SI GNAL nt : I NOUT col or);

-- The PORT MAP establishes the correspondi ng
-- mapping of the internal and external signals.
PORT MAP (¢ => cross, | =>left, m=> main,
cnt => count,
nc => mai n_col or);
--Signal control is used to determ ne the correct color
--transition based upon the counter and the three sensors.
SIGNAL control : bit_vector (1 TO 6);
BEG N
-- Assign the values of cnt, ¢, | and mto
-- control, if main_color is green.
control <= GUARDED (((cnt &c) &1) & m; -- 1st concurrent
-- Statenment.
W TH control SELECT -- 2nd concurrent statenent.
nt <= GUARDED yel | ow WHEN B"011010",
yel | ow WHEN B"011110",
yel | ow WHEN B"011100",
yel | ow WHEN B"111011",
yel | ow WHEN B"111111",
yel | ow WHEN B"111101",
green WHEN OTHERS;
END BLOCK nmi n_green;

END m xed ;

Mentor Graphics VHDL Reference Manual, July 1994 8-19

Design Entities and Configurations

Components

Components are the basic units of structural design descriptions. Components
allow you to declare adevice and instantiate it within an architecture without
having to specify the actual architecture of the instantiated device.

Y ou then use a configuration specification or configuration declaration to bind
the component instantiation to the entity architecture that describes the
component. If you want an explicit binding, this specification must appear before
the instantiation of acomponent. Otherwise, the default binding isused. Figure
8-2 illustrates the component concept.

8-20

/ Architecture \

Architecture
Body

,,,,,,,

Entity Declaration

Body Architecture

Body

Component
Declaration

,,,

Component
Instantiation

Configuration

_ Specification L
~ Entity Declaration

T # ,,,,,,,,,,,,,,,,,,, i

Architecture
Body

Figure 8-2. Components

Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Component Declarations

A component declaration defines a design-entity interface that isused in a

component instantiation statement. The component declaration is aso described

on page 4-36. The following examples show some possible component

declarations:

COVPONENT and_2

CENERI C (prop_delay : tine);

PORT (a, b : INDbit;
o: QUT bit);
END COMPONENT;

COVPONENT i nv
PORT (in_line : INDit;

out line : QUT bit);

END COVPONENT;

COMPONENT ny_desi gn

GENERIC (x : integer := 5;
z . real :=0.5);

PORT (enab : IN bit;
output : OUT bit);
END COVPONENT;

Mentor Graphics VHDL Reference Manual, July 1994

8-21

Design Entities and Configurations

Component Instantiations

S Once you declare a component, you can instantiate it multiple times. The
component instantiation statement creates a component instance and is
described on page 6-17. The component instantiation statement associates any
generic values with the component and identifies the signals that are connected
to the component ports. The following example shows component

instantiations.
ENTITY mux IS
PORT (a0, al, sel : INDbit;
y : QUT bit);
END nux;

ARCHI TECTURE structure_descript OF mux IS
COMPONENT and?2
PORT (a, b: INDbit;
z: QUT bit);
END COVPONENT;

COVPONENT or 2
PORT (a, b : INDbit;
z . QUT bit);
END COVPONENT;

COVPONENT i nverter
PORT (i : INDit;
z . QUT bit);
END COVPONENT;
SIGNAL aa, ab, nsel : bit;

BEA N
Ul: inverter PORT MAP (sel, nsel);
U2: and2 PORT MAP (a0, nsel, aa); --instantiation
U3: and2 PORT MAP (al, sel, ab); --statenents

U4: or2 PORT MAP (aa, ab, y);
END structure_descript;

Generic and port maps are discussed on page 8-32.

8-22 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Component Binding

Component binding is the method you use to connect your declared and
instantiated components to the design entities that actually supply the
functionality for the components. Binding may be compared to plugging an IC
into a socket on acircuit board. The component declaration and instantiation
provide the socket; binding plugs an external design entity into the socket. The
connection is made through three kinds of ports:

e Formal ports, which are the inputs and outputs of an entity declaration
e Loca ports, which are ports declared in a component declaration

e Actua ports, which are declared in the port map of a component instantiation
Statement

The following three examples show formal, local, and actual ports.

The figure at the right shows formal
ports declared in the following al[>
code:
cl >—
ENTITY test IS -
PORT (a.c, dir.en b INbit: 7L~ test
z: QUT bit); en| >
END test; --a,c,dir,en,b, — >z
--z are formal ports b [>—

Mentor Graphics VHDL Reference Manual, July 1994 8-23

Design Entities and Configurations

The figure at the right illustrates

the local portsin the following code:
COMPONENT i nv

PORT (inp : INDit; .
otp : OUT bit); I np otp

END COVPONENT;

COMPONENT and2 'R and2) ot p
PORT (inp, inp_2 : INDbit; np_2 —
otp : QUT bit);

END COVPONENT;
--inp,inp_2,0otp are local ports

Thefigure at theright illustrates
the actual ports of the following code: al
SIGNAL ne : bit; c[>—
Ul : inv PORT MAP (en, ne);)
U2 : and2 PORT MAP (ne, b, z); dir [> ne
-- en,ne,b,z are actual ports
en
SR
b [>

Thelocal portsin acomponent declaration are connected to actual ports by using
aport map in acomponent instantiation statement. The connection between local
ports and the formal portsin an external design entity is made in a configuration
specification or configuration declaration.

The configuration specification and related topics are discussed in the following
subsections.

8-24 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

configuration_specification

S The configuration specification binds one or more component instances to the
desired entity declaration, by using a binding indication.

Construct Placement
block declarative item

Syntax

configuration_specification ::=
for component_specification use binding_indication ;

component_specification ::=
instantiation_list : component_name

instantiation_list ::=
instantiation_label { , instantiation_|abel }
| others
| all
Description

The following rules govern the use of the configuration specification:

e You supply alist of instantiation labels. The labels associate one or more
instantiated components with a given component name. The labels must be
declared in the immediately enclosing declarative region. The component
name associated with the labels must be declared in a component declaration
statement.

¢ When you use the reserved word other s, the configuration specification
applies to those instances of a component not bound by a previous
configuration specification. A configuration specification that uses others
must be the last configuration specification for the given component name.

¢ When you use the reserved word all, the configuration specification appliesto
al instances of of agiven component. A configuration specification that uses
all must be the only configuration specification for the given component
name.

Mentor Graphics VHDL Reference Manual, July 1994 8-25

Design Entities and Configurations

Example

In the following example, adesign entity for an inverter (lines 1 through 11), two
versions of an AND gate (lines 14 through 34), and an OR gate (lines 37 through
45) are defined. Then an entity declaration and architecture body for a
multiplexer is defined (lines 48 through 79) that bind the inverter, the OR gate,
and the AND gate component to the multiplexer using configuration
specifications (lines 66 through 70).

OCO~NOUITRA,WNE

WWWWWWWNNNNNNNNNNRPRPRPRPERPRPERPRRRE
OO WNRPFPOOO~NOUIRARWNRFRPROOO~NOOILAWNE,O

8-26

-- The design entity for an inverter is defined
ENTITY inv IS

GENERI C (del : tinme);

PORT (a : INDbit; na: OUT bit);
END i nv;

ARCHI TECTURE not _a OF inv IS
BEG N

na <= NOT a AFTER del
END not _a;

-- Design entities for two versions of an AND gate foll ow
ENTITY and2_ s IS

GENERI C (del : time := 4.5ns);

PORT (a, b : INDbit; ¢ : QUT bit);
END and2_s;

ARCHI TECTURE behav_and2 OF and2_ s IS
BEG N

c <= a AND b AFTER del;
END behav_and2;

ENTITY and2_i nput IS
PORT (d, e : INDbit; f : QUT bit);
END and2_i nput ;

ARCHI TECTURE basi c_and2 OF and2_input |S
BEG N

f <= d AND e AFTER 10 ns;
END basi c_and2;

Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

37 ENTITY or2_input IS

38 PORT (d, e : INDbit; f : QUT bit);

39 END or 2_i nput;

40

41

42 ARCHI TECTURE or2_behav OF or2_input IS

43 BEG N

44 f <= d OR e AFTER 10 ns;

45 END or 2_behav;

46

47

48 ENTITY mux IS -- The design entity for a nux is defined
49 PORT (a0, al, sel : INbDbit; y : OUT bit);

50 END nux;

51

52

53 ARCHI TECTURE structure_descript OF nux IS

54 COMPONENT and?2 -- Conponent decl arations
55 PORT (a, b : INDbit; z : OUT bit);

56 END COMPONENT;

57 COVPONENT or 2

58 PORT (a, b : INDbit; z : OUT bit);

59 END COVPONENT;

60 COMPONENT i nverter

61 PORT (i : INDbit; z : OQUT bit);

62 END COMPONENT;

63

64 SI GNAL aa, ab, nsel : bit;

65

66 -- The configuration specifications:

67 FOR Ul : inverter USE ENTITY WORK.inv (not_a)

68 GENERI C MAP (7 ns)

69 PORT MAP (i, 2z);

70 FOR U2 : and2 USE ENTITY WORK. and2_i nput (basic_and2);
71 FOR OTHERS : and2 USE ENTITY WORK. and2_s (behav_and?2);
72

73 BEG N

74 -- Conponent instantiation statenents:

75 Ul: inverter PORT MAP (sel, nsel);

76 U2: and2 PORT MAP (a0, nsel, aa);

77 U3: and2 PORT MAP (al, sel, ab); --positional assoc.
78 W4: or2 PORT MAP(a => aa, b => ab, z => y);--naned assoc.

79 END structure_descript;

Mentor Graphics VHDL Reference Manual, July 1994 8-27

Design Entities and Configurations

The previous example shows three configuration specifications (lines 66 through
70), one with the reserved word other s (line 70), and two specifying an explicit
label name (lines 66 and 69). The following example is a section of code
showing the use of the reserved word all:

FOR ALL : or2 USE ENTITY or2_i nput (or2_behav);

In this example, all the component instances named or 2 are bound to the design
entity or 2_i nput and the architecture or 2_behav.

8-28 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

binding_indication
The binding indication associates (binds) one or more component instances to an
external entity declaration, and it optionally maps the ports and generics of those
instances to ports and generics of the entity declaration.

Construct Placement
configuration_specification

Syntax

binding_indication ::=
entity _aspect
[generic_map_aspect |
[port_map_aspect |

Definitions

m entity_aspect
Binds a component instance to the entity declaration and entity architecture

you specify.

m generic_map_aspect
Associates a value with the formal generic declared in the entity declaration.

m port_map_aspect
Associates signals with the formal ports declared in the entity declaration.

Description
For more information on the association of local ports and generics in component
declarations with formal ports and genericsin entity declarations, refer to page
4-31.

If you do not specify a generic or port map aspect, adefault binding indication is
used. For more information on the default binding indication, refer to page 8-33.

Mentor Graphics VHDL Reference Manual, July 1994 8-29

Design Entities and Configurations

Example
The following examples show a portion of code from within an architecture.
This code shows the use of the binding indication as part of the configuration
specification.

FOR Ul : inverter USE ENTITY inv (not_a) --entity_aspect
--starting at "ENTITY" ending at "GENERI C'
GENERIC MAP (7 ns) ~-- generic_map_aspect
PORT MAP (sel, nsel); -- port_map_aspect

FOR U2 : and2 USE ENTITY WORK. and2_i nput (basi c_and2);
FOR OTHERS : and2 USE ENTI TY WORK. and2_s;

FOR ALL : or2 USE ENTITY WORK. or _2i nput (or_struct);

8-30 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

entity_aspect
The entity aspect binds a component instance to the entity declaration and
architecture body you specify.

Construct Placement
binding_indication

Syntax

entity _aspect ::=
entity entity name [(architecture identifier)]
| configuration configuration_name
| open

Description

S Asthe BNF description shows, the architecture identifier is optional. If you do
not use an architecture identifier, the most recently analyzed architecture body
associated with the named entity is chosen. It isan error if no such architecture
exists. Refer also to "Default Binding Indication” on page 8-33.

Example
The following examples show the use of the entity aspect as part of the binding
indication.

FOR device_1: nmux USE ENTITY WORK. test _nux (rmux_architecture);
FOR U9 : counter USE ENTITY nmy _|ib.4bit_count;
FOR exor : exor_gate USE ENTITY ny_I|ib.gates (xor_gate);

FOR dsp2 : display_cont USE CONFI GURATI ON wor k. cfgl_dsp;

Mentor Graphics VHDL Reference Manual, July 1994 8-31

Design Entities and Configurations

Generic and Port Map Aspects

A generic map aspect associates a value with the formal generic declared in the
entity declaration. A port map aspect associates signals with the formal ports
declared in the entity declaration. The following diagram shows the syntax for
generic and port map aspects. For more information on association lists, refer to
page 4-31.

generic_map_aspect ::=
generic map (generic_association list)

port_map_aspect ::=
port map (port _association list)

The following example is a code fragment from an architecture body that shows
the use of the generic and port map aspects as part of a binding indication.

FOR U7 : dec USE ENTITY decoder (decode_behav)
GENERI C MAP (45 ns, decoder _type) -- generic_map_aspect
PORT MAP (a, b, c, d, output); -- port_nap_aspect

In the preceding example, the configuration specification for U7 specifies that the
design entity decoder and the architecture body decode_behav areto be used
for the component dec. The generic map aspect associates 45 ns with the generic
declared in the entity declaration decoder . The port map aspect associates the
signasa, b, c, d, and out put withthesignals specified in the entity
declaration for decoder . Thisentity declaration does not appear in the preceding
example.

The following rules apply to generic and port map aspects:

o Eachloca generic or port in the applicable configuration specification must
be associated with at least one formal in an entity declaration.

¢ No formal can be associated with more than one actual.

e An actual associated with aformal port in the port map aspect must be a
signal, and an actual associated with aformal generic in a generic map aspect
must be an expression.

There are more specific rules for associating formal ports with actual ports, in
relation to which formal ports with a given mode can be associated with actual

8-32 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

ports of agiven mode. Table 8-1 shows the appropriate modes for associating
formal ports with actual ports.

Table 8-1. Port Association Rules

Formal Port Mode Actual Port Mode
in in, inout, or buffer
out out, inout

inout inout

buffer buffer

linkage any mode

Default Binding Indication

S Thereare certain casesin which adefault binding indication is applied when
you do not use an explicit binding indication in the configuration specification.
The default binding indication is composed of a default entity aspect and
default generic and port map aspects (which are optional).

The default entity aspect is determined by the following methods:

¢ When you instantiate a component that has a ssmple name that is not the same
as avisible entity declaration, no default is determined and an error occurs.

¢ When you instantiate a component that has a ssimple name that isthe same asa
visible entity declaration, and that design entity has no architecture to use, the
entity aspect is the ssmple name of the instantiated component.

¢ Inall other cases, the default entity aspect is the entity name of the
instantiated component and the architecture, which is identified by the
architecture body associated with the entity declaration that was most recently
analyzed by the compiler.

When the design entity implied by the entity aspect has formal generics or ports,
the default binding indication uses a default generic map aspect or port map
aspect. The default generic map aspect associates every local generic named in

Mentor Graphics VHDL Reference Manual, July 1994 8-33

Design Entities and Configurations

the component instantiation with aformal generic of the same name in the entity
declaration. The default port map aspect associates every local port named in the
component instantiation with aformal port of the same name in the entity
declaration. The following conditions create an error:

e Theformal generic or port in the entity declaration does not exist.

e The mode and type of the formal generic or port are not legal for the
association for the local generic or port. For more information on the concept
of association, refer to page 4-31.

Configurations

The preceding section discusses the concept of binding components to design
entities using configuration specifications. It is often more useful to gather all the
component bindings for adesign entity into asingle library unit. The design
configuration provides the means to do this. Using design configurations,
different implementations of adesign, using entirely different component
bindings, may be evaluated without having to modify and reanalyze the design
itself. The most important constructs that make up a design configuration are the
following:

o Configuration declaration defines and encloses the configuration.

o Block configurations develop structure within the configuration. Any number
of block configurations may be used.

o Component configurations, in addition to developing structure, supply
component bindings within the configuration.

Together, these constructs open up the hierarchy of adesign, make the internal
components of the design visible, and bind the components instantiated in the
design to other design entities. The configuration declaration, block
configuration, and component configuration are discussed in detail in the
following three subsections.

8-34 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

configuration_declaration
A configuration declaration defines a configuration, which binds separate design
entities to individual components within another design entity. A configuration is
aprimary unit and, therefore, can be analyzed separately from other primary
units.

Construct Placement
declarations, primary_unit

Syntax

configuration_declaration ::=
configuration identifier of entity name is
configuration_declarative_part
block_configuration
end [configuration_simple name] ;

configuration_declarative part ::=
configuration_declarative_item

configuration_declarative item ::=
use clause
| attribute_specification

Definitions

m configuration _simple_name
Same as the identifier you supply for the configuration.

m entity name
Specifies the entity declaration to which the configuration applies.

m configuration_declarative item
Optional use clauses make library contents visible; optional attribute
specifications associate user-defined attributes with the configuration.

m block configuration
A block_configuration defines the bindings of internal components of an
architecture, block, or generate statement.

Description

Mentor Graphics VHDL Reference Manual, July 1994 8-35

Design Entities and Configurations

The following example shows how a configuration can be used. Itissimilar to
an example given earlier under "configuration_specification" on page 8-25,
except that this time a configuration declaration is used to bind the components
of the design instead of using a configuration specification.

In this example, assume that the entity declarations and architecture bodies for
theinverter, AND gate, and OR gate are stored individually in a parts library
named my_parts lib. Furthermore, assume that the entity declaration and
architecture body for the multiplexer have been placed in the "work" library.

1 -- Design entity for an inverter in "ny_parts_|ib":
2 ENTITY inv IS

3 GENERI C (Del : tinme := 2ns);

4 PORT (i : INDbit; i_bar : QUT bit);
5 END i nv;

6

7 ARCH TECTURE inv_basic OF inv IS

8 BEG N

9 i _bar <= NOT i AFTER Del;

10 END i nv_basi c;

11

12 --Design entity for an "and" gate in ny_parts_|ib:
13 ENTITY and2 IS --defined

14 GENERI C (Del : time := 4.5ns);

15 PORT (a, b : INDbit; y : QUT bit);
16 END and2_s;

17 ARCHI TECTURE and2_basic OF and2_s IS
18 BEG N

19 y <= a AND b AFTER Del ;

20 END and2_basi c;

21

22 --Design entity for the OR gate in "ny_parts_lib":
23 ENTITY or2 IS

24 PORT (a, b : INDbit; y : OQUT bit);
25 END or 2;

26

27 ARCHI TECTURE or2_basic OF or2_input IS
28 BEG N

29 y <= a OR b AFTER 7 ns;

30 END or 2_basi c;

31

8-36 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

32 --The design entity for the mux, placed in "work":
33 ENTITY mux | S

34 PORT (a0, al, sel : INbit; y : QOUT bit);

35 END nux;

36

37 ARCHI TECTURE struct OF nmux | S

38 COVPONENT and2 - - Conponent decl arati ons
39 PORT (a, b : INbit; y : QUT bit);

40 END COMPONENT;

41 COVPONENT or 2

42 PORT (a, b : INDbit; y : OUT bit);

43 END COMPONENT;

44 COVPONENT i nverter

45 PORT (a : INDbit; not_a : QUT bit);

46 END COVPONENT;

47 SIGNAL aa, ab, nsel : bit;

48 BEG N

49 --Conmponent instantiations for the nux:

50 Ul: inverter PORT MAP (sel, nsel);

51 U2: and2 PORT MAP (a0, nsel, aa);

52 U3: and2 PORT MAP (al, sel, ab);

53 U4: or2 PORT MAP(a => aa, b => ab, y =>vy);

54 END struct;

55

56 --Here is the configuration for the nux; this nust

57 --reside in the sanme library as the nmux design entity:

58 LI BRARY ny_parts_lib, work;
59 CONFI GURATI ON ver1l OF nux | S
60 USE WORK. ALL,;

61 FOR struct

62 FOR Ul : inverter USE ENTITY

63 my_parts_lib.inv(inv_basic);
64 GENERI C MAP (Del => 1.5 ns);
65 PORT MAP (i => a, i_bar => not_a);
66 END FOR;

67 FOR ALL : and2 USE ENTITY

68 my_parts_lib.and2(and2_basic);
69 END FOR;

70 FOR U4 : or2 USE ENTITY

71 ny_parts_lib.or2(or2_basic);
72 END FOR;

73 END FOR;

74 END ver 1;

The configuration declaration in this example (lines 58 through 74) binds the
inverter, OR gate, and AND gate components of the multiplexer to particular

Mentor Graphics VHDL Reference Manual, July 1994 8-37

Design Entities and Configurations

entities and architectures. Thefirst line of the declaration names the
configuration (ver 1) and names the entity declaration (mux) to which the
configuration applies. If you use aname at the end of the declaration, it must
match the identifier given in thefirst ling, asin line 74. The use clause

(USE WORK. ALL;) makesthe work library visible to the configuration. Y ou can
add any number of use clauses at this point to make additional library
information visible or to add user-defined attributes.

Beginning on line 61 and ending on line 73 isablock configuration. This
configuration makes the top-level components of architecture st r uct visible for
binding. Within the block configuration are three component configurations.
The first component configuration, beginning on line 62 and ending on line 66,
binds the component labeled U1. This component, which is an instance of

i nverter, isbound to the entity declaration i nv and architecture body

i nv_basi c that resideinny_parts_lib. The component configuration for Ul
also includes a generic map, which sets the value of the generic Del to 1.5 ns.
The port map is necessary because the port names specified in the component
declarations within mux do not match the port names given in the entity
declaration i nv.

The reserved word all isused in line 67 to bind all instances of and2 to the entity
declaration and2 and the architecture body and2_basi c.

The preceding example was relatively simple, having only one level of hierarchy
below the top-level design entity. Y ou can, however, specify a configuration
having no internal block configurations or component configurations at al, asin
the following example:

CONFI GURATION Verl OF nmux 1S
FOR struct
END FOR;

END Ver 1;

Thisis called adefault configuration. In this case, a set of default rules will be
applied to bind components that may appear within the hierarchy of the design.
These rules and others are discussed in more detail in the following two
subsections.

8-38 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

block_configuration
A block configuration makes the internal components of an architecture, block,
or generate statement visible for binding.

Construct Placement
configuration_declaration, block _configuration, component_configuration

Syntax

block_configuration::=
for block _specification
{ use clause}
{ configuration item}
end for ;

block _specification ::=
architecture_name
| block_statement_|abel
| generate_statement_label [(index_specification)]

configuration_item ::=
block_configuration
| component_configuration

index_specification ::=
discrete_range
| static_expression

Description
To make the internal structure of an architecture body visible for component
binding, any number of block configurations may appear within a configuration
declaration. Block configurations can be nested within other block
configurations and within component configurations.

The top-level block configuration, immediately within the configuration
declaration, must apply to the architecture body of the design entity named by the
configuration. In other words, atop-level block configuration is required to open
up the top-level architecture body, and it must name that architecture body in its
block specification. Within the top-level block, other block configurations and
component configurations can be nested, as shown in the following example:

Mentor Graphics VHDL Reference Manual, July 1994 8-39

Design Entities and Configurations

CONFI GURATI ON ver1l OF processor IS
FOR struct -- The architecture
FOR al u -- A block within the architecture
FOR ALL : adder USE -- A conponent configuration
ENTI TY work. fal6(struct) ;
FOR struct -- This block config. opens struct
FOR ALL : ha USE ENTITY wor k. hal(bhv) ;

END FOR

END FOR ;
-- This conmponent configuration nests another config:
FOR anux, bnmux : nux16 USE
CONFI GURATI ON wor k. mux16_cfg ;
END FOR ;

END FOR:
END ver 1;

As shown in this example, you can nest a block configuration inside a component
configuration to open up the scope of alower-level architecture within that
component configuration. The following rules apply to block configurations
within component configurations:

e The corresponding components must be fully bound.
e Theblock specification must name an architecture body.

e The named architecture body must be the same as that to which the
corresponding components are bound.

Block configurations nested within another block configuration open up either
block statements or generate statements for configuration. These block
configurations must contain either block-statement or generate-statement labels
in their block specifications, and corresponding statements must appear
immediately within the containing block of the architecture.

If you do not explicitly supply ablock configuration for agiven block statement
within an architecture, an implicit block configuration is assumed for that block.
Implicit blocks are assumed to appear after all explicit block configurations.

8-40 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

Block configurations for generate statements contain implicit block
configurations corresponding to all the generated blocks. A block configuration
for a generate statement may contain an index specification, in which case the
following rules apply:

e Theblock configuration appliesto all the corresponding implicit block
statements that are generated for each value of the index specification.

e Theblock configuration applies to each static expression in the generate
statement that corresponds to a value in the index specification of the block
configuration.

e |If noindex specification is supplied, then the block configuration applies to
al implicit blocks generated by the corresponding generate statement.

Example

The following example shows a block configuration for a design unit containing
agenerate statement. This particular configuration applies to an example given
in Section 6 of this manual, under "generate_statement” on page 6-30.

CONFI GURATI ON nux8 cfg OF nmux8 | S
USE wor k. ALL ;
FOR gen8 -- This is the architecture body.
FOR gl (0O TO7) -- Block configuration with index.
FOR ALL : nmux2 USE ENTITY wor k. mux2(bhv)
END FCR ;
END FOR ;
END nux8_cfg ;

The following example shows a block configuration for a design unit that
contains nested generate statements. Like the previous example, this
configuration applies to an example given under "generate_statement”. For
more information, refer to page 6-30.

Mentor Graphics VHDL Reference Manual, July 1994 8-41

Design Entities and Configurations

CONFI GURATI ON cntr_cfgl OF counter IS

FOR gen_counter -- Architecture
FOR g1 -- Quter generate
FOR g2 -- Nested generate

FOR ff7 : jkff
USE ENTI TY wor k. j kf f (bhv)
PORT MAP (clk => clk, j =>j,
k =>k, g =>4q, gb => gb) ;
END FOR ;
END FOR ;

FOR g3
FOR ffx : jkff
USE ENTI TY wor k. j kf f (bhv)
PORT MAP (clk =>clk, j = j,
k =>k, q=>q, qgb =>gqb) ;
END FCR ;
FOR andx : and2
USE ENTI TY wor k. and2(bhv)
PORT MAP ((a =>a, b=>b, vy=vy),;
END FCR ;
END FOR ;

FOR g4
FOR ffO : jkff
USE ENTI TY wor k. j kf f (bhv)
PORT MAP (clk => clk, | =>],
k =>k, q=>0q, gb =>qb) ;
END FOR ;
END FOR ;

END FOR ;
END FOR ;
END cntr_cfgl ;

8-42 Mentor Graphics VHDL Reference Manual, July 1994

Design Entities and Configurations

component_configuration
A component configuration specifies the component bindings within a block of
an architecture body.

Construct Placement
block_configuration

Syntax

component_configuration::=
for component_specification
[use binding_indication ;]
[block_configuration |
end for ;

Description

A component configuration serves the same purpose within a configuration
declaration that a configuration specification serves within an entity declaration:
to bind instantiated components to the design entities that describe their
functionality. The difference isthat component configurations can be nested so
that they can be used hierarchically to open up the structure of an architecture.

The component specification identifies the instances to which a given component
configuration applies. All the component instances named in the component
specification must lie at the same level of the hierarchy, immediately within the
block that encloses the component configuration.

A given component configuration may or may not have abinding indication. i If
a binding indication appears, it has the same effect as a component specification
for the specified components. It is, however, an error to have both an explicit
configuration specification and explicit component configuration for the same
instantiated component. If no binding indication is given for a component, either
in a configuration specification or in a component configuration, a default
binding indication is applied, as described earlier in this section. For more
information, refer to Default Binding Indication on page 8-33.

Mentor Graphics VHDL Reference Manual, July 1994 8-43

Design Units and Packages

Section 9
Design Units and Packages

This section includes information on the design unit and the package. A design
unit is composed of certain language constructs that you can store and analyze
independently. Y ou can place adesign unit into alibrary. You can think of a
package as a container for collecting various commonly used declarations and
subprograms. The following ordered list shows the topics and constructs
described in this section:

Design Unit Overview 9-2
context_clause 9-5
library clause 9-8
Example of aDesign Library 9-10

Packages 9-12
package declaration 9-13
package body 9-15

Predefined Packages 9-18
Package Standard 9-18

Figure 9-1 shows where design units and predefined packages belong in the
overall language and shows which items are described in this section.

Mentor Graphics VHDL Reference Manual, July 1994 9-1

Design Units and Packages

Design Units
Design Entities
Configurations

Packages
Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
Lexical Elements

Naming, Scope, and Visibility

Design Units Packages
Context Clause Package Declaration
Design Libraries Package Body

Predefined Packages

Figure 9-1. Design Units and Packages

Design Unit Overview

Certain VHDL language constructs can be independently stored and analyzed.
These constructs are called library units. Library unitsfall into two categories:

e Primary units:
O Entity declaration
0 Configuration declaration
0 Package declaration

e Secondary units:

9-2 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

O Architecture body
0 Package body

A library unit that contains a context clause is called a design unit. One or more
design units make up adesign file. The design unitsin adesign file are analyzed
in the order in which they appear in the file.

The following BNF descriptions show the syntax for the design unit and related
constructs.

design file::=
design_unit { design_unit }

design_unit ::=
context_clause library _unit

library unit ::=
primary_unit
| secondary_unit

primary_unit ::= secondary_unit ::=
entity _declaration architecture_body
| configuration_declaration | package_body

| package_declaration

The following example shows one design unit within a partial design file:
LI BRARY ny_li b; -- context clause
ENTITY and2 IS -- library unit (primary unit)
CGENERI C (prop_delay :tine);
PORT (inl, in2 : INbit; outl : OQUT bit);
BEG N
END and2;

ARCHI TECTURE alt_arc OF and2 IS --1ib. unit (secondary unit)

END ai t_arc;

Mentor Graphics VHDL Reference Manual, July 1994 9-3

Design Units and Packages

The following items apply to the design unit:

The primary unit name is the identifier that follows the reserved word entity,
package, or configuration in an entity, package, or configuration
declaration.

Each primary unit in agiven library must have a name that is different from
any other primary namein that library.

The secondary unit name for the architecture body is the identifier following
the reserved word ar chitecture. The package body has no name.

Every architecture in a secondary unit in the same library must have a name
that is different from any other architecture that is associated with an entity
declaration.

A secondary unit that has a corresponding primary unit can be placed only in
adesign library that contains that primary unit.

This section defines design units and related topics. For more information on the
following related topics, refer to the indicated reference:

Design entities: Section 8

Packages: in this section, page 9-12

The following subsections provide details on the topics discussed in this
design-unit overview.

9-4

Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

context_clause
Context clauses make design libraries and their contents visible to a design unit.
Design libraries contain compiled library unitsthat are available for use by
design units. A design unit is analyzed within the environment specified by its
context clauses.

Construct Placement
design_unit

Syntax

context_clause ::=
{ context_item}

context_item ::=
library clause
| use_clause

Definitions

m library clause
A library clause makes library units within adesign library visibleto a
design unit.

m Use clause
A use clause makes visible certain declarations within library units contained
inadesign library. The use clause is a shorthand method that relieves you
from having to use afull selected name for declarations, if they existina
design library.

Mentor Graphics VHDL Reference Manual, July 1994 9-5

Design Units and Packages

Description
S Figure 9-2 shows the context clause concept. The following list describes the
three situations (A,B, and C) shown in the figure.

A. Inthissituation, the design file contains a use clause to make the contents of
package "x" directly visible. This packageis already visible by selection to
the design file environment.

B. Inthissituation, the design file contains alibrary clause to make library "a"
and "b" visible. The library names within the design file are mapped to the
outside libraries with an implementation-dependent method. The physical
libraries then become visible to the current design file.

C. Inthissituation, the design file contains alibrary clause to make library "c"
visible. A use clauseisalso in the context clause, which enables you to use
the shorthand method of making the items of library "c" directly visible. The
library names within the design file are mapped to the outside libraries with
an implementation-dependent method. Visibility isdiscussed in detail on
page 3-12.

For detailed information about the use clause, refer to page 3-22.

Example
The following example shows the context clause in a partial design file:

LIBRARY ¢ ; USE c.ALL; -- context cl ause
ENTITY tester IS
PORT (pinl, pin2, pin3 : INDbit;
pind : OUT bit);

A VHDL implementation generates an implicit context clause for every design
unit. This context clause consists of alibrary clause and a use clause, as the
following example shows:

LI BRARY std, work; USE std.standard. ALL;

The previous example shows that "std" isthe library logical name for the design
library in which package "standard" islocated. The use clause makes al the
declarations in package "standard" directly visible. For more information on the
working library (work), refer to page 9-9.

9-6 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

0

Mentor Graphics VHDL Reference Manual, July 1994

Design Files

USE x . ALL ;

N

™

PACKAGE x | S

N\

LI BRARY a, b ;

LI BRARY c ;
USE ¢ . ALL ;

Physical
Libraries

Logical-to-
Physical
Mapping

Library a

Y

Library b

Logical-to-
Physical
Mapping

Library c

A

Figure 9-2. Context Clause Concept

Design Units and Packages

library_clause
A design library provides storage capability for compiled library or design units

that can be used in other hardware design descriptions. The library clause
specifies the logical names of libraries that the design unit can reference. The
library clauseis part of the context clause.

Construct Placement
context_item, (context clause, - design_unit)

Syntax

library clause::=
library logical_name list;

logical_name list ::=
logical_name { , logical_name}

logical_name::=
identifier

Description
S The mapping of the logical name list in the library clause to the actual file

names occurs in the VHDL environment.
VHDL provides two classifications for design libraries:
e Working libraries

e Resourcelibraries

Theworking library isthe library in which the compiled design unit is placed.
The analogy to the working library is your working directory. When you compile
the design unit, it existsin the working directory in which you performed the
compilation. Thereisonly one working library during the compilation of a

design unit.

Theresource library isalibrary that contains the library units that the design unit
being compiled references. There can be any number of resource librariesfor a
given design unit. Theworking library itself can be aresource library.

Example

9-8 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

The following example shows the possible use of the library clause within the
design unit construct:

LI BRARY basic_parts, ny _lib, project |lib; -- [library clause
ENTITY project IS

ARCH TECTURE try 1 OF project IS
COVPONENT nul t_8

In the preceding example, the contents of the libraries "basic_parts’, "my_lib",
and "project_lib" are available for the design unit to use. This example shows
only a skeleton of adesign unit.

Mentor Graphics VHDL Reference Manual, July 1994 9-9

Design Units and Packages

Example of a Design Library

The following example shows a design library containing one design unit. This
design unit is afour input buffer with three control lines, as Figure 9-3 shows.

741500 N1S
c2l > E@jusoz
g?D ﬁ / N0 74!Lg-75
EN 118%49 qo
2y o —
| 2
74LS75
BN 10—+ >q2
1. Qo—
az2 1 20—+ >3
a3 2D 2 QPb—

Figure 9-3. Input Buffer Schematic

The following code description shows a possible structural representation of the
input buffer in adesign unit.

LIBRARY Is lib, nmy_lib; -- context item
USE |s _|ib. ALL; -- context item
USE ny _lib.ny_qgsi mbase. ALL; -- context item
ENTITY alu_|l oader IS -- primary unit

PORT(C1, C2, C3, A0, Al, A2, A3: I N ny_gsi m 12st at e;
@B, @, QL, Q: AUT ny_gsim 12state);
BEG N
END al u_| oader;

ARCHI TECTURE struct OF alu_l oader IS -- secondary unit
COVPONENT nand2 PORT (10, 11 : IN ny_qgsim12state;
QUT1 : QUT nmy_qgsim12state);
END COVPONENT;
COMPONENT nor 2 PORT (10, I'1 : INny_gsiml12state;
QUT1 : QUT ny_gsimll2state);
END COVPONENT;
COVMPONENT | atch PORT (EN, D1, D2 : IN ny_gsi m12state;

9-10 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

Q,Q1, R, Q2 : OUT ny_qgsiml2state);
END COVPONENT;

FOR 11 latch USE ENTITY | s75;
FOR I2: latch USE ENTITY | s75;
FOR 13: nand2 USE ENTITY | s00;
FOR 14: nor?2 USE ENTI TY | s02;

SI GNAL N15: ny_qgsim 12st at e;
SI GNAL N20: nmy_qgsim 12st at e;

BEGA N

| 1: latch PORT MAP(EN => N20, D1 => A0, D2 => Al,

QA => Q, Q1 =>O0PEN @ =>Ql, Q2 => OPEN);
| 2: latch PORT MAP(EN => N20, D1 => A2, D2 => A3,

QA => @, Q1 => CPEN, @ => B, Q2 => OPEN);
13: nand2 PORT MAP(10 => C2, 11 => C3, QUT1 => N15);
4: nor2 PORT MAP(10 => N15, 11 => Cl, QUT1 => N20);

END struct;

Mentor Graphics VHDL Reference Manual, July 1994 9-11

Design Units and Packages

Packages

Packages provide you with alocation for collecting various commonly used
declarations and subprograms. The itemsin a package are visible anywhere the
name of the package isvisible or where a use clause makes them visible. The use

clause is discussed in detail on page 3-22.

Packages consist of two parts. adeclaration and abody. This has the same
benefits as having separate declarations and bodies for entities and subprograms:

¢ Oneinterface, the declaration, can have several different bodies.
¢ You can rewrite the bodies without having to recompile the declaration.

These features are all necessary for dividing up a project between teams. Figure
9-4 shows the package concept.

@)
Sf%f
0/7&
Package
\\
L Declarations RN
2 and o
iz Subprograms N

=5 Description
Code
Sharing

One Package

Figure 9-4. Package Concept

9-12 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

package declaration
The package declaration defines a name for the package and an interface to other
design items by specifying the visible contents of the package. Visibility is
discussed in detail on page 3-12.

Construct Placement
declaration, primary_unit

Syntax

package declaration ::=
package package simple name is
package declarative part
end [package simple name] ;

package declarative part ::=
{ package_declarative item}

package declarative item ::=
subprogram_declaration
| type_declaration
| subtype declaration
| constant_declaration
| signal _declaration
| file_declaration
| lias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use clause

Definitions

m package simple name
An identifier that you provide to give the package a unique name which is
referenced by other primary or secondary units.

m package declarative part

Contains declarations of items that can be made visible to design files outside
the package.

Mentor Graphics VHDL Reference Manual, July 1994 9-13

Design Units and Packages

Description
When you define a package declaration that does not declare deferred constants
(discussed on page 4-13) or subprograms, the package does not require a package
body. Thefollowingt eam i nf o package example requires a package body
because it contains subprogram declarations (convert _chk and dat a_check)
and a deferred constant (def err ed_const).

Example
The following example shows a possible package declaration.

PACKAGE teaminfo IS
-- package decl arative part
FUNCTI ON convert _chk (result_array : IN bit_vector (0 TO 7))
RETURN bool ean;
PROCEDURE dat a_check (VARI ABLE add_start
IN bit_vector (0 TO 7);
VARI ABLE chk_answer : QUT bool ean;
TYPE storage IS ARRAY (0 TO 23) OF integer;
TYPE opcode IS ARRAY (0 TO 7) OF storage;

CONSTANT defaul t_vol t . integer := 5;
CONSTANT deferred_const : integer;
SI GNAL enabl e : bit;
USE gl obal _i nfo. ALL;
END team.info; --1f you use sinple nanme here, it nmust match

--identifier used after the word " PACKAGE".

The preceding example shows some of the possible package declarative items
that you can use in the package declarative part. Declarations are discussed in
detail in Section 4.

An example of a package declaration requiring no package body follows.

PACKACE information IS
TYPE nenory IS ARRAY (0 TO 23) OF integer;
TYPE subnenory IS ARRAY (0 TO 7) OF nenory;
CONSTANT gravity . real := 9.8;
SIGNAL start_cal culation : bit;

END i nf or mati on;

9-14 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

package body
The package body specifies the values of deferred constants and defines the
subprogram bodies declared in the package declaration.

Construct Placement

secondary_unit

Syntax

package body ::=
package body package simple name is
package body declarative part
end [package simple name] ;

package body_declarative part ::=
{ package_body_declarative_item}

package body declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype declaration
| constant_declaration
| file_declaration
| lias_declaration
| use clause

Definitions

m package smple name
This must be the same identifier that you provided in the corresponding
package declaration.

m package body declarative part
Declares items that are used within the package body.

Description

A package body can contain declarative items for a subprogram body. Inthe

parity_check package body example, the variablesanswer , sunt, and sun? are

defined in the subprogram body for function chk_pt y. These variables are not
visible outside of the package parity_check.

Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

When you use deferred constants in your package declaration, the corresponding
package must contain a constant declaration with a value for that deferred
constant. For more information on deferred constants, refer to page 4-13.

The value you assign to the deferred constant must be of the same type as defined
in the package declaration. Intheparity_check package body example, check
isadeferred constant whose value is resolved in the package body.

Y ou can only use the name of the deferred constant in the default expression for a
local generic or port, or aformal parameter if this name is used before the
constant value is defined.

The VHDL standard predefines two packages for usein your designs. Those
packages are package standard, which provides an assortment of common
predefined functions, types, and subtypes, and package textio, which allows you
to read from and write to formatted ASCI| text files. Information on these
packagesis given in the in the following subsection, starting on page 9-18.

9-16 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

Example
An example of a package declaration with a package body follows:

-- Package decl aration
PACKAGE parity_check IS
FUNCTI ON chk_pty (ram.data_conc
ori g_data_conc:
RETURN bool ean
CONSTANT check : integer; --A deferred constant
END parity_check;

it_vector (0O TO 23);

IN b
IN bit_vector (0 TO 23))

-- Package body

PACKAGE BODY parity_check IS
CONSTANT check : integer := 0; --Deferred constant

FUNCTI ON chk_pty (ramdata _conc : IN bit_vector (0 TO 23);
orig data conc : IN bit_vector (0 TO 23))
RETURN bool ean | S - -subprogram body until "RETURN'
VARI ABLE answer : integer; --"answer"” is not visible
--outside of this package
VARI ABLE suni, sun® : boolean := false; --"sunl" and "sunk"
BEG N --not visible outside this pack
FORi INO TO 17 LOCP
|F ramdata_conc(i) = ’'1' THEN
suml := NOT sunil; -- conpute parity for ram data
END | F;
|F orig _data_conc(i) ="'1" THEN
sun? : = NOT sun®; -- conpute parity for opcode data
END | F;
END LOOP
answer := check + 1,
RETURN suml = sun®; -- return true if suml = sun?
END chk_pty;
END parity_check; --I1f you use package_sinple_nane, it nust

--mat ch nane used after "PACKAGE BODY"

Mentor Graphics VHDL Reference Manual, July 1994 9-17

Design Units and Packages

Predefined Packages
Package Standard

This subsection contains an annotated listing of VHDL package standard.
Package "standard", which isarequired part of all VHDL implementations,
contains a number of useful predefined types, subtypes, and functions. Y ou do
not have to include explicit context clausesin your library units to make use of
items declared in package standard. Y ou cannot modify package standard.

-

O CAUTION
@
O Do not use predefined type names for your own definitions. While

it ispossible to do so, it may become very confusing for you to keep
track of when the systemis using its definition of a predefined type
or is being overwritten to use your definition.

The following are the equivalent VHDL "headers’ for package "standard":
PACKAGE standard IS
--predefined enuneration types:
TYPE bit IS ("0, "1');

TYPE boolean IS (false, true);

9-18 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

TYPE character IS (
nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht , | f, vt ff, cr, so, Si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em sub, esc, fsp, gsp, rsp, usp,

o, by e, %, &, T,
’(,! ’)’! *11 ,+1: 11’ 1'1’ 1-” 1/”
o, 1, 2, '3, 4, 5, 6, T,
N T
'@, 'A, 'B, 'C, 'D, 'E, 'F, "G,
'H, 1, 7y, 'K, 'L, "M, 'N, 0,
P, ’Q@, 'R, S, 'T, U, 'V, "W,
X, 'y, ‘'z, [, '\', 1, '~y
B a', b, ¢, d, ‘e’ f, ’g’,
"h, i, gy, Tk, 1, 'm0 o7,
’p’, ’q’, r', 's', "t u', BAVARN W,
B e e ot

The ASCII mnemonics for file separator "fs', group separator "gs', record
separator "rs', and unit separator "us" are represented by f sp, gsp, r sp, and usp,
respectively, in type character in order to avoid conflict with the units of type
time.

TYPE severity level IS (note, warning, error, failure);
-- predefined nuneric types:

TYPE integer IS RANGE -2147483648 TO 2147483647,
TYPE real IS RANGE -1.79769E308 TO 1. 79769E308;

Therangesfor typesi nt eger andr eal are machine-dependent. The values
shown in the previous type definitions assume a 32-bit, two’ s complement
machine that follows |EEE double-precision standard.

Mentor Graphics VHDL Reference Manual, July 1994 9-19

Design Units and Packages

S
E

-- predefined type tine;

TYPE tinme | S RANCE -a number TO +a number
UNI TS -- a_nunber is machi ne-dependent
fs; -- fentoseconds
ps = 1000 fs; -- pi coseconds
ns = 1000 ps; -- nanoseconds
us = 1000 ns; -- m croseconds
s = 1000 us; -- mlliseconds
sec = 1000 rms; -- seconds
mn = 60 sec; -- mnutes
hr = 60 m n; -- hours
END UNI TS

-- function that returns the current sinulator tine;
FUNCTI ON now RETURN ti ne;
-- predefined nuneric subtypes:

SUBTYPE natural 1S integer RANGE O TO i nt eger’ hi gh;
SUBTYPE positive IS integer RANGE 1 TO i nteger’ high;

-- predefined array types

TYPE string IS ARRAY (positive RANGE <>) OF character;
TYPE bit_vector 1S ARRAY (natural RANGE <>) OF bit;

END st andar d;

9-20

Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

std_logic_1164

S Package"std logic _1164" and the related extensions package contains
declarations of types and subprograms that support a standard nine-state logic
system. These packages are located in the "ieee" library. The"std logic 1164"
package has been developed by the IEEE Design Automation Standards
Subcommittee (Modeling group).

-- Devel opers:
-- Purpose

-- Limtation:

-- Note

std logic_ 1164 nulti-value | ogic system
Thi s package shall be conpiled into a library
synbolically nanmed | EEE

| EEE nodel standards group (par 1164)

Thi s packages defines a standard for designers
to use in describing the interconnection data
types used in vhdl nodeling.

The | ogic systemdefined in this package nay

be insufficient for nodeling swtched
transistors, since such a requirenent is out of
the scope of this effort. Furthernore,

mat hematics, primtives, timng standards, etc.
are consi dered orthogonal issues as it relates to
this package and are therefore beyond the scope
of this effort.

No declarations or definitions shall be included
in, or excluded fromthis package. The "package
decl arati on" defines the types, subtypes and
decl arations of std logic_1164. The
std_l ogi c_1164 package body shall be considered
the formal definition of the semantics of this
package. Tool devel opers may choose to inpl enent
t he package body in the nost efficient manner
avail able to them

-- nodi fication history :

-- version |
-- v4. 200 |

nod. date:
01/ 02/ 92

Mentor Graphics VHDL Reference Manual, July 1994 9-21

Design Units and Packages

PACKAGE std_logic_1164 1S

-- logic state system (unresolved)

TYPE std_ulogic IS ("U, -- Uninitialized

"X, -- Forcing Unknown
0", -- Forcing O

"1, -- Forcing 1

"Z', -- High Inpedance
"W, -- Weak Unknown
L', -- Weak 0

"H, -- Wak 1

e -- Don't care

)

-- unconstrained array of std ulogic for use with the
-- resolution function
TYPE std_ul ogi c_vector IS ARRAY(NATURAL RANGE <>) OF std_ul ogic;

-- resolution function

FUNCTI ON resol ved (s: std _ul ogic_vector) RETURN std_ul ogic;

-- *** jndustry standard logic type ***

SUBTYPE std_logic IS resolved std_ul ogic;

-- unconstrained array of std_logic for use in declaring
-- signal arrays
TYPE std | ogic_vector IS ARRAY (NATURAL RANGE <>) OF std_| ogic;

-- common subtypes

SUBTYPE X01 IS resolved std _ulogic RANGE "X TO'1';
-- (X ,'0,'1)

SUBTYPE X01Z IS resolved std _ulogic RANGE ' X TO'Z,;
-- ('X,’0,'1,'7Z)

SUBTYPE UX01 IS resolved std_ulogic RANGE 'U TO 'Y
-- ("u,Xx,’0,'1)
SUBTYPE UX01Z 1S resolved std ulogic RANGE 'U TO '’ Z;
-- (U, Xx,0,'1,0272)

9-22 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

-- overl oaded | ogical operators

-- function "xno
FUNCTI ON "not"

(I: std ulogic; r: std ulogic) return ux0l
| . std_ulogic) RETURN UX01

FUNCTION "and" (|: std ulogic; r: std ulogic) RETURN UX01;
FUNCTI ON "nand" (|: std_ulogic; r: std_ulogic) RETURN UXO01,
FUNCTI ON "or" (I': std ulogic; r: std ulogic) RETURN UX01;
FUNCTION "nor"™ (I: std ulogic; r: std ulogic) RETURN UX01;
FUNCTI ON "xor"™ (I: std ulogic; r: std ulogic) RETURN UX01;
!
(

-- vectorized overl oaded | ogi cal operators
FUNCTI ON "and" (I, r: std_logic_vector)
RETURN std_| ogi c_vector;
FUNCTI ON "and" (I, r: std_ulogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "nand" (I, r: std_logic_vector)
RETURN st d_| ogi c_vector;

FUNCTI ON "nand" (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "or" (I, r: std_logic_vector)
RETURN std_| ogi c_vector;

FUNCTI ON "or" (I, r: std ulogic_vector)
RETURN st d_ul ogi c_vect or;

FUNCTION "nor™ (I, r: std_logic_vector)
RETURN st d_| ogi c_vector;

FUNCTION "nor" (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "xor" (I, r: std_|ogic_vector)
RETURN std | ogi c_vector;

FUNCTI ON "xor"™ (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vect or;

-- Note: The declaration and inplenentation of the "xnor"

-- function is specifically commented until at which tine the
-- VHDL | anguage has been officially adopted as contai ning such
-- a function. At such a point, the follow ng conments may be
-- renoved along with this notice without further "official"

-- ballotting of this std_|ogic_1164 package.

-- It is the intent of this effort to provide such a function
-- once it becones available in the VHDL standard.

Mentor Graphics VHDL Reference Manual, July 1994 9-23

Design Units and Packages

-- function "xnor™ (I, r : std_logic_vector)
-- return std_| ogi c_vector;
-- function "xnor™ (I, r : std_ulogic_vector)

-- return std_ul ogic_vector;

FUNCTION "not" (I: std_logic _vector) RETURN std | ogic_vector;
FUNCTION "not" (I: std ulogic _vector) RETURN std ul ogi c_vector;

-- conversion functions

FUNCTI ON To_bi t (s: std_ul ogic; xmap @ BIT :="0")
RETURN BI T;

FUNCTI ON To_bi tvector (s: std_logic_vector ; xmap : BIT :='0")
RETURN BI T_VECTCR,

FUNCTI ON To_bi tvector (s: std_ulogic_vector; xmap : BIT :="0")
RETURN BI T_VECTCOR,

FUNCTI ON To_St dULogi ¢ BIT) RETURN std_ul ogi c;

(b:
FUNCTI ON To_St dLogi cVector (b:
RETURN std_| ogi c_vector;
FUNCTI ON To_St dLogi cVector (s: std_ul ogic_vector)
RETURN std_| ogi c_vector;
FUNCTI ON To_St dULogi cVector (b: BI T_VECTOR)
RETURN st d_ul ogi c_vect or;
FUNCTI ON To_St dULogi cVector (s: std _|ogic vector)
RETURN st d_ul ogi c_vector

Bl T_VECTOR)

-- strength strippers and type convertors
FUNCTI ON To_X01 (s: std_logic_vector)
RETURN std_| ogi c_vector;
FUNCTI ON To_X01 (s: std_ul ogic_vector)
RETURN std_ul ogi c_vector;
FUNCTI ON To_X01 (s: std ulogic) RETURN XO01;
FUNCTI ON To_X01 (b: BIT_VECTOR)
RETURN std_| ogi c_vector;
FUNCTI ON To_X01 (b: BIT_VECTOR) RETURN std_ul ogi c_vector;
FUNCTI ON To_X01 (b: BIT) RETURN XO01;

FUNCTI ON To_X01Z (s: std_logic_vector) RETURN std_| ogi c_vector;
FUNCTI ON To_X01Z (s:std_ul ogi c_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON To_X01Z (s: std_ulogic) RETURN X01Z;
FUNCTI ON To_X01Z (b: BIT_VECTOR) RETURN std_| ogic_vector;
FUNCTI ON To_X01Z (b: BIT_VECTOR)
RETURN st d_ul ogi c_vect or;
FUNCTI ON To_X01Z (b: BIT) RETURN X01Z;

FUNCTI ON To_UX01 (s: std_logic_vector) RETURN std_| ogi c_vector;

9-24 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

FUNCTI ON To_UX01 (s: std_ulogic_vector)

RETURN st d_ul ogi c_vect or;
FUNCTI ON To_UX01 (s: std_ulogic) RETURN UXO01;
FUNCTI ON To_UX01 (b: BIT_VECTOR

RETURN std_| ogi c_vector;

FUNCTI ON To_UX01 (b: BIT_VECTOR)
RETURN st d_ul ogi c_vector;
FUNCTI ON To_UX01 (b: BIT) RETURN UXO01;

-- edge detection

FUNCTION rising edge (SIGNAL s : std_ulogic) RETURN BOOLEAN,
FUNCTION falling_edge (SIGNAL s : std_ul ogic) RETURN BOOLEAN,

-- object contains an unknown
FUNCTION Is X (s : std ulogic_vector) RETURN BOCLEAN,
FUNCTION Is_ X (s : std_logic_vector) RETURN BOOLEAN;
FUNCTION Is_ X (s : std_ulogic) RETURN BOOLEAN,;

END std_| ogi c_1164;

Mentor Graphics VHDL Reference Manual, July 1994

9-25

Design Units and Packages

std_logic_1164 ext

S The |EEE 1164 extensions package contains declarations of types and
subprograms that support a standard nine-state logic system. This packageis
located in the "ieee" library.

-- File name : std_logic_1164 ext header. pkg. vhd
-- Title . STD LOAQ C 1164 EXTENSI ONS package
-- : (multivalue logic system)

-- Library :

-- Author(s) : MENTOR GRAPHI CS CORPORATI ON.

-- Purpose . This packages defines a standard for digital
-- : designers to use in describing the

-- . interconnection data types used in nodeling
-- . common ttl, cnos, GaAs, nnpbs, pnpbs, and ec
-- . digital devices.

-- Notes . The logic systemdefined in this package nay

-- . be insufficient for nodeling swtched
-- . transistors, since that requirenment is out of
-- : the scope of this effort.

-- : No other declarations or definitions shall be
-- : included in this package. Any additiona

-- : declarations shall be placed in other orthogona
-- . packages (ie. timng, etc)

-- Version No:| Author:| Md. Date:| Changes Made:

- - v1l. 00 | kk | 05/26/91 | functions/types used as
- - ext ensi ons to support
-- synt hesi s.

LI BRARY | EEE

PACKAGE std | ogic_1164 extensions IS
USE i eee.std_logic_1164. ALL,;

-- FUNCTI ONS AND TYPES DECLARED FOR SYNTHESI S

-- Resolution function and resol ved subtype for STD ULOQ C
FUNCTI ON std_ulogic wired x (input : std_ulogic_vector)

9-26 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

RETURN st d_ul ogi c;
-- awired X operation is perforned on the inputs to
-- determ ne the resol ved val ue

FUNCTI ON std_ulogic wired or (input : std_ulogic_vector)
RETURN st d_ul ogi c;
-- awired OR operation is perforned on the inputs to
-- determ ne the resol ved val ue

FUNCTI ON std_ulogic_wired_and (input : std_ul ogic_vector)
RETURN st d_ul ogi c;
-- awired AND operation is performed on the inputs to
-- determ ne the resol ved val ue

SUBTYPE std_ul ogic_resolved x IS
std_ulogic_w red_x std_ul ogic;
TYPE std_ul ogi c_resol ved_x_vect or
I S ARRAY(NATURAL RANGE <>) OF std_ulogic _resol ved x;
SUBTYPE std ulogic resolved or IS
std_ulogic_wred_or std_ul ogic;
TYPE std_ul ogi c_resol ved_or_vector
I S ARRAY(NATURAL RANGE <>) OF std_ul ogic_resolved_or;
SUBTYPE std_ul ogic_resolved_and IS
std_ulogic_wired and std_ul ogic;
TYPE std_ul ogi c_resol ved_and_vect or
I S ARRAY(NATURAL RANGE <>) OF std_ul ogic_resol ved_and;
-- Overl oaded Logical Operators
-- FUNCTION "and" (|, r : std_ulogic
-- FUNCTI ON "nand” (|, r std_ul ogi c
-- FUNCTI ON "or™ (I, r: std ulogic
-- FUNCTION "nor™ (I, r std_ul ogi c
(1, r
(I

RETURN st d_ul ogi c;
RETURN st d_ul ogi c;
RETURN st d_ul ogi c;
RETURN st d_ul ogi c;

- - FUNCTI ON " xor" std_ul ogi c C;

-- FUNCTI ON " not " std_ul ogi c C;

RETURN st d_ul ogi
RETURN st d_ul ogi

N e N N N

Mentor Graphics VHDL Reference Manual, July 1994 9-27

Design Units and Packages

-- Vectorized Overl oaded Logi cal Operators

FUNCTI ON "and" (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "nand" (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTION "or" (I, r: std_ulogic_vector)
RETURN std_ul ogi c_vector;

FUNCTION "nor™ (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "xor"™ (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;

FUNCTI ON "not " (I std_ul ogi c_vector)
RETURN st d_ul ogi c_vector;

-- Overl oaded Relatlonal Operators
FUNCTION "=" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION "/=" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION "<" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION ">" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION "<=" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION ">=" (|, r std_ulogic) RETURN std_ul ogi c;
FUNCTION "=" (|, r std _ulogic) RETURN bool ean;
FUNCTION "/=" (|, r std _ulogic) RETURN bool ean;
FUNCTION "< (|, r std ulogic) RETURN bool ean;
FUNCTION ">" (|, r std_ul ogic) RETURN bool ean;
FUNCTION "<=" (|, r std_ul ogic) RETURN bool ean;
FUNCTION ">=" (|, r std_ul ogic) RETURN bool ean;
-- Vectorized CNerIoaded Rel ati onal Operators
FUNCTION "=" (|, r std _ulogic_vector) RETURN std_ul ogi c;
FUNCTI ON “/ (1, r std _ulogic_vector) RETURN std_ul ogic;
FUNCTI ON " <" (I, r std_ul ogi c_vector) RETURN std_ul ogi c;
FUNCTION ">" (|, r std_ul ogi c_vector) RETURN std_ul ogi c;
FUNCTION "<=" (|, r std_ul ogi c_vector) RETURN std_ul ogi c;
FUNCTION ">=" (|, r std_ul ogi c_vector) RETURN std_ul ogic;
FUNCTION "=" (|, r std_ul ogi c_vector) RETURN bool ean;
FUNCTION "/=" (|, r std_ul ogic_vector) RETURN bool ean;
FUNCTION "<" (|, r std_ul ogi c_vector) RETURN bool ean;
FUNCTION ">" (|, r std _ulogic_vector) RETURN bool ean;
FUNCTI ON "<=" (|, r std_ul ogi c_vector) RETURN bool ean;
FUNCTION ">=" (|, r std_ul ogi c_vector) RETURN bool ean;
9-28 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

-- Overloaded "+" and "-" Qperators
FUNCTION "+" (|, r : std_ulogic) RETURN std_ul ogic;
FUNCTION "-" (I, r : std_ulogic) RETURN std_ul ogic;

-- Vectorized Overl oaded Arithnetic Operators
FUNCTI ON "+" (I, r: std_ul ogic _vector) RETURN std ul ogi c_vector;
FUNCTION "-"(l,r: std_ul ogic_vector) RETURN std_ul ogi c_vector
FUNCTI ON "*" (1, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vect or;
FUNCTION "/"(l,r: std_ul ogic_vector)
RETURN st d_ul ogi c_vect or;
FUNCTI ON "MD" (I, r: std_ul ogi c_vector)
RETURN st d_ul ogi c_vect or;
FUNCTI ON "REM' (I, r: std_ul ogic_vector)
RETURN st d_ul ogi c_vector;
FUNCTI ON "**" (|, r: std_ul ogi c_vector)
RETURN st d_ul ogi c_vect or;

-- FUNCTION Convert _to Bit (val: std_ul ogic_vector)
- - RETURN bit_vector;
FUNCTI ON Convert _to Integer(val: std _ulogic_vector;
X: integer := 0) RETURN integer;

FUNCTI ON Convert _to_Std ulogic (val: integer; size: integer)
RETURN std_ul ogi c_vector;

FUNCTI ON Convert_to_Std_ulogic (val: bit_vector)
RETURN std_ul ogi c_vector;

FUNCTI ON Convert _to_Std ulogic (val: bit)
RETURN std_ul ogic;

END std_| ogi c_1164_ext ensi ons;

Mentor Graphics VHDL Reference Manual, July 1994 9-29

Design Units and Packages

Package Textio

Package "textio" contains declarations of types and subprograms that allow you
to read from and write to formatted ASCI| text files. Some examples showing
the use of the textio package follow the listing of the package.

9-30

PACKAGE textio | S

-- Type Definitions for Text

TYPE |ine IS ACCESS string;

TYPE t ext

TYPE side IS (right,

IS FILE OF string; --

left);

SUBTYPE width | S natural;

Standard Text Fil es

/0O

-- alineis a pointer to a
-- string val ue

a file of variable-length
-- ASCII records

-- for justifying output data
-- within fields

-- for specifying w dths of
-- output fields

FILE input: text ISIN "STD_| NPUT";

FILE output: text IS OUT "STD OQUTPUT";

-- Input Routines for Standard Types

PROCEDURE readline (VARIABLE f: INtext; |: INOUT line);

PROCEDURE read (I: I'NOUT line; value: OUT bit;
good: QUT bool ean);

PROCEDURE read (l: INQUT line; value: OUT bit);

PROCEDURE read (l: INQUT line; value: OUT bit_vector;
good: QUT bool ean);

PROCEDURE read (l: INQUT line; value: OUT bit_vector);

PROCEDURE read (I: INOUT line; value: OUT bool ean;
good: QUT bool ean);

PROCEDURE read (I: I'NOUT line; value: OUT bool ean);

PROCEDURE read (l: INQUT line; value: OUT character
good: QUT bool ean);

Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

PROCEDURE read (l: INQUT line; value: OUT character);
PROCEDURE read (l: INQUT line; value: OUT integer ;
good: QUT bool ean);

PROCEDURE read (I: INQUT line; value: OUT integer);

PROCEDURE read (l: I'NOUT line; value: OUT real;
good: QUT bool ean);

PROCEDURE read (l: INQUT line; value: OUT real);

PROCEDURE read (l: INQUT line; value: OUT string;
good: QUT bool ean);

PROCEDURE read (I: INQUT line; value: OUT string);

PROCEDURE read (l: I'NOUT line; value: QOUT tine;
good: QUT bool ean);

PROCEDURE read (I: INOQUT line; value: QUT tine);

-- Qutput Routines for Standard Types

PROCEDURE writeline (f: QUT text; |: [INOUT |ine);

PROCEDURE write (I: INOUT |ine; value: IN bit;

justified: INside:=right; field: INwidth := 0);
PROCEDURE write (I: INOQUT |ine; val ue: IN bit_vector;
justified: INside:=right; field: INwidth := 0);
PROCEDURE write (I: INOQUT |ine; val ue: I N bool ean;
justified: INside:=right; field: INwidth := 0);
PROCEDURE write (I: INOUT |ine; val ue: I N character;
justified: INside:=right; field: INwidth := 0);

PROCEDURE write (I: INOUT |ine; val ue: I N integer;
justified: INside:=right; field: INwidth := 0);

PROCEDURE write (I: INOQUT |ine; val ue: IN real;
justified: INside:=right; field: INwidth := 0;
digits: INnatural:= 0);

PROCEDURE write (I: INOUT |ine; val ue: IN string;
justified: INside:=right; field: INwdth := 0);

PROCEDURE write (I: INOUT |ine; val ue: IN tine;

justified: INside:=right; field: INwdth := 0;
unit: IN tinme:= ns);

Mentor Graphics VHDL Reference Manual, July 1994 9-31

Design Units and Packages

-- File Position Predicates
FUNCTI ON endfile (f: IN text) RETURN bool ean;

END texti o;

The following example writes two characters, "H" and "1", on separate lines, to a
file named txtio_tmp.

USE std.textio.ALL;
ENTITY textio ex IS
BEGA N
END textio_ex ;
ARCHI TECTURE behav OF textio _ex IS
FILE outl: text IS QUT "txtio_tmp";
BEG N
PROCESS

VARl ABLE linel : I|ine;
VARI ABLE char1l : character;

BEG N
charl := "H;
wite(linel,charl, RIGHT, 0);
charl :="1";
wite(linel,charl, Rl GHT, 0);
witeline(outl,linel);
VI T;

END PROCESS;

END behav;

9-32 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

Mentor Graphics Predefined Packages

Mentor Graphics has created packages that define various types and subprograms
that make it possible to write and simulate aVHDL model within the Mentor
Graphics environment. These packages are written in standard VHDL and can be
compiled on any system that supports the language.

E Of the packages that Mentor Graphics supplies, one package called "math" is
located in the "std" library along with the "standard" and "textio" packages. The
math package contains the set of ANSI C math functions and constants.

Other Mentor Graphics supplied packages are located in alibrary called
"mgc_portable". These packages are asfollows:

e "gsim_logic" The package gsim_logic contains basic 4-state and 12-state
types along with supporting resolution, conversion, and operator functions.

e "gsim_relations’ The package gsim_relations defines all relational operators
for gsim_state that return boolean, to deal with unknown states (' X’)
reasonably. Also defined arerelational operators for bit_vector that do
numerical comparisons by zero-extending shorter operands.

The "headers" for the Mentor Graphics predefined packages have been provided
in the following subsections. The package bodies are available from Mentor
Graphics.

Mentor Graphics VHDL Reference Manual, July 1994 9-33

Design Units and Packages

std.math

--These functions and procedures provide access to system
--supplied math functions. As such, they are not guaranteed
--portable or even avail abl e between different hosts. In
--other words, different host platforns may produce different
--results under the sane circunstances. Mentor Graphics is
--not responsible for the availability or perfornmance of these
--functions. For a description of how these functions work,
--please refer to the ANSI C Language Reference Manual .

PACKAGE math | S

SUBTYPE natural _real IS real RANGE 0.0 TO real’ high
--NOTE: The precision of these constants is specified

-- greater than the host inplenentation is capable of

-- representing. REAL’s are only accurate to
-- approxi mately 16 decimal digits.

CONSTANT e © real := 2.7182818284590452354
CONSTANT | og2e : real := 1.4426950408889634074
CONSTANT | 0gl0e : real := 0.43429448190325182765
CONSTANT | n2 : real := 0.69314718055994530942
CONSTANT | n10 : real := 2.30258509299404568402
CONSTANT pi : real := 3.14159265358979323846
-- enx

FUNCTI ON exp(x : real) RETURN real

-- natural logarithm
FUNCTION |l og(x : natural _real) RETURN real;

-- logarithm base 10
FUNCTI ON |1 0g10(x : natural real) RETURN real

-- square root
FUNCTI ON sqrt(x : natural _real) RETURN real

-- X*27n

FUNCTI ON I dexp(x : real; n : integer) RETURN real
-- XrY

-- if x is negative then y nust be a whol e nunber.
FUNCTION pow({ X, Y : real) RETURN real

--remai nder of x/y

9-34 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

--returns the value x - i * y, for sone integer i such
--that, if y is nonzero, the result has the sane sign as X
--and magni tude | ess than the nmagnitude of y. Y should not
--be zero.

FUNCTION frmod(x, y : real) RETURN real;

-- largest integer
-- returns the largest integer not greater than X
FUNCTION floor(x : real) RETURN real;

-- small est integer
-- returns the smallest integer not |ess than x
FUNCTION ceil (x : real) RETURN real;

-- hyperbolic functions

FUNCTI ON sinh(x : real) RETURN real;
FUNCTI ON cosh(x : real) RETURN real;
FUNCTION tanh(x : real) RETURN real;

-- trigononetric functions

FUNCTIONS sin(x : real) RETURN real;
FUNCTI ONS cos(x : real) RETURN real;
FUNCTIONS tan(x : real) RETURN real;
FUNCTIONS asin(x : real) RETURN real;
FUNCTI ONS acos(x : real) RETURN real;
FUNCTI ONS atan(x : real) RETURN real;
FUNCTI ONS atan2(x, y : real) RETURN real;

-- pseudo-random nunbers
-- shoul d be used as foll ows:

-- VARI ABLE rn : real;

-- rn.: :1459;

-rand(rn);

-- rn :

- - -- rn is the random nunber

--Generat e random nunber from seed

--returns a nunber between [0.0, 1.0) based on the seed.
--The results fromthis function is not guaranteed to be

--portable.
FUNCTI ON rand(seed : real) RETURN real;
END mat h;

Mentor Graphics VHDL Reference Manual, July 1994 9-35

Design Units and Packages

mgc_portable.qsim_logic

S
PACKAGE gqsimlogic IS

This predefined Mentor Graphics package provides enumerated types that allow
the designer to interface from a VHDL model to a Mentor Graphics model or
allow aVHDL model to be used in anon-VHDL design.

The gsim_state type provides signal values that are typically found in most
simulators, with minimum worry about signal strengths. The signal is mapped as

follows. - - Mentor nmaps to STATE
-- oS, Or => 0
-- 1S, 1r = 1
-- XS, Xr, Xi => X
- - oi, 1i => X
-- 0Z, Xz, 1z => A

.- 0 => 0S
.- 1 => 1S
.- X => XS
- Z => XZ

TYPE gsimstate IS ("X, "0, "1, 'Z);
TYPE gsi m state_vector IS ARRAY (natural RANGE <>)
OF gsim st at e;

-- Resolution function and resol ved subtype for gsimstate:
FUNCTI ON gsimw red_x (input : gsimstate_vector)
RETURN gsi m st at e;
--Awired 'X operation is performed on the inputs to
--determ ne the resolved val ue as foll ows:
-- X 0 1 z
X '"X,;'X,;'"X,'X
-- 0 'X,’0,'X,'0”
1 'X,'’X,'1r,'r
Zz ’'X,'0,'1r,'Z

9-36 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

FUNCTI ON gsimw red_or (input: gsimstate_vector)
RETURN gsi m st at e;
--Awired OR operation is perforned on the inputs to
--determ ne the resol ved value as foll ows:
-- X 0 (4
-- X 'X,'X,'1,'X
o 'X,'’0,'1,’0
-- 1 'v,'r,1r,r
Z 'X,'0,'1 .7

FUNCTI ON gsimwi red_and (input: qgsimstate_vector)
RETURN gsi m st at e;
--A wired AND operation is performed on the inputs to
--determ ne the resolved value as foll ows:
-- X 0 1 Z
-- X 'X,'0,'X,'X
o 'o0,’0,'0,'0
-- 1 'X,’0,'1r,'rv
zZ 'X,'0,'1 .7

SUBTYPE gsimstate resolved x IS gsimw red x gsimstate;
TYPE gsi m state_resol ved_x_vect or
I S ARRAY(natural RANGE <>) OF gsimstate resolved x;

SUBTYPE gsim state resolved or IS gsimw red _or gsimstate;
TYPE gsi m state_resol ved_or_vector
I'S ARRAY(natural RANGE <>) OF qsimstate_resol ved_or;

SUBTYPE gsi m state_resolved_and IS gsimw red_and gsi m st ate;
TYPE gsi m state_resol ved_and_vect or
I S ARRAY(natural RANGE <>) OF gsimstate_resol ved_and;

The gsim_12state values and strengths map one-for-one with QuickSim I1. This
has an implicit resolution function that matches QuickSim Il1. The gsim_12state
and the gsim_12state vector types are provided for accessing all state
information and for interfacing to other Mentor Graphics primitives. Only
conversion functions to and from are provided.

TYPE gsim 12state | S (SXR, SXZ, SXS, SXl,
SOR, S0Z, S0S, SO0I,
S1R, S1z, S1S, Sll);

--Now a vector for gsim 12state:

TYPE gsi m 12state_vector IS ARRAY (natural RANGE <>)
OF gsim 12state;

Mentor Graphics VHDL Reference Manual, July 1994 9-37

Design Units and Packages

--Resolution function and resol ved subtype for gsim12state:
FUNCTI ON gsi m 12state wired (input : gsim1l2state_vector)
RETURN gsi m 12st at e;
--This resolution function inplenments QuickSims
--resolution function as foll ows:
- - SXR SXZ SXS SXI SOR S0Z SO0S SO0l S1R S1z S1S Sili

-- SXR | SXR SXR SXS SXI SXR SXR SO0S SXI SXR SXR S1S SXI
-- SXZ | SXR SXZ SXS SXI SOR SXZ SO0S SXI S1R SXZ S1S SXI
-- SXS | SXS SXS SXS SXS SXS SXS SXS SXS SXS SXS SXS SXS
-- SXI SXI' SXI SXS SXI SXI SXI SXS SXI SXI SXI SXS SXl
-- SOR | SXR SOR SXS SXI SOR SOR SOS SOl SXR SOR S1S SXI
-- S0Z | SXR SXZ SXS SXI SOR S0Z SO0S SOl S1R SXZ S1S SXI

-- SOl SXI SXI SXS SXI SO0l SOl SO0S SOI SXI SXI SXS SXI
-- SIR | SXR S1R SXS SXI SXR S1R SO0S SXI S1R S1R S1S Sili
-- S1Z | SXR SXZ SXS SXI SOR SXZ SO0S SXI S1R S1Z S1S Sl
-- S1S | S1S S1S SXS SXS S1S S1S SXS SXS S1S S1S S1S S1S
-- Sl1i SXI' SXI SXS SXI SXI SXI SXS SXI S1I Sl S1S Sii

SUBTYPE qgsim 12state resolved IS gqgsimw red gsi m 12stat e;
TYPE gsi m 12st ate_resol ved_vect or
I S ARRAY(natural RANGE <>) OF gsim 12state_resol ved,

-OQher m scell aneous types related to gsim12state.
SUBTYPE gsimvalue IS gsimstate RANGE ' X TO'1';
TYPE gsi m val ue_vector IS ARRAY (natural RANGE <>)
OF gsi m val ue;
TYPE gsimstrength IS (’1’, 'Z, 'R, 'S);
TYPE gsi m strength_vector 1S ARRAY (natural RANGE <>)
OF gsi m strengt h;

-Qther m scel | aneous types:

-Resol ution function and type for bit types:
FUNCTION bit_wired_or (input : bit_vector) RETURN bit;

SUBTYPE bit resolved or IS bit wired or bit;

TYPE bit_resol ved_or_vector IS ARRAY (natural RANCGE <>)
OF bit _resol ved_or;

FUNCTION bit _wired and (input : bit_vector) RETURN bit;

SUBTYPE bit _resolved and IS bit wired and bit;

TYPE bit_resol ved_and_vector IS ARRAY (natural RANGE <>)
COF bit _resol ved and;

9-38 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

--An array of tinme val ues:
TYPE tinme_vector IS ARRAY (natural RANGE <>) OF tine;

--Tim ng node sel ection
TYPE timng_type IS (mn, typ, nmax);

--Conversions to and fromgsimstate, qgsimstrength,
--and gsi mval ue:
FUNCTI ON gsi m val ue_from (val : qsim 12state)
RETURN gsi m val ue;
-- Conversion is:

- - State Resul t
- - S0S, SOR, S0z, SOl 0]
- - S1S, S1R, S1z, Sii 1
- - SXS, SXR, SXz, SX X

FUNCTI ON gsi m strength_from (val : gsim12state)
RETURN gsi m strengt h;
-- conversion is

- - state result
- - S0z, S1z, SXzZ Z
- - SOR, S1R, SXR R
- - S0S, S1S, SXS S
I

-- Sol, Sil, SX

FUNCTI ON gsi mstate_from (val : qsim 12state)
RETURN gsi m st at e;
-- Conversion is:

- - St at e Resul t
- - S0S, SOR, 0
- - S1S, S1R

1
-- SXS, SXR, SXI, SOI, Sii X
-- SXzZ, S0Z, S1z Y4

Conversion for arrays is the same as for scalars, the result is the same size as the
argument, and the conversion is applied to each element. For those functions
taking a vector argument and returning a vector, the range of the result is taken
from the input vector.

FUNCTI ON gsi m val ue_from (val : qsim 12state_vector)
RETURN gsi m val ue_vector;

FUNCTI ON gsi m strength_from (val : gsim1l2state_vector)
RETURN gsi m strength_vector;

Mentor Graphics VHDL Reference Manual, July 1994 9-39

Design Units and Packages

FUNCTI ON gsi mstate_from (val : qsim.12state_vector)
RETURN gsi m state_vector;

--Define the "to’ gsimstate function
FUNCTION to_qgsim 12state (val : qsimstate;
str : gsimstrength :="'S")
RETURN gsi m 12st at e;

FUNCTI ON to_qgsi m 12state (val : qsimval ue_vector
str : gsimstrength_vector)
RETURN gsi m 12state_vector;

FUNCTION to_gsi m 12state (val : gsimstate_vector)
RETURN gsi m 12state_vector;

The following are miscellaneous conversion functions from bit to gsim_state,
bit_vector to integer, gsim_state vector to integer, integer to bit, and integer to
gsim_state vector. For integer conversion, the’left ismsb and 'right islsh. For
those functions taking a vector argument and returning a vector, the range of the
result is taken from the input vector. For those functions having a scalar
argument and returning a vector, the range of the result has a‘left value of 0, a
direction of "to", and a ‘length value equal to the input argument 'size'.

-- FUNCTION to_gsimstate (val: integer; size: integer := 32)
--default initial paraneters not yet supported

FUNCTION to _gsimstate (val : bit) RETURN gsi m state;

FUNCTION to_qgsi mstate (val : bit_vector)
RETURN gsi m state_vector;

FUNCTION to_gsimstate (val : integer; size : integer)
RETURN gsi m state_vector;
--to_gsimstate produces a 2’'s conplenent representation

--In these conversions, the qgsimstate value 'X and 'Z is
--translated to the bit value 'O

FUNCTION to_bit (val : gsimstate) RETURN bit;

FUNCTION to_bit (val : gsimstate_vector) RETURN bit_vector;
-- FUNCTION to_bit (val : integer; size : integer := 32)

-- RETURN bit_vector;
--Default initial paraneters not yet supported

9-40 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

FUNCTION to_bit (val: integer; size: integer)
RETURN bit vector;
--to_bit produces a 2's conpl enent representation.

FUNCTION to_integer (val : bit_vector) RETURN integer;
-- to_integer assunes a 2’s conpl enent representation

--In this conversion function, the gsimstate value 'X and
--'Z are translated to the integer value of the second
--paranmeter x. By default the value is zero (0).
-- FUNCTION to_integer (val: gsimstate_vector;
-- X: integer := 0)

--default initial paranmeters not yet supported.

FUNCTION to_integer (val : gsimstate vector; x : integer)
RETURN i nt eger ;
--to_integer assunes a 2’'s conpl enent representation.
--Overl oaded math and | ogi c operati ons:

FUNCTI ON "AND" (I, r: qgsimstate) RETURN gsi m state;

-- AND r\l O 1 X Z
-- 0O 0 0O 0 O
-- 1 0 1 X X
-- X 0 X X X
-- Z 0 X X X
FUNCTION "OR" (I, r: gsimstate) RETURN gsim state;
-- OR r\ 0o 1 X Z
-- 0O 0 1 X X
-- 1 1 1 1 1
- - X X 1 X X
-- Z X 1 X X

FUNCTI ON "NAND" (I, r: gsimstate) RETURN gsi m st at e;

-- NAND r\l O 1 X Z
- - 0 1 1 1 1
- - 1 1 O X X
-- X 1 X X X
-- Y4 1 X X X

Mentor Graphics VHDL Reference Manual, July 1994 9-41

Design Units and Packages

FUNCTI ON "NOR' (I, r:

FUNCTI ON "XOR' (I, r:

-- XOR

FUNCTI ON

9-42

r\l 0 1

1
0
X X
X

OO OO0

r\l 0 1

"= (]

XX OR O

- XX PR OO

XX PR OO

1
0
X
X

gsi mstate) RETURN gsi m st at e;

X Z

X X o X
X X o X

gsi mstate) RETURN gsi m st at e;

X Z

X X X X
X X X X

gsimstate) RETURN gsi m st at e;

r

XXOrPkr XX P OPR

cNeoNoNok ol

gsimstate) RETURN gsi m st at e;

XX X X X
XXX XN

S

0

m state) RETURN gsi m st ate;

XX X X X
XXX XN

simstate) RETURN gsi m st at e;

Q0

XXX o X
XX XON

Mentor Graphics VHDL Reference Manual

, July 1994

Design Units and Packages

FUNCTION ">" (|, r: gsimstate) RETURN gsi m st at e;

SRS r\l

oNoNoNoNa!
XX ORPR
X X O XX
XX O XN

FUNCTION "<=" (I, r : qgsimstate) RETURN gsi m st at e;

.- "= r\l 0 1 X Z
-- 0 1 0 X X
-- 1 1 1 1 1
-- X 1 X X X
-- Z 1 X X X
FUNCTION ">=" (I, r gsi mstate) RETURN gsi m st at e;
.- ">z r\l 0 1 X Z
-- 0 1 1 1 1
-- 1 0 1 X X
-- X X 1 X X
-- Z X 1 X X
FUNCTION "+" (|, r gsim state) RETURN gsi m st at e;
- "+ r\l 0 1 X Z
-- 0 0 1 X X
-- 1 1 0 X X
-- X X X X X
-- Z X X X X
FUNCTION "-" (|, r gsi m state) RETURN gsi m st at e;
- r\l 0 1 X Z
-- 0 0 1 X X
-- 1 1 0 X X
-- X X X X X
-- Z X X X X
--The operators of & wunary +, unary -, *, /, nod, rem

--** abs are not defined for gsimstate;

The overload functions for gsim_state vector assume the standard Mentor
Graphics notation of the most-significant-bit (msb) being the left- most element.
All functions, unless otherwise stated, work with arrays of unequal length. The

Mentor Graphics VHDL Reference Manual, July 1994 9-43

Design Units and Packages

shorter arrays will be prepended with 'O’ to make them the same length. Thisis
true for the relational operatorsto prevent expressions like
("011" <"10") =TRUE.

Functions returning vector types have aresult that has alength of the longest
operand, and the result has a’left and direction equal to the ’left and direction of
the left operand unless otherwise noted

The relational operators and logical operators work asif the gsim_state operator
were applied individually to each operand pair. The relational operator rules for
arrays apply for gsim_state vectors. gqsim_state vectors are treated as unsigned
integersin all arithmetic operations. If either operand contains’ X’ or 'Z’, an
attempt is made to compute an answer as optimistically as possible. In some
cases, a partial result will be produced. Otherwise, the result will be’ X’ or an
array of ' X’s.

-- bitw se operations

FUNCTI ON "AND" (I, r: qgsimstate_vector)
RETURN gsi m state_vector;

FUNCTION "OR" (I, r: qgsimstate_vector)
RETURN gsi m state_vector;

FUNCTI ON "NAND' (|, r: gsimstate_vector)
RETURN gsi m state_vector;

FUNCTI ON "NOR" (I, r: qgsimstate vector)
RETURN gsi m state_vector;

FUNCTI ON "XOR" (I, r: qgsimstate vector)
RETURN gsi m state_vector;

FUNCTI ON " NOT" (| . gsimstate_vector)
RETURN gsi m state_vector;

For these relational operators, an algorithm is employed to provide the most
optimistic answer possible in the case where’ X’ s are present For example the
result of ("011" >="0X1")is’1". In effect, acomparison isdone with the’ X’
replaced with a’ 0" and then repeated with the’ X’ replaced witha’1’. If theresults
of both comparisons are the same, then that result isreturned. |If the results don’t
match, an’ X’ isreturned.

FUNCTION "<" (I, r: gsimstate_vector) RETURN gsi m st ate;
FUNCTION ">" (I, r: gsimstate vector) RETURN gqsi m st at e;
FUNCTION "=" (I, r: gsimstate vector) RETURN gsi m state;
FUNCTION "/=" (I, r: qgsimstate vector) RETURN qgsi m state;
FUNCTION ">=" (I, r: qgsimstate vector) RETURN qsi m state;
FUNCTION "<=" (I, r: qgsimstate_vector) RETURN gsi m st at e;

9-44 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

Addition and subtraction of gsim_state vectors use the table defined for
gsim_state "+" and "-" operators. The result vector isthe size of the larger
operand. The range of the result array will have a ’left and direction equal to the
'left and direction of the left operand. The result will be as optimistic as possible

when’ X’ s are present. For example:
-- ("01X0" + "0100") = "10X0"
-~ ("01X0" + "0110") = "1XX0"

FUNCTION "+" (I, r: gsimstate_vector)
RETURN gsi m state_vector;
FUNCTION "-" (I, r: gsimstate_ vector)
RETURN gsi m state_vector;

For these multiplying operators, the result is the size of the larger operand with a
"left and direction of the left operand. The operators"*","/", "mod", "rem", and
"**" will do the following: convert the entry to anatural universal integer,
perform the operation, and truncate the result to the size of the result array. The
size of the result is the same as for addition and subtraction: the size of the larger
operand. The size of the result for "*" is the sum of the lengths of the two
operands. If any 'X’sor’Z’'sare present in either operand, the complete result is
al’X’s.
FUNCTION "*" (I, r: qgsimstate_vector)
RETURN gsi m state_vector;
FUNCTION "/" (I, r: gsimstate_vector)
RETURN gsi m state_vector;
FUNCTI ON "MOD"' (I, r: gsimstate _vector)
RETURN gsi m state_vector;

--NOTE: Since the operands are treated as unsigned integers
-- REM returns the sane result as MOD.

FUNCTION "REM' (I, r: qgsimstate_vector)

RETURN gsi m state_vector;

FUNCTION "**" (I, r: gsimstate_vector)

RETURN gsi m state_vector;

--The operators unary "+", "-" and "abs" are not defined.
--"&" has the normal neaning.

Mentor Graphics VHDL Reference Manual, July 1994 9-45

Design Units and Packages

--Define logic operators on bit vectors.
--These differ fromthe standard in that they accept vectors
--of different |engths.

FUNCTION "AND' (I,
FUNCTTON "OR' (I,
FUNCTI ON “NAND" (I,
FUNCTION "NOR' (I,
FUNCTION "XOR' (I,

bit vector) RETURN bit_vector;
bit vector) RETURN bit_vector;
bit vector) RETURN bit_vector;
bit vector) RETURN bit_vector;
bit_vector) RETURN bit_vector;

—_— =~ =~ =

-Define addition and subtraction for bit vectors.

-"left is the nost significant bit and 'right is the |east
-significant bit. The result is the size of the |arger
-operand. Bit_vectors are treated as unsigned integers.

FUNCTION "+" (I, r : bit_vector) RETURN bit_vector
FUNCTION "-" (I, r : bit_vector) RETURN bit_vector

--rxm oot "mod", "rent, and "**" are defined to be:

-- convert the entry to a natural universal integer,

-- performthe operation and truncate it to the size of the

-- resultant array.
FUNCTION "*" (I, r : bit_vector) RETURN bit_vector;
FUNCTION /" (I, r : bit_vector) RETURN bit_vector;
FUNCTION "MOD' (I, r : bit_vector) RETURN bit_vector;

--NOTE: Since the operands are treated as unsigned integers
-- REM returns the sane result as MOD.

FUNCTION "REM' (I, r : bit_vector) RETURN bit_vector;
FUNCTION "**" (I, r : bit_vector) RETURN bit_vector;
--The operators unary +, unary - and abs are not defi ned.

END qsi m | ogi c;

9-46 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

mgc_portable.qsim_relations

S

In this package, the "=", "<", ">", etc. operators are defined for type gsim_state to

deal effectively an reasonably with unknown states (* X’).

LI BRARY nent or;
USE nentor.qsiml ogic. ALL;

PACKAGE gqsimrelations IS
FUNCTION "=" (I, r : gsimstate) RETURN bool ean;
- - n :ll r\ I
-- 0

MmMT M40
mMmmdTeE
MmMTTTX
MTT TN

1
.- X
Z

FUNCTI ON "

VS r\l

~
|
—

(gsi mstate) RETURN bool ean;

MTH4T O
MmMmMmTdHe
MMTTTX
MTTTN

FUNCTION "<" (

-

gsi mstate) RETURN bool ean;

MTH4TOo
B e e o
mMTTTX
MTTTN

FUNCTION ">" (

—
O
(7]

i mstate) RETURN bool ean;

MMTTTOo
MM
T T T T X
MT T TN

Mentor Graphics VHDL Reference Manual, July 1994

9-47

Design Units and Packages

FUNCTION "<=" (I, r : qgsimstate) RETURN bool ean;

mT—-HTX
MTHTN

I, r : gsimstate) RETURN bool ean;

T T X
M7 TN

1
.- X
Z

FUNCTION same(I, r : gsimstate) RETURN bool ean;
-- True equival ence

FUNCTION "<" (I, r gsi mstate_vector) RETURN bool ean;
FUNCTION ">" (I, r gsi mstate_vector) RETURN bool ean;
FUNCTION "=" (I, r gsi mstate_vector) RETURN bool ean;
FUNCTION /=" (I, r gsi mstate_vector) RETURN bool ean;
FUNCTI ON ">=" (I, r gsim state_vector) RETURN bool ean;
FUNCTI ON "<=" (I, r gsimstate_ vector) RETURN bool ean;

--Only the relational operators for gsimstrength are defi ned.
--All other operations on gsi mstrength are undefi ned.

FUNCTION "=" (I, r : gsimstrength) RETURN bool ean;
-- "= r\I Zz R S |
-- Z T F F F
-- R F T F F
-- S F F T F
-- I F F F F

FUNCTION "/ ="(

-

gsi m strength) RETURN bool ean;

"/="r\l Z R S |
-- Z F T T F
.- R T F TF
.- S T T FF
-- | F F F F

9-48 Mentor Graphics VHDL Reference Manual, July 1994

Design Units and Packages

FUNCTION "<"(I, r : gsimstrength)
-- "<" r\l Z R S |
-- Z F F F F
-- R T F F F
- - S T T F F
-- I F F F F

FUNCTI ON " >"(

-

gsi m strength)

- ">" o\l Z R S |
-- Z F T TF
-- R F F T F
-- S F F F F
-- | F F F F

FUNCTI ON "<=" (I, r : gsimstrength)

-- "<="r\I Z R S |
-- Z T F F F
- - R T T F F
-- S T T T T
-- I T F F F
FUNCTION ">="(l, r : qgsim.strength)
-- ">="r\l Z R S |
-- Z T T T T
-- R F T T F
-- S F F T F
- - I F F T F

FUNCTION sanme (I, r : gsimstrength)
-- True equival ence

RETURN bool ean;

RETURN bool ean;

RETURN bool ean;

RETURN bool ean

RETURN bool ean;

The following definitions redefine the basic comparison operators on bit vectors
because those operators defined in VHDL do text string comparisons. The
standard defines comparisons of arrays to proceed from left to right. However,
bit_vectors normally represent numbers, and in this case, comparisons should
proceed from right to left. To illustrate the implications of this, take the bit string
literals B"011" and B"10". Thefirst bit string literal represents the number 3; the
second, 2. Going by the standard, B"011" < B"10" istrue, (i.e. 3< 2istrue). To
fix this, the comparison operators are overloaded for bit_vectors to perform a

numeric comparison.

Mentor Graphics VHDL Reference Manual, July 1994

9-49

Design Units and Packages

FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON

AN AN AN AN

NN AN AN AN

END gsi mrel ati ons;

9-50

—_— =~ =~ =~ =

—_— =~ =~ =~ =

bit_vector)
bit_vector)
bit_vector)
bit _vector)
bit _vector)
bit_ vector)

bit vector)
bit_vector)
bit_vector)
bit_vector)
bit _vector)
bit _vector)

Mentor Graphics VHDL Reference Manual, July 1994

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

bit;
bit;
bit;
bit;
bit;
bit;

bool ean;
bool ean;
bool ean;
bool ean;
bool ean;
bool ean;

Attributes

Section 10
Attributes

This section includes information on attributes, both user-defined and predefined.
Attributes allow you to associate information with an item. The following
ordered list shows the constructs and topics this section discusses:

Attribute Overview 10-1
attribute_name 10-3
Predefined Attributes 10-5
Detailed Predefined Attribute Description 10-7
Array Object Attributes 10-8
Block Attributes 10-24
Signal Attributes 10-28
Type Attributes 10-40
User-Defined Attributes 10-53
attribute_declaration 10-54
attribute_specification 10-55

Attribute Overview

An attribute is a named characteristic that is associated with one or more itemsin
aVHDL description. There are two varieties of attributes:

o Predefined attributes are part of the predefined language environment.
Predefined attributes are useful for examining the characteristics of arrays,
types, and blocks or for querying and manipulating the values of signals.

o User-defined attributes allows you to add additional information that cannot
be described using other VHDL constructs. For example, you might want to
back-annotate physical characteristics such as output and input capacitances to
adesign.

Mentor Graphics VHDL Reference Manual, July 1994 10-1

Attributes

Design Units
Design Entities
Configurations

Packages

Attributes Components
Types Signals
Statements Subprograms

Declarations

Expressions
Lexical Elements

Naming, Scope, and Visibility

Attributes

v
v v

Predefined Attributes User-Defined Attributes

Array Object
Block
Signal

Type

Figure 10-1. Attributes

10-2 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

attribute_name
An attribute name denotes a particular characteristic associated with atype,
subprogram, object, design unit, component, or label.

Construct Placement
name

Syntax

attribute_name ::=
prefix attribute_designator [(expression) |

attribute_designator ::=
attribute_simple_name

Definitions

m altribute_designator
The attribute designator names the attribute that you wish to use.

Description
When referenced by its name, an attribute returns certain information about the
item named in the prefix, such as length of an array or whether asignal is active.

The apostrophe character (') designates that the identifier immediately following
itisan attribute. (The apostrophe character is also used to designate qualified
expressions and to enclose character literals.) The following code example
shows the use of a predefined attribute:

cl ock’ del ayed(50 ns)

-- "clock” is the prefix (signal nane)

-- ""delayed" is the attribute designator (sinple nane)
-- (50 ns) is the optional static_expression

-- This attribute creates and accesses a signal that has
-- the sane value as "clock," except it is delayed 50 ns.

The prefix indicates the object that the attribute relatesto. The prefix for a
predefined attribute denotes a particular array, block, signal, or type. On the
other hand, the prefix for a user-defined attribute may denote an entity
declaration, an architecture body, a configuration, a procedure, a function, a
package, atype, a subtype, a constant, asignal, a variable, a component, or a

Mentor Graphics VHDL Reference Manual, July 1994 10-3

Attributes

label. In the preceding example, the prefix cl ock isof type signal; therefore, the
attribute relates to the signal called cl ock.

The attribute designator is the name of the attribute that you wish to use. In the
preceding example, del ayed is the attribute designator.

The optional expression is an expression that designates a specific parameter for
the attribute. 1n the preceding example, the expressionis"50 ns'. Not all the
predefined attributes allow parameters. The expression in the attribute name may
be required or may be optional, depending on the particular attribute definition.

The following examples show the declaration of two types and the use of
attribute names to determine information about those types. These code
fragments have been taken out of context from a description.

Type decl arati ons:
TYPE color IS(red, white, blue, orange, purple);
TYPE vector IS ARRAY (1 TO 10, 1 TO 15) OF integer;

color’val (2) --Returns the value of elenent in position 2
--of the type "color"™ which is blue (positions
--start at zero)

vector’right(1l) --returns right bound of the specified

--index"1" in the array "vector"
--which is 10

10-4 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

Predefined Attributes

Predefined attributes are a means of determining types, ranges, and values that
relate to design items. For example, you can examine array bounds or determine
whether a certain condition istrue or false. Y ou can use some attributes as
subprogram parameters. For information on this topic, refer to page 7-8.

Each predefined attribute relates to only one valid object kind. This object kind
corresponds to the prefix you use before the attribute designator. Each
predefined attribute falls into one of the four object kind categories. array
objects, blocks, signals (scalar or composite), and types (scalar, composite or
file). For example, if you want information about asignal, you use asignal
attribute or if you want information about an array, you use an array object
attribute. It would not be logical, for instance, to determine if an integer (scalar
type) was stable at a certain time, because only signals can be stable.

Table 10-1 lists each predefined attribute name and the related object kind.

The object kind should not be confused with the attribute kind. The attribute
kind tells you what the attribute actually is and the rules for using the attribute
value. The attribute kinds are as follows:

e Function e Range e Signa e Type e Vaue

For example, the attribute ’low of the array object kind is an attribute of the
function kind. This means that when you use the attribute, it actually calls a
function that returns avalue. Also, all the rulesfor functions apply to the
attribute.

Another example is the attribute ’ quiet that has an object kind of signal andisan
attribute of signal kind. Therefore, if you state test’ delayed (10 ns), there actually
existsasignal called "test’ delayed”, which is "test" delayed by 10 ns, with al the
rules that apply to signals. Y ou can use thissignal just as you would the signal
"test".

Mentor Graphics VHDL Reference Manual, July 1994 10-5

Attributes

Table 10-1. Attributes

Attribute Object Page
Kind

"active ..o, Signal 10-29
base ..o Type 10-42
"behavior Block 10-25
"delayed[(t)] Signa 10-30
"event ..o, Signa 10-31
"high .o Type 10-43
"high[(N)] ..cccvvennee Array 10-11
'last_active................ Signal 10-32
last_event Signa 10-33
'last_value................ Signa 10-34
B 1= | Type 10-44
left[(N)] oo Array 10-13
"leftof (X) .ooveeereeenene Type 10-45
"length[(N)] Array 10-15
TOW v Type 10-46
TOW[(N)] eveeeeeieeiens Array 10-17
"POS(X) e Type 10-47
"Pred(X) coeeeeeeeenennns Type 10-48
"QUIEL[(D)] e Signa 10-35
‘rangef(N)]ccuveee Array 10-19
'reverse_range[(n)] Array 10-21
gt e Type 10-49
right[(N)] «oveeeeeeenee Array 10-23
"rightof(X) ...ccoeeeuneeee Type 10-50
"stable[(t)] .ooovevenens Signa 10-36
"structure................. Block 10-26
"SUCC(X) wevveerveereennens Type 10-51
"transaction Signad 10-37
"Va(X) e, Type 10-52

10-6 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

Detailed Predefined Attribute Description

The predefined attributes are divided into four categories according to their
object kind. If you are not sure which object kind the attribute relates to, refer to
Table 10-1 on page 10-6. A discussion on each object kind precedes a detailed
description of each predefined attribute for that object kind.

The descriptions for the attributes appear in the following format:

Kind
This subsection designates which kind the attribute is (attribute kind). An
attribute can be afunction, range, signa, type, or value. The attribute kind is not
the object kind. Table 10-1 on page 10-6 lists the object kind for each attribute.

Prefix
This subsection defines the valid prefix for the attribute. The prefix is the object
name or function call of the item to which to apply the attribute.

Parameter
This subsection defines the parameter (if applicable) for the attribute. You
provide the parameter, which is avalue that specifies an exact location or time.

In the descriptions, the parameter isindicated by aletter set off in parentheses
(which are required) and, in some cases, brackets (which are not used in the
code). If you do not provide avalue for a parameter, it assumes a default value.

Result Type
This subsection discusses the resulting type after evaluating the attribute.

Evaluation Result
This subsection discusses the results of the attribute evaluation.

Example
This subsection contains an example for using the attribute and the results after
evaluation.

Restrictions
This subsection discusses any restrictions that apply to the attribute.

Mentor Graphics VHDL Reference Manual, July 1994 10-7

Attributes

Array Object Attributes

Y ou use array object attributes for passing array parameter information to other
arrays (such as unconstrained arrays). Aan important concept to keep in mind
when using array object attributes, is that the evaluation results are the bounds of
the array, not the contents of the array. For more information on array types,
refer to page 5-22.

For this subsection, one array is used for the examples. Thisarray iscalled
mat ri x asthe following code shows:

TYPE arr_1 IS ARRAY (integer RANGE <>) OF integer;
VARI ABLE matrix: arr_1(1 TO 3, 9 DOMWMTO 6);--array var. decl.

The preceding line of code creates a 3 by 4, two-dimensional array. The
following is arepresentation of this array:

1 * * * *
2 * * * *
3 * * * *

In the previous array, the star "*" represents the array contents. Since the
predefined attributes for array objects relate to the array bounds, the examples do
not require actual array element values. When specifying a parameter [(n)], you
are either referencing an index row from above the dashed line, or an index

column to the left of the solid line. For example:
matri x’ high(l) -- paraneter n =1

The parameter (1) isreferencing the boxed column shown in the following
diagram:

10-8 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

1 * * * *
N—l 2 * * * *
3 * * * *

If you specify a parameter of (2) asfollows:
matri x’ high(2) -- paraneter N = 2

the parameter (2) is referencing the boxed row shown in the following matrix:

1 * * * *
2 * * * *
3 * * * *

Y ou cannot use parameter values that exceed the dimension of the array. For
example, if you specify "n = 3" using the example array, an error occurs because
the example array is two-dimensional, not three-dimensional.

When you are examining arrays, the ascending and descending range refersto the
direction of theindex. The boxed regions of Figure 10-2 illustrate this concept.

Mentor Graphics VHDL Reference Manual, July 1994 10-9

Attributes

left = high right = low
——— Descending —»

INDEX 9 8 76
eft=low [L 1|
Ascending 2 * * * *
right = high 3 * * * *
\J

Figure 10-2. Array Direction

In the preceding array, the vertical index isascending (1 TO 3). Therefore,
"left" or "low" correspondsto vertical index "1", and "right" or "high"
corresponds to vertical index "3".

The horizontal index isdescending (9 DOANTO 6). Therefore, "left" or "high"
corresponds to horizontal index "9", and "right" or "low" corresponds to
horizontal index "6". The direction relationships between the range indices are
determined by using thistable:

Range Ascending Range | Descending
Constraint Range

Bound

Left-most = Lowest value Highest value
Right-most = | Highest value Lowest value
Lowest = L eft-most value Right-most value
Highest = Right-most value | Left-most value

The following subsections describe each predefined array object attribute in
detail.

10-10 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

"high[(n)]
Kind

Function

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, that can be evaluated during the current
design unit analysis (locally static expression). The value of this expression
cannot be larger than the array object dimension. If you do not include this
expression, the default value is one (1).

Result Type
The result type corresponds to the type indicated by the specified parameter [(n)].

Evaluation Result
The result returns the upper bound of the index range specified by the parameter
[(n)]. Theindex rangeisall the possibleindex valuesin a specified range.

Mentor Graphics VHDL Reference Manual, July 1994 10-11

Attributes

Example

The following example shows an attribute portion of a code description:

TYPE arr_1 IS ARRAY (integer RANCE <>) OF integer
VARI ABLE matrix: arr_1(1 TO 3, 9 DOMTO 6);--array var. decl.

mat ri x’ hi gh(1)
mat ri x’ hi gh(2)

--paranmeter nis 1 - Returned value is 3
--paranmeter nis 2 - Returned value is 9

When the parameter [(n)] is 1, the boxed column is examined:

1 * * * *
2 * * * *
—> 3 * * * *

Thevalue that returnsis 3", which is the value of the upper bound of the array
index that the parameter (1) specifies.

When the parameter [(n)] is 2, the horizontal row isexamined. Inthisexample, a

"9" isreturned.

10-12

Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'left[(n)]
Kind

Function

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type

The result type corresponds to the left bound type indicated by the specified
parameter [(n)].

Evaluation Result
The result returns the left bound of the index range specified by the parameter
[(n)]. Theindex rangeisall the possibleindex valuesin a specified range.

Mentor Graphics VHDL Reference Manual, July 1994 10-13

Attributes

Example
The following example shows an attribute portion of a code description:

TYPE arr_1 IS ARRAY (integer RANCE <>) OF integer;

VARI ABLE matrix: arr_1(1 TO 3, 9 DOMTO 6);--array var. decl.
matrix'left(2) --parameter Nis 2 - Returned value is 9
matrix'left(l) --parameter Nis 1 - Returned value is 1

When the parameter [(n)] is"2", the boxed column is examined:

1 * * * *
2 * * * *
3 * * * *

The value that returnsis"9", which is the value of the left bound that the
parameter (2) specifies.

When the parameter [(n)] is"1", the vertical column is examined. In this
example, a"1’ isreturned.

10-14 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'length[(n)]
Kind

Vaue

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type
universal_integer

Evaluation Result
The result is the number of values within the index range specified by the
parameter. The following isthe algebraic expression for *length[(n)]:

"length(n) = "high(n) - "low(n) + 1

If you specify a prefix that designates a null array, the evaluation result is zero.

Mentor Graphics VHDL Reference Manual, July 1994 10-15

Attributes

Example
The following example shows an attribute portion of a code description:

TYPE arr_1 IS ARRAY (integer RANCE <>) OF integer;
VARI ABLE matrix: arr_1(1 TO 3, 9 DOMTO 6);--array var. decl.
matrix’length(l) --parameter nis 1 - Returned value is 3

Since the parameter [(n)] is"1", the boxed column is examined:

+1 INDEX 9 8 7 6
Ao

> 1 * * * *

2 * * * *

B 3 * * * *

The value that returnsis 3", which is the number of values within the specified
parameter (1). Thereturn valueis determined by substituting values in the
algebraic expression, as the following example shows:

"length(1) = "high(1) - "low(1) + 1
"length(1) =3-1+1
"length(1) = 3

10-16 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

"low[(n)]
Kind

Function

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type
The result type corresponds to the type indicated by the specified parameter [(n)].

Evaluation Result
The result returns the lower bound of the index range that the parameter [(n)]
specifies. Theindex rangeisall the possible index values in a specified range.

Mentor Graphics VHDL Reference Manual, July 1994 10-17

Attributes

Example
The following example shows an attribute portion of a code description:

TYPE arr_1 IS ARRAY (integer RANCE <>) OF integer;

VARI ABLE matrix: arr_1(1 TO 3, 9 DOMTO 6);--array var. decl.
matrix’'low2) --paraneter nis 2 - Returned value is 6
matrix’'low(1l) --paraneter nis 1 - Returned value is 1

When the parameter [(n)] is"2", the boxed column is examined:

1 * * * *
2 * * * *
3 * * * *

The value returned is"6", which is the value of the right bound that the parameter
(2) specifies.

When the parameter [(n)] is"1", the vertical column is examined. In this
example, the returned valueis"1"

10-18 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘'range((n)]

Kind
Range

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type
The result type corresponds to the type indicated by the specified parameter [(n)].

Evaluation Result
The result is the range of the array you specify in the prefix, using the reserved
word to if ascending, and downto if descending. Theresult isnot avisible string
but a value you can use as a range constraint or in afor statement.

Mentor Graphics VHDL Reference Manual, July 1994 10-19

Attributes

Example

The following example shows an attribute portion of a code description:
mat ri x’ range(1)

Since the parameter [(n)] is"1", the boxed column is examined:

The value of the attributeis"1 to 3", which is the value of the ascending range of
the specified parameter (1). Thisreturned value can be used only when
specifying a range.

o Thefollowing example shows the specification of arange of another array by
using the preceding example:
X: ARRAY (1 TO 4, matrix’ range(1l));
Thisis equivalent to the following:
X: ARRAY (1 TO 4, 1 TO3); -- 4 by 3, two-dinen. array

e Anexample using 'range in aloop statement follows:
FOR test IN matrix’range(1l) LOOP

Thisis equivalent to the following:
FOR test IN1 TO 3 LOCP

10-20 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'reverse_range[(n)]

Kind
Range

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type
The result type corresponds to the type indicated by the specified parameter [(n)].

Evaluation Result
The result is the conversion of ascending range to a descending range, or the
conversion of adescending to an ascending range, using the specified parameter.

Mentor Graphics VHDL Reference Manual, July 1994 10-21

Attributes

Example

The following example shows an attribute portion of a code description:

matri x’ reverse_range(1)

Since the parameter [(n)] is"1", the box

INDEX

A [1]
DOWNTO 2
3

ed column is examined:

The value of the attribute is "3 downto

1", which is the value of the descending

range (converted from ascending range) of the specified parameter (1). This
returned value can be used only when specifying a range.

o Thefollowing example shows the specification of arange of another array by

using the preceding example:
x: ARRAY (1 TO 4, matrix're

Thisis equivalent to the following:
x: ARRAY (1 TO 4, 3 DOMNTO

verse_range(1));

1); -- 4 by 3, two-dinen. array

e Anexample using 'range in aloop statement follows:

FOR test IN matrix’reverse_

Thisis equivalent to the following:
FOR test

10-22

range(1l) LOOP

IN 3 DOMNTO 1 LOOP

Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘right[(n)]

Kind
Function

Prefix

Any valid array object prefix or a prefix that designates a constrained array
subtype.

Parameter
An expression of type universal_integer, which can be evaluated during the
current design unit analysis (locally static expression). The value of this
expression cannot be larger than the array object dimension. If you do not
include this expression, the default value is one (1).

Result Type
The result type corresponds to the type indicated by the specified parameter [(n)].

Evaluation Result
The result returns the right bound of the index range that the parameter [(n)]
specifies. Theindex rangeisall the possible index values in a specified range.

Mentor Graphics VHDL Reference Manual, July 1994 10-23

Attributes

Example
The following example shows an attribute portion of a code description:

TYPE arr_1 IS ARRAY (integer RANCE <>) OF integer;

VARI ABLE matrix: arr_1(1 TO 3, 9 DOMTO 6);--array var. decl.
matrix'right(2) --paraneter nis 2 - Returns value of 6
matrix'right(1l) --paraneter nis 1 - Returns value of 3

When the parameter [(n)] is"2", the boxed column is examined:

1 * * * *
2 * * * *
3 * * * *

The value that returnsis 6", which is the value of the right bound that the
parameter (2) specifies.

When the parameter [(n)] is"1", the vertical column is examined. In this
example, the returned valueis"3".

Block Attributes

Block attributes provide you with ameans for checking whether certain
conditions exist within ablock or for returning certain information about the
block.

10-24 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'behavior

Kind
Vaue

Prefix
Any block (designated by the corresponding block label) or design entity
(designated by the corresponding architecture name).

Result Type
Boolean

Evaluation Result
The result of evaluating the attribute is TRUE if the specified block (specified by
the block statement or design entity) does not contain a component instantiation
statement. If acomponent instantiation statement is present, the attribute value is
FALSE.

If the result is TRUE, the code contains a behavioral description.

Example
The following example shows a block within an architecture:

ARCHI TECTURE sig test OF test IS

SIGNAL tester : wired or bit_vector BUS, -- signal decl.
SIGNAL a, b, c : bit;
BEG N
sig_assign: -- block |abel
BLOCK (tester = "1") -- guard expression
SIGNAL z : bit_vector; -- block declarative_item
DI SCONNECT tester : bit_vector AFTER 10 ns;
BEG N
z <= GQUARDED a; -- "z" gets "a" if "test" ='1
END BLOCK si g_assign;
END si g _test;

The following example shows the use of the predefined attribute ' behavior in
relation to the preceding example:

si g_assi gn’ behavi or

The value that returns from the preceding code is TRUE because the block
si g_assi gn does not contain a component instantiation statement.

Mentor Graphics VHDL Reference Manual, July 1994 10-25

Attributes

'structure

Kind
Vaue

Prefix
Any block (designated by the corresponding block label) or design entity
(designated by the corresponding architecture name).

Result Type
Boolean

Evaluation Result
The result of evaluating the attribute is TRUE if the specified block (specified by
the block statement or design entity) does not contain a signal assignment
statement or concurrent statement that contains a signal assignment statement.
The value is FALSE for any other case.

If theresult is TRUE, it informs you that the code contains a structured
description.

10-26 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

Example
The following example shows a block within an architecture:

ARCHI TECTURE sig test OF test IS
SIGNAL tester : wired_or bit_vector BUS, -- signal decl.
SIGNAL a, b, ¢ : bit;

BEG N
si g_assi gn: --bl ock | abel
BLOCK (tester = '1') -- guard expression
SIGNAL z : bit_vector; -- block declarative_ item
DI SCONNECT tester : bit_vector AFTER 10 ns;
BEG N
z <= GUARDED a; --z gets a if "test" =1 --sig. assign.
END BLOCK si g_assign;
END sig_test;

The following example shows the use of the predefined attribute ’ structure in
relation to the preceding example:

sig_assign structure

The value that returns from the preceding code is FAL SE because the block
si g_assi gn contains asignal assignment statement.

Mentor Graphics VHDL Reference Manual, July 1994 10-27

Attributes

Signal Attributes

You use signal attributes to determine if certain signal conditions are true, to

return information about signals, or to add delay timeto signals. An important

concept to keep in mind is that the ' delayed signal attribute is actually asignal of

the same base type as the prefix. Figure 10-3 shows an example of this concept.
Code Portion Signal Waveforms

ASSERT NOT(preset’ del ayed(5 ns) = '1' preset | 1
AND preset = '0") —‘ o

REPORT " Check Fail ed" 1 (bt]
SEVERI TY war ni ng; !

preset’djelayedi

| | (bit)
B R R R e e
15 20 25 30 35
time (ns)

Figure 10-3. Signal Attribute Concept

The previous example shows the signal attribute’ del ayed combined with the
signal preset (the prefix) to create another signal pr eset’ del ayed. Thissigna
ispreset delayed by 5ns. You can use the signal attribute signal in several
ways, as the following list shows:

e Sengitivity lists of process and wait statements
o Guard expressions
o Read the signal

Y ou cannot make assignments to the attribute signal. The remaining signa
attributes are functions that return values about asignal. For more information
on signals, refer to Section 11.

The following subsections discuss each predefined signal attribute in detalil.
Examples of the signal attributes are more informative if they are shown together.
Therefore, there is one example on page 10-38 that shows the use and effects of
al the signal attributes.

10-28 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘active

Kind
Function

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can only depend on constants or generics.

Result Type
Boolean

Evaluation Result
If the signal that the prefix specifiesis active while in the current simulation
cycle, the return result for ascalar signal isavalue of TRUE .

If any scalar subelement specified by the prefix is active, the return result for a
composite signal isavalue of TRUE .

If the preceding conditions are not met, the return value is FAL SE.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

Mentor Graphics VHDL Reference Manual, July 1994 10-29

Attributes

'delayed](t)]

Kind
Signal

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Parameter
A dtatic expression of type time. Typetimeisa predefined physical type (refer to
Section 5) from package "standard” (refer to page 9-18). The static expression
cannot be negative. If you do not specify the parameter (t), it defaultsto O ns.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
Theresult isanew signal that is the prefix signal delayed by the period of time
specified by the parameter (t).

If the default value of O nsis specified as the parameter, the following expression
is not the same (for one simulation cycle) only if the signal has just changed. If
the signal has not just changed, then:

signa_name delayed(0 ns) = signal_name where "signal_name" is the prefix.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

10-30 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘'event

Kind
Function

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Result Type
Boolean

Evaluation Result
If an event on the signal specified by the prefix has just occurred whilein the
current simulation cycle, the return result for ascalar signal is avalue of TRUE.

If an event on any scalar subelement, that the prefix specifies, has just occurred
while in the current simulation cycle, the return result for acomposite signal isa
value of TRUE.

If the preceding conditions are not met, the return value is FAL SE.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

Mentor Graphics VHDL Reference Manual, July 1994 10-31

Attributes

'last_active

Kind
Function

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Result Type

The result type is type time, which is a predefined physical type (refer to Section
5) from package "standard" (refer to page 9-18).

Evaluation Result

The result is the elapsed time value since the signal specified by the prefix was
active.

For composite signals, the value that returnsis the last time any element in the
composite was active.

Example

For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

10-32 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'last_event

Kind
Function

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Result Type
The result type is type time, which is a predefined physical type (refer to Section
5) from package "standard" (refer to page 9-18).

Evaluation Result
Because an event occurred on the signal specified by the prefix, the result isthe
elapsed time value.

For composite signals, the value that returnsis the last time any element in the
composite had an event.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

Mentor Graphics VHDL Reference Manual, July 1994 10-33

Attributes

'last_value

Kind
Function

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The result isthe value of the signal specified by the prefix immediately before the
signal changed value.

For composite signals, the value that returnsis the last time any element in the
composite changed value.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

10-34 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘quiet[(t)]

Kind
Signal

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Parameter
A static expression of type time, which must not be negative. Typetimeisa
predefined physical type (refer to Section 5) from package "standard" (refer to
page 9-18). If you do not specify the parameter (t), it defaultsto O ns.

Result Type
Boolean

Evaluation Result
If the signal has not been active (quiet) for the period of time specified by the
parameter (t), theresult isasignal with avalue of TRUE .

If the default value of 0 nsis specified as the parameter, the result is TRUE only
if the signal is quiet for the current simulation cycle.

If the preceding conditions are not met, the value of the signal is FAL SE.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

Mentor Graphics VHDL Reference Manual, July 1994 10-35

Attributes

'stable[(t)]

Kind
Signal

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Parameter
A static expression of type time, which must not be negative. Typetimeisa
predefined physical type (refer to Section 5) from package "standard" (refer to
page 9-18). If you do not specify the parameter (t), it defaultsto O ns.

Result Type
Boolean

Evaluation Result
If an event has not occurred on the signal for the period of time specified by the
parameter (1), theresult isasignal with avalue of TRUE . If the preceding
condition is not met, the value of the signal is FALSE.

If the parameter is omitted, it defaultsto O ns. In this case, the value of the signal
is FALSE (for one ssmulation cycle) only if the signal hasjust changed. (In other
words, signal’ stable(0) = (signal’ delayed(0) = signal), wheresignal is the name of
the signal.)

Example
For a comparison of this attribute with other signal attributes, refer to page 10-38.

10-36 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'transaction

Kind
Signal

Prefix
Any signal designated by the signal name. All the expressions in the signal name
can depend only on constants or generics.

Result Type
The result type istype bit, which is a predefined enumeration type (refer to
Section 5) defined in package "standard" (refer to page 9-18).

Evaluation Result
If, while in asimulation cycle, the signal becomes active, the result of this
attribute isa signal that is the inverse of its previous value.

Example
For an example of this attribute in contrast to all the other signal attributes, refer
to page 10-38.

Mentor Graphics VHDL Reference Manual, July 1994 10-37

Attributes

Signal Attribute Example

The following code shows a simple process that is sensitive on the signal cl k and

makes assignments to the signal si g (these signals are of type Boolean and are
declared elsewhere):

signal _att_exanpl e:

PROCESS (cl k) --process is sensitive to the signal "clk"
VARI ABLE x : bit :="'0";
BEG N
IF clk =1 THEN x := NOT x;
END | F;
sig <= x AFTER 0 ns; -- signal assignment

END PROCESS si gnal _att _exanpl e;

The previous example shows that si g getsthe value of x at every edge of the
signa cl k. Thismeansthat si g isactive at every edge of cl k even if the value
of si g does not change.

Figure 10-4 shows the attribute signalsin relation to the preceding example. The
signal attributes that have the option to specify atime parameter are denoted with
avalue of "t". The"*" indicates an attribute value of TRUE.

The following relationships between the signal attributes exist:

The attribute ’ stabl e tracks the attribute ' event.

The attribute ' transaction tracks the attribute ' active.

The attribute ' quiet tracks the attribute ' active.

The attribute ’last_event tracks the attribute ' event.

The attribute ’'last_active tracks the attribute ' active.

10-38 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

| T
" |
|
clk | | L
I \ | |
sig | | \ |
o | | | | | |
sig’active = true * ok * * * * * *
(boolean) | | ‘ ‘ ‘ ‘
\ \
sig'delayed(t) | | ‘ | | ‘ \ |
ST \ \ \ \ \ S
o | | | | | |
. * | * | * | * |
sig’event = true |
(boolean) | | | | | | | |
o | | | | | |
sig'quiet(t)y — -
(oclean) gy
o | | | | | |
sig'stable(t) ‘ | \ —
(boolean) \ \ \ \
|| | \ |
sig'transaction - |
(bit) |
| | | | |
o | | | | | |
| | | | | | | >
1T 2T 3T 4T 5T 6T 7T 8T
Figure 10-4. Example of All The Signal Attributes
Mentor Graphics VHDL Reference Manual, July 1994 10-39

Attributes

The following table shows the values of the attributes that Figure 10-4 does not
show at times"4T" through "6T". These examples assume 3T= 30 ns,
4T =40ns,5T =50ns...

Signal Attribute Valueat "4T" Valueat "5T" Valueat "6T"
sig'last_active AT - 4T (O ns) 5T-5T(Ons) 6T-6T (0ns)
sig'last_event 4T-3T(10ns) 5T-5T(0ns) 6T -5T (10 ns)
sig'last_value N 0 i)

Type Attributes

Y ou use the type attributes for determining bounds, position, or actual values of
the various types. Types are discussed in Section 5.

The following list shows the three classes of typesin VHDL:

e Scalar: integer, floating point, physical, and enumeration types

o Composite: array types and records

o File: files

Each type attribute has a prefix that corresponds to one of three type classes.

Asisthe case with array type attributes, type attributes deal with direction. Itis
important to understand the relationship between "left”, "right”, "low", and
"high" between attributes. When using arange of items, you can specify two
directions:

e Ascending: using the reserved word to

e Descending: using the reserved word downto

10-40 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

In the following example:
TYPE test_integer 1S RANGE -5 TO 4

typet est _i nt eger isany of the following integers:
-5-4-3-2-101234 -- ascending
N N
where the left-most integer (-5) is equal to "low" and the right-most integer (4) is
equal to "high". Inthe following example:
TYPE next _integer 1S RANGE 4 DOMTO -5
type next _i nt eger isany of the following integers:

43210-1-2-3-4-5 -- descending
N N

where the left-most integer (4), in this case, is equal to "high", and the right-most
integer (-5) isequal to "low".

The following table summarizes type-attribute direction relationships:

Range Ascending Range | Descending
Constraint Range

Bound

L eft-most = Lowest value Highest value
Right-most = | Highest value Lowest value
Lowest = L eft-most value Right-most value
Highest = Right-most value | Left-most value

The following subsections discuss each predefined type attribute in detail .

Mentor Graphics VHDL Reference Manual, July 1994 10-41

Attributes

'base

Kind
Type

Prefix
Any type or subtype.

Evaluation Result
The result is the base type of the type you specify in the prefix.

Example
The following code defines a type and a subtype:

TYPE env_parns IS (cap, volt, tenp, mn, nmax);--type decl.
SUBTYPE el _par |S env_parnms RANCGE cap TO tenp; --subtype decl.

The following code examines the right bound of env_par ns. The attribute value
isthe right bound of the base type of the subtype, which is the value nax.

el _par’ base’ right --Returns right bound of the base type of
--the subtype "el _par" which is "mx"

el _par’right--Returns right bound of "el par" which is "temp"

Restrictions
This attribute must be used in conjunction with another attribute, where’base is
then considered the prefix, as the preceding example shows.

10-42 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'high
Kind

Vaue

Prefix
Any scalar type or subtype.

Result Type
The same type as the prefix type.

Evaluation Result
The result is the upper bound of the specified prefix type.

Example

The following code defines addr ess_r ange:
TYPE address_range IS RANGE 0 TO 16;

The following code returns the value " 16", which is the upper bound of
addr ess_range:
addr ess_range’ hi gh

The following code defines down_addr ess_r ange:
TYPE down_address_range 1S RANGE 10 DOMWNTO 1;

The following code returns the value "10", which is the upper bound of
down_addr ess_rang:.
down_addr ess_range’ hi gh

Mentor Graphics VHDL Reference Manual, July 1994 10-43

Attributes

"left

Kind
Vaue

Prefix
Any scalar type or subtype.

Result Type
The same type as the prefix type.

Evaluation Result
The result is the left bound of the specified prefix type.

Example
The following code defines addr ess_r ange:

TYPE address_range IS RANGE 0 TO 31;

The following code returns the value "0", which is the left bound of
addr ess_r ange:

address_range’ | eft

10-44 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'leftof(x)

Kind
Function

Prefix
Any enumeration, integer, physical type or subtype.

Parameter
The value for the parameter (x) must be of the same base as the specified prefix.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The evaluation result isthe value that is to the left of the specified parameter.

Example

The following code defines the enumerated type col or:
TYPE color IS (red, yellow, green, flash);

The following code returns the value yel | ow, which isthe value at the position to
the left of the position specified by the parameter gr een.
color’ | eftof (green)

Restrictions
The specified parameter (x) cannot be equal to the left bound of the base type.
An error occurs if you try to examine an item to the left of the left-most item.

Mentor Graphics VHDL Reference Manual, July 1994 10-45

Attributes

"low

Kind
Vaue

Prefix
Any scalar type or subtype.

Result Type
The same type as the prefix type.

Evaluation Result
Theresult is the lower bound of the specified prefix type.

Example
The following code defines addr ess_r ange:

TYPE address_range |I'S RANGE 16 DOMNTO O;

The following code returns the value "0", which is the lower bound of
address_range:

address_range’ | ow

10-46 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'pos(x)
Kind

Function

Prefix
Any enumeration, integer, physical type, or subtype.

Parameter
The value for the parameter (x) must be of the same base as the specified prefix.

Result Type
universal_integer.

Evaluation Result
The result is the position number of the item specified by the parameter (x).

Example

The following code defines the enumerated type col or:
TYPE color IS (red, yellow, green, flash);

The following returns the integer 2, which isthe value of the position of gr een:
col or’ pos(green)

The position number for an enumerated type is always referenced from zero and
increases left to right. From the previous example:

Vaue: red vyelow green flash
Position: 0O 1 2 3

Mentor Graphics VHDL Reference Manual, July 1994 10-47

Attributes

'pred(x)

Kind
Function

Prefix
Any enumeration, integer, physical type, or subtype.

Parameter
The value for the parameter (x) must be of the same base as the specified prefix.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The result returns the value that is located one position less than the specified
parameter (X).

Example

The following code shows the definition of nunm
TYPE num IS RANGE -3 TO 17;

The following code returns the value "9", which is the value at one position less
than the position specified by the parameter (10):
num pr ed(10)

Restrictions
Y ou cannot specify a parameter that is equal to the lower bound of the base type.

Using the previous example, an error occurs if you specify the following code:
num pred(- 3)

The previous example shows an error condition, since thereis no value in the
position one lower than "-3".

10-48 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

‘right
Kind

Vaue

Prefix
Any scalar type or subtype.

Result Type
The same type as the prefix type.

Evaluation Result
The result is the right bound of the specified prefix type.

Example
The following example shows the definition of addr ess_r ange:

TYPE address _range IS RANGE 1 TO 32;

The following code returns the value " 32", which is the right bound of
addr ess_r ange:

address_range’ ri ght

Mentor Graphics VHDL Reference Manual, July 1994 10-49

Attributes

'rightof(x)

Kind
Function

Prefix
Any enumeration, integer, physical type, or subtype.

Parameter
The value for the parameter (x) must be of the same base as the specified prefix.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The evaluation result isthe value that is to the right of the specified parameter.

Example
The following code defines col or :
TYPE color 1S (red, yellow, green, flash);

The following code returns the value f | ash, which isthe value at the position to
the right of the position specified by the parameter gr een:
col or’ ri ght of (green)

Restrictions
The specified parameter (x) cannot be equal to the right bound of the base type.
An error occursif you try to examine an item to the right of the right-most item.

10-50 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

'succ(x)

Kind
Function

Prefix
Any enumeration, integer, physical type, or subtype.

Parameter
The value for the parameter (x) must be of the same base as the specified prefix.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The result returns the value that is located one position greater than the specified
parameter (X).

Example

The following code defines numt
TYPE num | S RANGE -3 TO 25;

The following code returns the value "-1", which is the value at one position
greater than the position specified by the parameter "-2".
num succ(- 2)

Restrictions
Y ou cannot specify a parameter that is equal to the upper bound of the base type.

Using the previous example, an error occurs if you specify the following code:
num pred(25)

The previous example shows an error condition, since there is no value in the
position one greater than "25".

Mentor Graphics VHDL Reference Manual, July 1994 10-51

Attributes

'val(x)

Kind
Function

Prefix
Any enumeration, integer, physical type, or subtype.

Parameter
Any integer type expression.

Result Type
The result type corresponds to the base type of the specified prefix.

Evaluation Result
The result returns the value of the position number specified by parameter (x).

Example

The following code defines the enumeration type col or :
TYPE color 1S (red, yellow, green, flash);

The following code returns the value gr een, which isthe value at position "2"
specified by the parameter "2":
col or’ val (2)

The position number for an enumerated type is always referenced from zero and
increases |eft to right. From the previous example:

Vaue: red yelow green flash
Position: 0O 1 2 3

10-52 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

User-Defined Attributes

User-defined attributes allow you to add to design descriptions incidental or
supplemental information that cannot be described using other VHDL constructs.
For example, you might want to back-annotate such physical characteristics as
component placement, signal-to-pin assignments, or output and input
capacitances to adesign.

Y ou employ user-defined attributes through the following VHDL constructs:
¢ Attribute declaration names and sets the type of a user-defined attribute

o Attribute specification, which associates a user-defined attribute with one or
more members of a particular "entity class," such as an entity declaration,
procedure, signal, or component. The specification also defines the value of
an attribute.

o Attribute name gives you access to a user-defined attribute, in the same way
as for predefined attributes.

The attribute declaration and attribute specification constructs are described on
pages 10-54 and 10-55, respectively; the attribute name construct is described on
page 10-3.

Mentor Graphics VHDL Reference Manual, July 1994 10-53

Attributes

attribute _declaration
An attribute declaration defines a user-defined attribute. Attribute declarations
are not allowed for predefined attributes.

Construct Placement
declaration, package declarative item, process declarative item,
subprogram_declarative_item

Syntax

attribute_declaration ::=
attribute identifier : type mark

Definitions

m identifier
This isthe ssmple name of the attribute.

m type mark
Denotes a subtype that is neither an access type nor afiletype. The subtype
does not need to be constrained.

Description
Before a user-defined attribute can be used in aVHDL description, it hasto be
declared. The declaration establishes the name of the attribute and the type of the
attribute. Once declared, the attribute can be used (through an attribute
specification) anywhere within the scope of the region in which it was declared.

Examples

ATTRI BUTE t echnol ogy : STRI NG
ATTRI BUTE part _count : | NTECGER

TYPE capacitance IS RANGE 0.0 TO 1. OE- 6;
ATTRI BUTE out put _cap : capacitance;

TYPE coordi nates | S RECORD

Xval ue, Yval ue : integer; -- type declaration
END RECORD;
ATTRI BUTE conponent | ocation : coordinates; -- attribute decl

10-54 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

attribute_specification
An attribute specification associates a user-defined attribute with one or more
members of an "entity class' within aVHDL description. It also defines the
value of that attribute for those members. Attribute specifications are not
allowed for predefined attributes.

Construct Placement
configuration_declarative part, entity declarative item,
package declarative item, process declarative item,
subprogram_declarative item

Syntax

attribute_specification ::=
attribute attribute_designator of
entity specification is expression ;

attribute_designator ::=
attribute_simple_name

entity_specification ::=
entity_name _list : entity_class

entity_name list ::=
entity designator { , entity designator }

| others
| all
entity class::=
entity | architecture | configuration
| procedure |function | package
| type | subtype | constant
| signal | variable | component
| label

entity_designator ::=
simple_name | operator_symbol

Mentor Graphics VHDL Reference Manual, July 1994 10-55

Attributes

Definitions

m altribute_designator
This denotes a previously declared attribute.

m entity_specification
This specifies the items that the attribute specification applies to and
identifies the entity class of those items.

= entity name list
This identifies the items that will inherit the attribute.

Description
An attribute specification associates a previously declared user-defined attribute
with particular members of one of the following entity classes:

o Entities e Subtypes

o Architectures o Constants
o Configurations e Signals

e Subprograms o Variables

o Packages o Components
o Types e Labels

All members that you designate in the entity name list inherit the attribute,
provided that the classes of those members are the same as the specified entity
class; itisan error if the classes do not match. Here are some examples of

attribute specifications:
ATTRI BUTE technology OF rd_wt_cont5 : CONFI GURATION | S ecl

ATTRI BUTE part_count OF rd_wt_cont5 : CONFI GURATION I S 35
ATTRI BUTE out put _cap OF strobel : SIGNAL IS 5. 0E-12

ATTRI BUTE conponent | ocation OF U210 : LABEL is (110, 450)

A given attribute must not be associated more than once with a particul ar
entity-class member. Likewise, two different attributes with the same simple

10-56 Mentor Graphics VHDL Reference Manual, July 1994

Attributes

name must not be associated with the same entity-class member.

If you use othersin the entity name list, the specification applies, within the
immediately enclosing declarative region, to members of the specified entity
class whose names have not appeared in the name list of a previous attribute
specification.

If you use all in the entity name list, the specification applies to all members of
the specified entity class within the immediately enclosing declarative region.

An attribute specification that uses either othersor all for a given entity class
must be not used again for that entity class within a given declarative region.

To supply a particular value that you want to associate with the designated
entity-class members, you use the expression portion of the attribute
specification. User-defined attributes must be constants. The type of the
expression must be the same as (or must implicitly convert to) the type specified
in the corresponding attribute declaration. The information supplied through a
user-defined attribute islocal only and cannot be passed from one element of a
description to another.

If you apply an attribute specification to a design unit (entity declaration,
architecture body, configuration, package declaration, or package body) it must
appear immediately within the declarative part of the design unit. For other
entity-class members (procedures, types, subtypes, objects, components, and
labels), the attribute specification must appear within the declarative part where
the individual members are declared.

Mentor Graphics VHDL Reference Manual, July 1994 10-57

Signals

Section 11
Signals

This section discusses the subject of signals and how to use them. A signal isan
object that you can assign projected future values to and has a history and atime
dimension. The following ordered list shows the constructs and topics this
section discusses:

Signal Concepts 11-4
Drivers 11-4
Guarded Signals 11-5
disconnection_specification 11-8
Multiple Drivers and Resolution Functions 11-10

signal_declaration 11-14
Default Expression 11-15

Signal Assignments 11-16
Sequential Signal Assignments 11-16
Concurrent Signal Assignments 11-17

Delay Concepts 11-19
Delta Delay 11-20

Figure 11-1 shows where signals belong in the overall language and shows the
topics that this section discusses.

Signals are the fundamental design object in VHDL. Signals are the only means
for interfacing two or more entities, as they provide the channels of
communication. Y ou can make the analogy that signals are the equivalent of nets
and pins on a schematic sheet. Since asignal is an object, it must be declared
before you can useit. A signal declaration takes two forms, as the following list
shows:

o Explicitly declare the signal using asignal declaration. Y ou can use the signal
declaration in an entity declaration, architecture declaration, block statement,
or a package declaration.

Mentor Graphics VHDL Reference Manual, July 1994 11-1

Signals

e Declarethesignal asaport. You can declare aport in the entity header of an
entity declaration, in a parameter in a subprogram specification, or in a
component declaration. For information on ports, refer to page 8-8.

Design Units

Design Entities
Configurations
Packages

Attributes Components

Types Signals

Statements Subprograms
Declarations

Expressions
Lexical Elements

Naming, Scope, and Visibility

Signals

v

Signal Concepts

Drivers
Guarded Signals

Disconnection Specification

Multiple Drivers &
Resolution Functions

Y
v v

Signal Declaration Signal Assignment

Sequential
Concurrent

Figure 11-1. Signals

After declaring asignal, you assign values to it using a sequential or concurrent
signal assignment statement. For example, the following code shows asigna

11-2 Mentor Graphics VHDL Reference Manual, July 1994

Signals

assignment that can be sequential or concurrent, depending on where in your
code it appears:

enable <= '0",’'1 AFTER 5 ns,’ 0" AFTER 10ns,’'1 AFTER 30 ns;

In the preceding example, the items to the right of the "<=" are waveform
elements. Each of the waveform elementsis"held" in a container called adriver.
These values are the projected output waveform for the signal.

The signal isthe item on the left of the "<=" delimiter, and the simulator creates a
driver for thissignal, which is a source for the value of asignal. Each timethe
signal assignment statement executes, the value of the waveform element is
appended to the driver when the time you designate arrives. The driver isthe
item that is read by the system to determine the new value for the signal.

A signal may have more than one driver, which means the drivers collectively
determine the value of the signal. If thisisthe case, you must specify what
happens to the signal by specifying aresolution. Y ou accomplish this by using a
resolution function.

The signal also contains attribute information. Y ou use signal attributesto
determine information about a signal, such as when the last time an event took
place or what the last value of the signal was. Some signal attributes are actually
another signal, while othersreturn avalue. For detailed information on al the
predefined signal attributes, refer to page 10-28. Figure 11-2 shows the concept
of what comprisesasignal. Thisfigure shows asignal with two drivers.

Smnal\\‘

Current Value

Driver

Driver

Attributes

Figure 11-2. Composition of a Signal

The following subsections elaborate on the preceding topics, as well as introduce
you to other signal concepts.

Mentor Graphics VHDL Reference Manual, July 1994 11-3

Signals

Signal Concepts

This subsection discusses the various concepts that apply to signals and their use.
The following list shows you the topics that are covered:

e Drivers
o Guarded signals (registers and buses)
o Disconnection specification

e Multiple drivers and resolution functions

Drivers

Y ou use the signal assignment statement to change the value of the projected
output waveforms that arein the driver for asignal. Y ou can think of adriver as
acontainer for the projected output waveform that the system creates. The value
of asignal isrelated to the current values of its drivers. The following example
shows a signal assignment statement, and is followed by an illustration showing
how the driver determines the value of the signal.

enable <= '0",'1 AFTER 5 ns,’ 0" AFTER 10ns,’1 AFTER 20 ns;

A
Driver for "enable"
(]
3 pl
T
z
g 11! 1
K=
(7]
101 _
| f f f f |
0 5 10 15 20

time (ns)

A driver contains the projected output waveform for the signal. The projected
output waveform contains at least one transaction. A transaction isasignal value

11-4 Mentor Graphics VHDL Reference Manual, July 1994

Signals

and time for the transaction to occur. The transactions from the previous
example consist of the following pairs of items:

Vaue Time
0 Ons
1 5ns
0 10 ns
"1 20 ns

A signal can have multiple drivers or sources. In this case aresolution functionis
required to resolve the effective value of the signal that has two or more drivers
contributing to the signal. For more information about resolution functions, refer
to page 11-10.

Guarded Signals

A signal guard alows you to control the assigning of signal values. The guardis
a Boolean expression that assigns the drivers of the guarded signal anull
transaction, which turns the driver off when the value of the expression is
FALSE. If thevalue of the guard is TRUE, the signal assignment is made. You
specify the delay time for the driver to turn off by using a disconnection
specification. For information on the disconnection specification, refer to page
11-8.

The methods for guarding signalsis to specify register or bus asthe signal kind
inasignal declaration. (Refer aso to the discussion of concurrent signal
assignments on page 6-23.) Hereisan example of asignal declaration that uses
bus asthe signal kind:

SIGNAL data bus : wired or bit_vector (0 TO 7) BUS;

Registers and buses are automatically guarded signals. Y ou specify the guard
expression in ablock statement. Signals of the kind register, retain the last output
value when all drivers are disconnected. Signals of the kind bus, re-evaluate the
output value when all drivers are disconnected. The following example shows
the difference between the register and bus signal kinds.

This first example shows the declaration of asignal called t est of type bit and
signal kind bus. Notice that the signal t est has two drivers, so aresolution
function (called wi r ed_or) isnecessary. The partial code that describes asimple

Mentor Graphics VHDL Reference Manual, July 1994 11-5

Signals

circuit, and the illustration of what the circuit could look like follows,
SIGNAL test : wired_or bit BUS, -- signal declaration

-- partial code descriptions of circuit with signal "test"

t est <= GQUARDED data AFTER test <= GUARDED cntrl AFTER
2 ns WHEN enl1 ="' 1’ 2 ns WHEN en2 = ' 1’
ELSE ELSE
test AFTER 3 ns; test AFTER 3 ns;

<4 Signal "test* ——»

enl —— en2

data cntrl

11-6 Mentor Graphics VHDL Reference Manual, July 1994

Signals

This second example shows the declaration of asignal called t est of type bit and
signal kind register. It also showsthe use of thissignal inasimple circuit. The
partial code that describes the circuit is the same code as in the previous example,

except for the signal kind.
SIGNAL test : wired_or bit REG STER, -- signal declaration

-- partial code descriptions of circuit with signal "test"

test <= GUARDED dat a AFTER test <= GUARDED cntrl AFTER

2 ns WHEN enl1 ="' 1’ 2 ns WHEN en2 = ' 1’
ELSE ELSE

test AFTER 3 ns; test AFTER 3 ns;

<€ Signal "test" ——»
- >
guards —— Signal "test" Value
enl//i\X Z/i\lenz
data cntrl

Mentor Graphics VHDL Reference Manual, July 1994 11-7

Signals

disconnection_specification

Y ou use the disconnection specification to specify the time delay for turning off a
driver of aguarded signal, when the guard isfalse.

Construct Placement
block declarative item, entity declarative item, package declarative item

Syntax

disconnection_specification ::=
disconnect guarded signal_specification after time expression;

guarded_signal_specification ::=
guarded signal_list : type mark

signal_list ::=
signal_name{ , signal_name}
| others
| all

Description
The following list shows the rules for using the disconnection specification:

o When you specify asignal list, each signal namein the list must be alocally
static name that refers to a guarded signal.

e Thetime expression must be static and evaluate to a positive value.
o The disconnection specification can apply only to the drivers of one signal. If

two or more disconnection specifications apply to the drivers of the same
signal, an error occurs.

There is a disconnection specification for every guarded signal, whether you
explicitly define one or you elect to use the implicit default. The default

disconnection specification is generated by the system internally and takes the
following form:

DI SCONNECT guarded_si g _name: guarded_sig type AFTER O ns;

11-8 Mentor Graphics VHDL Reference Manual, July 1994

Signals

Example
The following example shows a possible use of the disconnection specification:

ARCHI TECTURE sig test OF test IS

SIGNAL tester : wired_or bit BUS;, -- signal declarations
SIGNAL a : bit;
DI SCONNECT tester : bit AFTER 10 ns; -- discon. spec.
BEG N
sig_assign: -- block |Iabe
BLOCK (tester = '1") -- guard expression
SIGNAL z : bit; -- bl ock_declarative_item
BEG N
z <= GQUARDED a; -- "z" gets "a" if "test" ="'1’
END BLOCK si g_assign;
END sig_test;

Mentor Graphics VHDL Reference Manual, July 1994 11-9

Signals

Multiple Drivers and Resolution Functions

Every signal you define that is the target of asignal assignment hasadriver. If
the signal has more than one driver (is atarget for more than one signal
assignment statement), you need to define aresolution function.

The resolution function is a subprogram that defines what single value the signal
should have when there are multiple drivers for that signal. The input parameter
to the resolution function is an array that contains all the driver values for the
signal. The resolution function is called every time the signal is active. For
information on subprograms (functions and procedures), refer to page 7-1.

For example, you create the signal "test" that has three drivers. The system
creates an array that contains the value of the drivers as the input to aresolution
function.

Assume that signal "test" is of the following my_qgsim_state type:
TYPE ny_gsimstate IS ("X, "0, "1, 'Z);

Y ou then write a resolution function that represents awired OR function, based
on adriver resolution table for the states’1’, ' X', ’0’, and ' Z’. Theresolution
function returns aresolved value for the signal. Figure 11-3illustrates this
concept.

11-10 Mentor Graphics VHDL Reference Manual, July 1994

Signals

<4 Signal test —— P

- >
enl en2 en3

Code describing a signal

with three drivers

(represented at the right): data a data b data ¢
Array of the three
drivers created: data_a data_b data_c

Array of the three

drivers is the input Resolution Function
parameter to the resolution u u
¢ >

function:
Figure 11-3. Resolution Function Concept

Signal value is resolved: -

The following steps show you how to write the description and the resolution
function for the example in Figure 11-3.

1. Thefollowing architecture body shows the description for the signal t est
with three drivers.

ARCHI TECTURE data flow OF tester IS
SIGNAL test : wired_or ny_qgsimstate;
SIGNAL data_a, data_b, data_c : ny_qgsimstate;
SIGNAL enl, en2, en3 : bit;

BEG N

test <= data_a AFTER 2 ns WHEN enl = '1" ELSE 'Z ;
test <= data_b AFTER 2 ns WHEN en2 = '1' ELSE 'Z ;
test <= data_c AFTER 2 ns WHEN en3 = '1' ELSE 'Z ;

END data_ fl ow,

Mentor Graphics VHDL Reference Manual, July 1994 11-11

Signals

2. Table 11-1 showsthe driver resolution value for two drivers. To determine
the resolution value, you locate one driver value along the bottom row and the
other driver value along the left-hand column. The cross-point indicates the
resolution value. To find the resolution of the third driver, you compare your
first result to the third driver value.

Table 11-1. Driver Resolution Table

1 1 X X 1
X X X X X
F 0 X X 0 0
Driver Z 1 X 0 Z
Value 1 X 0 z

For example: if en1,en2,anden3 are"1" andif data_a is"X",data_b is
"1" and dat a_c is"0", theresolution value for signal t est is"X", because
"X" dominates any other driver value.

3. Using Table 11-1 you can write a resolution function similar to the following:

ENTITY tester IS
FUNCTION wired_or(driv_array: ny_gsimstate_vector)
RETURN ny_qgsi m state IS
VARI ABLE tenpl, tenpO, tenpz : bool ean

BEG N
|F driv_array’'length = 0 THEN -- Check if all drivers
RETURN * Z’ ; -- are disconnect ed.
END | F;

-- Loop to check each
FOR i INdriv_array' range LOOP -- driver array val ue.

IF driv_array(i) =X THEN -- Check for 'X
RETURN ’ X' ;

ELSIF driv_array(i) ='1 THEN -- Check for "1".
tenpl : = true, -- Set tenpl true.

ELSIF driv_array(i) ='0 THEN -- Check for 'O’
tenpO : = true; -- Set tenpO true.

ELSE
tenpz := true; -- Must be ' Z.

END | F;

END LOOP

11-12 Mentor Graphics VHDL Reference Manual, July 1994

Signals

--Check the tenporary values (tenpl, tenpO, and tenpz)

|F tenpl AND tenpO THEN -- If there are drivers of '1’
RETURN ’ X' ; --and "0, return an ' X,

ELSI F tenpl THEN -- otherwise if '1' driver
RETURN ' 17 ; -- return a1,

ELSI F tenpO THEN -- otherwise if 'O driver,
RETURN ' O’ ; -- return a0,

ELSE -- otherwise return ’'Z .
RETURN ’ Z’ ;

END | F;

END wi red or;
END tester

The following list shows the rules that govern the use of the resolution function:

e Every signal of signal kind bus or register must have aresolution function to
handl e the disconnection specification.

o If thesignal kind is bus, the resolution function must provide areturn value
for the case when all the drivers are disconnected. The previous example
checks for this using the following code:

|F driv_array’'length = 0" THEN -- check if all drivers
RETURN ’ Z' ; -- are disconnected
END | F;

e There can be only one input parameter to the function. Y ou can use any lega
name you wish for this parameter. In the previous example, the name
driv_array isused asthe following code shows:

FUNCTION wired_or (driv_array: my_qsimstate_vector)
RETURN nmy_qgsi m state IS

Mentor Graphics VHDL Reference Manual, July 1994 11-13

Signals

signal _declaration

A signal declaration declares an object that has a current value, a history, and a
projected value.

Construct Placement
block declarative item, entity declarative item, object_declaration,
package declarative item,

Syntax

signal_declaration ::=
signal identifier_list : subtype indication [signal_kind] [:= expression] ;

signal_kind ::=
register | bus
Definitions
m identifier_list
Lists one or more signal names. Multiple names must be separated by
commeas.

m Subtype indication
Indicates the subtype of the signal(s) and any resolution function or
constraints that apply. The subtype must not be afile type or accesstype.

m signal_kind
Valid entries are bus or register.

m expression
Definestheinitial value of the signal.

Description
A signal declaration specifies the ssmple names, type, kind, and default value of
an object that has a current value, a history, and a projected value.

Using previous signal concepts as a foundation, you can now explore the details
of signals. One of these detailsisthe signal declaration. Throughout this section
you have seen examples of signal declarations. The following list showswhat a
signal declaration accomplishes:

11-14 Mentor Graphics VHDL Reference Manual, July 1994

Signals

¢ Assigns namesto the signals (identifier_list)

o Defines the resolution function, the type of the signal, and any index or range
constraints (subtype_indication)

e Optionally defines the signal to be a bus or register (signal_kind)
o Optionally defines a default expression for the signal

The following examples show some possible signal declarations:

SIGNAL data_in, data_out : bit;--Wth identifier_list, and
--type_nmark.
SIGNAL add line : wired or bit_vector(l TO 3) BUS; --Wth
--resolution function, type_mark
--and signal _ki nd.
SIGNAL enable: bit :="0"; --Wth default expression

The following list shows the rules that govern the signal declaration:
e You cannot declare asignal that isafile type.

o When you specify the signal as being guarded by using the reserved words
bus or register, you must include a resolution function.

o If the signal has multiple sources, it aso must have a resolution function.

Default Expression

The expression construct at the end of the signal declaration is the default value
for the signal driver at initialization of the smulation and for the times when the
signal isleft unconnected. The expression type you use for the default must be
the same type asthe signal. For example:

SIGNAL enable: ny _gsimstate := "X ; --Defaults to ' X state

If you do not use a default statement, the system assumes a default for the signal.
Thisimplicit default is the left-most value of the signal type, determined by the
value of the predefined signal attribute’left. The following example shows a
signal type declaration, asignal declaration with no default expression specified,
and the implicit default the system assumes.

TYPE nmy_gsimstate IS ("X, 0, "1, "Z); --Type decl

Mentor Graphics VHDL Reference Manual, July 1994 11-15

Signals

SIGNAL enable : nmy_qgsimstate; -- declaration with no default

ny_gsimstate left -- system assunes the default

In the previous example, the default value of the signal "enable" isthe left-most
value of the signal type, whichis’X’.

The default expression for signals differs from the default expression for portsin
terms of its interpretation in association lists. For a discussion on this topic, refer
to page 4-31.

Signhal Assignments

After you declare asignal, you assign valuesto it using a sequential or concurrent
signal assignment. The following example shows the form that signal assignment
statements take:

test_signal <='1" AFTER 25 ns, '0' AFTER 30 ns;

The value to the left of the "<=" delimiter isthe signal, which is the target of the
assignment. The valuesto theright of the "<=" are the waveform elements.

The following subsections give you an overview of the sequential and concurrent
signal assignmentsin relation to the previous discussion on signal concepts. For
more detailed information on the sequential signal assignment statement, refer to
page 6-46. For more detailed information on the concurrent signal assignment
statement, refer to page 6-23.

Sequential Signal Assignments

The sequential signal assignment schedules awaveform element to be assigned to
asignal’sdriver after atime you specify. If you do not specify atime, avalue of
zero nanoseconds is used asthe delay. A target in asignal assignment that uses a
zero nanosecond delay does not get updated within the current simulator

iteration; it is updated at the beginning of the next simulator iteration. If you
have several assignments, the signal assignments are evaluated sequentially.

Each evaluation schedules an event (a minimum of one iteration later); it does not
update the signal immediately in the current simulator iteration. For example:

data_out <=t AND d; --Current value a "0, new value a '71’
resul t <= data_out AND carry_bit;

11-16 Mentor Graphics VHDL Reference Manual, July 1994

Signals

In the preceding example, the value for dat a_out evaluatesfirst and then
schedules an event to update the signal. (In this example, the current value for
dat a_out isa’0’, and the current evaluation has scheduleddat a_out to be
updatedtoa’l’.) The next sequential signal assignment statement then executes
and schedules an event for signal r esul t . The evaluation of ther esul t signa
uses the value for dat a_out within the current iteration, which in this exampleis
a’'0’. Based on the evaluation in the current iteration, a new value is scheduled
for signa resul t.

The evaluation of the waveform elements determines the future behavior of the
driversfor the target you specify. During the evaluation of a waveform element,
the following action occurs:

e Assign thetarget a specific value at a specified time.
o Specify that the target is turned off after a specified time.

If you specify time expressions in the waveform element, these delay times must
use the time units from package "standard”. If you do not specify atime
expression, the default is zero nanoseconds. The following examples show
possible sequential signal assignments from within portions of code:

clk <=1 AFTER 100 ns; --clk gets 1 after tine specified

result <= a ORb OR c; --result gets expression in 0 ns
wire <= TRANSPORT 5 AFTER 25 ns; --Trans. delay after tine
I i ne <= TRANSPORT 100; --Transport delay at 0 ns

Concurrent Signal Assignments

The concurrent signal assignment statement is an equivalent process statement
that the system generatesto assign values to signals. If you have several
assignments, the signal assignments are made all at the same time step
(concurrently). For example:

data_out <=t AND d;
result <= data_out AND carry_bit;

In the preceding example, the value for dat a_out evaluates during the same time
step asthevaluefor resul t evaluates. Therefore, the evaluation for r esul t

uses the new value of dat a_out determined by the t AND d evaluation. More
than one iteration is required within a given time step to evaluate and assign new
values to the targets of concurrent statements.

Mentor Graphics VHDL Reference Manual, July 1994 11-17

Signals

The concurrent signal assignment can take two forms:
o Conditional signal assignment
o Selected signal assignment

The conditional signal assignment form of the concurrent signal assignment
statement is an equivalent process statement that the system generates that
assigns values to signals using an "if" statement format. Y ou do not actually see
thisformat. It iscreated internally when you use the syntax the following
example shows:

bus test : BLOCK
SIGNAL test, data_a, data_b : wired_or ny_gsimstate_vector
(0 TO 7);
SIGNAL enl, en2 : bit;
BEGAN -- the follow ng code shows cond. signal assignnments
test <= data_a AFTER 2 ns WHEN enl = '1' ELSE
data_b AFTER 2 ns;

END BLOCK bus_t est;

The selected signal assignment form of the concurrent signal assignment
statement is an equivalent process statement generated by the system. The
concurrent signal assignment statement assigns values to signals using a case
statement format. Y ou do not actually seethisformat. It is created internally
when you use the format the following example shows:

11-18 Mentor Graphics VHDL Reference Manual, July 1994

Signals

bus drive: BLOCK
SIGNAL test, data_a, data b : ny_gsimstate vector (0 TO 7);
SIGNAL enl : bit;
BEGN -- the followi ng code shows sel ected sig. assign
W TH enl SELECT

test <= data_a WHEN ' O’

data_b WHEN ' 1’ ;

END BLOCK bus_dri ve;

For more information on concurrent signal assignments, refer to page 6-23.

Delay Concepts

In each of the three forms of signal assignments, you can specify two models to
represent delay:

e Transport delay
o Inertia delay

Y ou use the reserved word transport to specify that the delay associated with the
first waveform element is atransport delay. Transport delay indicates that any
pulse is transmitted to the signal name you specify, with no regard to how short
the pulse width or duration. This pulse waveform exhibits a frequency response
that is nearly infinite, which is characteristic of items such as wires and metal
paths.

Y ou typically use transport delay to model pure delay, without any consideration
of thereal, physical behavior, at high levels of abstraction. All input changes
pass to the output after the delay time you specify.

If you do not use the reserved word transport, the default isinertial delay.
Inertial delay applied to awaveform indicates that pulses with awidth shorter
than the delay time you specify in the waveform element are not transmitted to
the signal name you specify. Thistype of delay is characteristic of switching
circuits, because of the effect of filtering out pulses that are not required.

You typicaly useinertial delay to model real, physical behavior where arise or
fall time of the output is equivalent to the delay time. The output begins to react
to the input change. However, the new value is not recognized until after the
delay time.

Mentor Graphics VHDL Reference Manual, July 1994 11-19

Signals

The following example shows two signal assignments. one with transport delay,
the other with the default inertial delay. Figure 11-4 shows the difference
between the two waveforms.

a_tran <= TRANSPORT wave AFTER 10 ns;

a_iner <= wave AFTER 10 ns;

time (ns)

Figure 11-4. Inertial and Transport Delay

In the preceding example, the 5 ns pulse (circled area) on wave is assigned to the
signa a_t r an, which has transport delay. The 5 ns pulse on wave is not assigned
to a_i ner because thissignal hasinertial delay, which means any pulse width
smaller than 10 nsisnot assigned to a_i ner .

Delta Delay

Another delay concept that isimportant to understand is the concept of delta
delay. Deltadelay isan infinitesimal value of time that is greater than zero. You
can think of delta delay as one simulation iteration. The concept of deltadelay is
necessary when you make a signal assignment with no delay expression. For
example:

pure_delay <= a + b;

11-20 Mentor Graphics VHDL Reference Manual, July 1994

Signals

The default delay in the preceding exampleis 0 ns. The preceding example can
be rewritten as follows:

pure _delay <= a + b AFTER 0 ns;

However, nothing in the simulation environment happens in absolutely zero time.
The ssimulation iteration takes a delta amount of time. To understand this concept
better, the following list presents a fundamental overview of the simulation
iteration cycle:

o At the beginning of the iteration, any pending events for the given time
mature.

o When the event maturity triggers a process that is sensitive to the signal
change, the process is evaluated.

e When asignal assignment that has a0 nsdelay is found, the iteration
increments and the preceding stepsrepeat. The iterations continue until al the
0 nsdelay assignments are scheduled.

¢ The simulation then advances by one simulator time step.

Given the preceding overview, signal assignment values that you define to occur
al at one given time are actually scheduled, by the simulator, a delta delay apart.
The value the smulator assigns does take effect in the future. However, since the
deltadelay is so very small, the scheduled signal assignments with O nsdelay all
take effect before any signal assignment that has an actual delay value (greater
than 0).

There can be any number of delta delays for a given time step, and the sum of
these delays will never equal the next time step.

The remainder of this discussion shows you, through examples, the concept of
deltadelay. Figure 11-5 showsthree AND gates, cascaded together. The AND
gates are modeled with O nsdelay. Theinput signal "in_1" goes high at the
simulation timestep of 25 ns. Input signals"“in 2", "in_3", and "in_4" are all
high, and have been since the last timestep.

Mentor Graphics VHDL Reference Manual, July 1994 11-21

Signals

_r inld
a
om0t
b
— in. 3
c
o B

Figure 11-5. Zero Delay Gates

When you trace the signal in the ssmulator, you see the output signals"a"*, "b",
and "c" al changeto ahigh state at 25 ns. However, if you could trace what the
simulator actually "sees," you would see each of the output signals scheduled one
deltadelay (or iteration) apart. Figure 11-6 shows the trace you see at the left,
and it shows the trace the simulator "sees" at the right.

25ns + 1iteration - 25 ns + 2 iterations
‘ - 25 ns + 3 iterations

time (ns)

Figure 11-6. Comparing Traces

'The delta delay model allows you to model event sequences without taking into
consideration when the events occur. This concept is called unit-delay modeling.
Each deltadelay is an equivalent amount of time. However, you should keep in
mind, that when you model with signal assignments using the 0 ns default, there

11-22 Mentor Graphics VHDL Reference Manual, July 1994

Signals

actually isaunit-delay.

Figure 11-7 illustrates this concept by using the three AND gates with zero delay
as one input to adevice and by using a straight signal as the other input. Notice
that the path to "d0" (an edge-triggered input), takes three delta delays, while the
pathto "d1" takes one deltadelay. Thisisapotentia race conditionin areal
hardware circuit.

1 Unit
delay _
é?m 3 Units of
D—L elay 1 Unit delay total
— delay
do
> q
di

Figure 11-7. Unit-delay Modeling

Mentor Graphics VHDL Reference Manual, July 1994 11-23

Syntax Summary

Appendix A
Syntax Summary

This appendix includes the following information:

o TableA-lliststhe VHDL constructsin aphabetical order and provides a page
number for the syntax drawing and a page number where information for each
construct can be found in this manual.

¢ A subsection shows how to use the syntax diagrams.

o All the syntax diagrams for VHDL are listed in alphabetical order.

Table A-1. VHDL Construct Listing

L ocation of Syntax For More
L anguage Construct Diagram I nfor mation
abstract_literal A-11 1-16
access _type definition A-11 5-31
actual _designator A-11 4-31
actual_parameter_part A-11 7-15
actual _part A-11 4-31
adding_operator A-12 2-23
aggregate A-12 2-8
alias declaration A-12 4-35
allocator A-12 2-14
architecture_body A-13 8-14
architecture declarative part___ A-13 8-17
architecture_statement_part A-13 8-18
array_type_definition A-13 5-23

Mentor Graphics VHDL Reference Manual, July 1994 A-1

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More
L anguage Construct Diagram I nfor mation
assertion_statement A-14 6-10
association_element A-14 4-31
association _list A-14 4-31
attribute _declaration A-14 10-54
attribute_designator A-14 10-3
attribute_name A-15 10-3
attribute_specification A-15 10-55
base A-15 1-17
base specifier A-15 1-20
base unit_declaration A-16 5-15
based integer A-16 1-17
based_literal A-16 1-17
binding_indication A-16 8-29
bit_string_literal A-16 1-20
bit value A-17 1-20
block configuration A-17 8-39
block declarative item A-18 8-17
block declarative part A-19 6-12
block header A-19 6-12
block _specification A-19 8-39
block statement A-20 6-12
block statement_part A-20 6-13
case statement A-20 6-15
case_statement_alternative A-21 6-15
choice A-21 2-8
choices A-21 2-8
component_configuration A-21 8-43
component_declaration A-22 4-36
component_instantiation_statement______ A-22 6-17
component_specification A-22 8-25

A-2 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More

L anguage Construct Diagram I nfor mation
composite type_definition A-22 5-22
concurrent_assertion statement ____ A-22 6-19
concurrent_procedure_call A-23 6-21
concurrent_signal_assignment_statement _ A-23 6-23
concurrent_statement A-23 6-7
condition A-24 6-49
condition_clause A-24 6-49
conditional_signal_assignment ____ A-24 6-25
conditional_waveforms A-24 6-25
configuration_declaration A-25 8-35
configuration_declarative item_____ A-25 8-35
configuration_declarative part____ A-25 8-35
configuration_item A-25 8-39
configuration_specification A-25 8-25
constant_declaration A-26 4-13
constrained array definition____ A-26 5-23
constraint A-26 4-7
context_clause A-26 9-5
context_item A-26 9-5
decimal_literal A-27 1-16
declaration A-27 4-3
design_file A-28 9-3
design_unit A-28 9-3
designator A-28 7-6
digit A-28 1-5
direction A-28 5-5
disconnection_specification A-29 11-8
discrete _range A-29 5-23
element_association A-29 2-8

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More
L anguage Construct Diagram I nfor mation
element_declaration A-29 5-29
element_subtype_definition A-29 5-29
subtype_indication A-65 4-7
entity aspect A-30 8-31
entity class A-31 10-55
entity declaration A-32 8-4
entity _declarative_item A-32 8-10
entity_declarative_part A-33 8-10
entity designator A-33 10-55
entity _header A-33 8-6
entity_name list A-33 10-55
entity _specification A-33 10-55
entity _statement A-34 8-12
entity _statement_part A-34 8-12
enumeration_literal A-34 5-19
enumeration_type definition_____ A-34 5-19
exit_statement A-34 6-28
exponent A-34 1-16
expression A-35 2-4
extended_digit A-35 1-17
factor A-36 2-4
file_declaration A-36 4-18
file_logical_name A-36 4-18
file type definition A-36 5-34
floating_type_definition A-36 5-12
formal _designator A-37 4-31
formal_parameter_list A-37 7-8
formal_part A-37 4-31
full _type declaration A-37 4-4
function_call A-37 7-15

A-4 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More

L anguage Construct Diagram I nfor mation
generate statement A-38 6-30
generation_scheme A-38 6-30
generic_clause A-38 8-7
generic_list A-38 8-7
generic_map_aspect A-38 8-32
graphic_character A-39 1-5
guarded_signal_specification_____ A-39 11-8
identifier A-39 1-8
identifier_list A-39 4-11
if_statement A-40 6-34
incomplete type declaration _____ A-40 4-4
index_constraint A-40 5-23
index_specification A-40 8-39
index_subtype definition A-40 5-23
indexed _name A-41 3-8
instantiation_list A-41 8-25
integer A-41 1-16
integer_type_definition A-41 59
interface_constant_declaration_____ A-42 4-24
interface _declaration A-42 4-22
interface list A-42 4-22
interface signal_declaration _____ A-42 4-26
interface variable declaration _____ A-43 4-29
iteration_scheme A-43 6-36
label A-43 6-3
letter A-43 1-5
library _clause A-44 9-8
library_unit A-44 9-3
literal A-44 1-15
logical _name A-44 9-8

Mentor Graphics VHDL Reference Manual, July 1994

A-5

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More

L anguage Construct Diagram I nfor mation
logical _name_list A-44 9-8
logical_operator A-45 2-31
loop_statement A-45 6-36
miscellaneous _operator A-45 2-18
mode A-46 4-22
multiplying_operator A-46 2-20
name A-47 3-3
next_statement A-47 6-38
null_statement A-47 6-39
numeric_literal A-47 1-15
object_declaration A-48 4-10
operator_symbol A-48 7-6
options A-48 6-23
package body A-49 9-15
package body declarative item______ A-49 9-15
package body declarative part ____ A-49 9-15
package declaration A-50 9-13
package declarative item A-50 9-13
package declarative part A-51 9-13
parameter specification A-51 6-36
physical_literal A-51 1-16
physical_type_definition A-51 5-15
port_clause A-51 8-8
port_list A-51 8-8
port_map_aspect A-52 8-32
prefix A-52 35
primary A-52 2-6
primary_unit A-53 9-3
procedure call statement A-53 6-40
process declarative item A-54 6-41

A-6 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More

L anguage Construct Diagram I nfor mation
process declarative part A-54 6-41
process_statement A-55 6-41
process_statement_part A-55 6-41
gualified_expression A-55 2-10
range A-56 5-5
range_constraint A-56 5-5
record_type definition A-56 5-29
relation A-56 2-4
relational _operator A-57 2-28
return_statement A-57 6-44
scalar_type definition A-57 5-4
secondary_unit A-58 9-3
secondary_unit_declaration A-58 5-15
selected name A-58 35
selected signal_assignment A-58 6-27
selected waveforms A-58 6-27
sensitivity _clause A-58 6-49
sensitivity _list A-59 6-41
sequence of statements A-59 6-15
sequential_statement A-60 6-5
sign A-60 2-22
signal_assignment statement ____ A-61 6-46
signal_declaration A-61 11-14
signal_kind A-61 11-14
signal_list A-61 11-8
simple_expression A-62 2-4
simple_name A-62 34

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

Table A-1. VHDL Construct Listing [continued]

L ocation of Syntax For More

L anguage Construct Diagram I nfor mation
dice_name A-62 3-9
specia _characters A-62 1-5
string_literal A-63 1-19
subprogram_body A-63 7-10
subprogram_declaration A-63 7-6
subprogram_declarative item____ A-64 7-10
subprogram declarative part ___ A-64 7-10
subprogram_specification A-65 7-6
subprogram_statement_part A-65 7-10
subtype declaration A-65 4-7
subtype_indication A-65 4-7
suffix A-66 3-5
target A-66 6-46
term A-66 2-4
timeout_clause A-66 6-49
type _conversion A-66 2-12
type declaration A-67 4-4
type_definition A-67 4-4
type _mark A-67 4-7
unconstrained array definition ______ A-67 5-23
use clause A-68 3-22
variable assignment_statement ____ A-68 6-48
variable_declaration A-68 4-15
wait_statement A-68 6-49
waveform A-69 6-46
waveform_element A-69 6-46

A-8 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

How to Read a Syntax Diagram

The syntax diagram is avisual representation of the rules for constructing and

arranging your code. The examplein Figure A-1 illustrates all the possible
elements of a syntax diagram:

example_construct T—» construct_one

\— construct _two T construct_three T

reserved_wor >

Figure A-1. Example Syntax Diagram

The syntax diagram is read from left to right by following the arrow directions.
The following list describes each element of the syntax diagram:

o Eachindividua syntax diagram is called alanguage construct. The name of
the construct is the left-most item. In Figure A-1, the language construct is
named "example_construct".

o "example construct” is composed of three different items. By following the

arrows, you can take three different paths as shown in Figure A-2 by Path A
or Path B or Path C.

e Intaking Path A, the boxed item "construct_one" is encountered. All boxed

items indicate another language construct, which is defined by another
individual syntax diagram.

Mentor Graphics VHDL Reference Manual, July 1994 A-9

Syntax Summary

PathA — B>

example_construct » construct_one

(D

PathB —pp»

\—pconstruct _two TA construct_three T

PathC — p»

reserved_wor >

Figure A-2. Multiple Syntax Diagram Paths

The loop back in Path A indicates you can use one or more of the language
construct "construct_one", separated by acomma. All itemsinacircle or
elipseindicate aterminal. A terminal iswhat you actually use in the code (a
reserved word or character).

¢ Intaking Path B, you must use "construct_twao", but "construct_three" can be
either used or omitted.

e Theitalic words give you additional information and do not represent an
actual language construct. The words that follow the italics represent an
actual language construct.

e Intaking Path C, areserved word (terminal) must be used.

The complete syntax for VHDL follows. The number under each language
construct shows you where to look in this manual for more information.

A-10 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

abstract_literal

access type definition

» decimal_literal j

based literal >
1-16

access subtype indication — »
5-31

» expression

actual_designator

actual_parameter_part

——»ggnal_name

~———» variable name

open >
4-31

—» parameter_association_|ist >
7-15

actual_part actual_designator
‘» function_name a@»actual_designator »@L>

4-31

A-11

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

adding_operator »@

2-23

aggregate ,@ > element_association ,@ >

2-8

dias declaration —»(dias) sfidentifier)

L»Subtype_i ndication @ » name S

4-35
allocator ‘@ : subtype_indication W
qualified_expression -
2-14

A-12 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

architecture_body architecture_smple_name
entity _name @—» architecture_declarative_part

begin » architecture_statement_part ﬁ

architecture _simple_name T’Q -

U

5

]

8-14
architecture_declarative _part i(» block _declarative_item] I >
8-17
architecture_statement_part i(» concurrent_statement } 1 >
8-18
array_type definition unconstrained _array definition ﬁ
T. constrained_array_definition >
5-23

Mentor Graphics VHDL Reference Manual, July 1994 A-13

Syntax Summary

assertion_statement

condition

expression %

expression f @ >

6-10

association_element i»formal _part

V.

actual_part —»

4-31

association_list

attribute_designator

A-14

» association _element

D

4-31

attribute_declarati o identifier 4@j

L. type _mark

10-54

~ » attribute_simple_name >

10-3

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

attribute name —»

prefix

)

>

attribute_designator

static _expression

(o

10-3

attribute_specification attribute

attribute_designator

u entity _specification

—@—b expression »@ >
10-55
base » integer >
1-17
base specifier
"B Xb)
» 0 "o,
"X &3
>
1-20
Mentor Graphics VHDL Reference Manual, July 1994 A-15

Syntax Summary

base unit_declaration @ identifier

@ >

5-15
based_integer » extended_digit >
<
1-17
based literal » base @ » based_integer j
F»@—» based integer f .@ 1 » exponent T_>
1-17

binding_indication - » entity aspect j

generic_map_aspect %

8-29

%’ port_map_aspect f

bit_string_literl | base_specifier | " | bit value | s ") »

1-20

bit value » extended digit >

O

<

A-16 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

1-20

block_configuration for block _specification ﬁ

configuration_item

8-39

block_declarative_item ———»

subprogram_declaration -

—>

subprogram_body

o

type_declaration

—>

subtype declaration

R

constant_declaration

—>

signal_declaration

e

file_declaration

component_declaration

e

configuration_specification

>

attribute_specification

—>

disconnection_specification |

use clause >

Mentor Graphics VHDL Reference Manual, July 1994 A-17

Syntax Summary

8-17

block declarative part T—» block declarative item j >

6-12

bl ock_headerlﬁ generic_clause M generic_map_aspect %

port_map_aspect @ f J >

block specification

A-18

6-12

ﬂ architecture_name }

q block statement_|abel

__» generate_statement |abel h

l.@, index_specification %

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

8-39

block statement ————»

block label

[1,@

» guard _expression

L,(bl ock_header

Abl ock_declarative part |

o

block_statement_part

end

block _|abel

6-12

block statement_part

concurrent_statement

case _statement_alternative

Mentor Graphics VHDL Reference Manual, July 1994

A-19

Syntax Summary

case_statement_alternative choices ?

[»@ » sequence of statements | »

6-15

character_literal —@—b graphic_character 40 >
1-18

choice » Simple_expression |

\» discrete_range

\» element_simple_name

»{Others) >

2-8
choices [» choice J >
(=
2-8
component_configuration for component_specification }_j

binding_indication H@W block _configuration h
9 .

8-43

A-20 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

component_declaration

identifier
)

LT local _generic_clause ﬁ

component_instantiation_statement —

4-36

local _port_clause ﬂ

>

instantiation

_label %

Lb component _name T

%.

generic_map_aspect

port_map_aspect T@—»

6-17

component_specification—» instantiation_list

8-25

a@» component_name | »

composite_type definition

>

array_type definition

.

record type defi nitionL>

5-22

concurrent_assertion_statement J»

label

(Dl

6-19

Mentor Graphics VHDL Reference Manual, July 1994

assertion_statement »

A-21

Syntax Summary

concurrent_procedure _call ﬁ
label —b@j—b procedure call_statement —»

6-21

concurrent_signal_assignment_ statement ﬁ

label conditional_signal_assignment T

selected_signal_assignment >

6-23

concurrent_statement -~ » block_statement |

Lﬁ process_statement }

—» concurrent_procedure_call |

- concurrent_assertion_statement |

—» concurrent_signal_assignment_statement —|

- component_ingtantiation_statement |

—» generate_statement | >

6-7

A-22 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

condition » boolean_expression >
6-49
condition_clause condition >

6-49

conditional_signal_assignment ~ j target

options

N

conditional_waveforms

@ >

6-25

conditional_waveforms

waveform

when

condition

waveform

Mentor Graphics VHDL Reference Manual, July 1994

A-23

Syntax Summary

6-25

configuration_declaration —»[confi gurati on)j
u configuration_simple_name entity_name H@j
uconfiguration_declarative part ——» block_configuration }—j

configuration_simple_name | j G >

8-35
configuration_declarative_item use clause
t attribute_specification 4L>
8-35
configuration_declarative part T4configuration_declarative_item FT»
8-35
configuration_item » block_configuration
L» component_configurationi>
8-39

configuration_specification component_specification j

binding_indication @ >

8-25

A-24 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

constant_declaration identifier list H()]
usubtype_i ndication 1@ » EXPression j G >

4-13

constrained_array_definition —»(array index_constraint

Q. element _subtype indication |

5-23
constraint range constraint -
E index_constraint >
4-7
context_clause L(. context_item) 1 >
9-5
context_item library _clause j
: use _clause >
9-5

Mentor Graphics VHDL Reference Manual, July 1994 A-25

Syntax Summary

decimal_literal —» integer L»@—» integer LL»‘EXIOOnent L»

declaration » type declaration

— » Subtype declaration

—» Object_declaration

—» file_declaration

—» interface_declaration

—» dias declaration

—» attribute_declaration

———» cOmponent_declaration

—p entity_declaration

—» configuration_declaration

—» Subprogram_declaration

——» package_declaration >

4-3

A-26 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

design file [» design_unit] >

9-3

design _unit » context clause | library unit -

9-3

designator » identifier w
L» operator_symbol >

7-6

EXXIXIIXIL

1-5

direction
Lﬂ@

ownto >

5-5

Mentor Graphics VHDL Reference Manual, July 1994 A-27

Syntax Summary

disconnection_specification

guarded signal_specification

o1

after time _expression >

11-8

discrete_range T» discrete_subtype_indication j
» range >
5-23

element_association L, choices => expression — »
2-8

element_declaration — »l identifier_list > o)

N

L, element_subtype_definition o) >

5-29

element_subtype definition | subtype indication >

5-29

A-28 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

entity _aspect 4{entity]+ entity _name U
Q@. architecture _identifier

—»{ configuration |——»{configuration_identifier

open >

8-31

Mentor Graphics VHDL Reference Manual, July 1994 A-29

Syntax Summary

entity _class

A-30

entity

type

signa

il

subtype
package

i‘

constant

10-55

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

entity declaration entity _simple_name »QS}> entity_header
L entity_declarative part entity_statement_part %
entity _simple_name f @ >

8-4

entity_declarative_item —_ » subprogram_declaration

subprogram_body

type_declaration

subtype _declaration

constant_declaration

signal_declaration

file_declaration

attribute_specification

disconnection_specification | ———

(4

use clause >

8-10

Mentor Graphics VHDL Reference Manual, July 1994 A-31

Syntax Summary

entity declarative part %»entity_declarative_item]1 >

8-10
entity _designator » Simple nhame
L, operator_symbol >
10-55
entity _header i. formal _generic_clause L. formal _port_clause L»
8-6
entity_name list » entity designator

‘ 0>
—wothes
— dl >

10-55

entity_specification —» entity_name list a()—ﬁ entity class | »

10-55

A-32 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

entity _statement concurrent_assertion_statement

passive _concurrent_procedure_call

passive process statement >
8-12
entity _statement_part j [» entity_statement]1 >
8-12
enumeration_literal identifier
C character_literal ‘ >
5-19

enumeration_type_definition enumeration_literal

5-19

exit_statement loop_label when |+ condition T»@»
6-28

exponent e ﬂ integer >
1-16

Mentor Graphics VHDL Reference Manual, July 1994 A-33

Syntax Summary

relation

expression —» relation

.

XOr relation

=)
or relation ﬁ
_

nand relation | |
nor relation >
2-4

extended _digit » digit

LITLX:
266006|

1-17

A-34 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

F= == == ==

factor » primary % primary

abs

not

» primary

2-4

file_declaration identifier

» primary >

subtype_indication }}

W file logical_name %)_.

4-18
file logica_name » string _expression >
4-18
file_type definition @ typemark |,
5-34
floating_type_definition —— range _constraint >
5-12

Mentor Graphics VHDL Reference Manual, July 1994

A-35

Syntax Summary

formal_designator generic _name

port_name

parameter _name >

4-31

formal_parameter_list — » parameter interface list - »

7-8
formal_part T: formal _designator
function _name a@}» formal_designator —D@LV
4-31

full _type declaration identifier U
L>@—>type_deffinition 4@—>

4-4

function_call —function _name]

L(@»actual _parameter_part %’

7-15

A-36 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

generate_statement | generate |abel %generati on_scheme }]

concurrent_statement %

s endgenes) womeelbd | K

6-30

generation_scheme

.

>
6-30
generic_clause generic e generic_list M»
87
generic_list » interface_constant_declaration >
@4
8-7

generic_map_aspect generic

E@—» generic_association list »@ >

8-32

Mentor Graphics VHDL Reference Manual, July 1994 A-37

Syntax Summary

graphic_character » |etter
digit
special_characters >
1-5
guarded_signal _specification » Quarded signal_list j

[»Q » type _mark >

identifier —letter o _) »| letter -

1-8

identifier_list » identifier >

U

4-11

A-38 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

if statement —@—b condition then sequence of statements

))
]

sequence_of _statements

elsf condition then sequence of statements

6-34
incomplete type declaration dentifier .Q >
4-4
index_constraint .@ » discrete_range .@ >
5-23
index_specification » discrete range >
L»stati C_expression M
8-39
index_subtype definition —— type_mark
5-23

Mentor Graphics VHDL Reference Manual, July 1994 A-39

Syntax Summary

indexed_name - » prefix %’expron ‘ @ >
o

3-8

instantiation_list » INstantiation _|abel

-~ »others)
NE I -

8-25
integer » digit >
|
1-16
integer_type definition » fange_constraint >
5-9

interface_constant_declaration jl identifier_list

0 & subtype indication T.@»static_expron T»

A-40 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

interface_declaration

interface list

interface_signal_declaration ‘l

4-24

interface _constant_declaration

interface signal_declaration

interface variable declaration

4-22

» interface declaration

()

4-22

identifier list H@j

mode

interface variable declaration ‘l i

subtype_indication

.bus ‘

static _expression T

4-26

dentifier_list H@j

mode

subtype indication

static_expression T.

e

4-29

Mentor Graphics VHDL Reference Manual, July 1994

A-41

Syntax Summary

iteration_scheme

condition

L,

for loop parameter specification
6-36
|abel » identifier >
6-3
letter
>
1-5
library_clause logical_name list .Q >
9-8
library_unit » primary_unit ﬁ
L, secondary_unit >
9-3
A-42 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

literal

logical_name

» numeric literal -

- string_literal

__plenumeration literal |

—_pbit_string_literal |

1-15

» identifier

logical_name list

logical_operator

9-8

logical_name

B

9-8

nor

Xor

2-31

Mentor Graphics VHDL Reference Manual, July 1994

A-43

Syntax Summary

loop_statement J» loop_label

@LL iteration_scheme

L sequence_of statements

loop loop_|abel

miscellaneous_operator

abs
not >
2-18
mode » in)
out
out
S ebiffer
4-22
A-44 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

multiplying_operator

rem mod
0

2-2

Mentor Graphics VHDL Reference Manual, July 1994 A-45

Syntax Summary

name

next_statement

null_statement

numeric_litera

A-46

< »smple name

~——»-operator _symbol

~——» dice_name

—» attribute_name

~—» Selected name

— pindexed name

3-3

loop_label when

6-38

condition L.@.

) .

~null)

6-39

» abstract_litera

L» physical_literal >

1-15

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

constant_declaration

object_declaration >

variable_declaration

signal_declaration >
4-10
operator_symbol » string_literal >
7-6
options transport I >
6-23

Mentor Graphics VHDL Reference Manual, July 1994 A-47

Syntax Summary

package body

o

package body_ declarative part

package simple name

[T

package body declarative item

package body declarative part

A-48

HJHHH

subprogram_declaration %

subprogram_body

type declaration

[

subtype_declaration

constant_declaration

file_declaration

)

dlias declaration

use clause

©
H
&

package body declarative item

9-15

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

package declaration package_simple_name @T

[» package declarative part package simple_name T@»

9-13

package declarative item —» subprogram_declaration

type declaration

subtype_declaration

constant_declaration

signal_declaration

alias declaration

component_declaration

—>
__)
)l
—
—» file_declaration
_)
e
)

attribute_declaration

attribute_specification

e
- disconnection_specification
>

use clause >

9-13

Mentor Graphics VHDL Reference Manual, July 1994 A-49

Syntax Summary

package declarative part %_, package declarative item ﬁL’

9-13
parameter_specification ——»identifier —@—»discrete_range >
6-36
physical_literal 4»abaract_literal 44 unit name | »
1-16

physical_type definition . range constraint
L. base unit_declaration J(, secondary _unit_declaration

>
5-15
port_clause 0 port_list »@ »Q >
8-8
port_list »interface signal _declaration T—»
‘ o
8-8
A-50

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

port_map_acpec

KO

port _association _list

8-32

prefix

ffffffJ

» Name

[

function_call

3-5

name

literal

aggregate

function_call

gualified_expression

type_conversion

allocator

:

expression @

2-6

Mentor Graphics VHDL Reference Manual, July 1994

A-51

Syntax Summary

primary_unit » entity declaration

configuration_declaration

package declaration >

9-3

procedure call statement —» procedure_name j

actual parameter part »@ f »@ >

6-40

A-52 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

process_declarative_item ———» subprogram_declaration

- subprogram_body

—» type_declaration

——»{Subtype_declaration

——» constant_declaration

——»vVariable_declaration

—

— » file_declaration

— dlias _declaration

~

s attribute_declaration

R

\—» atribute_specification

—p Use_clause

6-41

process_declarative part process _declarative _item

6-41

Mentor Graphics VHDL Reference Manual, July 1994

A-53

A-54

Syntax Summary

process_statement % process_|abel H@%
L@ I o () » sensitivity_list) f }

L, process _declarative part begin process _statement_part

»
Cend) process_label f o) >

6-41

process_statement_part L(» sequential_statement } I >

qualified_expression type_mark % expression
Etype_mark 4©—> aggregate

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

range range_attribute_name
T: simple_expression —»

—» Simple_expression L»

range

direction
5-5

range_constraint @ >
5-5

record_type_definition»{ record - element_declaration

{end }(record}

5-29

relation —» SIMple_expression

—

f » relational _operator

-~ » Simple_expression

1,

2-4

Mentor Graphics VHDL Reference Manual, July 1994

A-55

Syntax Summary

relational_operator = o =

<=
>=
e -
2-28
return_statement expron 1 ()
6-44

scalar_type definition —~—» enumeration_type_definition |

—» integer_type _definition |-

—» floating_type_definition

—» physical_type definition >

5-4

A-56 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

secondary_unit

secondary _unit_declaration —»

selected name —»

architecture_body

>
L package body

-

9-3

identifier

5-15

e

physical_literal

» SUffix

prefix

-

3-5

D

selected_signal_assignment expression

[. target

selected waveforms T.

sensitivity clause

@ >

6-49

Mentor Graphics VHDL Reference Manual, July 1994

sensitivity _list

options | » selected waveforms
6-27
waveform when choices T»
6-27

A-57

Syntax Summary

sensitivity list »signal _name >

o)

6-41

sequence of statements 4(» sequential _statement] 1 >

6-15

A-58 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

sequential_statement ———~——» Walit_statement

assertion_statement

signa_assignment_statement

variable _assignment_statement |

procedure call statement |

if _statement

case_statement

loop_statement

next_statement

exit_statement

return_statement

bl el el

null_statement >

6-5

$qn .@ﬁ

- >

2-22

Mentor Graphics VHDL Reference Manual, July 1994 A-59

Syntax Summary

signal_assignment_statement —» target . transport

Q» waveform G >

6-46

signal_declaration identifier_list | »:)-» subtype indication

%. signal_kind T_T@_. expression T@_.

11-14

signal_kind

11-14

signal_list » signal_name }

(D)
~al)

11-8

A-60 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

simple_expression @ term

L(» adding_operator ——» term

2-4

simple_name » identifier >
34

dice name —» prefix @ » discrete_range —@—b
39

specia_charact

5088508688
b000H00000¢
R00099804008]

Mentor Graphics VHDL Reference Manual, July 1994 A-61

Syntax Summary

string_literal G f [» graphic_character %@—»

1-19

subprogram_body — subprogram_specification @j

L, subprogram_declarative part

L, subprogram_statement_part
%» designator f »@—»

7-10

v

subprogram_declaration ——» Subprogram_specification G

7-6

A-62 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

subprogram_declarative item —— »

subprogram_declaration |

—>

subprogram_body

R

A

type _declaration

R

subtype declaration | ——

constant_declaration |

variable declaration |——

file_declaration

alias declaration

attribute _declaration | ——

attribute_specification ——

—>

use clause

7-10

subprogram_declarative part i(. subprogram_declarative _item

7-10

Mentor Graphics VHDL Reference Manual, July 1994

A-63

Syntax Summary

-

kT-@»formal _parameter_list @T
designator T-G}»formal _parameter_list %

7-6

subprogram_statement_part i(»sequential_statement J I >

7-10

subtype _declaration identifier 4@7
L»subtype_indicaiion G >

identifier

subprogram_specification

procedure

4-7

subtype indication i» resolution_function _name L»type_mark

%» constraint f >

4-7

A-64 Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

suffix » simple hame -
\—» Character_literal |
\—» Operator_symbol
sl v -
3-5
target » Name
L aggregate L >
6-46
term —» factor multiplying_operator —» factor
2-4
timeout_clause for time expression | »
6-49

type_conversion

2-12

Mentor Graphics VHDL Reference Manual, July 1994

. pltype mark H®—>expron @—»

A-65

Syntax Summary

type declaration T: full_type declaration ﬁ

incomplete type declaration >

4-4

type definition ——»

scalar_type definition -

composite type definition

access type definition

(4

file_type _definition \ >

type_mark

4-4

» type_name ﬁ

subtype _name >

unconstrained _array definition

@ ‘ » index_subtype_definition

» element_subtype indication ———»

.
)

A-66

5-23

Mentor Graphics VHDL Reference Manual, July 1994

Syntax Summary

use_clause selected_name O >

variable assignment_statement —» target 4b@—b expression @—»

variable_declarati o identifier_list »@» subtype indication

%@_.expron f O >

wait_statement wait sensitivity _clause %

%» condition_clause TT»ti meout_clause f m >

6-49

Mentor Graphics VHDL Reference Manual, July 1994 A-67

Syntax Summary

waveform » waveform_element >

6-46

waveform_element —»lvalue _expression L@fter > time_expression

after j» time_expression

6-46

A-68 Mentor Graphics VHDL Reference Manual, July 1994

Locating Language Constructs

Appendix B
Locating Language Constructs

This appendix describes two methods for assisting you in the location of the
VHDL language constructs. The following list shows these methods:

e The major language construct tree
e Thevscan (VHDL scan) script

The major language construct tree starting on page B-3 shows you where you can
use the language constructs that you use often and that form the basic foundation
of VHDL. Thistree corresponds to the maor language construct discussion in
the Mentor Graphics Introduction to VHDL. The majority of the language
constructs in this tree are declarations.

NOTE

% The diagrams on pages B-3 and B-4 consolidate the " Construct
Placement” information that appears on the Mentor Graphics
VHDL Summary poster. If you are reading this document online,
you should print out pages B-3 and B-4 to make the diagrams
easier to view.

When you are interested in language constructs that do not appear in the major
language construct tree, you can use the vscan script. This script allows you to
perform an on-line search of the VHDL syntax for any language construct or
reserved word.

For System-1076 users, the vscan script can be called from within the Design
Architect VHDL Editor with the Help > On VHDL > Syntax menu choice* or it
can be found in the following directory:

$MGC_HOME/shared/pkgs/sys 1076/manual

*For more information on the VHDL Syntax Viewer in the VHDL Editor,
refer to "Finding VHDL Syntax Information Within the Editor” in the
System-1076 Design and Model Development Manual.

Mentor Graphics VHDL Reference Manual, July 1994 B-1

Locating Language Constructs

For Explorer VHDLsIm users, the vscan script resides in the following directory:

$SCDIR/ind/bin ($SCSDIR is set to the location where the Explorer
tools are installed.)

The following examples show how to use the vscan script:
$ $MGEC_HOVE/ shar ed/ pkgs/ sys_1076/ manual / vscan
% $SCSDI R/ i nd/ bi n/ vscan

The script responds with the following prompt:

Enter phrase to use in search <cr to stop>:

Y ou can then enter a phrase to search for. For example:

Enter phrase to use in search <cr to stop>. entity_header

The preceding command executes the "vscan” script and returns any occurrence
of the language construct "entity header". To exit the script, you enter a carriage
return. If you require help, you can use the -h option, as shown in the following
examples:

$ $MC HOVE/ shar ed/ pkgs/ sys_1076/ manual / vscan -h

% $SCSDI R/i nd/ bin/vscan -h

B-2 Mentor Graphics VHDL Reference Manual, July 1994

66T AINC ‘fenuepy adualaley TAHA Salydels Jojuapy

€-d

design file
'configuration_declaration |
block_configuration
component_configuration
attribute_specification
library_clause use_clause
entity | | package declaration| | package bodly | architecture

entity statement_part
— contains
concurrent_statements

—generic_clause

— port_clause

— type_declaration

— subtype _declaration

— constant_declaration
—signa_declaration
—file_declaration

—— attribute_specification
— attribute_declaration
—use_clause

— disconnection_specification
—alias_declaration

— subprogram_declaration

~—(subprogram_bodly) £

|
A

— type_declaration
—subtype_declaration
— constant_declaration
—signal_declaration

— file_declaration

— attribute_specification
— attribute_declaration
—alias_declaration
—use_clause

— | component_declaration |

~— subprogram_declaration

|
E

— type_declaration

— subtype _declaration
— constant_declaration
— file_declaration

— use_clause
—adlias_declaration
subprogram_declaration

— disconnection_specification

S subprogram_bodyj

|
A

@bprogram_body}
|

A

architecture_statement_part
— contains
concurrent_statements

— type_declaration

— subtype _declaration

— constant_declaration

— signal_declaration

— file_declaration

— attribute_specification
— use_clause

— attribute_declaration
—alias_declaration

— subprogram_declaration
— | component_declaration |

e

C

D

s10nJ1suo0) abenbue Buieso

v-d

66T AINC ‘fenue a3ualalay TAHA Sdlydels Jolusy

| component_declaration |

subprogram_body
A |

B

subprogram_statement_part
— contains
sequential_statements
—type_declaration
—subtype_declaration

— constant_declaration
— variable _declaration
—file_declaration E
—dlias_declaration
—attribute_declaration

— attribute_specification
—use_clause

— subprogram_declaration

- (subprogram_body

generic_clause
port_clause

| subprogram_declaration |

— procedure
— function

(block |

block_statement_part
— contains
concurrent_statements

— type_declaration

— subtype_declaration
— constant_declaration
— signal_declaration

— file_declaration

— alias_declaration

— altribute_specification
— attribute_declaration
— use_clause

— generic_clause

port_clause
configuration_specification
disconnection_specification
| component_declaration |

subprogram_declaration

. (subprogram_body
—
-~ (block

text| = A box indicatesthe construct is non-terminal.

process

o= D

process statement_part
— contains
sequential_statements

—type_declaration
—subtype_declaration

— constant_declaration
—variable _declaration
—file_declaration
—alias_declaration

— attribute_specification
— attribute_declaration
—use_clause

— subprogram_declaration

L [subprogram_body

text) =Anoval indicates objects of thistype can be declared within the object itself.

text = Indicatesthe construct isterminal meaning no declarations can occur within it.

s10nJ1suo0) abenbue BuiesoT

Index

INDEX

ABS, 2-18

Abstract literal, 1-16

Access type, definition, 5-31

Access types, 5-31

Actual ports, 8-23

Actuals, 4-32

Adding operators, 2-23

Aqggregate, 2-8

Allocators, 2-13, 5-31

AND, 2-31

Anonymous types, 1-16, 4-6, 5-9

Architecture bodies, 8-14, 8-35

Architecture declarative part, 8-17, 8-39, 8-43

Architecture statement part, 8-18

Array concatenation, 5-28

Array direction, 10-10

Array object attributes, see Predefined
attributes

Array typerules, 5-27

Array types, 5-22

Array, definition, 5-22

Array, operations on, 5-28

Arrays, dlicing, 5-28

Assertion statement, 6-10

Assignment statements, 6-5

Association list, 4-31

Attribute declaration, 10-54

Attribute kind, 10-5

Attribute name, 10-3

Attribute names, 3-10

Attribute specification, 10-55

Attributes, predefined, 10-5

Base specifiers, 1-21

Basetype, 5-2

Based literal, 1-17

Behavioral description, 8-15

Binding indication, 8-29

Bit string literals, 1-20

Bit, type declaration, 9-18

Bit_vector, type declaration, 9-20

Block attributes, see Predefined attributes
Block statement, 6-12

Mentor Graphics VHDL Reference Manual, July 1994

BNF syntax description, how to read, xix
Boolean, type declaration, 9-18

Box, <>, 5-26

Buses, 11-5

Case statement, 6-15
Character and string literal, difference, 1-20
Character literal, 1-18
Character set, 1-5
Digits, 1-5
Format effectors, 1-6
Letters, 1-5
Special characters, 1-5
Character, type declaration, 9-19
Comments, 1-15
Compatibility, range, 5-8
Compatible, range constraints, 5-8
Complete context, 3-24
Component Binding, 8-23
Component declarations, 4-35, 4-36
Component declarations, overview, 8-21
Component Instantiation, 8-22
Component instantiation statement, 6-17
Components, 8-20
Composite types, 5-22
Compound delimiter, 1-22
Concatenation operator, 2-23
Concatenation, of arrays, 5-28
Concatenation, of string literals, 1-19
Concatenation, to form a bus, 2-28
Concurrency, difference between sequential,
6-2
Concurrent Assertion Statement, 6-19
Concurrent procedure call statement, 6-21
Concurrent signal assignment statement, 6-23
Concurrent statements, 6-7
Block, 6-12
Component instantiation, 6-17
Concurrent assertion, 6-19
Concurrent procedure call, 6-21
Concurrent signal assignment, 6-23
Process, 6-41

Index-1

Index

INDEX [continued]

Condition

In anext statement, 6-38

In await statement, 6-50

In an assertion statement, 6-10

In an exit statement, 6-28

In anif statement, 6-34
Conditional signal assignment, 6-25
Conditional statements, 6-6
Configuration specification, 8-25
Constant declarations, 4-13
Constants, deferred, 4-14
Constrained array, 5-25
Constraint

Index, 4-8

Range, 4-8, 5-5
Context clauses, 9-5
Context of overload resolution, 3-24
Conversion functions, type, 4-37

Data-flow description, 8-15

Decimal literal, 1-16

Declaration, definition of, 4-1

Declarative region, 3-12

Default binding indication, 8-33

Default expression for signals, 11-15

Deferred constants, in constant declarations,
4-14

Deferred constants, in packages, 9-14

Delay, concepts for modeling, 11-19

Delimiters, 1-22

Deltadelay, 11-20

Design entity, 8-2

Design file, 9-3

Design libraries, 9-8

Design library, complete example, 9-10

Design unit, definition of, 9-1

Designator, 5-31

Direct visibility, 3-18

Disconnection specification, 11-8

Discrete array type, 2-30

Driver, 6-46, 11-4

Driver, definition of, 11-3, 11-4

Drivers, 11-4

Index-2

Drivers, multiple, 11-10

Element association, named, 2-9
Element association, positional, 2-9
Entity aspect, 8-31

Entity declaration, 8-4

Entity declarative part, 8-10
Entity header, 8-6

Entity statement part, 8-12
Enumeration types, 5-19
Equality operator, 2-29

Exit statement, 6-28

Expanded name, 3-7
Exponentiation, 2-18

Expression, 2-3

Expression, genera rulesfor, 2-4
Extended digit, 1-18

File declarations, 4-18

Filelogical name, 4-19

File mode, 4-19

File types, 5-34

Files, implicit subprograms created, 5-34

Floating point arithmetic, important note to
read, 2-17

Floating point types, 5-12

Formal ports, 8-23

Formals, 4-31

Function, 7-3

Function call, as a primary, 2-10

Function calls, 7-15

Function calls, rules for using, 7-15

Functions, type conversion, 4-37

Generate statement, 6-30

Generic map aspect, 8-32

Generics, 8-7

Globally static array subtype, 2-36
Globally static discrete range, 2-35
Globally static expressions, 2-32
Globally static index constraint, 2-35
Globally static operand, 2-32
Globally static range, 2-35

Mentor Graphics VHDL Reference Manual, July 1994

Index

INDEX [continued]

Globally static range constraint, 2-35

Globally static scalar subtype, 2-35
Guarded signals, 6-23, 11-5

Hidden declaration, 3-18
Homograph, 3-18

Identifier list, 4-11

Identifiers, 1-8

If statement, 6-34

Immediate scope, 3-15

Incomplete Types, 5-32

Index constraint, 4-8, 5-27
Indexed names, 3-8

Inequality operators, 2-29

Inertial delay, 6-47, 11-19

Integer literal, 1-16

Integer types, 5-9

Integer, type declaration, 9-19
Interface constant declaration, 4-24
Interface declarations, 4-21
Interface lists, 4-22

Interface objects, 4-21

Interface signal declaration, 4-26
Interface variable declaration, 4-29
Iteration scheme, 6-36

Iterative statements, 6-6

Labels, 6-3

Language construct tree, B-1
Language constructs, 1-3
Language constructs, locating, B-1
Leading digit, 1-21

Lexical element definition, 1-3
Library clause, 9-8

Library logical name, 9-8
Library, resource, 9-8

Library, working, 9-8

Literals, 1-15

Local ports, 8-23

Locally static array subtype, 2-34
Locally static discrete range, 2-34

Locally static expression, 2-32, 5-9, 5-12,

Mentor Graphics VHDL Reference Manual, July 1994

5-16
Locally static index constraint, 2-34
Locally static operand, 2-32
Locally static range, 2-34
Locally static range constant, 2-34
Locally static scalar subtype, 2-34
Locals, 4-32
L ocating language constructs, B-1
Logical library name, 9-8
Logical operators, 2-31
Longest static prefix, 3-5
Loop parameter, 4-11, 6-36
L oop statement, 6-36

Major language construct tree, B-1
Miscellaneous operators, 2-18
Mode, 4-22

File, 4-19

Parameters, 7-8

Ports, 8-8

Side-effect, 7-3
Multiple object declaration, 4-11
Multiplying operators, 2-20

Name space, 3-1
Name, logical library, 9-8
Named notation, 7-13
Names
Attribute names, 3-10
Indexed names, 3-8
Prefix, 3-5
Selected names, 3-4
Simple names, 3-4
Slice names, 3-9
Naming, 3-3
NAND, 2-31
Natural, type declaration, 5-11, 9-20
Next statement, 6-38
NOR, 2-31
NOT, 2-31
Null range, 5-4
Null dlice, 3-10
Null statement, 6-39

Index-3

Index

INDEX [continued]

Numeric literal, 1-15

Objects
Declaration of, 4-10
Definition of, 4-10
What an object is, 4-11
Operands, primaries, 2-6
Operations on arrays, 5-28
Operator and signal assignment similarity,
6-25
Operator precedence, 2-16
Operators, 2-16
Operators, important note to read, 2-17
Operators, overloading, 7-18
OR, 2-31
Ordering operators, 2-30
Overload interpretation rules, 3-24
Overloading
Enumeration types, 5-20
Operators, 7-18
Rules for operator overloading, 7-18
Subprograms, 7-17

Package body, 9-15

Package declaration, 9-13
Package standard, 9-18

Package std_logic 1164, 9-21
Package std logic 1164 ext, 9-26
Package textio, 9-30

Packages, 9-12

Parameter type profile, 3-18
Parameter, attribute, 10-7
Parameters, subprogram, 7-8
Passive process, 6-42

Physical file name, 4-19

Physical types, 5-15

Pointer, see Accesstypes

Port map aspect, 8-32

Ports, 8-8

Ports, default expression, 4-34
Ports, unconnected, 4-34, 8-8
Positional notation, 7-13

Positive, type declaration, 5-11, 9-20

Index-4

Precedence, operator, 2-16

Predefined Array types
Bit_vector, 9-20
String, 9-20

Predefined attributes, 10-5
"active, 10-29
"base, 10-42
"behavior, 10-25
"delayed[(t)], 10-30
"event, 10-31
"high, 10-43
"high[(N)], 10-11
'last_active, 10-32
"LAST_EVENT, 10-33
'last_value, 10-34
"left, 10-44
"leftof(x), 10-45
"left[(N)], 10-13
"length[(N)], 10-15
"low, 10-46
"low[(n)], 10-17
'pos(x), 10-47
"pred(x), 10-48
"quiet[(t)], 10-35
"range[(n)], 10-19
"reverse_range[(n)], 10-21
"right, 10-49
"rightof(x), 10-50
"right[(n)], 10-23
'stablef(t)], 10-36
"structure, 10-26
"succ(x), 10-51
"transaction, 10-37
"val(x), 10-52

Predefined Enumeration types
Bit, 5-21, 9-18
Boolean, 5-21, 9-18
Character, 5-21, 9-19
Severity level, 5-21, 9-19

Predefined floating point types
Redl, 5-14

Predefined integer types
Integer, 5-11

Mentor Graphics VHDL Reference Manual, July 1994

Index

INDEX [continued]

Predefined Numeric subtypes dias, 1-10
Natural, 5-11, 9-20 al, 1-10
Positive, 5-11, 9-20 and, 1-10

Predefined Numeric types architecture, 1-10
Integer, 9-19 array, 1-10
Real, 9-19 assert, 1-10

Predefined Operators, 2-16 attribute, 1-10

Predefined Physical types begin, 1-10
Time, 5-18 block, 1-10

Predefined VHDL packages body, 1-10
standard, 9-18 buffer, 1-10
std logic 1164, 9-21 bus, 1-10
std_logic_1164 ext, 9-26 case, 1-11
textio, 9-30 component, 1-11

Prefix, attribute, 10-3 configuration, 1-11

Prefix, names, 3-5 constant, 1-11

Primary, 2-6 disconnect, 1-11

Procedure, 7-3 downto, 1-11

Procedure call statement, 6-40 else 1-11

Procedure calls, 7-17 esf, 1-11

Procedure control statements, 6-6 end, 1-11

Process statement, 6-41 entity, 1-11

Projected output waveform, 11-3, 11-4 exit, 1-11

file, 1-12

Qsim values, character literal issues, 1-18 for, 1-12

Qualified expression, 2-10 generate, 1-12

generic, 1-12

Range constraint, 4-8, 5-5, 5-27, 10-19 guarded, 1-12

Range of integer types, maximum, 5-9 if, 1-12

Range of physical types, maximum, 5-16 in, 1-12

Range, scalar types, 5-4 inout, 1-12

Ranges, important concepts, 5-5 is, 1-12

Red literal, 1-16 label, 1-12

Real, type declaration, 9-19 library, 1-12

Record types, 5-29 linkage, 1-12

Record, definition, 5-29 loop, 1-12

Registers, 11-5 map, 1-12

Relational operators, 2-28 mod, 1-12

Replacement characters, 1-6 nand, 1-12

Reserved words, 1-9 to 1-14 new, 1-12
abs, 1-9 next, 1-12
access, 1-9 nor, 1-12
after, 1-9 not, 1-13

Mentor Graphics VHDL Reference Manual, July 1994 Index-5

Index

INDEX [continued]

Reserved words [continued]

null, 1-13

of, 1-13

on, 1-13

open, 1-13

or, 1-13

others, 1-13

out, 1-13

package, 1-13

port, 1-13

procedure, 1-13

process, 1-13

range, 1-13

record, 1-13

register, 1-13

rem, 1-13

report, 1-13

return, 1-13

select, 1-14

severity, 1-14

signd, 1-14

subtype, 1-14

then, 1-14

to, 1-14

transport, 1-14

type, 1-14

units, 1-14

until, 1-14

use, 1-14

variable, 1-14

wait, 1-14

when, 1-14

while, 1-14

with, 1-14

xor, 1-14
Resolution functions, 4-9, 11-10
Resource library, 9-8
Result type profile, 3-18
Return statement, 6-44

Scalar types, 5-4

Scope, 3-13
Scope rules, 3-15

Index-6

Selected names, 3-4
Selected signal assignment, 6-27
Sengitivity list, process, 6-42
Sensitivity list, wait statement, 6-49
Separators, 1-21
Sequential statements, 6-5
Assertion, 6-10
Case, 6-15
Exit, 6-28
Generate, 6-30
If, 6-34
Loop, 6-36
Next, 6-38
Null, 6-39
Procedure call, 6-40
Return, 6-44
Signal assignment, 6-46
Variable assignment, 6-48
Wait, 6-49
Sequential, difference between concurrent,
6-2
Severity_level, type declaration, 9-19
Shift operators, 2-28
Short-circuit operation, 2-17
Side-effect, for functions, 7-3
Sign, 2-22
Signal assignment and operator similarity,
6-25
Signal assignment statement, 6-46
Signal assignments, overview
Concurrent, 11-17
Sequential, 11-16
Signal attributes, see Predefined attributes
Signal declarations, summary, 4-17
Signal, definition of, 11-1
Signal, initia value, 11-15
Signal, unconnected, 11-15
Signals, default values, 11-15
Signals, guarded, 11-5
Simple names, 3-4
Simulation iteration cycle, 11-21
Single object declaration, 4-11
Slice names, 3-9

Mentor Graphics VHDL Reference Manual, July 1994

Index

INDEX [continued]

Slicing arrays, 3-9, 5-28
Statements
Assignment, 6-5
Classes of, 6-2
Concurrent, 6-7
Concurrent vs sequential, 6-2
Conditional, 6-6
Iterative, 6-6
Procedure control, 6-6
Quick reference table, 6-8
Sequentia, 6-5
Static expressions, 2-32, 3-11
Static name, 3-11
Static signal name, 3-11
String literal, 1-19
String, type declaration, 9-20
Strongly typed language, 5-2
Structural description, 8-15
Subprogram bodies, 7-10
Subprogram calls
Default parameters, 7-14
Named parameter association notation, 7-13
Positional parameter notation, 7-13
Subprogram declarations, 7-6
Valid modes, 7-8
Valid object types, 7-8
Subprogram overloading, 7-17
Subprogram, complete example, 7-19
Subtype, 5-2
Subtype declarations, 4-7
Suffix, names, 3-7
Syntax diagrams, how to read, A-9
Syntax summary, A-1

Tail, operand, 2-30

Terminal, A-10

textio, 9-30

Transaction, 11-4

Transport delay, 6-24, 6-47, 11-19

Type Attributes, see Predefined attributes
Type conversion, 2-12

Type conversion functions, 4-37

Type declaration, 4-4

Mentor Graphics VHDL Reference Manual, July 1994

Type mark, 2-12, 4-9

Types
Access, 5-31
Array, 5-22
Composite, 5-22
Definition of, 5-1
Enumeration, 5-19
Enumeration, predefined, 5-21
File, 5-34
Floating point, 5-12
Floating point, predefined, 5-14
Integer, 5-9
Integer, predefined, 5-11
Overview, 5-1
Physical, 5-15
Physical, predefined, 5-18
Record, 5-29
Scalar type definition, 5-4
Subtype, 5-2

Unary operator, 2-22
Unconnected signal, 11-15
Unconstrained array, 5-26
Unit name, 5-16

Unit-delay, 11-23

Universal expressions, 2-36
universal_integer, 1-16
universa_real, 1-16

Use clauses, 3-22, 9-5
User-defined attributes, 10-53

Variable assignment statement, 6-48
Variable declarations, 4-15
Variables, default initial value, 4-16
Variables, initial value, 4-15
Vigihility, 3-16

Visibility by selection, 3-18
Vigibility rules, 3-17

Vigihility, direct, 3-18

vscan script, B-1

Wait statement, 6-49
While iteration scheme, 6-36

Index-7

Index

INDEX [continued]

Working library, 9-8

XOR, 2-31

Index-8 Mentor Graphics VHDL Reference Manual, July 1994

