QuickSim Il Advanced Training
Workbook

Software Version 8.5 1

Copyright 0 1991 - 1995 Mentor Graphics Corporation. All rights reserved.
Confidential. May be photocopied by licensed customers of
Mentor Graphics for internal business purposes only.

The software programs described in this document are confidential and proprietary products of Mentor
Graphics Corporation (Mentor Graphics) or its licensors. No part of this document may be photocopied,
reproduced or translated, or transferred, disclosed or otherwise provided to third parties, without the prior
written consent of Mentor Graphics.

The document is for informational and instructional purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in the
written contracts between Mentor Graphics and its customers. No representation or other affirmation of
fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in the subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

A complete list of trademark names appears in a separate “Trademark Information” document.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

TABLE OF CONTENTS

About This Training Workbook Xi
Purpose of Course Xil
Course Overview Xiv
Workbook Format XVi
Lab Exercises XVilli
Timeline For Completion of the Course XX
Related Publications XXil
Simulation Manuals XXIV
Modeling Manuals XXVi
Falcon Framework Manuals XXVil
Learning Programs XXVili
Module 1
Setting Up for QuickSim 1| 1-1
Module 1 Overview 1-2
L essons 1-3
Design Hierarchy 1-4
Property Value Resolution 1-6
What Needs to Be Set Up? 1-8
Custom Design Configuration 1-10
Using Primitives for Performance 1-12
Using RAMs and ROMs 1-14
MTM Interface File Example 1-16
Timing Statistics 1-18
Editing a Component Interface 1-20
MGC Shell Environment Variables 1-22
Using Invocation Options 1-24
Changing Invocation Defaults 1-26
Lab Overview 1-28
Module 1 Lab Exercise 1-30
Procedure 1. Copying the Training Data 1-30
Procedure 2: Creating MTM Initialization File 1-32
Procedure 3: Checking for the Modelfile Property. 1-34

QuickSim Il Advanced Training Workbook, 8.5_1 ii
November 1995

Table of Contents

TABLE OF CONTENTS [continued]

Procedure 3b (optional): Checking Using CIB 1-35
Procedure 4: Adding the Modelfile Property 1-38
Procedure 5: Verifying the ROM Models 1-40
Module 1 Summary 1-43
Module 2
Advanced Stimulus Techniques 2-1
Module 2 Overview. 2-2
L essons 2.3
Design Signal Initialization 2-4
The Initialization Process 2-6
The INIT Property 2-8
Developing Design Stimulus 2-10
Setting Up Force Types 2-12
Force Type Examples 2-14
Using AMPLE for Stimulus 2-16
AMPLE Accessto Waveform Data 2-18
AMPLE Stimulus Examples 2-20
Using VHDL as a Stimulus Generator 2-22
Waveform Database Concepts 2-24
Editing Waveforms 2-26
Merging Waveforms 2-28
Redundant Events 2-30
Using 'results as Stimulus 2-32
Scaling Waveforms 2-34
Dithering Waveforms 2-36
Inserting Waveform Ambiguity 2-38
L oading/Connecting Waveforms 2-40
Creating Stimulus Patterns 2-42
Gathering Toggle Statistics 2-44
Lab Overview 2-46
Module 2 Lab Exercise 2-47
Procedure 1. Using the Stimulus Pattern Generator 2-48
iv QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

Procedure 2: Writean AMPLE Stimulus File 2-54
Module 2 Summary 2-56
Module 3
Debugging Timing and Unknowns 31
Module 3 Overview. 3-2
L essons 3-3
Factors in Design Debugging 34
Incremental Change 3-6
Board Simulation--Helpful Hints 3-8
Board Simulation with ASICs 3-10
Spikes 3-12
Technology File Spike Models 3-14
When Are Spikes Suppressed 3-16
When Do Spikes Produce X’s 3-18
When Spikes Pulses Transport 3-20
Technology File Spike Model Example 3-22
Inertial vs. Transport Delays 3-24
Hazards and Oscillations 3-26
Comparing Waveforms 3-28
VHDL Debugger Process 3-30
QuickSim |1 VHDL Debugger 3-32
QuickSim |1 VHDL Debug Palette 3-34
VHDL View Window 3-36
VHDL Active Statements Window 3-38
VHDL Examine Window 3-40
VHDL Assertions Window 3-42
VHDL-Related Windows 3-44
Lab Overview 3-46
Module 3 Lab Exercise 3-48
Procedure 1: Setting Up the VHDL Training Data 3-48
Procedure 2: Creating and Saving Valid Results 3-50
Procedure 3: Changing to the VHDL Design Model 3-53
QuickSim Il Advanced Training Workbook, 8.5 1 Vv

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

Procedure 4: Debugging VHDL With QuickSim [l 3-54
Procedure 5: Modify and Verify the VHDL Source 3-59
Module 3 Summary 3-61
Module 4
Optimizing Simulation Runs 4-1
Module 4 Overview 4-2
L essons 4-3
QuickSim |1 Optimization 4-4
Modeling for Performance 4-6
Hardware Considerations 4-8
Stimulus and Reporting 4-10
Limiting Display Updates 4-12
Estimating Accuracy 4-14
Estimating Performance (Run-time) 4-16
Estimating Memory Requirements 4-18
L ocating Existing Examples 4-20
Running Application Systests 4-22
Aliasing the quicksim Command 4-24
Batch Simulation Example 4-26
Lab Overview 4-28
Module 4 Lab Exercise 4-30
Procedure 1: Running the QuickSim Il Systest 4-30
Procedure 2: Test Simulation Performance 4-33
Module 4 Summary. 4-37
Module 5
Viewpoints and Annotations 5-1
Module 5 Overview 5-2
L essons 5-3
Design Viewpoint Review 5-4
Design Latching 5-6
Back Annotation Benefits 5-8
Vi QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

Back Annotations 5-10
Merging Back Annotations 5-12
Invalidation of Back Annotations 5-14
ASCII Back Annotations 5-16
ASCII Back Annotation File Syntax 5-18
ASCII Back Annotation File Examples 5-20
Sharing Viewpoint Annotations 5-22
Design Viewing and Analysis Support 5-24
Selection Examples 5-26
Minimize Impact of Build Timing 5-28
Lab Overview 5-30
Module 5 Lab Exercise 5-32
Procedure 1: Creating aDVE Script 5-32
Procedure 2: Managing Annotations 5-33
Procedure 3: Latching Design Objects 5-36
Procedure 4: Selection using System Properties 5-37
Procedure 5: Connect and Merge Annotations 5-38
Module 5 Summary. 5-43
Module 6
Custom Design Checks 6-1
Module 6 Overview 6-2
L essons 6-3
Design Checking Concepts 6-4
Custom Design Checking 6-6
Design Checking Applications 6-8
QuickCheck 6-10
Customizing Name Checking 6-12
Name Checking Example 6-14
Customizing Electrical Rules Checking 6-16
Electrical Rules Checking Example 6-18
Netlisting Designs 6-20
EDIF Netlisting 6-22
QuickSim Il Advanced Training Workbook, 8.5_1 Vil

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

DDP and DFI Netlisting 6-24
Hierarchical and Flat Netlisting 6-26
Lab Overview 6-28
Module 6 Lab Exercise 6-30
Procedure 1: Creating a Custom Naming Check 6-30
Procedure 2: Creating a Custom Electrical Rules Check 6-33
Module 6 Summary 6-36
Appendix A
Processes Using QuickSim |1 A-1
Appendix A Lessons A-1
Principles of Top-Down Design A-2
Using Functional Blocks A-4
Design Process-ASIC A-6
Design Process--Board A-8
Creating VHDL Models A-10
Customizing Technology Files A-12
Appendix B
Customizing QuickSim Il Interface B-1
Appendix B Lessons B-1
Customizing the Simulation Interface B-2
Creating Custom Key Definitions B-4
Creating Custom Strokes B-6
Available QuickSim Il Strokes B-8
The Userware Environment B-10
L oading Custom Userware Files B-12
Customizing Startup Files B-14
Lab Overview B-16
Appendix B Lab Exercise B-18
Procedure 1. Define Keys to Run Simulation B-18
Procedure 2: Define Strokes to Scroll List Window B-21
Procedure 3: Prompt for Working Directory. B-23
Viii QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

Procedure 4. Create a QuickSim |1 Startup File B-26
Appendix C
Advanced Modeling Techniques C-1
Appendix C Lessons C-1
Simulating with Different Models C-2
Updating Models vs. Re-invoking C-4
Updating Models in Simulation C-6
Re-using Models (review) C-8
Schematic Models (review) C-10
BRES Resistor Model C-12
Advanced Modeling Process (AMP) C-14
Creating QuickPart Table Models C-16
QuickPart Functional Description C-18
Using IF and FOR Frames C-20
VHDL (System-1076) C-22
Appendix C Summary C-24
QuickSim Il Advanced Training Workbook, 8.5 1 IX

November 1995

Table of Contents

TABLE OF CONTENTS [continued]

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook

About This Training Workbook

Welcome to the QuickSm |1 Advanced Training Workbook. In this course you
will learn advanced QuickSim |1 concepts such as modeling details,
troubleshooting, VHDL simulation, and optimization. Y ou will also learn to
create macros and AMPLEware to create stimulus and automate the setup process.

» Thistraining workbook requires that you know how to use the
common user interface of the Falcon Framework. QuickSim |1 uses
Note thisinterface for the window, mouse, and keyboard environment. For

more information about Falcon Framework, refer to the Getting
Sarted with Falcon Framework.

Y ou are aso required to know how to use QuickSim |1, Design
Architect, and Design Viewpoint Editor (DVE). Many of the concepts
presented in this course build upon the basic fundamentals used in
these applications.

If you are using this document online in INFORM, you will see occasional
highlighted text. On a black and white display, this text appears enclosed in a
rectangle, and on a color display using the default color map, the text isblue. The
highlighted text is a hypertext link to related materialsin this and other
documents. If you click the Select mouse button on a hypertext link, the linked
location will be displayed.

For information about the documentation conventions used in this
manual, refer to Mentor Graphics Cor poration Documentation
Conventions.

QuickSim Il Advanced Training Workbook, 8.5 1 Xi
November 1995

Purpose of Course About This Training Workbook

Purpose of Course
* Make you more productive using QuickSim Il

* Discuss the process that uses QuickSim Il to
simulate functionality and timing of digital designs

* Show efficient methods of analysis & verification
* Let you choose efficient modeling strategy

* Generate stimulus in an efficient manner

* Use QuickSim Il to debug VHDL models

* Perform “automated” simulation runs

* Troubleshoot design problems and understand
their causes

 Customize the QuickSim Il user interface to
become more productive

This training workbook does not address the
following:

* Writing VHDL models, or other model structures

* Basic QuickSim Il, Design Architect or DVE
concepts

Xii QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook Purpose of Course

Purpose of Course

The main aim of this course is to contribute to make your work with QuickSim 11
efficient and satisfactory.

Thisworkbook takes up where the SmView and QuickSm Il Training Workbook
leave off. Lessons and Lab Exercises build on concepts you have already learned
from the basic training. Therefore, many of the basic concepts will not be taught
in this workbook, but will be used to support more advanced concepts.

Thisworkbook explains the main features of QuickSim I1, shows efficient
methods of design analysis and verification, and discusses tools and data objects
connected to simulation process. This includes the following:

Discuss the processes that use QuickSim Il to simulate functionality and
timing of digital designs. Thisincludes Top-down design, ASIC design, board
design, and MCM.

Show efficient methods of design analysis and verification.
L et you choose efficient modeling strategies.

Generate stimulus in an efficient and effective manner. Y ou will use the
Stimulus Generator, AMPLE stimulus files, and VHDL.

Use QuickSim |1 to debug VHDL models. The viewing capabilities will be
presented.

Perform “automated” simulation runs. Batch viewpoint creation and batch
simulation will be demonstrated.

Troubleshoot design problems and understand their causes.

Customize the QuickSim |1 user interface to become more productive.

This workbook does not address the following:

Writing VHDL models, or other model structures

Basic QuickSim |1, Design Architect, or DV E concepts

QuickSim Il Advanced Training Workbook, 8.5_1 Xiii
November 1995

Purpose of Course About This Training Workbook

Course Qverview

About This Training
Module 1 Setting Up for
oduie QuickSim I
Module 2 Advanced Stimulus
odule Techniques
Debugging
ez ile £ Timing and Unknowns
Module 4 Optimizing
oduie Simulation Runs
Module 5 Viewpoints and
oduie Annotations
Module 6 Custom Design
oduie Checks

Xiv QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

About This Training Workbook Purpose of Course

Course Qverview

Thisworkbook is divided into modules. In addition, this“About This Training
Workbook” section introduces this training workbook. Here is a brief description
of each module:

* About This Training Workbook. Describes how to use this workbook and
the accompanying software.

1. Setting Up for QuickSim I1. This module discusses how to prepare your
design environment prior to invoking QuickSim I1. The areas of setup are:
design viewpoint, back annotations, timing, stimulus, and QuickSim 11
invocation.

2. Advanced Stimulus Techniques. This module contains information about
using VHDL as stimulus, merging waveforms and waveform databases, M1SL
files, and advanced waveform editing techniques.

3. Debugging Timing and Unknowns. This modul e discusses advanced
modeling techniques (including AMS), using features of technology files,
creating Memory Table Models, VHDL simulation debug mode, and
TimeBase debug mode.

4. Optimizing Simulation Runs. This module presents design complexity and
timing trade-offs, Top-down design optimization, simulation throughput,
incorporating back annotations from ASIC and Board layout, and estimating
memory size and simulation run times.

5. Custom Design Checks. This module discusses the viewpoint and back
annotations creation/connection process. It discusses design latching. It also
talks about design object selection using DVAS system properties.

6. Viewpointsand Annotations. This module discusses the viewpoint and back
annotations creation/connection process. It discusses design latching. It also
talks about design object selection using DVAS system properties.

In addition, there are several appendixes that contain information on how to
customize the QuickSim Il interface, an details about how QuickSim Il isused in
other design processes, and the structure of the commonly used models.

QuickSim Il Advanced Training Workbook, 8.5 1 XV
November 1995

Purpose of Course

About This Training Workbook

Workbook Format

* The lecture page layout:

The Mouse

Stroke/Drag

® The Three-Button Mouse

®* Mouse Buttons

Title, Pictures

XVi

and Bulleted List

o

Ik

IR

The Three-Button Mouse

The three-button mouse is the most common
graphic input device. Y ou interact with

an application by moving the mouse and
manipulating the mouse buttons. The mouse
actions affect what is displayed on the
screen and how the application operates.
Each button has a standard Mentor Graphics
name and predefined function.

Mouse Buttons

The three-button mouse has a | eft,
middle, and right button.

Mentor Graphics manuals refer to the
mouse buttons by the

following names:

®* The Select mouse button is the left button.

® The Sroke/Drag mouse button isthe
center button.

® The Menu mouse button is the right button.

0 For more information on using the
mouse, refer to page 3-23.

Explanatory Text

— and References

e Reference documentation is available online

(INFORM)

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook Purpose of Course

Workbook Format

Asshown in theillustration, left- and right-facing pages of the module discussions
serve different purposes. The left page contains brief descriptions, figures, and
tables. The right page explains concepts, and contains document references.
Within this workbook you will find:

* Tableof Contents. A listing of section titles, figures and tables.

* About ThisTraining Workbook: Contains general workbook information
and explains how to use this student workbook.

* Modules: Each module has the following structure:

0

(0]

Overview: Description of the module contents and a list of objectives for
using the material. The objectives describe what you should know or be
able to do after completing the material.

L esson: Narrative explanations of concepts and practice procedures. This
material uses the left- right- page concept.

L ab Exercises. Complete materials to perform the hands-on lab session for
each module. Each lab session includes:

o Lab Procedures. Step-by-step lab instructions for a procedure.

Module Summary: A text review of what was learned in this module.

* Appendixes. Additional supporting material that can optionally be added to
this training course.

QuickSim Il Advanced Training Workbook, 8.5_1 XVii
November 1995

Purpose of Course

About This Training Workbook

Lab Exercises

MEMORY circuit:

> MOUT(15:

AIN(9:0) AT g
RAML SMTM ROM1 SMTM
74LS139A - a0 A0
b
o DATA_IN(15:0) DATA_IN(15:0)
o _
P DATA_OUT(15:0) [DATA_OUT(15:0) —
cLock cLock
READ_EN READ_EN
p— WRITE_EN +— WRITE_EN
- CHIP_EN CHIP_EN
RAM2 SMTM ROM2 SMTM
1 A7:0) A(7:0)
DIN(15:0) [> DATA_IN(15:0) DATA_IN(15:0)
DATA_OUT(15:0) [DATA_OUT(15:0) —
CIN [> cLock cLock
READ_EN READ_EN
WRITE_EN L—{ WRITE_EN
CHIP_EN CHIP_EN
RW [> > e
74LS74A
w
741504 Dg‘ ol
CcLK
14
o.Q [—>FULL
i
741508
TEST >
— [>PARITY
o Ja359 > ACCESS(15:0)
——JE Qo
74 S161A ——)7CLR8%
Q _CLR A0 Q3
START > “LOAD I 84
I: ENT RCO a oo
ENP 3
PULSE> CLK D Q7
—A QA
—B OB
—c dc
5 S5
ANALOG_OUT[>
_CLR>
741504
b4 74LS08 741504 741508 741504
LATCH >

XViil

QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

About This Training Workbook Purpose of Course

Lab Exercises

Many of the Lab Exercisesin this training workbook are based on the MEMORY
circuit shown on the previous page. This circuit uses a Memory Table model for
the RAM and ROM components.

In addition, an add_det circuit is provided for troubleshooting and back annotation
Lab Exercises. Thiscircuit uses several TTL devices and gen_lib components.

Lab Exercises are divided into numbered steps that are short groups of actions that
form an operation. Procedures may require several stepsto complete. A stepis
divided into three parts:

1. What you will do. A short description of what you should expect to complete
at the end of the step. The details of how to perform the actions are not givenin
this part.

2. How you will doit. A detailed description of the things you must do to
complete the step. Thisincludes caveats and helpful hints.

3. What istheresult. Usually a picture or a brief explanation, showing the
outcome of this step. Y ou use this information to verify that you have done the
step correctly. Remember that each step builds on the preceding step. If you
incorrectly perform a step, the subsequent steps may be impossible to complete
correctly.

QuickSim Il Advanced Training Workbook, 8.5 1 XiX
November 1995

Purpose of Course

About This Training Workbook

Timeline For Completion of the Course

Day 1 of 2 Day 2 of 2
9:00 Module 1: Module 4.
Setting up for Optimizing Simulation Runs
QuickSim 11
9:30 Module 5:
Viewpoints and Annotations
11:30 LUNCH LUNCH
12:30 Module 2: (Continue)
Advanced Stimulus Module 5:
Techniques Viewpoints and Annotations
2:00 Module 3:
Debugging Timing and
Unknowns
3:30 Module 6:
Custom Design Checks
5:00 Wrap-up

XX

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook Purpose of Course

Timeline For Completion of the Course

The QuickSm Il Advanced Training Wor kbook, delivered by atrained instructor,

takes 2 days. Use the table on the previous page to determine the timing and
delivery of each module.

If you are using this training workbook as a Personal Learning Program, you
should allow about 18 hours to complete the Lessons and Lab Exercises. It is not
necessary to complete all of the Lab Exercisesin one sitting. But lab exercises
must be completed in the order presented in this workbook, since each exercise
builds on the previous one.

QuickSim Il Advanced Training Workbook, 8.5 1 XX
November 1995

Related Publications About This Training Workbook

Related Publications

The following text and illustration lists the Mentor Graphics manual s that
document all of the features used by simulation applications. The manuals are
divided into the following categories:

e Simulation Manuals (page xxiv) -- document individual simulation
applications and closely-related functionality that is common among two or
more simulators, such as viewpoint creation and charting capability.

* Modeling Manuals (page xxvi) -- document the methodol ogies available to
create models for Mentor Graphics simulation applications.

* Framework Manuals (page xxvii) -- document features that are common to
all Mentor Graphics applications.

The Simulation Documentation Roadmap on page xxiii shows which manuals
document the various Mentor Graphics simulation products. To use thisfigure,
locate the icon for your application across the top row and then descend along the
shaded bar. This bar overlaps each document title box that contains information
about your application. For more information about manualslisted in the
Simulation Documentation Roadmap, refer to the following pages.

XXii QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook

Related Publications

. Analog Simulators User'sManual |

olQ Q] Q] olQ
[-~ D A m
SmView QuickSim I1 Continuum AccuSim ||
Getting Continuum User’s Getting Started
Started with and with AccuSim 1
QuickSim 1 Reference Manual
U%Jr',cskl\s/l' ;nnlulal Analog Simulators Reference Manual

' Digital Simulators Reference Manual |

QuickSim 11
Training
Workbook

AccuParts
User’'s Manual

System Modeling
Blocks User’sand
Reference Manual

Analog

I nterface Kit
Programmer’s

Guide

AccuSim Il Moddls
Reference Manual

HDL-A
Reference Manual

Analog Station
Training Workbook

HDL-A

Training Workbook

SimView Common Simulation User's Manual

SimView Common Simulation Reference Manual

Charting User's and Reference Manual

Design Viewpoint Editor User's and Reference Manual

Digital Modeling Manuals

Falcon Framework Manuals

|
|
|
| Design Viewing and Analysis Support Manual
|
|
|

Figure 1. Simulation Documentation Roadmap

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

XXiii

Related Publications About This Training Workbook

Simulation Manuals

Analog Smulators Reference Manual contains information about the commands,
functions, userware, and related reference material specific to the Mentor
Graphics analog simulators.

Analog Smulators User's Manual describes how to use AccuSim and an
assembled Analog Interface Kit. This manual provides background information,
various simulation procedures, and a comprehensive list of related procedures.

Circuit PathFinder User's and Reference Manual contains conceptual
information; a brief, hands-on tutorial; procedures for compilation, analysis, and
model generation; and a description of commands and functions for the Circuit
PathFinder timing analyzer.

Design Viewing and Analysis Support Manual contains information about Design
Viewing and Analysis Support (DVAS). DVAS consists of functions and
commands that provide selection, viewing, highlighting, reporting, grouping,
syntax checking, naming, and window-manipulating capabilities.

Design Viewpoint Editor User's and Reference Manual contains information
about the Design Viewpoint Editor (DVE). DVE alows you to add, modify, and
manage back annotation data, as well as define and modify design configuration
rules for design viewpoints.

Digital Smulators Reference Manual contains information about the commands,
functions, userware, and related reference material specific to the QuickSim Il,
QuickGrade |1, and QuickFault |1 digital analysis applications.

Fault Analysis User's Manual contains overview information and fault analysis
operating procedures relating to the QuickGrade I and QuickFault 11 fault
analysis applications.

XXiV QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook Related Publications

QuickPath User's and Reference Manual contains information about the
QuickPath timing analyzer. It provides background information, a hands-on
tutorial intended for new users, and various procedures for validating the timing of
digital circuit designs.

QuickSm 1l User's Manual describes how to use the QuickSim Il logic simulator.
This manual provides background information, various simulation procedures,
and acomprehensive list of related procedures.

SmView Common Smulation Reference Manual contains information about the
commands, functions, userware, and related reference material for the SmView
application. Thismaterial is also common to all Mentor Graphics digital and
analog analysis applications.

SmView Common Smulation User's Manual describes how to use the SimView
application. This manual provides background information, various simulation
procedures, and a comprehensive list of related procedures that are common to all
Mentor Graphics digital and analog analysis applications.

QuickSim Il Advanced Training Workbook, 8.5 1 XXV
November 1995

Related Publications About This Training Workbook

Modeling Manuals

Behavioral Language Model (BLM) Development Manual describes how to use
the files, commands, and data structures available with Mentor Graphics software
towrite BLMs.

Memory Table Model Development Manual contains information that helps you
develop Memory Table Models, which specify the functionality of a memory
device's pins.

Properties Reference Manual contains comprehensive information about Mentor
Graphics design properties, which are used by many Mentor Graphics products,
including all simulation applications.

QuickPart Schematic Model Development Manual contains information that helps
you develop QuickPart Schematic models. These types of models are based on a
compiled schematic.

QuickPart Table Model Development Manual contains information that helps you
develop QuickPart Table models. These types of models are based on ASCI| truth
tables.

System-1076 Design and Model Devel opment Manual provides concepts,
procedures, and techniques for using VHDL within the System-1076
environment.

Technology File Development Manual explains the use of technology filesto aid
in the modeling of electronic parts and components. This manual provides
detailed reference information about technology file statements, usage
information, and atutorial.

XXVi QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

About This Training Workbook Related Publications

Falcon Framework Manuals

AMPLE User's Manual describes how to use the Mentor Graphics AMPLE
language. This manual contains flow-diagram descriptions and explanations of
important concepts, and shows how to write AMPLE functions.

BOLD Browser User's Manual explains basic BOLD Browser operations such as
searching for a phrase in the INFORM library, using the travel log, and following
hypertext links to view different documents. The BOLD Browser provides access
to reference help for most Mentor Graphics applications.

Common User Interface Manual describes how to use the user interface features
that are common to all Mentor Graphics products. This manual tells how to
manage and use windows, the popup command line, function keys, strokes,
menus, prompt bars, and dialog boxes.

Customizing the Common User Interface describes how to extend the Common
User Interface. This manual explains how to redefine keys and how to create your
own menus, windows, dialog boxes, messages, and pal ettes.

Design Manager User's Manual provides information about the concepts and use
of the Design Manager. This manual contains a basic overview of design
management and of the Design Manager, key concepts to help you use the Design
Manager, and many design management procedures.

Notepad User's and Reference Manual describes how to edit files and documents
in Notepad, atext editor. This manual provides examples, explanations, and an
aphabetical listing of AMPLE functions that are available for customizing
Notepad.

QuickSim Il Advanced Training Workbook, 8.5_1 XXVii
November 1995

Related Publications About This Training Workbook

Learning Programs

The following Getting Started workbooks provide conceptual information about
the product and lab exercises that you can follow to gain hands-on experience
with the product. Many of these workbooks contain prerequisite information to
this course.

Getting Started with AccuSm Il isfor analog design engineers who have not
previously used AccuSim. This training workbook provides basic instructions for
using AccuSim to simulate analog designs.

Getting Started with Design Architect isfor new users of Design Architect who
have some knowledge about schematic drawing and electronic design, and are
familiar with the UNIX or Aegis environment. The training workbook provides
you with basic instructions on how to use Design Architect to create schematics
and symbols.

Getting Started with Falcon Framework isfor new users of the Mentor Graphics
Falcon Framework. This workbook provides information about and practice using
the Common User Interface, Design Manager, INFORM, Notepad, and Decision
Support System applications.

Getting Started with QuickGrade I isfor digital design engineers who have not
previously used QuickGrade Il. This training workbook provides basic
instructions for using QuickGrade |1 to perform statistical fault analysis on digital
designs.

Getting Started with QuickPath isfor digital design engineers who have not
previously used QuickPath. This training workbook provides basic instructions
for using QuickPath to perform a static timing analysis on digital designs.

Getting Started with QuickSm Il isfor digital design engineers who have not
previously used QuickSim I1. This training workbook provides basic instructions
for using QuickSim Il to simulate digital designs.

XXViii QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim I

Module 1
Setting Up for QuickSim Il

Module 1 Overview 1-2
L essons 1-3
Design Hierarchy 1-4
Property Value Resolution 1-6
What Needsto Be Set Up? 1-8
Custom Design Configuration 1-10
Using Primitives for Performance 1-12
Using RAMs and ROMs 1-14
MTM Interface File Example 1-16
Timing Statistics 1-18
Editing a Component Interface 1-20
MGC Shell Environment Variables 1-22
Using Invocation Options 1-24
Changing Invocation Defaults 1-26
Lab Overview 1-28
Module 1 Lab Exercise 1-30
Procedure 1: Copying the Training Data 1-30
Procedure 2: Creating MTM Initialization File 1-32
Procedure 3: Checking for the Modelfile Property 1-34
Procedure 3b (optional): Checking Using CIB 1-35
Procedure 4: Adding the Modelfile Property 1-38
Procedure 5: Verifying the ROM Models 1-40
Module 1 Summary 1-43
QuickSim Il Advanced Training Workbook, 8.5 1 1-1

November 1995

Setting Up for QuickSim I

Module 1 Overview

About This Training Workbook I

Setting Up for QuickSim II

Module
1

Advanced Stimulus Techniques

Debugging Timing and Unknowns'
Optimizing Simulation Runs I
Viewpoints and Annotations I

Custom Design Checking I

Additional Topics:
Appendix A: Processes Using QuickSim Il

What You Should
Set Up for QSII

Viewpoint
Setups

Timing
Setups

Setting Up
Modelfiles

QuickSim i
Invocation
Setups

Customizing
Invocation

Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

Setting Up for QuickSim 1

Lessons

On completion of this module, you should:

Know what you need to set up for a QuickSim |1 digital simulation.

Understand the design hierarchy and how to describe objects within that
hierarchy.

Be able to create a custom design configuration script that uses DVE to build a
custom design viewpoint.

Be able to use the Component Interface Browser (CIB) to locate information
from the component interface, and to make changes to the interface.

Be able to create an ASCII initialization file for aMemory Table model to
efficiently initialize all memory locations.

Be able to properly attach the ASCI| initialization file to aMemory Table
model using the modelfile property.

Know the shell environment variables that are recognized by QuickSim |1 and
what actions are taken if a specific variable is not available.

Be able to customize the invocation script for QuickSim 11 to preset any switch
configuration that is required for your site.

» You should allow approximately 2 hours to complete the Lesson,
. Lab Exercise, and Test Y our Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5_1 1-3
November 1995

Setting Up for QuickSim I

Design Hierarchy

/:sheetl I
1$1 1$2 1$3
cpul I cpu?2 I controller I

1$2] 1$10 1$2 1$10 1$1#1 1$1#2

Root -- invocation entry point, top of design

Handle -- local design object identifier: 1$2
Name -- substitute identifier; cpul <-> I$1

Pathname -- / 1$2 / 1$10 / OUT or /cpu2/AND/OUT
For Frame -- / 1$3 / 1$1#1 and /1$3/1$1#2
Current Context -- similar to “working directory”

* Activate a source view window (schematic view or
VHDL view window) *PRIORITY*

* Set Naming Context command -- only if no source
view is active

1-4 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

Design Hierarchy (review)

The pathnames for every instance, net, and pin are defined in relation to a
hierarchy of instances that comprise the design. The figure on the previous page
Illustrates this hierarchy, or design tree:

The top of the design (Iabeled “/”) isthe design root. The design pathname to
theroot is“/".

The root contains three instances, 1$1, 1$2, and 1$3. The pathnames to each of
the instances are /cpul, /cpu2, and /controller, respectively. You can use
handles and names interchangeably.

/1$1 and /1$2 are different instances of the same “cpu” component. Therefore,
/1$1 and /1$2 point to the same copy of the sheet-based component, but have
different design pathnames.

If acomponent is replicated in a FOR frame, the instances created are
identified by “#n”, where “n” is the replication number. The two OR gates
(FOR framed) have pathnames /1$3/I$1#1 and /1$3/1$1#2 instead of the
pathnames /1$3/1$1 and /1$3/1$2.

Y ou can designate signals (nets and pins) by writing the instance pathname and
appending the name of the net or pin as the “leaf”. The pathname for apin
might be /1$1/1$4/OUT, while a net might be /I$1/controller/busa. If a net and
pin have the same name, you can differentiate them using handles. Y ou can
also append an :<object_type> extension to the name. For example,
/1$1/1$4/0UT:pin and /I$1/1$4/OUT :net are unique design pathnames.

The “context of the design” refers to examining a design with respect to the design
viewpoint. The current context is similar to a“working directory” within an
operating system. Moving the current context lets you use shorter pathnames in
commands. The following set the current context:

Active view window. The current context is the location of the active
schematic sheet view or VHDL view in the design hierarchy.

Naming context. If no view window is active, the current context is the value
of the naming context. The naming context is set by the DVAS command, Set
Naming Context. Check its value with the Report Naming Context command.

QuickSim Il Advanced Training Workbook, 8.5_1 1-5
November 1995

Setting Up for QuickSim I

Property Value Resolution

Does
Design
Contain
Higher
Levels

Design Viewpoint
Parameter List

Move up to next
hierarchical level
in the design

Back
Annotation

@ Priority 1

Start Evaluation

(QFALL)

>0 0B
(QBRISE)

(QBFALL)

1-6 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

Property Value Resolution

The figure shows the order of property value resolution within adesign. These
values are called “ parameters’ because they are passed to the property from
another place in the design hierarchy. The search begins in the back annotation
objects, and is stopped as soon as the value is found. Property values are resolved
asfollows:

1. Thevalue of the property (parameter) is sought in the back annotation object.
If more than one back annotation object is connected to the design viewpoint,
the back annotation objects are searched in prioritized order; that is, the one
with the highest priority is searched first, and so on. The search is stopped at
the first occurrence of a property value, even if the same property has been
modified in multiple back annotation objects.

2. The object (instance, net, or pin) itself, and then the parent instanceis
searched.

3. The symbol model (body property list) is searched next.

4. If the design has more levels of hierarchy, the search moves up alevel and start
again at step #1. In step 2, only the parent instance is checked.

5. Search the design viewpoint parameter list for avalue of the property.

6. Search thetechnology file (if registered to the beginning component) and then
the library data technology file (if registered to the beginning component) for
the property value. If the property value is not found or the technology files do
not exist, an error isissued. For additional information on using valuesin
technology files, refer to “Understanding the Scoping Rules’ in the
Technology File Development Manual.

Each time a property value (parameter) is needed, evaluation occursin this order.
Therefore, any changes made via back annotations cause the new property value
to be seen throughout the design.

For additional information on property resolution, refer to “Rules for
Resolving Property Value Variables’ in the Design Architect User's
Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 1-7
November 1995

Setting Up for QuickSim I

1-8

What Needs to Be Set Up?

* Design Viewpoint:

o Default viewpoint should not be used

o Use vendor viewpoint or custom site viewpoint

o Parameters--define the process and conditions

o Primitives--determine depth of hierarchy
--remove large hierarchical blocks

o Latch versions in production environment

o Perform configured design checks in DVE

Back Annotation Objects:

o Create or assignh modelfiles for RAMs and ROMs

o Annotate any generic timing

Timing Generation:

o TimeBase can generate timing info prior to
QuickSim Il invocation

o Use TimeBase debug mode to troubleshoot

Stimulus Generation:
o Use SimView to generate/view stimulus
o Use VHDL test bench for conditional stimulus

Setup the shell environment (variables)

QuickSim Il Invocation:
o Invoke on the correct design viewpoint
o Assign simulator resolution

o Set global mode switches on invocation--set local
modes in kernel after invoke

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

What Needs to Be Set Up?

There are many design setup considerations prior to invoking QuickSim I1. Here
isalist of setupsthat you may need to perform prior to invocation:

Design Viewpoint. Create a custom configuration, or use an ASIC vendor
viewpoint creation script. The default viewpoint is too limited for most
simulation runs. Set the value of unique parameters and primitives. Latch
design objects that may be changed while you are performing the simulation.

Back Annotation Object. In one or more back annotation objects, you add or
change properties on your design. Models should all be defined in a back
annotation object, and should not be allowed to follow the default, which could
change during an update. Assign all modelfile paths in this same back
annotation object. Timing annotations should be kept in a separate back
annotation object, as they will change as the model evolves.

Timing Generation. | some cases, time can be saved by generating timing
prior to invoking QuickSim Il. TimeBase utilities allow you to debug timing
problems. Y ou can also export timing information in back annotation ASCI|
form and use it to annotate timing directly on the design.

Stimulus Gener ation. Generate as much stimulus as possiblein SimView
prior to entering QuickSim Il. SimView supports waveform generation and
graphical editing. Create VHDL test benches to generate conditional stimulus
in your design. The test bench is added as a component in the design.

Shell Environment. Make sure that the proper shell environment variables are
set. A list of the required and optional variablesis on page.

QuickSim Il Invocation. Many of the invocation options can be changed
within QuickSim Il after you invoke, but will incur a performance hit. The
simulator resolution, viewpoint, interface, and design root can't be changed
and must be set at invocation. It isagood practice to set al global conditions
and checks at invoke time, and only change local setups after invocation.

More information on these setup guidelines are contained on the next several
pages.

QuickSim Il Advanced Training Workbook, 8.5_1 1-9
November 1995

Setting Up for QuickSim I

Custom Design Configuration

$MGC_HOME/bin/dve design_name < dve_script

[l Setting up PCB design viewpoint
$add_vi si bl e_property(@ nstance, @opin, @onet, @ogroup,
$add_vi si bl e_property(@ nstance, @opin, @uonet, @ogroup,
$add_vi si bl e_property(@oi nstance, @in, @onet, @ogroup,
$add_vi si bl e_property(@oi nstance, @opin, @et, @ogroup,
$add _primtive("conmp", @oexcept, @tring);
$save_desi gn_vi ewpoi nt (" pcb_desi gn_vpt");
$open_back_annot ati on(" pcb_desi gn_vpt");
$save_desi gn_vi ewpoi nt () ;
$set _acti ve_wi ndow "session");
$cl ose_desi gn_vi ewpoi nt () ;
$witel n("Created design viewpoint named pcb_design_vpt.");
$open_desi gn_vi ewpoi nt (conponent _name, "simdesign_vpt",
$set _active_wi ndow " Desi gn_Vi ewpoi nt");
$set _active_w ndow "Desi gn_Confi guration");

/1 Set up for(Qick)SIM Fault, Path & Grade
$add_vi si bl e_property(@ nstance, @in, @et, @ogroup,
$add_vi si bl e_property(@ nstance, @opin, @onet, @ogroup,
$add_vi si bl e_property(@oi nstance, @in, @uonet, @ogroup,
$add_vi si bl e_property(@oi nstance, @opin, @et, @ogroup,
$add primtive("MODEL", @oexcept, @tring, "INV', "BUF",
$open_back_annot ati on("si m desi gn_vpt");
$save_desi gn_vi ewpoi nt () ;
$set _acti ve_w ndow "Desi gn_Configuration");
$di sconnect _back_annot ati on("si m design_vpt");
$connect _back_annot ati on(" pcb_design_vpt");
$connect _back_annot ati on("si m design_vpt");
$save_desi gn_vi ewpoi nt () ;
$cl ose_desi gn_vi ewpoi nt () ;
$open_desi gn_vi ewpoi nt (conponent _name, "pcb_design_vpt",
$set _acti ve_wi ndow "Desi gn_Vi ewpoi nt");
$set _acti ve_wi ndow " Desi gn_Configuration");
$di sconnect _back_annot ati on("pcb_desi gn_vpt");
$connect _back_annot ati on("si m design_vpt");
$connect _back_annot ati on("pcb_desi gn_vpt");
$save_desi gn_vi ewpoi nt ();
$cl ose_desi gn_vi ewpoi nt () ;

1-10

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Setting Up for QuickSim 1

Custom Design Configuration

It israre that the default QuickSim Il configuration will work for your design or
company requirements. Y ou must create a custom design configuration using the
Design Viewpoint Editor (DVE). DVE can be used interactively from the user
interface or through a script of functions that runs DVE in batch mode.

Y ou must use a custom design configuration when you need to set the level of
primitiveness other than the default, substitute property values, define parameters
for variables in the design, or need to set the visible properties. Y ou typically
create a custom design configuration if you are using DFI, Netlist Module,

AutoL ogic, or PCB products, because these applications either do not
automatically create a design viewpoint, or you need to change the default
settings.

A custom configuration is required to use Logic Modeling Corporation (LMC)
models or many ASIC designs. LMC and ASIC vendors usually provide a unigue
configuration script to setup the initial custom design configuration. Y ou may also
want to add to (modify) this design viewpoint to provide site-specific
configuration rules. A subsequent script can be run on an existing viewpoint to
add or change these rules.

The figure on the previous page shows a script that creates two viewpoints for a
single design (one for simulation and one for PCB layout). It also creates two back
annotation objects and cross connects them. The DV E command at the top of the
page shows how to direct the file contents to the input of the DV E command.

Y ou can create a custom startup file that automatically runs when you invoke
DVE. Thisfileis named dve_session.startup and can be located in the MGC tree
or your $HOM E/mgc/startup directory, depending on its function. For these
startup file locations, see “ Customizing Startup Files’ on page B-14

For more information about design configuration, refer to “Design
Configuration” in the Design Viewpoint Editor User's and Reference
Manual. For more information, refer to “Editing in the Context of a
Design” in the Design Architect User's Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 1-11
November 1995

Setting Up for QuickSim I

Using Primitives for Performance
Primitive Rules:
* Property name
* Property name + value

* - Except excludes instance from list

/ (root) I

PAL1 I ASIC1 I ASIC2 I

Examples:

* Add Primitive Comp ASIC2
(prevents descending into ASIC2)
* Add Primitive Comp ASIC1 -except

(descends only into ASIC1)

1-12 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

Using Primitives for Performance

Primitives allow you to specify the level at which the simulator stops looking for
simulation models. In addition, the invocation process does not build connectivity
or timing information below components specified as primitive. Primitives
definitions are added to the design viewpoint during the viewpoint creation
process, using the Design Viewpoint Editor. There are several modes in which
you can define primitives:

* Property only. In this mode, you specify the name of the property only, and
any instance containing that property is aprimitive. For example, “Primitive
model” will make all instances containing the model property a primitive.

* Property + value. Thisallowsyou to specify a subset of property name/value
pairs as primitive. Thisis useful, for example, for specifying comp or inst
values to declare as primitive, so that you can remove functional blocks or
components from your simulation.

* Property + value -except. This mode alows you to declare all values of a
property name primitive except the value specified. For example, if you have
several functional blocks at the root (/) of your design, and you only want to
simulate one of them, you use the -except switch with the block identifier.

The following benefits can be gained by using primitives during simulation:

* Build timereduced. The timing and connectivity build process does not
include information contained below primitives. By breaking your simulation
apart into blocks and declaring non-essential blocks as primitive, you can save
invocation time.

* Simulation timereduced. Once asimulation runisinitiated in QuickSim 1,
the performance is much better because evaluations are not required with the
blocks that are declared primitive. Since a primitive model will not be
available for these blocks, the outputs use the state of Xz.

QuickSim Il Advanced Training Workbook, 8.5_1 1-13
November 1995

Setting Up for QuickSim I

Using RAMs and ROMs

If any X's appear on the ROM address bus, the ROM
outputs all X's on the data bus.

Modelfile property value--pathname to ASCII file:
e Data and addresses must be hexadecimal or X

e Specify memory data using the form:
o address/data; or
o low_address-high_address / data;

* Any letter can be in upper or lower case

* Underspecifying--simulator fills in with zeros
16-bit example: FF = 00FF

Example 1: Initializing RAMs or ROMs to zero:

16-Dbit input-out put
O-FFFF / O ; # Put zeros in all nmenory | ocations
O-ffff / f ; # Put OOOF in all nenory |ocations

Example 2: Using X in ROM or RAM modelfile:

16-bit i1 nput-output

00000 / O ; # Put value of zero into location O
FEXX / 1234 ; # |llegal addresses

FFOO / 1234 ; # Put value of 1234 into | ocation FFOO
FFOO / 11234 ; # Illegal data

FFOO / 12XX ; # Put value of 12XX into | ocation FFOO

1-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

Using RAMs and ROMs

The RAM and ROM models behave similarly, except that aROM does not use
read and write pins. The ROM model operates like it has aread pin tied to alogic
1 and awrite pintied to logic O. If any X's appear on the RAM or ROM address
bus, the device outputs all X's on the data bus.

When you use a ROM in asimulation, you must specify the ROM contents with
the Modelfile property. Although not required for a RAM (since you can write
RAM contents during the simulation), you can initialize RAM contentsin a
similar manner. The Modelfile property gives the pathname to an ASCI| file that
containsinitialization data. The format of the ROM/RAM initialization fileis as
follows:

* All data and addresses must be in hexadecimal, although X characters are
allowed in order to specify unknown data values. Note that asingle X value
represents 4 bits of unknown value.

* Precede al comments with a pound sign (#).
* Specify the contents of a particular memory location using the form:
address/ data; or low address-high address/ data;

* Any letter can bein upper or lower case.
The previous page shows examples of ROM or RAM initialization files.

If you under-specify adata or address value, the ssmulator pads the value with
zeros. Thus, for a 16-bit ROM, adata value of FF becomes O0FF. While you can
legally over-specify data values with zeros or Xs, if over-specification causes a
binary 1 to occur in anon-valid part of the data (for example, the eighth bit of a 7-
bit datafield) an error results. Thisisillustrated in the second example.

For more information on RAM and ROM models refer to the “Memory
Devices (RAM, ROM)” section of the Digital Smulators Reference
Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 1-15
November 1995

Setting Up for QuickSim I

MTM Interface File Example

Model Statement:

Model sram : MEMORY =

Pin Declarations:

LOW_TRUE SELECT cs ;
LOW_TRUE WRITE_ENABLE we ;
LOW_TRUE OUT_ENABLE oe;

ADDR adl ;
DATA INPUT din ;
DATA OUTPUT dout ENABLED_BY oe;;

Port Statement:

PORT (READ WRITE, adl, din, dout)

Functional Table:

- ¢cs, we, adl:: MEM_ACTION,dout ;

Bt mmmm e ||------=mmmmmm e
block unselected

1, ?, ?:: N, 0:

read

0, 1, $VALID:: N, $MEM ;
0, 1, $UNKNOWN:: N, X:

write

0, 0, $VALID:: $WR,(din);
0, 0, SUNKNOWN:: $MX,X:
Endport Statement:

ENDPORT;

End Statement:

END ;

1-16 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

MTM Interface File Example

The Memory Table Model Interface file, like the QuickPart Tablefile, isthe
ASCII source that describes the functionality of the Memory Table Model. An
example of aMTM interface is shown on the previous page. The following lists
the mgjor sectionsin an MTM interface file:

Model Statement. The required model statement must be the first executable
statement. It names the functional description and starts the model/end pair.

* Pin Declarations. The pin declaration arealists every pin on the symbol.
Reserved words, such aslow_true and high_true, let you describe the
behavior of the pin.

* Port Statement. This statement provides a column/header format that defines
the ordering and behavior of control signals, address lines, and data lines. The
interface file must contain one port/endport statement for each port the
memory device employs.

* Functional Table. This section describes the logical behavior of aport. The
table is divided into two sides by the double colon (::). The left sideisthe
present control and address line states. The right side of the table isthe
resulting memory action to take based on the left side of the table. The left side
of the table is sometimes referred to as the “cause” side, whiletheright sideis
referred to as the “effect” side.

Y ou can include these on the left side of the functional table: Select lines, write
enable lines, strobe lines, output enable lines, reset lines, address line or bus.

Y ou can supply these memory actions on the right side of the functional table:
write data, invalidate memory, indicate “no change” to memory, output
memory to a current address, and assign alogical state to adataline or bus.

* Endport Statement. This statement must be the last statement following the
definition of the memory device's port.

* End Statement. The required end statement must be the last executable
statement in ainterfacefile. It is the second half of the model/end pair which
defines the entire functional description.

QuickSim Il Advanced Training Workbook, 8.5_1 1-17
November 1995

Setting Up for QuickSim I

Timing Statistics

Report > Timing Cache

*kkkkkkkhkkhk*k* T| m ng CaChe Inf Orrratlon *kkkkkkkikk*k*%
Ti m ng cache evaluation = 11. 6667 seconds

Ti m ng cache size = 483365 Bytes

Timng function calls = 20

I nstances updated = 166

Equation conplexity nmetric = 2

Report > Timing

Report Timing Info

On | Selected objects Named objects |

[m Kernel |Evaluated | Source

| OK| Reset| Cancel| Help |

e Source--technology file equations

* Evaluated--calculated technology file equations
Doesn't show timing mode or delay scale

» Kernel--actual timing values the kernel uses
Evaluated timing mode modified by the scale
factor

1-18 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

Timing Statistics

When you invoke QuickSim 11 in one of the timing modes, TimeBase compiles
the timing information, if it does not already exist. Y ou can also use TimeBase to
compile your timing prior to invoking QuickSim I1. In either case, atiming cache
Is prepared, which contains timing information and statistics about your design.

Y ou can report information on the timing build process using the Report >
Timing Cache menu item. The information that is presented give you an idea of
the size of the cache, and the time required to build it. Thisinformation can be
useful in determining memory requirements and runtime performance. Hereisa
typical report:

*kkkkkhkkikhk k% TI m ng Cache Inf Ol’n'B.tI on *kkkkkhkkikhkk*k*%x
Ti m ng cache evaluation = 11. 6667 seconds

Ti m ng cache size = 483365 Bytes

Timng function calls = 20

I nstances updated = 166

Equation conplexity netric = 2

Y ou can also select an instance in your design and report timing on it using the
Report > Timing menu item. A dialog box appears with three choices for the type
of timing information:

* Source. Displays the unevaluated source technology file information.

* Evaluated. Displays the calculated values from the timing equations in the
technology file. This does not take into account the timing mode (min, typ,
max) or the delay scale.

* Kernel. Displays the actual timing values the kernel uses during simulation.
Thisisthe evaluated time for the specific timing mode, modified by the scale
factor.

The desired information is displayed in the Timing Info window.

When troubleshooting timing, report kernel information first, to determine what
pin or path caused the delay. Then view the source to determine the equations that
produced the delay. Thisisthe effect to cause approach.

QuickSim Il Advanced Training Workbook, 8.5_1 1-19
November 1995

Setting Up for QuickSim I

Editing a Component Interface
Invoking CIB in a shell:
$ cib <component_path>
Opening a component in edit mode:
CIB > open /ideal/user/gen_lib/dff
Using CIB in edit mode to:

e Edit model labels
o add new label
o alter existing label

o delete label
* Unregister models from component interface

 Validate models

o Verify external net definitions in registered
model to pins

1-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

Editing a Component Interface

Y ou can use the Component Interface Browser to edit the component interface,
making fixes as necessary to accommodate your design process. Such changes fall
into the following categories.

* Edit model labels. Add anew label, alter an existing label, or delete alabel.
* Unregister models. Unregister a specific model from a component interface.

* Validate models. Verify external net definitionsin the registered model to
pins.

For example, you examine a component interface with CIB and discover that one
of the models listed shows a status as:

Not valid for Interface Not valid for Property

This can happen when you add a new model or model label to the interface
without verifying that existing models are correct. Y ou can use the “Validate
Model” option at the CIB prompt to check if the existing models are valid.

QuickSim Il Advanced Training Workbook, 8.5_1 1-21
November 1995

Setting Up for QuickSim I

MGC Shell Environment Variables

Variable Name

Action If Missing

Purpose

MGC_HOME Sets MGC_HOME Locates the
to /idea & validates | Mentor Graphics
8.x otherwise exits | software tree
MGC_ WD Uses current Sets context for

working directory

filename paths

LM_LICENSE_FILE or
MGLS_LICENSE_FILE

letc/cust/mgls/
mgc_licenses

Location of
license data file

MGC_LOCATION_MAP

$MGC_HOME/etc/
mgc_location_map

Variables are
mapped to real
locations

MGC_<library_name>

none

Path to MGC
parts libraries

LANG $MGC_HOME/pkgs/ | Specifies human
<appl>/userware/ language and
default char set to use.

AMPLE_PATH $MGC_HOME/pkgs/ | Specifies unique
<appl>/userware/ application
LANG/scope.ample | userware area

MGC_TMPDIR $MGC_HOME/tmp | Locates

directory for
temp files
1-22 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Setting Up for QuickSim 1

MGC Shell Environment Variables

QuickSim 11, and other Mentor Graphics applications use shell environment
variables to determine certain operating environments. These shell variables must
be created prior to invoking the application.

On the previous page is atable of variables that are used by QuickSim Il and other
related applications. These variables are further described below:

MGC_HOME. Thisvariable pointsto the top of the MGC tree. Y ou should
always define this variable before invoking a Mentor Graphics application. If
MGC_HOME is not set, many applications will check for avalid (V8.X) /idea
tree (one that contains the /idea/bin/set_mgc_env command). If found,
MGC_HOME is set to /idea and the application invokes.

MGC_WD. Thisisthe working directory context as seen by the application. If
MGC_WD is not set, most application will set the application working
directory to the filesystem directory at invocation.

LM_LICENSE _FILE. You set this variable to the location of the workstation
license file for Mentor Graphics software. If absent, invocation will examine
the file SMGC_HOMEFE/etc/cust/mgls/mgc_licenses for your authorization.

MGC_LOCATION_MAP. This points to afile containing soft pathnames
names and corresponding hard paths to MGC resources, such as design
libraries. If you do not provide this path, the application will look for thisfile at
$MGC_HOME/etc/mgc_location_map or
$MGC_HOME/shared/etc/mgc_location_map.

AMPLE_PATH and LANG. These variables determine the userware that is
used with the application. AMPLE_PATH determines where the aternate
userware is located (the default is $SMGC_HOM E/pkgs/<appl>/userware). The
LANG variable specifies which directory within the “userware” directory has
the scope.amplefiles. A default link at thislocation is used if the LANG
variable is not specified.

For more information on the shell environment variables used with
Mentor Graphics applications, refer to Managing Mentor Graphics
Software.

QuickSim Il Advanced Training Workbook, 8.5_1 1-23
November 1995

Setting Up for QuickSim I

1-24

Using Invocation Options

Option Name

Option argument

component_name

design_viewpoint

-Help

-Usage

-1|-S root_name

-NODisplay

-TIMing_mode min|typ|max|Imin]ltyp|Imax|unit

-Delay_Scale

<number> (1.0)

-Time_Scale

<number> (0.1ns)

-CONStraint_Mode

off| state_only | message

-COntention_Check | off | on
-SPike_Check off | on
-Model_Messages | off | on
-BLM_Check off | on
-TOggle_Check off | on
-HAzard_Check off | on
-DBG_BLM

-SPike_Model suppress | x_immediate
-DELay_Mode inertial | transport
-SETup setup_name
-REStore save_state obj
-ABSfile abstract_signal_file

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Setting Up for QuickSim 1

Using Invocation Options

QuickSim |1 has defined several invocation options (switches) that allow
flexibility in bringing up asimulation from a shell. Shell invocation options alow
you to set up the ssimulation prior to invocation rather than after it invokes. In most
cases, it ismore efficient to specify the appropriate setup information on the
command line rather than interactively after QuickSim Il has invoked. Some of
the options shown in the table are explained here:

* -||-S. Specifies acomponent interface (root_name) or symbol for design root.
Default: uses the default interface. Thisis used when invoking QuickSim Il on
lower hierarchy with aroot that contains several interfaces or symbols.

* -NODisplay. This switch causes the simulator to invoke in the shell
background. Use this option with batch simulation to save run time.

* -Delay_Scale. Provides modifying delay for all timing valuesin the
simulation. It can be used to estimate min or max timing from typical values.

* -Time Scale. Setsthe resolution of simulation time steps. This value can't be
changed within QuickSim Il after invocation.

* -CONStraint_Mode. Disables constraint checking (setup, hold, fmax, width)
and enables checking (state_only) and reporting (messages).

e -<> Check. Where “<>" isthe unique type of check. The quicksim command
allowsindividual checksto be turned on or off upon invocation.

* -SPike Model. Determines the way component outputs are handled when a
spikeis encountered. See page 3-12 for information on spike handling.

e -SETup. Specifiesadesign object (setup _name) to use to set up the
simulator. The object configures the kernel upon invocation.

* -REStore. Specifiesasave state obj used to restore a previous simulation
state upon invocation.

Refer to the Digital Smulators Reference Manual for more on the
quicksim command and invocation options.

QuickSim Il Advanced Training Workbook, 8.5_1 1-25
November 1995

Setting Up for QuickSim I

Changing Invocation Defaults

quicksim ;ﬁ quicksim i

MAKE SURE THESE ARE ALL UNSET, TO ALLOW M NI M ZI NG THE
NUMBER OF OPTI ONS THAT ACTUALLY GET SENT TO THE
| NVOCATI ON LI NE BELOW

ti m ng_node='

del ay_scal e='

tinme_scal e=""

constrai nt _node='

contenti on_check='

di splay_fl ag='

spi ke_check='

set _up='

save_ st ate=

nodel _nessages='

bl m check='

t oggl e_check='

hazard_check='

spi ke_nodel =

del ay_node='

abstract _sig file=""

Never edit the original script--make a copy

1-26 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

Changing Invocation Defaults

Most Mentor Graphics applications use an invocation script that validates the
command arguments that you have entered. When you enter the
$MGC_HOME/bin/quicksim command in a shell, you are running this script for
QuickSim I1. This path is actually alink to the

SMGC_HOME/pkgs/quicksi m/bin/quicksim script.

The quicksim script verifies that necessary environment variables are set, the
design path isvalid, and that command switches have valid arguments. If this
script finds a problem, it displays a message and exits. If it validates your

command, the arguments are passed to the binary file and invocation finishes.

If you want to create your own custom script, you can copy and modify the
SMGC_HOME/pkgs/quicksimy/bin/quicksim script. DON'T MODIFY THE
ORIGINAL SCRIPT, but make a copy into another area and modify the copy. For
example, you could issue the command:

cp $MEC HOVE/ pkgs/ qui cksi m bi n/ qui cksi m $HOVE/ qui cksi nx

Thiswould create an editable file in your home account. Note that a different
name was given to this copy. Thisis so you can still issue the default quicksim
command, if needed, for system troubleshooting.

Thereisan area of the quicksim script that “pre-defines’ command arguments, if
they are absent from the command line. This area begins at line 50 in the script.
The boxed figure on the previous pages shows this area. Note that no default
entries are provided here. But thisisthe areathat you use to make your default
changes.

To set anew default value, enter the switch argument between the quote marks
following the appropriate switch name. If you are unsure of the arguments that
each switch can accept, refer to the help information that immediately follows this
areain the script. For example, you can make these changes:. timing_mode “typ”
time_scale“1.0” spike_check “on” and when you invoke QuickSim |1 using this
script, you get typical timing, simulation resolution of 1 nsec, and spike checking
enabled.

QuickSim Il Advanced Training Workbook, 8.5_1 1-27
November 1995

Setting Up for QuickSim I

Lab Overview

> g

RAM1 $MTM ROM1 $MTM
T4LS139A — A(7:0) — A(7:0)
.
o — DATA_IN(15:0) — DATA_IN(15:0)
O—
q s DATA OUT(15:0) DATA_OUT(15:0)
—> CLOCK —> CLOCK
e —{ READ_EN — READ_EN
— — WRITE_EN — WRITE_EN
- —{ CHIP_EN — CHIP_EN
RAM2 $MTM ROM2 $MTM
—{ A(7:0) — A(7:0)
> — DATA_IN(15:0) 1 DATA_IN(15:0)
DATA OUT(15:0)[—* DATA_OUT(15:0)
> —> CLOCK —>CLOCK
— READ_EN — READ_EN
— WRITE_EN — WRITE_EN
—{ CHIP_EN — CHIP_EN

Use this MEMORY design to:
e Create an MTM initialization file

* Use Report > Object and CIB to look for modelfile
property on ROMs

* Add the modelfile property to an MTM
* Perform a quick check of the ROM operation

* Edit the root schematic of a design and reload it
without exiting QuickSim Il

1-28 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

Lab Overview

In the lab exercise for this module, you will:

Using the Notepad editor, create an ASCII Memory Table Model (MTM)
initialization file for each of the two ROMsinthe MEMORY design, and save
the files directly beneath the MEMORY component.

Use the Report > Object menu item within QuickSim |1 to determineif a
model property exists on the ROMSs.

Use the Component Interface Browser (CIB) to examine the interface for the
MEMORY component, and for the MTM (ram) component, to check for the
modelfile property.

Add the modelfile property to both ROM1 and ROM2 with a value that points
to the ASCII initialization file. Y ou will use the back annotation object in
QuickSim |1 to store this property addition.

Perform a quick check to verify that the ROMs are operating properly. Y ou
will create the stimulus and run interactively.

Use design iteration techniques to repair a problem with the MEMORY circuit
using the Design Architect, without exiting QuickSim |1.

Reload the root schematic in QuickSim Il and again perform a quick check to
verify the operation of the ROMs. The entire circuit will be fully exercised in
the Module 2 Lab Exercise.

QuickSim Il Advanced Training Workbook, 8.5_1 1-29
November 1995

Setting Up for QuickSim I

Module 1 Lab Exercise

If you are reading this workbook online, you might want to print
out the lab exercises to have them handy when you are at your
Note workstation.

N

Procedure 1: Copying the Training Data

In this procedure you will make aworking copy of the training data for use with
subsequent lab exercises.

1. If the Design Manager is not invoked, invoke it now in ashell.
shel | > $MEC_HOVE/ bi n/ dngr

2. Set up atraining directory in your account (or the location designated by your
instructor or system administrator) by doing the following steps..

a. First check to seeif your student training directory exists in your home
account ($HOME). Use the Design Manager to navigate to the location of
your training directory.

b. If it exists, go to Step 3. Otherwise, create the training directory using the
menu item: (Menu bar) > Add > Directory:

c. When the prompt bar appears, enter the path where you want this training
directory to be located (normally under your $HOME directory, or
optionally in the /tmp directory):

$HOME/training
Note that SHOME appears in the pathname. This represents the path to the
directory which houses your training directory. If you did not place your

training directory beneath SHOME, wherever you see “$HOME” you should
substitute your actual path for this name.

d. Click onthe OK button.

1-30 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

3. Locate the gsim851nwp lab software for this training workbook. It should be
located in the following directory:

$MGC_HOME/shared/training

4. Make acopy of the gsim851nwp object in your local training directory, naming
it gsm_a using the following steps:

a. Select the gsim851nwp object in the Navigator window.

b. Choose the following Navigator popup menu:
(Navigator) > Edit > Copy

c. Enter the pathname in the Destination field to where you want the copy to
be created, as follows:

$HOME/training/gsim_a
d. OK the prompt bar. The “Working....” message appears in the message

area. By specifying atarget object that does not exist (qgsim_a), the copy
will be made using that name instead of the original name (gsim851nwp).

QuickSim Il Advanced Training Workbook, 8.5_1 1-31
November 1995

Setting Up for QuickSim I

Procedure 2: Creating MTM Initialization File

Thislab procedure provides instructions and practice in creating an ASCI|
Memory Table Model initialization file. In addition, you will add the modelfile
property to the ROM model instances, and point this property to the appropriate
ASCII initialization file.

1. Using default shell invocation, invoke QuickSim I on the MEMORY design.

This design islocated in your SHOME/training/gsim_a directory.

2. Open anew Notepad session by choosing the following pulldown menu item:.

MGC > Notepad > New

A new (untitled) editing pad is opened within QuickSim 1.

3. Using Notepad edit operations, create the following ASCII file text:

ROVL Initialization File
<current date> by <your_ nane>
16-bit Data

Creat ed:
8-bit Address,
0- FF / FFFF;
FX | 1234;
FF / FFEXX;
10 / 0000;
11 / 1111;
12 | 2222;
13 / 3333;
14 | 4444;
15 / 5555;
16 / 6666;
17 | 7777;
18 / 8888;
19 / 9999;
1A /| AAAA;
1B / BBBB;
1C / CCCC
1D / DDDD
1E / EEEE;
1F / FFFF

1-32

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

4. Closethe Notepad, saving your edits to the following file:
$HOME/training/gsim _a/MEMORY/ROML initfile

5. Make acopy of thisfile using the Design Management functionality provided
with QuickSim Il asfollows:

a. Choose: MGC > Design Management > Copy Object

b. Find and select $SHOME/training/qgsim n/MEMORY/ROML initfilein the
“Copy object in:” source side, and enter the following path in the
“Destination” box:

$HOME/training/qgsim _a/MEMORY/ROM2_initfile
c. OK thediaog box.

6. Edit and save the new ROM2_initfile object as follows (closing the Notepad
window when you are done):

ROW Initialization File
Created: <current_date> by <your_nane>
8-bit Address, 16-bit Data
-FF / 0000;

0000;

1111;

2222;

3333;

4444;

5555;

6666;

7777,

8888;

9999;

AAAA;

BBBB;

CCCC,

DDDD;

EEEE;

FFFF;

eeee

OTMUOW>POONOUTDMWNERE OO H IH
B e T e T e e e

QuickSim Il Advanced Training Workbook, 8.5_1 1-33
November 1995

Setting Up for QuickSim I

7. The Notepad edit process creates a“.bak” file when you save. Choose the
MGC > Design Management > Delete menu item to remove this object.

Procedure 3: Checking for the Modelfile Property

In most cases, the Modelfile property aready exists on the MTM component, and
Is set to null. In order to configure your MTM instance to the proper initialization
file, you annotate this property in QuickSim I1. If the property does not exist, you
can still add the property as a back annotation in QuickSim I1.

1. Using the Open Sheet palette icon, open the sheet for the MEMORY circuit in
QuickSim 1.

2. Check the instance to seeif the Modéelfile property exists on ROM1 and ROM2
by performing the following:

a. Choosethe Report > Objects menu item.

b. When the dialog box appears, make sure you get the 'long' amount of
information and OK it.

c. Check the properties entries for the existence and value of the Modéelfile
property. Under the “Properties.” entry you can see that the Modelfile
property has not been added to ROM 1 and ROM2.

d. Close the Objects report window

Y ou can also use Component Interface Browser to verify this
modelfile property. The next procedure (optional) describes how
Note to do this.

1-34 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

Procedure 3b (optional): Checking Using CIB

This procedure uses the Component Interface Browser (CIB) to determineif the
modelfile property is attached to the ROM and RAM instances. It also uses editing
capabilities of CIB to validate the “ram” component interface.

1. Locate the model for the ROM instance and invoke CIB on this component, as
follows:

a. First, you must determine where this component exists. Use the Report >
Objects information again to determine the component path.

Enter it here:

b. Now, inanew shell, invoke CIB on this path using the shell invocation as
described in the lesson “ Editing a Component Interface” on page 1-20.

2. View theinterface for the ROM model.

This interface information is provided on the next page, and has been
rearranged dlightly to fit on the page.

|s there a body property named “modelfile?’

QuickSim Il Advanced Training Workbook, 8.5_1 1-35
November 1995

Setting Up for QuickSim I

ram:ram > Vi ew

COVPONENT ram DEFAULT I NTERFACE |I'S: ram
| NTERFACE: ram
PINS: Conpil ed User

ld # Pi n Nanme Pi n Nanme Properties
-2 DATA QUT(1 DATA OUT(1(pin, DATA OUT(15:0))
(pi ntype, QUT)
(cap_pin, CASE (nodel) {(S:one_m:N: 8:0.080000); (OrHERW SE : U
-1 DATA IN(15 DATA I N(15(pintype, IN)
(pin, DATA IN(15:0))
(cap_pin, CASE (nodel) {(S:one_m:N: 8:0.060000); (OrHERW SE : U
0 A(7:0) A(7:0) (pintype, IN)
(pin, A(7:0))
(cap_pin, CASE (nodel) {(S:one_m:N: 8:0.080000); (OrHERW SE : U
1 VRI TE_EN WRI TE_EN (pintype, IN
(pin, WRITE_EN)
(cap_pin, CASE (nodel) {(S:one_m:N:8:0.170000); (OrHERW SE : U
2 READ _EN READ EN (pintype, IN
(pi n, READ _EN)
(cap_pin, CASE (nodel) {(S:one_m:N: 8:0.050000); (OrHERW SE : U
3 CHI P_EN CH P_EN (pintype, IN
(pin, CH P_EN
(cap_pin, CASE (nodel) {(S:one_m:N: 8:0.250000); (OrHERW SE : U
4 CLOCK CLOCK (pi n, CLOCK)
(pintype, IN)
BODY PROPERTI ES:
(_gp_prim CASE (nodel) {(S:two_m:S:4:TRUE); (S:one_m S: def _t

(nmodel , $MIM
| NTERFACE MODEL ENTRI ES:
Model Entry Type Model Info
0 ngc_synbol Path: .../lib/ramram

Label s: 'default_syni
Status: Valid for interface; NOT valid for property
1 Technol ogy Path: ...techfiles/one_nifbin/ram
Label s: 'one_m 'def tech
Status: Valid for interface; NOT valid for property
2 MI'M Path: .../bin/ramrammnmm
Label s: '$MIM ' one_m 'two_mi
Status: Valid for interface; NOT valid for property

3 Li brary Technology Path: .../one_nmbin/library
Label s: 'def _tech''two_nm 'one_ni
Status: Valid for interface; Valid for property
4 Technol ogy Path: ...techfiles/two_nibin/ram

Labels: '"two_m
Status: Valid for interface; NOT valid for property

ram:.ram >

1-36 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

3.

| ssue the help command at the CIB prompt as follows:
ram:ram > help
Thisgivesyou alist of component interface editing commands. Notice that

one of the entriesis “validate model”. Now examine the interface again. Notice
that all but one of the interface model entries show a status of:

Status: Valid for interface; NOT valid for property
In the next step you will edit the interface to validate these entries.

Validate all of the model entries by entering the following:

ram:ram?> vm

CIB checks all interface pathsto determine if they are valid. It also determines
If the property list in al interfaces match the interface objects. When the check
Issuccessful, it updatesa“NOT Valid” to a“Valid” entry. If unsuccessful, a
“NOT Valid’ entry is entered.

View the interface again to determine the validation status.

Which interface model did not validate?

Save the updated (validated) interface by entering the following:

ram:ram > save
The changes are saved to the interface and the version is updated.
Close the interface and quit CIB.

Thereis still no modelfile property, so you must add it in the next procedure.

QuickSim Il Advanced Training Workbook, 8.5_1 1-37
November 1995

Setting Up for QuickSim I

Procedure 4: Adding the Modelfile Property

Y ou have verified that the modelfile property does not exist. In order to configure
your MTM instance to the proper initialization file, you will back annotate this
property in QuickSim I1.

1. Open the schematic sheet for the MEMORY circuit in QuickSim Il (if not
aready opened).

2. Add the Modelfile property to ROM1 as follows:
a. Select the ROM1 instance.
b. Choose Edit > Property > Add
c. Enter thefollowing in the dialog box:

New property name: modelfile
Property value: $HOME/training/qsim_a/MEMORY/ROM1 _initfile

Thiswill back annotate the model property on ROM1.
d. OK thediaog box.

The following Info Message is displayed:

Status returned while resetting nodelfile inst '/ROM'
Note: X values in address assumed to be zero

e. Examine your modelfile ROML1 initfile to see where this error occurred, but
do not fix it. In alater lab, you will test to seeif the X value in address FX
was interpreted as zero (FO).

3. Check the ROM 1 instance to verify that the modelfile property is correctly set
by choosing the Report > Objects menu item.

Y ou should now see a modelfile entry under the “ Properties.” heading.

4. Close all windows except the schematic view window.

1-38 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Setting Up for QuickSim 1

5. Now add the Modelfile property to ROM2. Be sure to enter the value asthe
path to ROM2_initfile.

Once the Modelfile property is added an additional Info Message is displayed
asfollows:

Status returned while resetting nodelfile for inst '/ROW'.
Errors found whil e parsing Mdelfile:
$HOME/ t r ai ni ng/ gsi m a/ MEMORY/ ROM2_initfile
device has been initialized with X's
Line 21: Illegal character in data
Line 21: Illegal character in data

The ROM2_initfile didn't compile, and instead initialized with X values.
6. Fix thefile using the Notepad editor and save to the same name.
7. Reload the new modelfile asfollows.

Select the ROM 2 instance and either choose File > Restore > M odelfile or
click on the Read M od€lfile palette icon to reload the repaired ROM2_initfile
object. Verify that it now loads correctly (no error or warning messages).

8. Report on the ROM2 instance to verify that the modelfile property is correct,
using the following method:

Select the ROM 2 instance and choose: Report > Objects

9. Close al windows except the schematic view window.

QuickSim Il Advanced Training Workbook, 8.5_1 1-39
November 1995

Setting Up for QuickSim I

Procedure 5: Verifying the ROM Models

Before you perform afull-blown simulation, you should verify that the Modelfile
additions you made work correctly. In this procedure, you will perform asimple
simulation that reads data out of both ROM1 and ROM2.

1. Using Notepad in read-only mode, examine the table model source for this
device to determine its operating mode. Thisfileislocated using the path
$HOME/training/gsim_a/lib/ranvtables/src/ram/ram.src and is partially listed
below for your convenience:

MODEL sp_ram: MEMORY =
LOW TRUE SELECT chi p_en;
LOW TRUE STROBE cl ock;
LOW TRUE WRI TE_ENABLE wite_en;
LOW TRUE OUT_ENABLE read_en;
ADDR a CLOCKED BY cl ock;
DATA | NPUT data_in CLOCKED BY cl ock;
DATA QUTPUT dat a_out ENABLED BY read en;

Notice that this model requires active low signals on write_en and read_en.
Also, the address must be strobed by a negative-going clock signal (connected
to net CIN on the schematic).

If you examine the MEMORY circuit, you'll notice that the ROM 1 and ROM2
write_en pinsaretied to ground (low) and read en are tied to a pullup device
(high). Thisisjust the opposite of the requirements--not good!

2. Close the Notepad window.

1-40 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

3. Exercisethecircuit to verify that it will not reed ROM1 and ROM2 by setting
up stimulus as follows:

a CIN: Clock Period 10; 1 attimeO; Oattime5
b. AIN: OattimeO; 101 at time 10; 102 at time 20; 1FF at time 30
c. Addthe MOUT signal to the List window.

d. Initializethecircuit to the“1” state by choosing the Run > I nitialize menu
item.

e. Runfor 40 ns

Notice that the output net MOUT goes from the FFFFr states to the FFFF state,
and remainsin that state even though valid addresses are being provided.

4. Use designincrementality techniquesto fix the MEMORY problem as
described in the following steps:

a. Without exiting QuickSim |1, invoke Design Architect in anew shell on the
MEMORY shest.

b. Edit the netsthat connect to ROM1 and ROM2 so that read_en is connected
to ground and write_en is connected to the pullup device.

c. ChangethenameR_W to W_R to accurately reflect the signal intent. When
theinput signal is high (1) awriteis performed; when it islow (0) aread is
performed.

d. Check and save the sheet.
e. Close Design Architect

f. InQuickSim I, reload the model for the design root by clicking on the
Reload M odel > All icon in the Design Changes palette.

This operation takes a short period of time asit rebuilds connectivity. It aso
invalidates simulation window information. The forces waveform database
remains intact.

QuickSim Il Advanced Training Workbook, 8.5 1 1-41
November 1995

Setting Up for QuickSim I

5. Build the List and Trace windows, including all of the MEMORY input and
output signals.

6. Reset the smulation (state only, and don't save results).
7. Initializethecircuit to “1”.
8. Run the ssimulation (40 ns) again with the existing stimulus.

Now the MOUT bus outputs valid data that represents what you entered into
the modelfiles. In alater lab, you will use the QuickSim Il pattern generator to
exercise dl parts of the MEMORY design.

9. Now read location FOin ROM1 asfollows:
a. Force AIN to FO.
b. Run 10 nanoseconds.
c. Examinethe MOUT results.

Remember that the Info Message told you that FX was interpreted as FO.
This means that the entry “FX / 1234" should put the datain ROM1 at FO.
Verify that thisisthe case.

10. Exit QuickSim |1, saving the changes to your design (choose “ Save Design
Viewpoint” only).

1-42 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Setting Up for QuickSim 1

Module 1 Summary

Module 1 presented setup details considered more advanced than those presented
in the introductory training.

Designs can be created hierarchical or flat. Hierarchical designs allow you to
nest components within other components. Design paths, similar to filesystem
paths, uniquely identify each object in your design. Names and “handles’
uniquely identify each object. The naming context allows you to abbreviate
naming in lower levels of hierarchy.

Property values are resolved in an orderly manner. The rules for this order are:
back annotation, instance, symbol, higher levels of hierarchy, the design
viewpoint, and finally, the technology file. Models use different locations in
the scheme to satisfy property values.

Memory Table models are an efficient way to model RAMs and ROMSs. You
can provide an ASCII initialization file to provide a starting value for each
memory location. Thisfileisidentified by a modelfile property attached to
each instance of amemory device. Specia initialization is required of RAM
inputs and outputs for proper operation of the device.

The Component Interface Browser (CIB) allows you to examine and edit
component interfaces. The information contained in the interfaceisapin list, a
property list, and amodel table. The model table provides labels and paths to
functional and timing models used with each interface. CIB validates the paths
to these models.

Shell environment variables allow you to point to the resources that
QuickSim |1 need to run. There are default locations for each of the resources
If avariableis not specified.

Invocation Options. When you issue the quicksim command, a shell script is
called that properly sets up all of the parameters according to command
arguments you specified. Y ou can copy this script and modify it to create your
own default invocation mode.

The next module, Module 2, describes advances stimulus techniques. Y ou will
learn how to generate stimulus using AMPLE files, forcefiles, and the stimulus
generator. You will also merge waveforms and connect results as stimulus.

QuickSim Il Advanced Training Workbook, 8.5 1 1-43
November 1995

Setting Up for QuickSim I

1-44 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Module 2

Advanced Stimulus Techniques

Module 2 Overview 2-2
L essons 2-3
Design Signal Initialization 2-4
The Initialization Process 2-6
The INIT Property 2-8
Developing Design Stimulus 2-10
Setting Up Force Types 2-12
Force Type Examples 2-14
Using AMPLE for Stimulus 2-16
AMPLE Accessto Waveform Data 2-18
AMPLE Stimulus Examples 2-20
Using VHDL as a Stimulus Generator 2-22
Waveform Database Concepts 2-24
Editing Waveforms 2-26
Merging Waveforms 2-28
Redundant Events 2-30
Using 'results as Stimulus 2-32
Scaling Waveforms 2-34
Dithering Waveforms 2-36
Inserting Waveform Ambiguity 2-38

L oading/Connecting Waveforms 2-40
Creating Stimulus Patterns 2-42
Gathering Toggle Statistics 2-44
Module 2 Lab Exercise 2-47
Module 2 Summary 2-56
QuickSim Il Advanced Training Workbook, 8.5 1 2-1

November 1995

Advanced Stimulus Techniques

Module 2 Overview

About This Training Workbook Design
Initialization
Setting Up for QuickSim I
Using AMPLE
to Develop

Advanced Stimulus Techniques Mogule Stimulus

Debugging Timing and Unknowns Understanding
Force Types

Optimizing Simulation Runs
Waveform
: : : Database
Viewpoints and Annotations I Concepts

Custom Design Checking I Generating

Stimulus Patterns

Additional Topics:
Appendix A: Processes Using QuickSim Il
Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

2-2 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Lessons

On completion of this module, you should:

Know how to initialize your design using both the INIT property and the two
methods of net initialization.

Know how to create different force types and how to use the Setup Forces
command prior to connecting waveform databases.

Be able to develop stimulus patterns using the Pattern Generator within the
QuickSim Il Stimulus pal ette.

Be able to develop clock, force, pattern stimulus using AMPLE constructs.

Create independent stimulus waveform databases, and merge them so that they
are used on your design at different timesin the ssmulation.

Understand how redundant events are created, and know how to remove them.

Be able to create duplicate waveform databases, applying the following
waveform manipul ation techniques:

o Dither awaveform
o Scaleawaveform
o Add waveform ambiguity

Be able to take the results of a previous simulation run and connect it to your
design as stimulus for the current smulation. Thisis very useful for partitioned
simulation runs.

Know how to gather toggle statistics from a simulation run.

» You should alow approximately 2 hoursto complete the Lesson,
Lab Exercise, and Test Your Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5_1 2-3
November 1995

Advanced Stimulus Techniques

Design Signal Initialization
Why initialize?
* To define all signals before stimulus is applied
* To approximate power up state conditions

What are the initialize modes?

e Default--
o applies state but does not stabilize circuit (an
IEEE1076 specified requirement)
o compatible with VHDL operation

* Classic--
o applies state and runs until stable
o simulation time does not advance
o compatible with pre-V8 initialization

What initialization value to use?

e Default value Xr

e To set your own value:
o Global--use the init command

o Use the init property on nets and pins; only
active on invoke or reset of simulation

NOTE: Wrong mode (classic/default) or value will
change results!

2-4 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

Design Signal Initialization

Before a simulation can begin, the simulator must know the state of each
component in the design. To find this out, the simulator performs an initialization
process when you invoke it. Thisinitialization process assigns a state to each net
in the design. A circuit initialization will occur at the following timesin your
simulation:

* QuickSim Il Invocation. The smulator automatically performs a default
initialization at invocation. Although this initialization occurs automatically,
you can create custom initialization values.

* [|nitialize Command. The Initialize command allows you to initialize the
circuit any time during asimulation. Y ou can supply a unique value to the nets
in your design by specifying this value with the command. Use the Initialize
command to initialize the circuit at any time.

* Reset State Command. Note that the simulator automatically initializes the
circuit when you reset it by issuing the Reset State command. This
initialization uses the “default” mode.

There are two forms of initialization: default initialization (or V8 type), which is
aways performed when the simulator invokes, and classic initialization (pre-V8
type). The default initialization scheme is compatible with System-1076 models.
For compatibility with pre-V8 versions of the ssmulator, you can perform classic
initialization.

For additional information on the initialization process, refer to the
QuickSmIl User'sManual. For information on the Initialize command,
refer the Digital Smulators Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-5
November 1995

Advanced Stimulus Techniques

The Initialization Process

When does initialization occur?
 Oninvocation
* Resetting the simulation
* |ssuing the Initialize command

There are two types of initialization:

Default Initialization Classic Initialization

Set pins and nets to XR
or state value

Set pins and nets to XR
or state value

Set nets with init Set nets with init
property value property value

Evaluate each instance EvaIL_Jate each instance
once, schedule events until circuit is stable

NOTE: Default initialization can create pending
events at beginning of simulation.

* May cause spikes at time 0 when you add stimulus
and run

» Before applying stimulus, you should run (1000ns)
to stabilize circuit

2-6 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

The Initialization Process

The simulator can initialize your design in one of two ways: default initialization
or classic initialization. Here is a description of the default initialization process.

1. Thesimulator setstheinitial state of all pins and netsto the state value
argument of the Initialize command. Note that this argument defaults to XR.

2. Thesimulator sets the state of all nets according to any associated Init
properties. The Init property values override values in the previous step.

3. Thesimulator evaluates all instances once by using the states set in steps 1 and
2 and then schedul es output events according to any associated delays.

of adefault initiaization. If you apply stimulus at time zero, spike

Note conditions can occur. To avoid spike conditions at time zero, you
should run the simulator before applying stimulus (for example,
“Run 1000"). This allows the simulator to process the pending
events before the stimulusis applied.

Unevaluated transitions, called pending events, can exist at the end

Hereis adescription of the classic initialization scheme (-Classic):
1. Thesimulator sets all nets according to associated Init properties.

2. It setsall other nets (without Init property) to XR or according to the
state value argument of the Initialize command.

3. Using adelay of O for every transition, the smulator propagates the initialized
values through the circuit until it reaches a stable state (no zero-delay events
exist) or until the simulator reaches the iteration limit. The simulator does not
advance simulation time during classic initialization.

For information about events and how the simulator processes circuit
“ activity, refer to the section “How QuickSim |1 Processes Circuit

Activity” inthe QuickSm Il User's Manual. For information about the

Init property, refer to section “Init” in the Properties Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-7
November 1995

Advanced Stimulus Techniques

The INIT Property

Create initial state on net or pin.
Init state_string
state_string = 1, 2, or 3 characters as follows:
* Logic state: 1 =High
= Low

= Stable/Unknown

* Drive strength: = Strong
= Resistive

= High impedance

* Change enable: = Simulator can change

m 4 N U 0 X O

= Fixed for entire simulation
Example: Init O (same as Init OST)
Example: Init 1SF (used on VCC pins)

Example: Init OSF (used on GROUND pins)

2-8 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

The INIT Property

The Init property specifiesthe initial state of anet or of an input, output, or I/0O pin
on a primitive component. The term “ State” includes the logic state, drive
strength, and whether the specified state can change during simulation. Y ou can
also use the Init property to define a constant state, such as Vcc or Ground. If you
create amodel you can specify initial pin states on the model by attaching an Init
property to its pins.

The Init property is attached to nets and pins of primitive components. Therefore,
conflicts can occur if multiple connections are made to a net or if multiple
Init/Drive properties exist. The following rules apply:

* If conflicting net Init property values are attached to different parts of an
electrically equivalent net, when you invoke QuickSim |1 on that design,
QuickSim |1 notifies you of the discrepancy and picks one of the values to use
asthe Init property.

* |f the simulator finds conflicting Init and Drive property values on a pin, the
simulator issues awarning message, and the Drive value predominates. Thus,
for QuickPart Tables, the Init property value on a pin should be consistent with
the output states specified in the QuickPart Table for that pin.

The Init property is also used by QuickFault 11, QuickGrade I, QuickPath, and
Lsim. Lsim requires the Init property on global symbols only.

A text string consisting of one, two, or three characters, for example, “0OST”. The
significance of the character in each position of the text string is described bel ow:

* Position 1. Logic state 1=High, O=Low, X=Stable/unknown
* Position 2: Drive Strength S=Strong, R=Resistive, Z=High impedance
* Position 3: Value Change Enable/Disable

F Init state fixed for the entire simulation.

T The simulator can change the Init state.

Thus, the Init value “OST” definesthe initia state of the pin or net aslogic low,
strong drive strength, and subject to change during simulation.

QuickSim Il Advanced Training Workbook, 8.5_1 2-9
November 1995

Advanced Stimulus Techniques

Developing Design Stimulus
QuickSim Il, supports several types of stimulus:

e AMPLE functions or force files
o more extendible and flexible

o similar to C programming language

* VHDL test bench
o can provide complex, cycle-based stimulus

o can also examine results

e Waveform editor--Waveform Databases
o Simulation results are created in this form
o issued to simulation kernel much faster

o run-time stimulus in this form

* logfiles
o used by third party and ASIC vendors
o ASCII text (readable/editable) format

2-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Developing Design Stimulus

The digital simulator, QuickSim 11, supports several forms of input stimulus. The
source of this stimulus is usually Advanced Multipurpose Language (AMPLE)
functions or force files. Optionally, you can use the waveform editor within
QuickSim 11, the Waveform Database (WDB), the Mentor Interactive Stimulus
Language (MISL), VHDL test bench, or logfiles as input to the simulator. The
logfile is the method by which third party and ASIC vendors move stimulus into
the Mentor Graphics simulation environment, along with results into and out of
the environment.

In generdl, it is best to use AMPLE functions as the source for stimulus
generation. If you are accustomed to a cycle-based stimulus, you may prefer
MISL. But, in general, MISL is more difficult to understand and maintain than
equivalent AMPLE functions, while AMPLE is more extendible and flexible than
MISL. If you are familiar with the C programming language, you will find
learning AMPLE fairly straightforward, since the mgjority of the syntax is
identical.

After you have created the stimulus and run the simulation, the results of the
simulation can be saved in the form of a Waveform Database. On subsequent
invocation of the simulator, you can use the waveform databases to eliminate the
majority of the time needed to regenerate the stimulus. For additional information,
refer to the SmView Common Smulator User's Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-11
November 1995

Advanced Stimulus Techniques

Setting Up Force Types

Force signal state <time> <-type>
Force D 1r 1000 -Wired

Types:
 -Charge

o State gets blown away when any other event is
scheduled on the net

e -Fixed

o Used to patch circuits--overrides any other
force or events being scheduled

o Can't override VCC or GND

e -Wired
o Acts like another driver on the net

* -Old
o Provided for V5.2 compatibility
o An instance drives overriding state on net

* (default)
o defined for each waveform when connected
o Retains “default” type for re-connections
o “default” type is set to -Charge at invocation
o Change “default” with Setup Force command

2-12 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Setting Up Force Types

Force stimulus is created by issuing the Force command or function with the
appropriate arguments. For example, you could issue the command:

Force D 1r 1000 -W (Force signal state <time> <-type>)

This command forces the net named “D” to the “1r” state at time 1000
(nanoseconds, unless otherwise defined) with aforce type “Wired”. The time and
type are optional specifiers. If you omit the time, QuickSim |1 schedules the force
event at the current time. If you omit the force type, you get the “default” type.
Thisisimportant to understand as explained below.

Five different force types can be specified which represent four force
characteristics. Any can be removed with the Delete Forces command.

QuickSim Il Advanced Training Workbook, 8.5 1

-Charge. A chargeforceisin effect until:
o You apply asecond force to the same net.
o Aninstance evaluation (event) drives an new state on the net.

-Fixed. Fixesasignal to a state so an instance driver can't change the state. A
fixed forceisin effect until:

o You apply asecond force to the same signal.

-Wired. Forceis“Wire-OR'd” with instances as another net driver. A wired
forceisin effect until:

o You apply asecond force to the same signal.

-0Old. Compatible with pre-V5.2 force type. A charge forceisin effect until:
o You apply asecond force to the same net that overrides the old force.
o Aninstance evaluation drives an overriding state on the net.

Default. The default type is used when no type is specified. All forces issued
with no type specified use the default that was valid at the time the waveform
was attached in the waveform database. All subsequent default forces issued
on that waveform use the attached default, even if a new default is defined.

When you invoke QuickSim 11, the default type is -Charge. Y ou can change
the default type using the Setup Force command, to affect any new waveform
connections.

2-13

November 1995

Advanced Stimulus Techniques

Force Type Examples

Example 1:

Force D 1

Force CLK O 20 -Wired
Run 20

Setup Force FIXED
Force PRE 110

Force CLR 110 -Wired
Force D 0

Run 20

Setup Force CHARGE
Force D 110
Force D 1
Force CLK 1
Run 20

-Fixed

Example 2:

Setup Force OLD

Disconnect/Reconnect D D) ¥o)

CIK |- w |

PRE |------}--- - |-F

CILR |- f - W

20 40 60

20 40 60

Why Setup Forces works on connection:

* QuickSim Il uses -Charged as default

* QuickFault Il uses -Wired as default

e Scheme allows both QS/QF to use same stimulus

2-14

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Force Type Examples

To help you understand how different force types behave in asimulation, hereis
an example that creates stimulus on several signals:

EXAMPLEL: The previous page shows aforcefile that is executed in

QuickSim I1. The type of force for each waveform is shown in the Trace window
at right side of the page. Hereis a brief description of the type of force at each
point in time, as shown on the waveforms.

* D. Connected at time 0 as default (Charge). Forced at time 0 as default
(Charge). Forced at time 20 as default (Fixed). Forced at time 40 as -Fixed
(switch). Forced at time 50 as default (Charge).

* CLK. Connected at time 0 as default (Charge). Forced at time 20 as-Wired
(switch). Forced at time 40 as default (Charge, Setup Force)

* PRE. Connected at time 20 as default (Fixed, Setup Force). Forced at time 30
as default (Fixed).

* CLR. Connected at time 20 as default (Fixed, Setup Force). Forced at time 30
as-Wired (switch).

EXAMPLEZ2: Y ou disconnect the “D” waveform and reconnect it at this time.
Because the new default is-0Old, all of the default forces in the previous example
are now of type Old as shown in the single waveform for “D”. Because of this
feature, you can make wholesale changes to “default” stimulus on awaveform by
waveform basis.

The scheme of determining the default type of stimulus only on connection of the
waveform database allows the same stimulus to be used among al the analysis
applications. QuickSim Il requires that most stimulus be of type Charged to
properly exercise adigital ssimulation (special requirements such as bi-directional
buses use Wired forces). QuickFault requires all stimulus to be of the Wired type.
With this scheme, the same stimulus can be connected as Charged in QuickSim 11
and as Wired in QuickFault I1.

QuickSim Il Advanced Training Workbook, 8.5_1 2-15
November 1995

Advanced Stimulus Techniques

Using AMPLE for Stimulus

FELTLEEEE i b rr b r bbb i irrrir
/1l function wite_cycle() : Creates 100 nsec nemwite cycle

/[l Witten by : Joe Designer, Nov 28, 1993

/1 Argunents: addr - RAM write address.

I data - Deci mal data val ue.

Il start _time - Simtinme to apply wite cycle.
/'l Returns : time - Time wite_cycle is conplete.

FEEETEEEErrr bt r bbb bbb b rrri b rrrrrirg

function wite_cycle(addr : integer,
val ue : integer,
start _time : real)

| ocal tine = start _tine;

/'l Set data & address to high-Z for 25ns; force control high.
$force("AS", "1", tine, void, void, @bsolute, @orepeat);
$force("RW, "1", tinme);
$f orce("address", "Xz", tine);
$force("data", "Xz", tine);
time = tine + 25.0;

/'l Force address/value & hold for 50ns; assert control |ow
$force("AS", "0", tinme);
$force("RW, "0", tinme);
$f orce("address", addr, tine);
$force("data", value, tine);
time = tine + 50.0;

/'l force address & data high-Z;, de-assert control signals.
$force("AS", "1", tinme);
$force("RW, "1", tinme);
$f orce("address", "Xz", tine);
$force("data", "Xz", tine);
time = tine + 50.0;

return(tine);

2-16 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Using AMPLE for Stimulus

AMPLE isthe most common method for developing simulation stimulus. Y ou can
write high level functions or dofiles to be executed in succession to drive the
simulation. AMPLE functions execute faster than dofiles, because the dofiles are
compiled every time they are executed, whereas, an AMPLE function is only
compiled when it isfirst loaded. Subsequent executions of the function do not
require compilation.

As an example of writing stimulus with AMPLE, let's consider adesign for a
memory board that is driven by the control signals RW and AS, has a 16 bit
address, and a 16 bit data bus. Y ou can write afunction to do awrite cycle as
shown in the figure on the previous page.

After this function is written it can be used to generate large amounts of stimulus
to the our memory board by using the looping constructs within AMPLE
(identical to C). The bus cycle can easily be modified without affecting the calling
AMPLE function, since it returns the time compl eted.

» For better performance of forcefile command scripts, the Force
command is executed significantly faster than the $force()

Note function. Thisis because the Force command is interpreted
directly in the simulation kernel while the $force() function
requires AMPLE syntax parsing. Therefore it is recommended to
use the Force command, instead of the $force() function, in scripts
that issue large amounts of stimulus.

QuickSim Il Advanced Training Workbook, 8.5_1 2-17
November 1995

Advanced Stimulus Techniques

AMPLE Access to Waveform Data

$get_signal value(name, time)

Returns a value for “name” signal at “time”

If name/time omitted, uses selected name/time

$get_signal _transitions(name, op, timel, time2)

2-18

Returns array (AMPLE vector) of time/value pairs
for named waveform or expression.

Get transitions between times--if null vector, no
transition occurred

Get first transition forward to check Hold time
Get first transition backward for Setup time

Use for specialized waveform comparison

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

AMPLE Access to Waveform Data

There are times when you want to access waveform datawithin an AMPLE
function or script. Y ou could convert the waveform to logfile format and use text
searches to examine the data, but thisis a cumbersome and after-the-fact
approach.

To help you access datain AMPLE during a simulation run, there are a couple of
functions that can access datafor you. These functions are described bel ow:

* $get_signal _value(hame, time). This function accesses the state of a named
signal (name) at a given point (time) in the waveform. This function is useful if
you know the time that a check needs to be performed. Y ou can assign the
value of this function to an AMPLE variable for further use.

* $get_signal_transitions(name, oper ation, timel, time2, count). This
function returns an AMPLE vector that is an array of time/value pairsfor a
specific waveform. Several operation types allow you to locate specific
information relative to the time specified. Some operation examples are:

o @between. Returns the values between the timel and time2 arguments.
Check between times to check stability--NULL if the signal didn't change.

o @next. Returns the values after to timel limited by the count argument.
Use thisto get forward transition to check Hold time.

o @previous. Returns the values prior to timel limited by the count
argument. Use to get the first transition back in time (count = 1) to check
for Setup time.

For more information on the $get_signal_value() function or the
$get_signal_transitions() function, refer to the SmView Common
Smulation Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-19
November 1995

Advanced Stimulus Techniques

AMPLE Stimulus Examples

/| CREATE A FI NI TE CLOCK
val = 1;
i 2 = 154000;
for (i=0;i<i2;i=i+50){
if (val == 1) {
$force("/CIN', "1", i, void, void, @bsolute, @orepeat);
val = 0; }
el se {
$force("/CIN', "0", i, void, void, @bsolute, @orepeat);
val = 1; }}

/'l READ THE ROML AND ROWR DATA
I 2 = 100;
$force("/RW, "0", i2, void, void, @bsolute, @orepeat);
13 = 0;
for (i=0;i<512;i=i+1){
$force("/AIN', $format("%%",i3), i2, void, void, @bsolute,

@nor epeat) ;

i3 =i3 + 1;
i2 =i2 + 100;
}

function wite lots(time : real)

{
| ocal i;
/'l Wite ram board 256 tines starting at address zero,
/1l increment both the address and data on every bus cycle.
for(address = 0; address < 256; address = address +1){
val ue = address;
time = wite_cycl e(address, val ue,tine);
}

return(tine);

2-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

AMPLE Stimulus Examples

The functions on the previous page are examples of how you can use AMPLE to
generate stimulus. Each mini-example demonstrates how to generate asingle
signal. By putting many of these examples together, you can generate a complex
AMPLE stimulusfile.

The“FINITE CLOCK” example shows you how to generate a clock with a
specific period and duty cycle, that runs for afinite length of time. Note that
variables are used to modify the parameters of the clock. Thisisuseful if you
make this a function and pass the information from an external call.

The “ADDRESS GENERATE" example shows how to generate incrementing
address stimulus on a bus.

The“WRITE_LOTS’ function generates 256 bus cyclesin four linesof AMPLE
code. It defines the for loop in which the function write_cycleis called. The
function is defined so that you can make external calls to this script from the main
AMPLE script. Note that this function is passed avaue for “time” which isareal
number.

After this function executes, you can save the forces waveform database and then
reload it on subsequent invocations of the simulator. This saves significant timein
getting ready to simulate the design. Loading stimulus for an entire ASIC or
circuit board can take many minutes to process the extremely complex stimulus,
while loading a WDB takes only seconds.

QuickSim Il Advanced Training Workbook, 8.5_1 2-21
November 1995

Advanced Stimulus Techniques

Using VHDL as a Stimulus Generator

Example:
VHDL_Test_Bench Design
RED_LED RESET RESET RED_LED
GREEN_LED GREEN_LED
TEST _DATA(15:0) TEST DATA(15:0)
OUTPUT(15:0) OUTPUT(15:0)

Advantages:

* Increased simulation performance over stop-run
* Portable stimulus

* Flexible conditional stimulus

Drawback:

* Reload model is required to change stimulus

2-22 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Using VHDL as a Stimulus Generator

Y ou can aso create aVHDL model to exercise your design during simulation, and
to examine the results of the design outputs. This VHDL designiscalled aVHDL
test bench. VHDL test bench can input signals to the design, monitor outputs from
the design, and generate new input signals based on outputs. In this topic, you will
explore the stimulus generation part of the VHDL test bench.

There are several advantagesto using VHDL to generate stimulus. The
advantages include:

* |ncreased simulation performance over the run-stop method of performing a
simulation.

* Portable stimulus. Because the stimulus generator is actually a model, you can
swap models easily, edit and recompile amodel, or use the model in several
different designs.

» Efficient conditional stimulus (without lowering performance).

The one drawback is that you lose some of the ssmulator's incremental stimulus
features. Y ou must perform areload model on the VHDL test bench model to
change the stimulus for the design.

To use aVHDL stimulus model, you need to create a schematic that contains two
functional blocks: one for the complete design (or sub-module) and another for
the VHDL stimulus model, as shown in the figure on the previous page.

For additional information on VHDL test benches, refer to “Using VHDL
for Simulation Stimulus” in the Mentor Graphics Introduction to VHDL
manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-23
November 1995

Advanced Stimulus Techniques

Waveform Database Concepts
What is a Waveform Database?
* Itis acompiled, time-ordered file of state changes
* |tis required for simulation stimulus or results

* There are three default waveform databases:
o forces--used to apply stimulus; receives forces
o stimulus--merges all connected WDBs

o results--kernel output sent to this WDB

Disk QuickSim I

@ results
Waveform waveform
database database
objects load/save
unload forces connect
waveform
@ database
Logfiles
load/save stimulus
User connect! waveform
waveform database
Forcefiles databases

2-24 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

Waveform Database Concepts

The simulator interacts only with waveform databases, trandating all other forms
of stimulus, such as Force commands (and force files), logfiles, and MISL files, to
the waveform database format before they are used. Waveform databases have the
following characteristics:

* They areabinary form of values that are associated with asignal. Thisisa
particularly fast form of stimulus, because the data is event-ordered.

* They can be merged. The lesson “Merging Waveforms’ on page 2-28
discusses merging waveform databases.

* They can be viewed and edited. To view waveforms load into memory and
then add to the Trace, List, or Monitor windows. To edit awaveform, add it to
a Trace window and modify it with the waveform editor.

* They can be saved to disk. The resulting objects are versioned.

* They are the source for logfiles and forcefiles. Y ou can translate any waveform
database loaded in memory, including the Results, or Forces waveform
database.

Some waveform databases serve special purposes, athough you can create other
waveform databases. The special purpose waveform databases are as follows:

* Resultswaveform database. This unique database always holds the
simulation results that are displayed, defined as keeps, used in expressions, or
breakpoint evaluation.

e Stimuluswaveform database. This unique database merges and suppliesto
the kernel al the stimulus being applied. The Stimulus waveform database acts
like afunnel, merging and managing the waveforms from all connected
waveform databases, presenting a single stream of waveforms to the kernel.

* Forceswaveform database. This unique database contains waveform data
that can be created or modified by the Force command. Y ou can load any
waveform database from the disk into the Forces waveform database. By
default, the Forces database is connected to the kernel, although it can be
disconnected.

QuickSim Il Advanced Training Workbook, 8.5_1 2-25
November 1995

Advanced Stimulus Techniques

Editing Waveforms

The Waveform Editor Palette:

Waveform Editor

| setup | [sTiMuLUS |

WF EDITOR DESIGN CHG

[DBG GATES| | DBG VHDL |

| ANALYZE | | DBGHIER |
| RUN P [RESET.. |
| TRACE | | usT |
| DELETE | [EDIT p]
‘ UNSELECT ‘ ‘ SELECT
ALL COUNTS
T =/
r SETUP
EDIT WAVEFORM
WAVEFORM EDITOR
I
TOGGLE PULSE
gy I
7 | T
NEAREST DELTAS
ADD CHANGE

MOVE SHIFT
CUT COPY
I y
33— 7
PASTE DELETE
— e E s
— —
= [=
CLEANUP UNDO
2-26 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Stimulus Techniques

Editing Waveforms

The Waveform Editor palette is displayed when the WF EDITOR button is
selected. This palette isthe only graphical way to perform waveform edits
(menus, strokes, and function keys do not provide waveform editing choices).

The Waveform Editor functions perform their operations based on specific pre-
defined setup conditions. These conditions include:

* waveform snap to grid
* waveform database from which to edit waveforms or to place new waveforms

* initial value (state) for new waveforms

To see the currently defined setup conditions, or to define new setup conditions,
choose the Setup Waveform Editor palette icon. Text instructions on the dialog
box that appears help you make the desired changes.

To edit awaveform, first include it in the Trace window. Y ou can do this by
selecting a signal name and then choose the Edit Waveform palette icon. If thisis
an existing waveform, it will be displayed in the active Trace window. If itisa
new waveform, it will be added to the 'forces waveform database, and an empty
trace will be added to the Trace window. Y ou are only allowed to edit stimulus
that isin the “forces” waveform database.

When you have traced awaveform, it is named using the following format:
waveform_database hame@@signal_name

If the Trace window is not active, only the top two icons (Edit Waveforms and
Setup Waveform Editor) will be available.

For more information about the function of each icon button in this
palette, refer to the Help > On Palettes pulldown menu.

QuickSim Il Advanced Training Workbook, 8.5_1 2-27
November 1995

Advanced Stimulus Techniques

Merging Waveforms

IN — — — Kernel
0 25 50

Kernel

2-28 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Merging Waveforms

There are times you may want to merge two or more waveforms onto the same
signal as stimulus. This could be several independently boards that drive the same
bus. Y ou can also apply two sets of stimulus that are offset by a specified time.
For example, each waveform database tests one microprocessor command and
you want to apply all of them in sequence. Merging waveforms allows you to
connect waveforms to perform these tasks.

All connected waveforms that have matching valid signal names are applied asa
single stimulus. If multiple waveforms are connected to the same object in a
design, you can combine the waveforms as a single stimulus by using the Merge
switch. However, keep in mind the following considerations:

* Stimulus combination occurs along the time axis.

* Stimulus events defined at the same time result in an undefined event at that
time, except that the Forces waveform database overrides al other stimulus.

Asthetop figure (Example A) shows, you can have a stimulus waveform named
/IN stored in awaveform database named WDB1 and another stimulus waveform
named /IN stored in a waveform database named WDB2. If both waveform
databases are connected as stimulus, the two waveforms named /IN will be
combined during smulation. If WDB1@@/IN has events defined at 8 and 16
nanoseconds and if WDB2@@/IN has events defined at times 24, 32, and 36
nanoseconds, the resultant stimulus /IN will ook like SimulusWDB@@/IN from
zero to 50 nanoseconds.

However, if both WDB1@@/IN and WDB2@@/IN have events defined at the
exact same times, the resultant stimulus/IN may or may not change at the times
that the overlaps occur.

Now examine the bottom figure (Example B). If the Forces waveform database is
connected and contains a waveform with the name /IN, it is combined with the
other stimulus waveform of the same name during evaluation. Because any
waveform in the Forces waveform database takes precedence, the resultant
waveform takes on the values in Forces@@/IN where event overlaps occur. The
bottom figure shows how awaveform in the Forces waveform database takes
priority over the WFDB2@@/IN waveform connected to the same design object.

QuickSim Il Advanced Training Workbook, 8.5_1 2-29
November 1995

Advanced Stimulus Techniques

Redundant Events

Definition:

One or more events--waveform does not change:

T I I T T
= = = = S
)))) ')
o) o o) o) o)
@) @) @) @) @)
— — — — —
o) A A 7o) A
= = o o =
L
CLK
I @

[Waveform Editor] Cleanup =@'§

CLEANUP

CLK

Merging Waveforms:

WA@@IN

WB@@IN
STIMULUS@@IN |

2-30 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Redundant Events

When you issue one or more events at the same time on the same stimulus
waveform, and the signal does not change, you have created a redundant event on
that signal. These conditions occur when you force asignal to its current state, or
you toggle awaveform where atransition already exists.

A redundant event appears on the waveform in the Trace window as ared dot at
the time the redundant event occurs. A redundant event is shown in the List
window as a recorded entry, but with no change to the entry (black text).

For example, the top figure on the previous page shows the CLK waveform in the
forces waveform database. This waveform has been edited at the points shown in
the waveform. The redundant events produce a dot on the waveform.

The rules that determine the state of the signal after the redundant event may not
be predictable, based on the conflicting events. It is therefore wise to remove
redundant events, whenever possible. Y ou can remove redundant events by using
the Cleanup Traces button in the Waveform Editor palette. This operation allows
you to enclose an area of awaveform within abox. All redundant events within
that area are removed from the waveform database.

Another way you can get redundant eventsis by merging two or more non-priority
(non-forces waveform database) waveform databases together. Since the stimulus
waveform database combines these signals, it can contain redundant events.
Cleanup Traces will not remove redundant events from the stimulus waveforms,
since the stimulus waveform database is not editable.

To fix redundant events shown on the stimulus waveforms, you must edit the
source waveforms that are merged to form the stimulus. First set up the waveform
editor to edit the appropriate waveform database. Then move any transition
(event) that corresponds to an event on another merged waveform. This withe
redundant event on the stimulus waveform.

For more information on removing redundant events, refer to “Deleting
Events From a Waveform” in the SmView Common Smulation Users
Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-31
November 1995

Advanced Stimulus Techniques

Using 'results' as Stimulus

For Example, your design is partitioned:

2-32

oscC
ANALOG_OUT

FREQ _DET
osc Ry ¢z ACCESS_CHK
RF_IN 5 < > RED _LED—{ >
o 0 —
ANALOG_OUT| = ACCESS(15:0)
w5 GREEN_LED| >
ANALOG 5 2 & CLR
o n -

FULL AccEss(15:0)
ANALOG_OUT
ADD_DET

Simulate ANALOG
o save results waveform as results_analog

Simulate FREQ DET

o create forces stimulus for CLR (estimate)

o connect results_analog OSC and ANALOG_OUT
o save results waveform as results_freq det

Simulate ADD _DET

o connect results_analog ANALOG_OUT stimulus
o connect results_freq_det PULSE,START,LATCH
o save results waveform as results_add_det

Simulate ACCESS _CHK
o connect results_add _det FULL, ACCESS(15:0)

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Using 'results' as Stimulus

It isvery useful, especially in the debugging phase, to simulate your design in
smaller blocks. Thisis made easier if you have used the functional block
approach. Each block represents a unit, (board, ASIC, assembly) that might be
tested separately from the system in manufacturing.

Since most functional blocks provide outputs that are used as inputs to other
blocks in the system, you can use the results information for the outputs of one
block as inputs to the next. The figure on the previous page shows a functional
block schematic that will show how this process works.

Y ou can simulate the blocks in your design using a signal-flow approach starting
at ablock that provides outputs to other blocksin your design, and simulating the
blocks in an ordered manner. Y ou can also add stimulus that may not be present in
apreviously generated results file and merge this forces stimulus together with the
results as stimulus.

Using the example on the previous page:

1. Invoke QuickSim Il on the ANALOG block, providing manually generated
stimulus to the RF_IN input. During the simulation run, be sure to “keep”
signal results for the outputs OSC and ANALOG_OUT so they are recorded in
the results waveform database. Save the results waveform database to afile
(named results_analog) in acommon design area.

2. Invoke QuickSim Il onthe FREQ DET block. Create stimulus for the CLR
input which approximates the FULL output of the ADD_DET block, since this
waveform is not available yet. Merge (load and connect) OSC and
ANALOG_OUT waveforms from the results_analog waveform database.
Keep the PULSE, START, and LATCH results, and save results wdb to afile
(results freq det)

3. Simulate ADD_DET, merging (load/connect) ANALOG_OUT from
results analog and PULSE, START, and LATCH from results freq det. Keep
and save (results add_det) the FULL and ACCESS(15:0) waveform).

4. Simulate the ACCESS _CHK block, connecting the FULL and ACCESS(15:0).
Y ou can also re-simulate the FREQ_DET block using the real FULL
waveform as stimulus for the CLR input.

QuickSim Il Advanced Training Workbook, 8.5_1 2-33
November 1995

Advanced Stimulus Techniques

Scaling Waveforms
Scale Waveform source target scale factor -R
* First copies a waveform (source to target)
e Scales copied waveform by “scale_factor”
* Use -Replace to write to existing waveform
* You can't use expressions or “stimulus” waveform
Example:

Scale Waveform PRE PRE2 2

\ \ \ \ ;
PRE | | | | |

]] | | |

\ \ | \ \
PRE2 || : e

\ \ | \ \

0 5 10 15 20 25 30

Uses:

* |Instead of speeding up ASIC, you can slow down
the stimulus

* Test the frequency or pulse width limits

2-34 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

Scaling Waveforms

The Scale Waveform command enlarges or compresses a waveform and places
the results in a new waveform. The command multiplies each time domain in the
waveform by the scale factor in order to determine the size of the new waveform.

The example enlarges the time axis of awaveform called PRE (located in the
Results waveform database) to twice its current size and to place the new
waveform in awaveform called PRE2 (located in the default waveform database)
as shown in the figure on the previous page, issue the following command:

SCale WAveform results@@/PRE PRE2 2

To re-execute the previous example such that the currently existing waveform
targeted is replaced with asimilar version that is offset by 7 ns, issue the
following command:

SCale WAveform results@@/PRE PRE2 2 7 -Replace

The Scale Waveform command is useful when you want to adjust the frequency
of awaveform either higher or lower to adapt to different logic speeds. Since the
original waveform is unchanged, you can create arange of varying frequency
waveforms for testing purposes.

For additional information about the Scale Waveform command, refer to
the SmView Common S mulation Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-35
November 1995

Advanced Stimulus Techniques

Dithering Waveforms
Dither Waveform source target neg <pos> <time>
* First copies a waveform (source to target)

* Adjusts each edge by random value between
<neg> and <pos> offset values

< >

SOURCE neg | pos neg| pos

T T T T
TARGET EREREE RN

* You must specify stop time <time> when using
repeating (infinite clock) waveforms

* You can't use expressions or “stimulus” waveform

Example:

Dither Waveform CLK CLKD 5 3 -Replace

CLK

0 10 20 30 40 50 60
CLKD

0 82 19 32.3 36 50 61.9

2-36 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Dithering Waveforms

There are times when a you want to insert timing variations on clock or data
signalsto represent timing variation in the real design. QuickSim Il provides a
function that allows you to randomly adjust the transition of asignal within
specified limits. This processis called “dithering” awaveform.

The Dither Waveform command copies a waveform and then randomly displaces
the transitions in the copied waveform. The randomly displaced transitions reside
within the displacement boundaries specified by the neg and pos arguments. The
top figure on the previous page shows the relationship of the displacement
boundaries to the signal transition, neg, and pos.

If displacing atransition causesit to overlap a neighboring
@ transition, awarning isissued and the remainder of the waveform
Note Isprocessed. The resulting target waveform may not be useful. To
avoid overlapping, you need to choose your neg and pos
displacement values carefully.

» You cannot use expressionsin this argument nor can you specify a
waveform in the Stimulus waveform database.

Note

To displace the transitions in awaveform called CLK (located in the waveform
database, Results) such that each transition is displaced no more than 5ns before
or 3ns after the source transition and that the new displaced waveformis placed in
an existing waveform called CLKD (located in the default waveform database),
issue the following command:

Dither WAveform results@@/CLK CLKD 5 3 -Replace

For additional information about the Dither Waveform command, refer to
the SmView Common S mulation Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-37
November 1995

Advanced Stimulus Techniques

Inserting Waveform Ambiguity

Insert Waveform Ambiguity source target rise_neg
rise_pos> <fall neg> <fall pos> <time>

First copies a waveform (source to target)

Creates X (unknown) region at each transition

4H
SOURCE rise_neg | rise_pos fall_neg | fall_pos
|

e f +
TARGET

I

You must specify stop time <time> when using
repeating (infinite clock) waveforms

* You can't use expressions or “stimulus” waveform

Example:

Insert Waveform Ambiguity CLK CLKD 2 3 3 1 -R

CLK
0 10 20 30 40 50 60

ctkp — 4 — 4 — =
0 8 13 21 28 33 41 48 53 61

2-38 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

Inserting Waveform Ambiguity

The Insert Waveform Ambiguity command transforms each rise and fall of a
source waveform to be an undefined (X) value region in a new waveform. The
duration of the undefined region is determined by the negative displacement
(neg_disp) and positive displacement (pos_disp) arguments.

The top figure on the previous page shows the relationship between a source
waveform and aresulting target waveform after applying the Insert Waveform
Ambiguity command. The command performs the transformation according to the
following rules:

* |f atransition occurs from low to high or from low to X, create two more
transitions with therise_neg_disp and rise_pos_disp deltas, respectively.

* |f atransition occurs from high to low or from high to X, create two more
transitions with the fall_neg_disp and fall_pos_disp deltas, respectively.

If the deltas cause overlapping to the neighboring transition, the command does its
best to process the non-overlapping transition while reporting the overlapped
transition. In such case, the resulting waveform may or may not be useful.

The following exampl e sets the waveform database default to forces, sets the user
time scale to nanoseconds, adds ambiguity at the rise and fall times of the
waveform CLK, and to replace the contents of the waveform CLKD with the
results:

SET DEfault Wdb forces
SET USer Scale 1e-9
INSert WAveform Ambiguity CLK CLKD 2331 -Replace

The bottom figure on the previous page shows the waveform that results from the
preceding Insert Waveform Ambiguity command example.

For additional information about the Insert Waveform Ambiguity
“ command, refer to the SmView Common Smulation Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 2-39
November 1995

Advanced Stimulus Techniques

Loading/Connecting Waveforms

File > Load > Waveform DB

Load Waveform DB

_ | Viewpoint

Pathname |

Navigator...

| Load into the 'forces’ WDB
WDB name|

_ | Repeat (Used with logfiles only)

_ | Connect Waveform DB immediately

Should the WDB be connected now for use as stimulus? If not, the
WDB may be connected later with 'Connect WDB’ command

OK| Reset| Cancel

Help |

“Load into the 'forces' WDB”

o Loads disk object into the forces waveform

database in memory

o Necessary if you plan to edit a waveform

 “Connect Waveform DB immediately”

2-40

o Connects waveforms for stimulus

o Otherwise, only loads into memory for viewing

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Stimulus Techniques

Loading/Connecting Waveforms

There are two important operations that you perform on a waveform database,
loading/unloading, and connecting/disconnecting. Y ou must perform one or both
of these operations to use awaveform database.

* When you load awaveform database, it is copied from disk into program
memory. At this point, the waveform database is not connected to the
simulator, but can be edited or viewed.

* Waveform databases must be connected to the simulator to be used during a
simulation run. The connection can be either asforces, or as a separate
waveform database that is merged with forces.

Y ou can perform this load operation by doing the following:
1. Select: File>Load > Waveform DB

* “Loadinto the forces WDB” button loads the waveform database from
disk into the forces waveform database in program memory.

* “Connect Waveform DB immediately” button automatically connects the
waveforms as stimulus.

2. Useeither of the following methods to identify the waveform database on disk
that you want to load:

* Type the pathname of the waveform database.

* Click on the Navigator button and use the Navigator dialog box to select the
waveform database.

3. Enter awaveform database name used while it isin program memory. If you
don't specify a program-memory name, the leaf name of the disk path is
automatically used. Click on the OK button.

QuickSim Il Advanced Training Workbook, 8.5 1 2-41
November 1995

Advanced Stimulus Techniques

Creating Stimulus Patterns

Create special bus stimulus patterns

001 110

From the Stimulus palette: 906 021

PATTERN
GENERATR

Force Pattern Generator

Specify the type of pattern you want generated:
0000|0100 0001 1110 1010
0001|| 0011 0010 1101 0101
0010|0010 0100 1011 1010
0011||0001 1000 0111 0101
0100| | 0000 0001 1110 1010

Incr/Decr Value Walking 1| Walking 0| Alternating 1-0 |

Signal to generate pattern for \ “

Initial value | O | Incr Decr| each pattern by |

Radix of input values: 4 N "4 V4 A4 A4

Hex Octal Binary Decimal Float Signed

Force type
- O -

Start at tlmel Duration of each patternl /4~ Default

Total number of patterns | AV Fixed
V4 Wired

Duration of high-impedance regions P CrEE

before and after each pattern: v Old
Before |0 After [0 [Clear old forces
I OK | Reset | Cancel |
2-42 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Stimulus Techniques

Creating Stimulus Patterns

Sometimes the buses in your design do not require unique stimulus patterns, but
only random patterns, such asin automated test. QuickSim |1 provides a stimulus
pattern generator that can help you create stimulus when repetitive patterns are
needed.

Y ou access the pattern generator from the Stimulus palette. Click on the
PATTERN GENERATOR palette button. The Force Pattern Generator dial og box
appears, which allows you to specify the type and timing values for the pattern.
The dialog box is shown on the previous page.

Y ou can choose between four basic patterns;

* |ncremented value. With this pattern you specify the “Initial Value” and click
on either the Incr or the Decr button, providing the amount to change and the
radix.

* Walking 1. The simulator shiftsa 1 bit-wise through afield of zeros for each
new pattern.

* Walking 0. Similar to Walking 1, except O is shifted in afield of ones.

* Alternating 1-0. This pattern, sometimes referred to as the 5/2 pattern, forces
every other line to the opposite state at each event.

The“Initial Vaue’ field and Incr/Decr buttons only appear when the Incr/Decr
Value button is chosen. Y ou must supply avalue for al entry fields shown, or else
you will not be allowed to OK the dialog box.

When you OK the dialog box, QuickSim Il builds the stimulusin the forces
waveform database. Y ou can examine or edit these waveforms using techniques
you learned in this module.

Y ou can use the pattern generator to create stimulus on asingle signal. The
“Incremented Value’ and “Alternating 1-0” choices produce a clock-like pattern
with a period of twice the “between events’ time. This pattern isfinite, while a
true clock pattern isinfinite.

QuickSim Il Advanced Training Workbook, 8.5 1 2-43
November 1995

Advanced Stimulus Techniques

Gathering Toggle Statistics

Setup > Kernel >
Change >
Toggle Check

Report > Toggle

Change Toggle Check

On Selected objects || Named objects

Object name |

Toggle check

& Off _l Override

A4 On

| OK| Reset| cancell Help |

Report Toggle

On Selected objects || Named objects

Object name | |

Type \ Either

v Both Detail amount

v One /& Short

v Zero « Long

v None

4 Any
j Toggle Summary ‘JJ
Toggl e Status, since toggle checking was enabl ed: LA

Total number of nets traversed:’ 610

Total nets toggled either to one or to zero:’ 601
Total nets toggled both to one and to zero:’ 587’
Total nets toggled only to one and not to zero:’' 22’
Total nets toggled only to zero and not to one:’ 24’

Total nets which have not toggled to one or to zero:'9’ /
E =
2-44 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Stimulus Techniques

Gathering Toggle Statistics

To measure how many times signals toggle between 1 and 0, you can use toggle
statistics. Toggle statistics are useful in estimating how effective your functiona
verification stimulus will be for detecting manufacturing faults. Valid toggle
states are: 0S, OR, 1S, and 1R. Therefore, asignal that transitions from 0Sto 1Z or
from 0S to XS has not toggled. However, asignal that transitions from 0Sto XSto
1R hastoggled. Y ou must perform two steps to view toggle statistics: 1) enable
gathering toggle data, 2) report toggle statistics.

e Gathering Toggle Statistics.
o Select the desired nets, buses, or hierarchical instances.

o (Menu bar) > Setup > Kernel > Change > Toggle Check displays the
Change Toggle Check dialog box, which is shown in the top figure. If you
choose the Named objects button, you must also complete the Object name
entry box. To apply toggle checking to the entire design, you can specify a
dlash (“/”) in the Object name entry box.

o Activate your choices by clicking the OK button at the bottom of the dialog
box. Then run the simulation.

* Reporting Toggle Statistics. After the simulation run, you can create the
Toggle Summary or Toggle Report windows. The Toggle Summary window
contains a short (summary) account of toggle statistics. The Toggle Report
window contains a signal-by-signal account of the toggle statistics. The
following procedure describes how to generate toggle reports:

o Select the desired nets or buses.
o (Menu Bar) > Report > Toggle displays the Report Toggle dialog box.

o Select the appropriate Type button. Types are defined in “Reporting Toggle
Statistics” in the QuickSm Il User's Manual.

o OK thediaog box.

For best performance, do not gather toggle statistics unless you need the data.
Then gather data only on desired specific objects, rather than the entire design.

QuickSim Il Advanced Training Workbook, 8.5 1 2-45
November 1995

Advanced Stimulus Techniques

>
T4LS139A
N o
i
Jg O
€
—
—

>

Lab Overview

RAM1
A(7:0)

DATA_IN(15:0)

DATA_OUT(15:0)
CLOCK
READ_EN
WRITE_EN
CHIP_EN

$MTM

RAM2
A(7:0)

DATA_IN(15:0)

DATA_OUT(15:0)
CLOCK
READ_EN
WRITE_EN
CHIP_EN

$MTM

—a

H

ROM1
A(7:0)

DATA_IN(15:0)
DATA_OUT(15:0)
LOCK
READ_EN

WRITE_EN
CHIP_EN

$MTM

ROM2
A(7:0)

DATA_IN(15:0)

DATA_OUT(15:0)
CLOCK
READ_EN
WRITE_EN
CHIP_EN

$MTM

—a

Create data patterns using Stimulus Generator

Connect and merge multiple waveform databases
using time offset

Save results waveform database, then connect it

as stimulus

Create and run an AMPLE stimulus file

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Stimulus Techniques

Lab Overview

In the lab exercise for this module, you will:

* Create an adternating 1-0 data pattern using the Stimulus Generator palette
icon.

* Create incrementing address pattern using the Stimulus Generator.

* Create and save multiple waveform databases for use in subsequent
simulations.

* Connect and merge multiple waveform databases as stimulus using waveform
offset to allow each waveform database to act at a different time.

» Save the results waveform database, and then connect it as stimulus.
* Create an AMPLE stimulusfile that does the following:

o generates afinite clock signa

o produces an incrementing address pattern

o produces an alternating 1-0 data pattern

* Runthe AMPLE script, and compare the results of the AMPLE generated
stimulus with the previous merged waveform database results.

Module 2 Lab Exercise

» If you are reading this workbook online, you might want to print
out the lab exercises to have them handy when you are at your
Note workstation.

QuickSim Il Advanced Training Workbook, 8.5 1 2-47
November 1995

Advanced Stimulus Techniques

Procedure 1: Using the Stimulus Pattern Generator

Thislab procedure uses the stimulus pattern generator to help you exercise the
MEMORY design. You will also learn how to test the circuit in stages, and to
merge the stimulus for the final test. Here is what you will do:

* Initializethe MEMORY design and stabilize signals. Save this stimulusto a
file.

e Read all of the ROM1 and ROM2 data and save stimulusto afile.
* Write RAM1 and RAM2 with pattern data and save this stimulusto afile.
* Read back RAM1 and RAM2 data and save stimulus.

* Mergeal of the saved stimulus using offsets, reset the ssmulation, and
simulate the entire design.

Perform the following steps to accomplish the above objectives.
1. Invoke QuickSim Il on your MEMORY design using default settings.
2. Setup the window environment as follows.
a. Open theroot (/) sheet for the MEMORY design.
b. Createalist window with all input and output signals included.
c. Create a Trace window with all input and output signals included.

d. Create aMonitor window with all input and output signals included.

2-48 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

3. Create the following initialization stimulus patterns:
a. Initializethecircuit to the“1” state using Run > I nitialize.

b. Create aclock on CIN with these parameters:
Clock Period 100
TolattimeO
To 0 at time 50

c. ForceW R high (1).
d. Force AIN low (0).
e. Force DIN FFFF
4. Run the simulation for 100 ns.

5. Check the results (MOUT) to verify that your circuit is stabilized. Y ou should
see the following events:

0.0 1 FFFF
0.1 1 FFFFz
0.2 1 XXXX
50.0 1 XXXX
50.1 1 FFFF

6. Unload the current forces waveform database to the viewpoint and name it
“mem_init". Usethe File > Unload > Waveform DB menu item.

This step clears out the forces waveform database. This isimportant, because
you will be adding new forces that will be saved in a separate waveform
database. Each of these waveform databases will be managed separately.

7. Reset the ssimulator state, but don't save anything.

8. Load the mem init waveform database starting at time 0. Do not |oad as forces,
but name it “mem_init” and connect it immediately using defaults.

9. Initializethecircuit tothe“1”

The MTM model used in this design must be initialized to valid internal states
(Xrisnot valid) in order to initialize properly.

QuickSim Il Advanced Training Workbook, 8.5 1 2-49
November 1995

Advanced Stimulus Techniques

10. Using the Pattern Generator from the Stimulus palette, generate an
incrementing pattern on the AIN signal asfollows:

a. Choose: [Stimulus palette] Pattern Generator

b. Enter the following information in the dialog box:
“Incremented Value’ button
Signal to generate pattern for AIN
Initial Value 0 Increment by 1
Start at time 100 with 100 between events
Total number of events 512

c. OK thediaog box.

Start timeis set to 100 to alow the mem init waveform database to initialize
the signals during this time. Using 100 between events synchronizes the
address changes to the clock (CIN) signal. Using 512 events alows all 256
locationsin ROM 1 and 256 locationsin ROM2 to be read.

11. Runthe smulation for 51300 nsec.

Examine the resultsin the List window to verify that the data read corresponds
to information from your ASCII initialization files:

0.01 FFFF 1 FFFF 000
0.1 1 FFFF 1 FFFFz 000
0.2 1 FFFF 1 XXXX 000
50.0 0 FFFF 1 XXXX 000
50.1 0 FFFF 1 FFFF 000
1750.1 0 FFFF 1 0000 010
3250.0 0 FFFF 1 EEEE O1F
3250.1 0 FFFF 1 FFFF O1F

25700.2 1 FFFF 1 0000 100
FFFF 1 EEEE 10F
FFFF 1 0000 10F

27250.0 0
27250.1 0
51250.0 0 FFFF 1 0000 1FF
Time(ns) ~/CIN ANWR A ANO:0)
Al DI N(15: 0)
A MOUT(15: 0)

2-50 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

12.

13.
14.
15.

Save (Unload) the “forces’ waveform database to the viewpoint, giving it the
leafname rom _read.

Reset the ssimulation state.
Initialize the circuit to “1”.

Create the following stimulus patterns to write and read data patterns to
RAM1/RAM?2 asfollows:

a. Forcethe W _R signa high (1) at time 100 and low (0O) at time 51300.

b. Using the Pattern Generator from the Stimulus pal ette, generate an
incrementing read pattern on the AIN signal using the following data:
“Incremented Value’ button
Signal to generate pattern for AIN
Initial Value 1000000000 Increment by 1
Start at time 100 with 100 between events
Total number of events 512

c. Using the Pattern Generator from the Stimulus pal ette, generate an
incrementing write pattern on the AIN signal (other data isthe same as
above):

Start at time 51300

d. Using the Pattern Generator, generate a pattern for the DIN signal as
follows:
“Alternating 1-0” button
Signal to generate pattern for: DIN
Start at time 100 with 100 between events
Total number of events 512

16. Run the ssmulation for 102500 ns.

Examine your datato determine if the RAMs were correctly written and read.

QuickSim Il Advanced Training Workbook, 8.5_1 2-51
November 1995

Advanced Stimulus Techniques

17. Save (Unload) the “forces’ waveform database to the viewpoint, giving it the

leafnameram w_r.

Y ou have now completed exercising the MEMORY design, but it would be
more convenient if you could perform all of the previous steps during asingle
run. The next steps will show you how to merge all of the saved waveform
databases to provide stimulus for asingle run.

18. Merge dl of the waveform databases and run a simulation, as follows:

19.

20.

2-52

a. Reset the simulation state.

b. Initializethecircuitto“1”.

c. Loadtherom read waveform database with no offset.
d. Loadtheram w r waveform with a 51300 offset.

e. Runthe ssimulation for 154000 to verify that the MEMORY design
functions properly. Verify that the results are correct.

Write the List window to afile named memlistl beneath the MEMORY
design.

Save the results waveform database to the viewpoint and name it mem rw.

Asyou learned in the Lesson portion of this module, you can use a“results’
waveform database as stimulus for the current design or for adjacent circuit
blocks. Y ou can connect all of the signals as stimulus, and only those signals
that are connected to inputs are used.

Since you cannot save the “stimulus’ waveform database, the “results’
waveform database allows you to merge stimulus and save it to a common
waveform database.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Stimulus Techniques

21. Test the saved stimulus waveform database as follows:
a. Reset andinitialize (to “1") the simulation again.
Unload all of the waveform databases connected as stimulus.
c. Loadthe mem rw waveform database for stimulus.

Y ou can either load it into the “forces” waveform database, or you can load
it asitself (mem_rw) and connect it immediately.

d. Runthe smulation for 154000 ns.

e. Writethe List window information to afile named memlist2 beneath the
MEMORY design.

22. Using a separate shell window, compare memlistl and memlist2 to verify your
new mem rw waveform database as follows:

SHELL> cnp nemistl nmemist2

23. Exit QuickSim 1, without saving anything.

QuickSim Il Advanced Training Workbook, 8.5_1 2-53
November 1995

Advanced Stimulus Techniques

Procedure 2: Write an AMPLE Stimulus File

As explained in the lesson material, AMPLE dofiles provide you power and
flexibility when you are generating stimulus. Looping constructs allow you to
generate awide variety of stimulus patterns. When you “dofile” the AMPLE
script, the stimulus patterns are loaded into the forces waveform database, ready
to simulate.

In this procedure, you will create an AMPLE file that provides stimulus to fully
exercise the MEMORY circuit. Thisfile should duplicate the stimulus you created
in the previous procedure with the pattern generator. Refer to page 2-20 for syntax
examples.

1. Invoke QuickSim Il onthe MEMORY circuit.
2. Open anew Notepad and create an AMPLE stimulus script as follows:

a. Create the header and comment fields to include:
Y our Name:
Date:
Circuit Name: (MEMORY) or (full_path to MEMORY)
Description of Stimulus: (what does this script do)

b. Create the stimulus to initialize the design:

Initialize 1
Run 100

c. Create the waveform for a CIN signal that has the following characteristics:
Clock period of 100 nsec
Duty cycle of 50%
Runs for 1540 cycles (154000 nsec)

d. Createthe stimulus to read the ROM1 and ROM2 data. For examples
showing how to generate address and data signals, refer to “AMPLE
Stimulus Examples’ on page 2-20.

ROM1 addresses. 000-OFF hex
ROM2 addresses: 100-1FF hex

2-54 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Stimulus Techniques

o g &~ W

10.

e. Createthe stimulusto writethe RAM1 and RAM2 data.
RAM1 addresses: 200-2FF hex
RAM2 addresses: 300-3FF hex

Refer to “AMPLE Stimulus Examples’ on page 2-20 for help in creating
this stimulus.

f. Createthe stimulus to read the RAMSs.

Save the AMPLE script to afile beneath MEMORY named stimulus.ample.
Reset the simulator.

L oad the stimulus.ample file using the command line (dofile).

Examine the stimulus in the Trace window by selecting the signal namesin the
schematic view window and using the Edit Waveform pal ette button.

Examine the stimulus in the List window by selecting the signal namesin the
Trace window and copying them to the list window.

Run the ssmulation for 154000 ns.
Write the List window information to the file memlist3.

Compare memlist3 with memlist2 from the previous procedure to verify that
your new stimulus exercises the circuit the same way.

This completes Procedure 2.

QuickSim Il Advanced Training Workbook, 8.5_1 2-55
November 1995

Advanced Stimulus Techniques

Module 2 Summary

This module, Advanced Stimulus Techniques, introduced more advanced
simulation topics.

* Checking can be performed at several levelsin your design: sheets,
schematics, and configured design. QuickCheck allows you to customize both
name checking and electrical rules checking. These custom checks can be
integrated with the default checking performed in QuickSim I1.

* Every net inyour design is automatically initialized using ‘default type
initialization, to Xr upon invocation of QuickSim I1. You use the initialize
command to change the initialization value, or the type (also 'classic’). The Init
property can be placed on a net to uniquely set the value for that net.

e Stimulusisloaded into awaveform database and connected to the kernel.
There are many ways to generate stimulus:

* AMPLE script. You can use force commands and function within a script to
generate stimulus. Repetitive looping and conditional statements give you
maximum control over the creation process. The script must be compiled
(or executed as a dofile) to generate the waveform database.

* VHDL test bench. VHDL models can be placed directly in the design and
can both generate (assert) and monitor signals. Stimulus from VHDL does
not need to be compiled into a waveform database, but isinserted directly
into the design.

e Stimulus generator. The stimulus pal ette provides a stimulus generator that
allows you to create data patterns. Intended for use with buses, these
patterns include incrementing, alternating 1-0, and sliding 1 or O.

* Many waveform databases can be loaded and merged (with offsets) as
stimulus. Y ou can also connect the results of a simulation as stimulus for
another simulation run. All waveforms can be edited using a graphical
waveform editor.

The next module, Module 3, presents techniques you can use to debug your
design. It discusses many of the simulation problems you will see.

2-56 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Module 3
Debugging Timing and Unknowns

Module 3 Overview 3-2
L essons 3-3
Factors in Design Debugging 34
Incremental Change 3-6
Board Simulation--Helpful Hints 3-8
Board Simulation with ASICs 3-10
Spikes 3-12
Technology File Spike Models 3-14
When Are Spikes Suppressed 3-16
When Do Spikes Produce X’s 3-18
When Spikes Pulses Transport 3-20
Inertial vs. Transport Delays 3-24
Hazards and Oscillations 3-26
Comparing Waveforms 3-28
VHDL Debugger Process 3-30
QuickSim |11 VHDL Debugger 3-32
QuickSim |1 VHDL Debug Palette 3-34
VHDL View Window 3-36
VHDL Active Statements Window 3-38
VHDL Examine Window 3-40
VHDL Assertions Window 3-42
VHDL-Related Windows 3-44
Lab Overview 3-46
Module 3 Lab Exercise 3-48
Module 3 Summary 3-61
QuickSim Il Advanced Training Workbook, 8.5 1 3-1

November 1995

Debugging Timing and Unknowns

Module 3 Overview

About This Training Workbook I

Setting Up for QuickSim I

Incremental
Change

Design
Checking

Debugging
Boards/ASICs

Advanced Stimulus Techniques I

Debugging Timing and Unknowns| Module

i - : I Custom Design
Optimizing Simulation Runs Configurations

Viewpoints and Annotations
Simulation

Violations

Custom Design Checking I

Additional Topics:

Using Models
for Debug
Appendix A: Processes Using QuickSim I

Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

3-2 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Lessons

On completion of this module, you should:

* Know how to make design changesin QuickSim Il and in Design Architect.
Y ou should also know the impact of the types of changes you make on the
method needed to reload these changesin the QuickSim |1 session.

* Know what types of design checking QuickSim Il performs, by default, and
what custom checking you can perform.

* Understand the conditions that produce the following design problems, and
know how to determine the source of the problems:

o Spikes
o Hazards and Oscillations
o Unknowns (X) and contention conflicts

* Beableto step through the events and iterations in your simulation run, and to
use VHDL debugging methods.

» You should alow approximately 2 hoursto complete the Lesson,
Lab Exercise, and Test Your Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5_1 3-3
November 1995

Debugging Timing and Unknowns

Factors in Design Debugging

Functionality
 Performed in unit delay mode (default)
* Checking turned off

Signal-state propagation

* Design initialization (mode, value)

* Signal propagation (node resolution)
* Backtracing unknown signals (X)

* Contention mode and checking

Timing considerations
* Timing mode (min, typ, max, delay_scale)
 Simulator resolution (defaults to 0.1ns)
* Timing values
o Pin delays (rise, fall, parameters)
o Net delays (delay, decay)
o Technology file timing estimation (tP, delay)
o Back annotated “real” timing
* Timing checks
o lIteration (oscillation) limits
o Hazard checking (zero delay feedback)
o Spike model and checking

Constraint checks (from technology files)
* Setup/Hold violations

* Maximum frequency (fMAX)

e Minimum pulse width (tW, width)

System testing

34 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Factors in Design Debugging

QuickSim |1 allows you to operate in many different modes, which can affect your
simulation performance, and even your results. When you debug a design, you can
simplify your task by dividing the process into manageable steps. The following
guidelines can help you efficiently debug your design.

1.

Functionality First. Use unit delay timing with all checking turned off. This
operates the simulator in the fastest mode, and does not require timing to be
compiled prior to simulation. Simulate smaller parts of your design before
performing a design-wide simulation.

Signal-State Propagation. The following factors must be considered to ensure
that valid states are propagated in your design:

o Initialization - be sure that the mode (default or classic) is correct for the
models you are using, and that the value (default Xr) is correct.

Propagation - Signal conflicts are resolved using node resolution table.

Backtracing X - Some conflicts resolve to unknown (X). Y ou must find the
source of the problem and fix it.

o Contention Mode - Determines how multiple net drivers resolve.,

Timing. When functionality is correct, simulate with timing. The following
timing factors can affect the simulation results.

o Timing Mode - Min, Typ, or Max values can be specified, or Linear values
o Simulator Resolution - Determines how timing values are ‘rounded'
o Timing VauesEquations - Are al parameters/variables satisfied

Timing Checks. Hazard, Oscillation and Spike checks.

Constraint Checks. The final timing checks verify that al timing is within the
constraints specified in the technology file.

o Setup/Hold violations - Is data being clocked properly
o Maximum frequency (fMAX)
o Minimum pulse width (tW, width)

System Tests. With all timing and checking enabled, perform afina system
test with acomplete set of test vectors.

QuickSim Il Advanced Training Workbook, 8.5_1 3-5
November 1995

Debugging Timing and Unknowns

Incremental Change

Design lteration Time -- How long it takes you to fix a
design problem and continue simulating your design

* Property timing changes

Back Annotate
Property Changes

~ » Update Timing

* Technology (timing) file changes

Edit & Compile
Technology File

Reload Model
in QuickSim I

Edit Schematic
in DA and Save

e Component interface changes

Reload Model
in QuickSim I

Validates |
’ Connectivity |

I y

Edit Interface
Register Model

4>

3-6

Reload Model
in QuickSim I

| Validates |
g Interface \

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Debugging Timing and Unknowns

Incremental Change

Design iteration time is defined as the time required to fix a design problem you
have discovered and return to the task at hand. If you are simulating and discover
awiring error (asyou did in the Lab Exercise for Module 2), you must fix the
error and return to the point in the simulation where you left off. Some changes
can be made directly in QuickSim I1, while others are made in Design Architect or
DVE without exiting QuickSim I1. The flow diagrams on the previous page show
the impact changes have on your simulation.

* Property Timing Changes. These changes can be made in QuickSim 11 using
the Change Property operation. The changes are saved in a back annotation
object instead of in the design database. The timing cache is immediately
updated when a property timing change is made.

* Technology File Changes. Technology files are timing models. When you
make a Technology file change, you must recompile the file using the TC
command. In order for QuickSim |1 to see the changes, you then must rel oad
the model(s) that have Technology file changes. The timing cache is updated
and windows that display timing results are invalidated.

* Functional Model Changes. When you must make changes to design
connectivity or provide different components (that also may contain internal
connectivity changes), you do not need to exit QuickSim I1. Once you have
made the changes, you must reload all models that changed (including the
design root, if it changed).

e Component Interface Changes. Component Interface updates, which change
the version, can also be incorporated using incremental change. Adding new
models to a component will always increment the component interface version.

Depending on the magnitude of the changes, the time required to reload in
QuickSim Il might be significant. Module 6 has guidelines on when it is better to
exit QuickSim Il and re-invoke or to remain in the simulator and reload models.

For information about how design changes affect QuickSim |1 refer to
“ “Changing the Design in QuickSim I1” in the QuickSm Il User's
Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 3-7
November 1995

Debugging Timing and Unknowns

3-8

Board Simulation--Helpful Hints
Design top down

Use bus-functional microprocessor models to
quickly create test vectors in microprocessor
designs

Use VHDL models to decrease instance count
Use Reload Modelfile on PALs and ROMs

Minimize virtual memory required to run certain
types of simulations

Use soft pathnames in creating the design
Use AMPLE for stimulus
Avoid run-stop-run during simulation

Keep only necessary driving pins and net results
to aid debugging

Use unknown selection and backtracing-X
Use simulation accuracy only when you need it

Avoid setting unnecessary breakpoints and
expressions

Use multiple List and Trace window capabilities

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Board Simulation--Helpful Hints

Y ou can increase your productivity in the analysis of your design by using the
following helpful hints. These hints can help you decrease your invoke time,
Increase simulation performance, and make it easy to move your design.

Design top down. Use hierarchy. Remove portions of the design by “nulling
them out.” Simulate sub-blocks independently.

Use bus-functional microprocessor modelsfrom LM C to quickly create
test vectorsin microprocessor designs. These BLM models drive external
nets but do not contain internal microprocessor functions.

Use behavioral models (VHDL) for functional blocksto decrease instance
count and improve simulation performance.

Use Reload M odéelfile or change the modelfile property on PALsand
ROMsto change their function or contents.

Minimize the amount of virtual memory required by the workstation to
run certain types of simulations.

Use soft pathnamesin creating the design, its sub-blocks, and any
M odelfile properties. Use a pathname like $DES GN2/pal s/u74.jed.

Use AMPLE for stimulus.
Avoid run-stop-run during the simulation.

Keep only the necessary information needed for debug. Thismay include
primary driving pinsaswell as net result.

Use the unknown selection and backtracing featuresin QuickSim |1 to
quickly isolate undriven net and bus contention problems.

Use simulation accuracy only when you need it.
Avoid setting unnecessary breakpoints and expressions.

Usethe multiplelist and trace window capabilities.

QuickSim Il Advanced Training Workbook, 8.5_1 3-9
November 1995

Debugging Timing and Unknowns

Board Simulation with ASICs
1. Make sure ASIC model is latest version

2. Place parameter definitions on the ASIC
o on-board design viewpoint as parameters

o collisions resolved by adding them to instance

3. Export ASIC annotations to an ASCII file

o import for the board design viewpoint

4. Add ASIC properties to board design viewpoint

o make sure that primitive levels are compatible

3-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Board Simulation with ASICs

When setting up the ssimulation of areleased ASIC design within the board, there
are several steps that need to occur, because you cannot include a design
viewpoint as a model:

1.

If you currently have a symbol on your schematic sheet, make sure that the
latest version of the ASIC model is registered with that component; otherwise,
Instantiate the new component released by ASIC design team in place of the
old instance.

Examine the released design viewpoint parameter list. Parameter definitions
must be placed on the ASIC instance as properties, or added to the board
design viewpoint as parameters for the board. Note that, if there are collisions
by defining these values higher up in the design, you must instead add them to
the instance.

If back annotations are used with the ASIC design, you must first export these
annotations to an ASCII back annotation file. Next, you import the ASCI| back
annotation file into a new back annotation object for the board design
viewpoint. Note that, when back annotations are imported, they must bein the
context of the ASIC. This means you need to provide the design pathname for
the ASIC instance during the import.

Any visible properties that were in the ASIC design viewpoint that are needed,
but do not exist in the board design viewpoint, need to be added to the board
design viewpoint. Also, make sure that the primitive levels are compatible.

” QuickSim |1 can run the simulation with ASICs at unit delay, while the

rest of the smulation (the PCB components) can be run with timing and
constraint checking on. This can increase simulation performance by an
order of magnitude.

QuickSim Il Advanced Training Workbook, 8.5_1 3-11
November 1995

Debugging Timing and Unknowns

Spikes

Spike condition -- simulator schedules an event on a
pin that already has an event scheduled

Two model types: Kernel spike control

Technology File spike control

 X-immediate model description

o

o

Current value (1,0,X) = scheduled logic value
&& scheduled value !=violating state value
Spike state is X, otherwise same as current

Current strength (S,R,Z,l) = scheduled strength
&& scheduled strength !=violating state
strength

Spike strength is |, otherwise same as current

Simulator removes scheduled event

Simulator schedules spike state with no delay
(next iteration)

Simulator schedules new state with delay

* Suppress model description

o

o)

o)

3-12

Simulator removes violating state
Simulator adds new state to event queue

This model is considered optimistic

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Spikes

A spike condition is aviolation that occurs when the simulator tries to schedule an
event on a pin that already has an event scheduled. Spike models instruct the
simulator on how to handle spike conditions. Spike models look at three signal
values: the current driving state (cs) of the pin, the scheduled state (ss), and the
violating state (vs). The simulator uses two types of spike models:

e X-immediate model follows these rules:

a

C.
d.

€.

If the logic value (1, 0, X) of 'cs doesn't equal the logic value of the 'ss, and
the logic value of the 'ss' does not equal the logic value of the 'vs, thelogic
value of the spike state is X. Otherwise, the logic value of the spike stateis
the same asthe 'cs.

If the strength (S, R, Z, I) of the 'cs isnot equal to the strength of the 'ss,
and the strength of the 'ss' is not equal to the strength of the 'vs, the strength
of the spike state is | (indeterminate). Otherwise, the strength of the spike
state is the same as 'cs.

The simulator removes the scheduled state from the event queue.
The simulator schedules the spike state with no delay.
The ssimulator schedules the new state with any delay that is associated.

The spike duration equals the scheduled time of the violating state minus the
current simulation time. This spike model is considered pessimistic because
new state has a negative effect on the resulting output.

* The suppress spike model follows these rules:

a. Thesimulator removes the violating state from the event queue.

b.

The ssimulator schedules the new state according to the associated delay.

This spike model is considered optimistic because it assumes that the new
state does not have a negative effect on the resulting outpui.

Y ou report spikes using the Change Spike Check command or the Setup >
Kernel > Change > Spike Check pulldown menu.

QuickSim Il Advanced Training Workbook, 8.5_1 3-13
November 1995

Debugging Timing and Unknowns

Technology File Spike Models
e Customizes spike model for each component
*This model overrides the kernel spike model

*Model defines 3 width-dependent spike regions:

suppress region | X-pulseregion | transport region

0 suppress_limit x_limit total path delay
time (after leading pulse edge) >

Technology File Example:

SPI KE_MODEL MODEL_DEFAULT = {
SUPPRESS PERCENTAGE 40:;
X_PERCENTAGE 70;

};
SPI KE_MODEL | ow pul se(pth_del, i _pin) = {
SUPPRESS LIMT ((pth_del * .133) + cp(i_pin);
XLIMT ((pth_del * .276) + cp(i_pin);

}
BEG N
tP 11, 13, 19 on IN(AL) to QUT(AL)
SPI KE_MODEL | ow pul se;

3-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Debugging Timing and Unknowns

Technology File Spike Models

The configurable spike model allows the modeler to specify three different
regions in the period between the arrival of the previously scheduled output event,
and the arrival of the conflicting event. The regions are “suppress’, “X-pulse” and
“transport”. They are specified using two parameters, a“SUPPRESS LIMIT” and
an“X_LIMIT”, which divide the spike period as shown in the figure on the
previous page.

A signal pulse on amodel’ s output pinis handled as follows:

CONDITION REGION ACTION

pulse_width < suppress _limit suppress region |suppress pending action, schedule
new state if different from current
state

suppress_limit <= pulse_width < x_limit|X-pulseregion |an“X” stateis propagated to the
output until new state arrives
x_limit <= pulse_width < path delay transport region |the pulse is passed through model
to the output

Spike models are defined in the DECLARE region of the model’ s Technology
File. Once declared, a SPIKE_MODEL may be explicitly associated with one or
more propagation delay statements (tP) in the body of the timing model. Thereis
no limit on how many spike models may be defined in atiming model, there may
be one for every delay path if necessary.

The syntax for defining a spike model in a Technology Fileis given below.

SPI KE_MODEL MODEL_DEFAULT | NETDELAY_DEFAULT | <nodel nane>

(<optional argunents>) = {

[<optional directives>]

SUPPRESS LIMT <tine spec> | SUPPRESS PERCENTAGE <percent age>
X LIMT <tine spec> | X PERCENTAGE <per cent age>;

s

For Spike_model syntax, refer to “SPIKE_MODEL” in the Technology
File Development Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 3-15
November 1995

Debugging Timing and Unknowns

When Are Spikes Suppressed
“Suppress” Kernel Spike Model

Technology File Spike Model

suppress_limit=4 <+—»
|
xlimit=7 <+

dl1=13 = >
\
IN |
\
& event 2
event 1
ouT

@tl: Event 1 scheduled for time t1+d1

@t2: Event 1is cancelled
Event 2 is scheduled if result differs

3-16 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

When Are Spikes Suppressed

The pulse width (t2-t1) isin the “ suppress region” if it isless than the
SUPPRESS LIMIT parameter. This represents the case where the pulse width of
the spike was narrow enough that the device output will not get the chance to
change to statel

The figure shows that eventl is scheduled with the normal I/O delay (d1). As soon
asthetrailing edge of the pulse occurs in the suppress region, eventl is removed
from the event queue, the “suppressing” the short pulse.

QuickSim Il Advanced Training Workbook, 8.5_1 3-17
November 1995

Debugging Timing and Unknowns

When Do Spikes Produce X's

“X-Immediate” Kernel Spike Model

Pulse in X-pulse Region (Technology File)

|
suppress_limit =4 | <<—»
|

Xlimit=7 | «—p

|
dl=13 14 >
| |
| |
IN >
T eventl changed
event 2 scheduled
eventl |
|
ouT) | 5
(no X-Immediate), |
(TechFile only) |
‘ ‘ pesesssere
| |
ouT

R
essseese;

(X-Immediate)

X ASKS
N v e, 1y B 5
% 0 sten s 2 1ol & b by et
2RI H IR 5 I B
ettt
R R IR IR IIRIIRIRRS
e e et e e ta e tatetatatetet 3305
35 %
4%

tl: Event 1lis scheduled for t1+d1l

t2: Transition occurs in X-pulse region
either Event 1 is changed to “X-pulse state”
or Event 1 is cancelled, X-immediately

3-18 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

When Do Spikes Produce X's

The pulse width (t2-t1) isin the “x-pulse” region if it is greater than the
SUPPRESS LIMIT and lessthan the X_LIMIT. This region represents the case
where the spike pulse isjust wide enough that the device output may or may not
temporarily change to a different state due to eventl. An X-pulse, that indicates
the uncertainty, is output.

The output of the device depends on the following two factors:

* X-Pulse State. The spike model determines an “ X-pulse state”, given the
state transitions that cause the spike, which is scheduled on the device. For
the common case of a device which is not affected by strength of input
states, and whose outputs a'ways have adrive strength of “S’ (strong) the
X-pulse state will always be “Xs’ since any event must be dueto alogic
level change.

* X-Pulse Behavior. The behavior in this region differs depending on whether
X_IMMEDIATE is specified in the SPIKE_MODEL.

X_immediate not specified:

When a spike occurs, the X-pulse state is applied to the output at the pending
event (eventl) time(t1+dl). This means that eventl time is maintained, but the
state is changed to the X-pulse state.

X_immediate is specified:

When an X-immediate spike occurs, the pending event (eventl) is canceled, and
the output is immediately set to the X-pulse state:

QuickSim Il Advanced Training Workbook, 8.5_1 3-19
November 1995

Debugging Timing and Unknowns

When Spikes Pulses Transport

No Kernel Equivalent: Spikes are either suppressed
or X-Immediate at output

Technology File: When pulse is between X_limit and
the I/0O delay. Pulse is passed unaffected.

|
suppress_limit=4 «—»

\
|
|

\ \

Xlimit=7 -—»|

\
}
\
|

| i
| |
ouT ; \
| | 1
| 1
| |

tl t2 eventl eve‘nt2
(t1+d1) (t2+d1)

@tl: Eventlis scheduled at t1+d1

@t2: Event2 is scheduled at t2+d?2

3-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Spike Pulse in Transport Region

The pulse width (t2-t1) isin the “transport” region if it is greater than the
X_LIMIT parameter but still less than the total path delay. This represents the
case where the pulse width of the spike is wide enough that the output can reach
the intermediate state (statel in our example) before going to the new state.

If the X_LIMIT is set to the propagation delay of the gate, thisregion is zero,
which means that no transport region exists. Pulses must be wider than the input-
to-output delay before a pulse transports normally.

QuickSim Il Advanced Training Workbook, 8.5_1 3-21
November 1995

Debugging Timing and Unknowns

Technology File Spike Model Example

DECLARE

DEFAULT derate fac 1,

#define cp(pin_n) sim$pin_eval (pin_n, “cap_pin”)
#define cn(pin_n) sim$net _eval (pin_n, “cap_net”)
#defi ne del ay_eqgn(coef in, coef out, pin_n)(((coef _

SPI KE_MODEL MODEL_DEFAULT = {
SUPPRESS _PERCENTAGE 40;
X_PERCENTAGE 70;

¥

SPI KE_MODEL NETDELAY_ DEFAULT = {
SUPPRESS PERCENTACE 0; #transporting all
X_PERCENTAGE 0;

b
SPIKE_MODEL |low p = {
SUPPRESS LIMT 2, 4, 6; # exanple of triplets
XLIMT 5,7,9;
b
SPI KE_MODEL hi _p(pth_del, i_pin) = {
SUPPRESS LIMT ((pth_del * .133) + cp(i_pin);
XLIMT ((pth_del * .276) + cp(i_pin);
}
BEG N

tP 11,13,19 on IN(AL) to QUT(AL) SPI KE_MODEL | ow p;
tP delay eqn(.8, 3.7, “out”) on IN(AH) to OUT(AH)
SPI KE_MODEL hi _p(si m $path_del ay(), “in”);

END;

3-22 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Technology File Spike Model Example

The example on the previous page show many of the syntax options that can be
used with the SPIKE_MODEL statement within a Technology File:

e SPIKE_MODEL MODEL_DEFAULT: This statement describes the spike
model for al delay statements that do not specify a specific spike model.

e SPIKE MODEL NETDELAY_ DEFAULT: Thisstatement determinesthe
behavior

NETDELAY_ DEFAULT) use SUPPRESS PERCENTAGE and

Note X _ PERCENTAGE values rather than absolute delay values. These
percentage values are a percentage of the propagation delay to the
output.

@ Note that both of the previous default (MODEL_DEFAULT and

e SPIKE_MODEL low_p (or hi_p): These statements use specifically named
spike models (low_p, hi_p) that can be referenced by name in the delay
statements. The name is used in the delay (tP) statement to specify which spike
model statement defines the model for that delay.

* Thedeay statement. The SPIKE_MODEL “clause’ is used in the delay
statements to specify which spike model definition appliesto thisdelay. If no
SPIKE_MODEL isused in the delay statement, the MODEL_DEFAULT
spike model is used.

If no model default is defined, the Technology File spike model is not defined,
and the kernel spike model (suppress/x-immediate) is used.

QuickSim Il Advanced Training Workbook, 8.5_1 3-23
November 1995

Debugging Timing and Unknowns

Inertial vs. Transport Delays

Inertial delay mode, the default mode:
 Enables recognizing and processing spikes
* Applies to all delay types (Rise, Fall, Netdelay
properties, and pin-to-pin delays (technology files)
Transport delay mode, set on invoke:
* Applies to pin-to-pin delays; others use inertial
* Disables spike pin-to-pin recognition & processing

* Propagates all pin-to-pin delays, ignores

frequency
QuickPart Buffer
>
TRANSPORT
N7 Gen_lib Buffer
5 >
5 INERTIAL
- Trace \J%‘
P N e I H e
TRANSPORT N SN N B B S B
| NERTI AL + o+ + | + + [+
Spi ke éif Spi ke atT
3.0 nS 8.0 nS
2.0 4.0 6.0 80 10.0 12.0 14.0_
Ti me(ns) /
N |

3-24 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Debugging Timing and Unknowns

Inertial vs. Transport Delays

The simulation delay mode determines how QuickSim Il schedules events within
the ssmulation. QuickSim Il uses either inertial or transport delay mode, which
you choose at invocation.

Inertial delay mode, the default mode, exhibits the following behaviors:
* Enablesthe simulator to recognize and process spike conditions.

* Appliesto al delay types (pin Rise and Fall properties, Netdelay property, and
pin-to-pin delays from technology files)

The transport delay mode, which you can request when you invoke QuickSim 11,
behaves as follows:

* Appliesonly to pin-to-pin delays; all other delays use inertial delay mode
* Disables spike recognition and processing for all pin-to-pin delays

* Propagates all events through a device according to the pin-to-pin delay
specified, regardless of the frequency of events

In the circuit on the previous page, the QuickPart buffer uses transport delays with
a2ns pin-to-pin delay. The Gen _lib buffer usesinertial delay Rise/Fall properties.
QuickSim 1 is using the suppress spike model in transport mode.

Note that QuickPart buffer passes all inputs to the output with a2nsdelay. Thisis
because transport delays disable spike recognition, and propagate all events. This
mode only applies to models with pin-to-pin delays.

The Gen_lib buffer, which is an inertial model, behaves the same in transport
mode as it does in the default inertial mode. A spike is detected at time 3nsand is
suppressed at the output (suppress mode). Only those pulses of 2ns or longer
appear at the output.

For additional information on this discussion, or on inertial and transport
delays, refer to the “Delay Modes’ section of the QuickSm 11 User's
Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 3-25
November 1995

Debugging Timing and Unknowns

Hazards and Oscillations
Three step iteration process:
* Reads the event list, and processes mature events
* Evaluates the effects on circuit

* Schedules the resulting events

If resulting events have 0 delay:

* Schedules them in new event list (next iteration)
for the current slot

* Events are mature, so the simulator performs
another iteration for the current slot. Repeats.

Oscillation limit;

e Allowable number of new events for current slot
(iterations)

e Use the Set Iteration Limit command
o defaultis 1000

* Oscillation limit error
o clears current events for oscillation loop
o does not clear current state in Monitor window
o you must fix the oscillation, then issue stimulus
and run again

3-26 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Hazards and Oscillations

QuickSim |1 reads the event list, processes the mature events and evaluates their
logical effects on the circuit, and then schedul es resulting events according to any
associated delays. This three-step processis an iteration.

If any of the resulting events have a delay of O, the ssmulator schedulesthem in a
new event list in the current slot. Immediately, these events become mature,
requiring the simulator to perform another iteration for the current slot. The
simulator repeatedly performs iterations until there are no more eventsin the
current slot or an iteration limit is reached.

An oscillation limit occurs when required iterations exceed the maximum number
allowed for the ssimulation. When this condition occurs, an Oscillation message
warns you of the condition, the event queue is cleared for the current event slot,
and the simulation comes to a halt. The default iterations allowed before and
oscillation limit occursis 1000, and is user settable with the Setup > Kernel >
Run Parameter s pulldown menu. Y ou can also use the Set Iteration Limit
command.

Most oscillation limit errors are caused by zero-delay gates with feedback. By
default, unit delay will not incur oscillation limits, since all gates are simulated
with a“unit” of delay. When timing mode is turned on, oscillations can occur.
Add delaysto all gatesto remove this problem.

Y ou can limit iterations with the Set Iteration Limit command described
” in the Digital Smulators Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 3-27
November 1995

Debugging Timing and Unknowns

Comparing Waveforms

* Overlay traces in Trace window--two waveforms
will be overlaid in different colors

Add Trace QB -overlay

N$1/Q [
/1$1/QB
N$1/Q
QB |

* Trace expressions directly
o Use XOR (*)toget1/0/ Xdisplay
o Use equality (==) to get true/false display

sy — L [

nsQB| — |

QI\QB [f_‘
Q==QB |TXF XF F F XF T XF F

3-28 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Comparing Waveforms

Comparing waveformsis a useful way to determine if your circuit is behaving
correctly. Y ou can compare waveforms on-the-fly during the ssmulation and
perform actions based on the outcome of the comparison. Y ou can also compare
waveform data during a post-simulation SimView session. Use the following
techniques to compare waveform data:

Overlaying Traces. The Add Traces command has an overlay option. It
allows you to view one trace on top of another. The overlaid traces are aways
placed on top of the last (bottom) trace in the active Trace window. Different
colors are used for each overlay. Asapractical limit, no more than three traces
should be added as overlays. At this time, moving and copying overlaid traces
IS not supported.

Tracing Expressions. You can always trace or list expressions. This allows
you to examine combinations of waveforms.

The XOR (") operator is useful to determine when two signals are the same or
different. For example SIG1 " SIG2 or EXPR1 " EXPR2 will beaOif the
signalsare equal, 1 if the signals differ, and X if the either signal is unknown.
Note that only the value (1, 0, X) is used in this evaluation, while the strength
Isignored.

The equals (==) operator compares two signals or expressions. It istrue (T) if
they are equal and false (F) when they differ. For example, Add Trace d==1S
will only be true when the “D” signal isa“one-strong”.

QuickSim Il Advanced Training Workbook, 8.5_1 3-29
November 1995

Debugging Timing and Unknowns

VHDL Debugger Process

Start
System-1076
: Design

 Create ~ Instantiate Create
- symbol with §-— » symbolona #&-- » | System-1076
 properties ' schematic sheet source file

g b 4

Correct
compile-time Compile-time
errors errors? 4 No No

Create Design f
Viewpoint |
+ . 5

Simulate the Simulate the

compiled code | SCJ‘é)esriTéart]tlc

Optional: -
Create/Modify Si%euﬁlgtgs ves
symbol correctly

?

Goree oelug | e |
model errors code T opored

3-30 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Debugging Timing and Unknowns

VHDL Debugger Process

The following list describes the steps you take to create and verify a design that
includes System-1076 models. Y ou can see where the process of debugging
System-1076 models fitsin this overall design flow. The embolded areasin the
figure on the previous page represent the steps covered by this section. The dashed
lines show an alternate path through the design flow.

1. Create asymbol (by using the Symbol Editor from within the Design Architect
session) for your System-1076 design with appropriate properties, or create a
directory where the source code will be located.

2. If aSystem-1076 symbol was created in the prior step, instantiate it on a sheet
using the schematic editor, which is also invoked from within the Design
Architect session.

3. Enter the VHDL codein aplain text file with an editor such as the Notepad or
UNIX Vi editor, or create a source code object with the VHDL Editor.

4. Runthe System-1076 compiler on the source code. The compiler checks the
source code for proper syntax and semantics, displays any errors encountered,
and (once you correct any errors) translates the source code into a simulator-
compatible database, called the object code. Errors encountered when running
the compiler are called compile-time errors. This level of code debugging is
not a part of the System-1076 Debugger tool.

5. If you wish, create aviewpoint for your design other than the default.

6. Test your System-1076 model (object code) by using the QuickSim I1
simulator and the associated System-1076 Debugger, described in this section.
Errors encountered in a System-1076 model during this step are called run-
time errors.

7. Refinethe model to eliminate errors found in step 6 and recompile the source
code. Continue with steps 4 and 6 until the model performs as desired.

QuickSim Il Advanced Training Workbook, 8.5_1 3-31
November 1995

Debugging Timing and Unknowns

QuickSim Il VHDL Debugger

Features include:

3-32

Integration into the simulator environment
Multiple VHDL View windows to show concurrency

Examine values of signals, variables, and
constants during simulation

Modify signal and variable values during
simulation

Single-step through the design

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

QuickSim Il VHDL Debugger

The System-1076 source code Debugger is an interactive tool that assists you in
analyzing and correcting VHDL source code from within the simulator.

The following list includes many of the System-1076 Debugger features:
* The Debugger isintegrated into the simulator environment.

* You can open multiple VHDL View windows to show the concurrency in a
design.

* During the ssimulation, you can examine the values of signals, variables, and
constants.

* You can modify the values of signals and variables during simulation.
* You can single-step through the design.

* You can set one or more breakpoints.

QuickSim Il Advanced Training Workbook, 8.5_1 3-33
November 1995

Debugging Timing and Unknowns

3-34

Debug VHDL

SETUP | | sTiMULUS |

| WF EDITOR | [DESIGN CHG]|

DBG GATES DBG VHDL

| ANALYZE | | DBGHIER |
RUN P | | RESET.. |
| TRACE | [wsT
| DELETE | | EDIT p|
‘ UNSELECT ‘ ‘ SELECT
ALL COUNTS
ADD
BREAK PT RESUME
i)
OVER INTO
t:::?_ 4
== | |———
=== | T T
STEP STEP
RETURN ITERATION

= 3

1 5
™ step T STEP

EVENT END
= e | | kDo)
ACTIVATE EXAMINE

GOTO

QuickSim Il VHDL Debug Palette

* Select the palette button

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Debugging Timing and Unknowns

QuickSim Il VHDL Debug Palette

The Debug VHDL palette provides a convenient way to access the functions that
support VHDL debugging, in addition to some common simulator functions such
as Resume. To view the Debug VHDL palette select the Debug VHDL palette

button as shown on the previous page.

The following table contains a brief description of each icon found in the Debug

VHDL palette.
Debug VHDL
$add_breakpoint() Adda $resume_simulation()
A breakpoint on the selected or Continue a simulation that
== named statement(s). might be stopped due to
BREAKPT RESUME - encountering a breakpoint.
$step over() Continuesthe $step into() Continuesthe
(== simulation, stepping over the ==== |Simulation, stepping into
=5 |activated statement. sier (evaluating) activated stmnt.
OVER INTO
$step return() Continues the $step iteration() Continues
= simulation, stepping over the 3 |the smulation to the next
sTEP active statement(s) until T e Titeration.
finding areturn or wait stmnt. | —oror
$step_event() Continuesthe $step _end() Stepsthe
~7== Simulation until the next event | I3 simulation to the end of the
T step TOCCUIS. T step TCUrrent timestep.
EVENT END
$activate statement() When $examine_objects()
-2z WO OF More statements are pen; |Displays current value of the
" active, the statement you ;:;L'E selected signals, variables, or
selected becomes activated. constants.
$goto_highlight(@forward,
N @selected) View theareain

“ the VHDL View window that

contains selected statement.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

3-35

Debugging Timing and Unknowns

VHDL View Window

To open window:

1. Select Instance in Schematic View window

2. Choose: (popup) > Open > Down

=

/1$1 :/vhdl_source.vhdl 2

4]

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 END behhav;

BEG N
df f _beh:

14 ARCHETECTURE behav OF dff IS

PROCESS(CLK, PRE, CLR)

BEG N
| F CLK LAST_VALUE = '0" AND
<= b <= NOT D
ELSE Q 8
|F PRE = '0" THEN
@B <=0,
Q <: Ll ll .
END | F;
IF CLR = '0" THEN
@ <: |l 1I ;
Q <: IOI ;
END | F;
END | F;

END PROCESS df f _beh;

* Allows graphical selection

e Scroll bars and arrows are removable

* Select object:

Examine, Trace, List, Monitor, Report, etc.

3-36

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

VHDL View Window

The VHDL View windows display VHDL source code. The Open Down
command displaysa VHDL View window on source code objects that contain the
architecture body. If the entity declaration was compiled separate from the
architecture body, one VHDL View window can be brought up to display the
architecture body and another window can be brought up to display the entity
declaration.

Activelines of code are highlighted in the VHDL View window as you step
through a simulation and debugging session. The example on the previous page
shows the assignment statement (Q <="'1") on line 24 is currently activeand is
ready for evaluation. The window indicates the active line statement with an
arrow and by displaying the active statement is red (bold in the example). This
active statement is also reflected in the Active Statements window which is
discussed in the next lesson.

Using aVHDL View window you can examine the values of internal System-
1076 signals’, constants, and variables as you step through the design. Y ou can
also set (modify) the values for variables when debugging code.

For sheet-based designs, it is possible to open multiple VHDL View windows
from one design sheet, one for each System-1076 instance selected. For structural
VHDL models you can bring up a VHDL View window on each instantiated
component. Y ou must either move the windows around on the screen or pop
between them to make them all visible. The display and operation of the VHDL
View window is discussed further in the “ Debugging Operating Procedures”
subsection in the System-1076 Design and Model Devel opment Manual. Also
refer to the SmView Common Smulation User's Manual for information about
how to set up the simulator windows.

! Internal signals are those that do not appear in a port clause declaration.

QuickSim Il Advanced Training Workbook, 8.5_1 3-37
November 1995

Debugging Timing and Unknowns

VHDL Active Statements Window

1= Active Statements |
VHDL/ BREAK @ Line /1$1/dff_beh/24 @tine 900.0ns (STEP)

Click on:

e [VHDL Debug] 2=}, palette icon

 [VHDL Debug] &= paletteicon

* [VHDL Debug] 2~ paletteicon

STEP
ITERATION

3-38 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

VHDL Active Statements Window

The Active Statements window works in harmony with the VHDL View window
by displaying the currently active statements as the ssimulator encounters them. An
active statement is encountered as aresult of using a VHDL Debugger function
such as Step Event, Step Into, or Step Iteration. If an Active Statements window
does not exist when an active statement is encountered, the simulator brings up an
Active Statements window.

The example on the previous page shows that the active statement is on line 24 of
the VHDL behavioral model dff beh for instance I$1. As aresult of the active
statement also being displayed in the VHDL View window and due to cross
highlighting, the source code line number of the active statement is highlighted in
the Active Statements window as you step through a simulation and debugging
session.

QuickSim Il Advanced Training Workbook, 8.5_1 3-39
November 1995

Debugging Timing and Unknowns

VHDL Examine Window

= Examine .|
/D=1 @tinme 800.0ns iter 1
/IQ=0 @tinme 800.0ns iter 1 (next value: 1 type: EVENT a
/D=1 @tinme 800.0ns iter 2
/Q=1 @tinme 800.0ns iter 2

* Displays:
o current values of a signal, variable, or constant

o future values of signals

e Examine local variable states--

o must have “label” “end” constructs in VHDL to
be examined

o they cannot be listed, traced, or monitored

* Examine window information also displayed in the
VHDL Messages window if one exists.

To open window, click on:

[VHDL Debug] | w5t | palette icon

EXAMINE

3-40 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

VHDL Examine Window

The Examine window displays the current values of asignal, variable, or constant
and the future values of signals. If the specified object is an array type, either all
the values of the sub-elements are displayed or all the values up to the limit
specified by the Setup Array Size command are displayed. If the Examine window
does not exist when the function is executed, the ssmulator opens a window.

The default for asignal isits current value, its next scheduled value, and the time
it is scheduled to occur. The example on the previous page shows in the second
line that the current value of Q is0 at time 800.0 nsiteration 1, the next scheduled
valueis 1, and that the scheduled event isto occur at time 800.0 ns (iteration 2, not
shown). If the signal is a composite, the next scheduled value is the next

scheduled event that occurs on any of its sub-elements.

The Examine window is especially useful if you want to examine the state of local
variables because they cannot be listed, traced, or monitored.

In order for information to be placed in the examine window, it must be contained
inthe“label” “end” constructs within VHDL. The figure on page 3-36 shows this
construct on lines 14 and 32.

The information displayed in the Examine window is also displayed in the VHDL
Messages window, if one exists.

For more information about the Examine window, refer to “Examining
VHDL Signalsand Variables’ in the System-1076 Design and Model
Devel opment Manual.

QuickSim Il Advanced Training Workbook, 8.5 1 3-41
November 1995

Debugging Timing and Unknowns

VHDL Assertions Window

= Assertions |0]
VHDL/ NOTE: (/1$/dff_beh/31) @time 875.0ns : Input D Setu

To create assertions in VHDL source:

* ASSERT (condition)
REPORT “string”

SEVERITY note | warning | error | failure;

3-42 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

VHDL Assertions Window

The Assertions window displays the report issued from an assertion statement
within the VHDL source. The assertion statement checks a condition that you
specify to determineif it istrue, and reports a message with a specified severity if
the condition is not true. For example, when the condition in the following assert
statement evaluates to avalue of “false” during ssimulation, the report is sent to
the Assertions window with a severity of 'note':

ASSERT (sel ="'1") --When this assert condition is fal se
REPORT "I nput dO is sel ected" --issue this report
SEVERI TY not e;

The following list shows the pre-defined severity levels from least to most severe.
* NOTE: usefor general information messages.

* WARNING: use for a possible undesirable condition.

* ERROR: usefor atask completed with the wrong results.

* FAILURE: usefor atask that is not completed.

If an Assertions window does not exist when areport isissued, the ssmulator
brings up the Assertions window. Any subsequent report messages from an assert
statement will appear in the Assertions window.

Thereis aso a concurrent assertion statement. Both assertion statements are
described further in the Mentor Graphics VHDL Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5 1 3-43
November 1995

Debugging Timing and Unknowns

VHDL-Related Windows

] VHDL Messages e
/D=1 @time 875.0ns iter 1
/IQ=1 @time 875.0ns iter 1
VHDL/ NOTE: (/1$/dff_beh/31) @tinme 875.0ns : Input D Setup
/D=1 @tinme 900.0ns iter 1
/IQ=1 @tinme 900.0ns iter 1 (next value: 1 type: EVENT at
/D=1 @tine 900.0ns iter 2
/Q=1 @tine 900.0ns iter 2

To Open VHDL Messages window:

* Report > Design Messages pulldown menu item

Open Design Messages

Desigh message categories (@ = combined):

L

Active Statements
Assertions
Examine

Info Messages
Model Messages

Simulation Messages
VHDL Messages /
Window title |

’ OK | Reset Cancel Help

3-44 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

VHDL-Related Windows

As the previous topics have discussed, there are a number of windows within the
simulator that specifically relate to debugging System-1076 models. However,
QuickSim Il (SimView) contains many other windows that are invaluable when
debugging VHDL models. This lesson discusses the last of the VHDL -specific
windows and lists some of the more commonly used non-VHDL-specific
windows.

The VHDL Messages window displays the combined contents from both the
Examine and Assertions windows. This window isinvoked using either the
Report > Design M essages pulldown menu item or the Open Design Messages
command. Both of these invocations display the dialog box shown on the previous
page. Select the VHDL Messages category and click on OK to display the VHDL
Messages window. Notice that the Examine, Assertions, and Active Statements
windows can also be displayed using this method.

The non-VHDL -specific windows include the Schematic View, Breakpoint,
Objectsreport, Trace, List, and Monitor windows to name afew. These windows
display values for System-1076 qsim_state signals and variables in the same way
that values for other design signals are displayed. In addition, System-1076
abstract values can be displayed. For more information about the windows that are
available, refer to the SmView Common Smulation Reference Manual and the
Digital Smulators Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5 1 3-45
November 1995

Debugging Timing and Unknowns

Lab Overview
* Modify source file for existing VHDL model
e Compile VHDL model
* Create force-type stimulus for your VHDL model
* Change model type to use VHDL model
* Run simulation using VHDL model
e Compare results of schematic & VHDL simulation

* Use the VHDL debugging techniques
o Step Event
o Step Into
o Step End

* Edit ASCIlI VHDL source
* Recompile & run VHDL model again

e Compare results--were problems fixed?

3-46 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Lab Overview

In the lab exercise for this module, you will:

Make a copy of your VHDL design data

Modify the source file for an existing, but problematic VHDL model.
Compile aVHDL model.

Create force-type stimulus for your VHDL model.

Change the model type so that the VHDL model is now being used.

Compare the output waveform (results) of the schematic model to that of the
VHDL simulation run.

Use the VHDL debugging techniques 'Step Event,' 'Step Into," and
'Step End,’ to determine where the problem(s) are occurring in your VHDL
model.

Use the ASCII editor to fix the problemsin the VHDL source code

Recompile and run the simulation on the VHDL model again to determine if
the problems were fixed.

QuickSim Il Advanced Training Workbook, 8.5 1 3-47
November 1995

Debugging Timing and Unknowns

Module 3 Lab Exercise

If you are reading this workbook online, you might want to print
out the lab exercises to have them handy when you are at your
Note workstation.

N

Procedure 1: Setting Up the VHDL Training Data

In this procedure you will make aworking copy of the training data, set up a
design, and create a VHDL source for use with subsequent VHDL debug lab
exercises. To do so, perform the following steps.

1. Invoke Design Architect in ashell.

2. Open anew VHDL source for the dff component that is contained in the
gsim_adirectory you just copied by doing the following:

a. Click onthe[session_palette] Open VHDL icon.
The Open VHDL dialog box is displayed.
b. Enter “vhdl_source” asthe VHDL Source Name.

Do not use the navigator to select the VHDL source file--one does

EN
not exist; you are creating it.

Note

c. Click “Yes’ onthe Inside Component?
d. Click onthe Navigator button and select:
$HOME/training/qgsim_a/L ATCH/dff
e. OK the Navigator form and then OK the Open VHDL dialog box.
An empty VHDL Source window is now displayed.

3-48 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

3.

Import aVHDL source ASCII filefor usein thislab by performing these steps.

a. Choosethe File > Import... pulldown menu item.

An “Import from” navigator is displayed.

b. Usethe Navigator to select the following ASCII sourcefile:

$MGC_HOME/shared/training/da82nwp/com/my_dff.vhdl.src

c. OK the“Import from” navigator dialog box.

Modify the VHDL source you just imported by using the VHDL source editor
to change “my_dff” to “dff” in the following lines:

* Line8; entity declaration
* Line12; end of entity declaration
* Line 14, architecture declaration

Perform a“ set options’ to make sure that you are compiling for Sys-1076 and
not for QuickVHDL.

Compile the new VHDL source by choosing the Compile > Compile
pulldown menu item.

It generally takes afew seconds for the compiler to initialize and then compile
the source. If all goes well the Compilation Report window will return a
message similar to the following:

Compilation Completed: 0 errors, 0 warnings.

This completes the VHDL source setup procedures. Y ou can now exit Design
Architect.

QuickSim Il Advanced Training Workbook, 8.5 1 3-49
November 1995

Debugging Timing and Unknowns

Procedure 2: Creating and Saving Valid Results

In this procedure you will examine the properly functioning dff schematic model,
create a set of stimulus, run asimulation, and save the results, all using
QuickSim I1. Y ou will use the known good results that you save here to compare
against results in subsequent VHDL debug lab exercises.

1. Invoke QuickSim Il onthe LATCH using default invocation.

2. After QuickSim Il invokes, maximize the QuickSim |1 session window.

3. Display the schematic sheet of LATCH and of the dff instance by performing
the following steps:

a
b.

C.

3-50

Click on the [Setup] Open Sheet palette icon.
Select the dff symbol.

Click on the [Design Change] Change M odel palette icon to choose the
dff model to be displayed.

The “Change Model on instance” dialog box is displayed.
Select the “ schematic” model and click on the OK button.

Select the dff symbol (large rectangle in the center of the Schematic sheet)
once again.

Choose the Open > Down popup menu item from the Schematic window.
A Schematic View window is displayed containing the dff schematic.

Activate the new Schematic View window and move it to the right so asto
expose both Schematic View windows: LATCH and dff.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

4. Traceall thel/O signalson the LATCH sheet.

5. Using Notepad, create an ASCI| forcefile called
"$HOME/training/gsim_a/LATCH/forces_dofile" and edit it such that it
contains the following stimulus commands:

/1 SET USer Scale -type Tine le-09

/1 SETup FOrce -Charge
SET CLock Peri od

FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe
FORCe

6. Execute the stimulus forcefile you just created by entering the following

command:

DOFile $HOME/training/qsim_a/LATCH/forces_dofile

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

/ CLK
/D
| PRE
/ CLR
| PRE
/ CLR
| PRE
/ CLK
/ CLK
/ D
/ D
/ D
/ D

PORORORROOROR

0.

0.
100.
100.
200.
200.
300.
450.
500.
625.
725.
825.
875.

100

oNoNoloNoNoNololoNoNolNolo)

- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs
- Abs

- Repeat
- Repeat

3-51

Debugging Timing and Unknowns

7. Run the simulation 1000 time units by issuing the following command:
RUN 1000
The waveformsin the Trace window should now look like the figure below. If

not, compare your forcefile with the information presented in step 5, correct
any differences, reset the ssmulation state, and repeat steps 6 and 7.

IPRE | |- S T e
D|| L e e
o[+ v T LF LFLFLFLFL
JCLR||----- t 0+t o+ o+ + o+ o+ o+
RI—t F + + 1+ + + f =
QB|—— t+_ + + 4+ + £ 1 =
0.0 200.0 400.0 600.0 800.0

Time (ns)

8. Savethe“forces’ and “results’ waveform databases by performing the
following:

a. Click onthe [Stimulus] Save WDB palette icon.
b. Select the 'forces waveform database in the dialog box list.

c. Click on*“Viewpoint” and enter “forces dff” for the leafname.

d. Click on OK.
e. Repeat steps 8athrough 8d for the 'results waveform database and name it
“results_dff”.
3-52 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Debugging Timing and Unknowns

Procedure 3: Changing to the VHDL Design Model

This procedure tells you how to change the design model to the VHDL model
without leaving QuickSim I1, run the simulation, and examine the results.

1. Change the design model in QuickSim 11 from the schematic model to the
VHDL behavior model by performing the following:

a. Select the dff instance symbol inthe LATCH Schematic View window.
b. Click onthe[Design Changes] Change Model palette icon.

c. Select the model entry that contains the string “behav”.

d. Click on OK.

The dff Schematic View window is closed, the VHDL Source View
window is opened, and the simulation state is reset to time O (the Trace
window contains no waveforms).

2. Load the expected results for Q and QB that you saved in the default
viewpoint, and add them to the Trace window by performing the following:

a. Click onthe[Stimulus] Load WDB palette icon.
Click on the Viewpoint button if it is not already selected.

c. Select the “results dff” waveform database that you saved earlier in thislab
and OK.

The 'results_dff' waveform report window is displayed.

d. Select thefollowing two waveformsin the “results dff” waveform report
window:

results dff @@/Q
results dff @@/QB

e. Click onthe Trace palette button.

QuickSim Il Advanced Training Workbook, 8.5_1 3-53
November 1995

Debugging Timing and Unknowns

The waveforms in the Trace window should now look like the figure below.

IPRE + + + + + + + + +

/D: + + + + + + . + =

oLkl o+ o+ o+ o+ o+ o+ o+ o+ o+

/CLR: + + + + + + + + +

/Q: + + + + + + + + +

/QB: + + + + + + 4 4 n
results_dff@@/Q: —+ + O+ + 1 + + F o+
results_dff@@/oB| | —+ .+ + F + + |+ +

- 200.0 400.0 600.0 800.0
Time (ns)

3. Runthe simulator 1000 time units.

You'll notice that /Q and /QB do not respond to /PRE and /CLR as they did
with the schematic model. Notice also that /Q and /QB are not the inverse of
one another, as they should be.

Procedure 4: Debugging VHDL With QuickSim Il

This procedure illustrates one method that you can use to debug VHDL source.
This method exercises the VHDL debug features provided with QuickSim 11.

1. Reset the ssimulation state.

Only theresults dff @@/Q and results_dff @@/QB waveforms remain in the
Trace window (as shown in the previous figure).

2. Click onthe[Debug VHDL] Step Event palette icon to run the ssmulator to
the first scheduled event. (Recall that the stimulus waveforms forced events on
/CLK and /D at time 0.0, therefore, the first scheduled event is at time 0.0.)

The Active Statements report window is displayed and the active VHDL
processin the VHDL Source View window is displayed in red with ared arrow
pointing to the current line.

3-54 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

3. Click onthe [Debug VHDL] Step Into palette icon to move to the next active
statement for this event.

The red arrow moves to the next line to be executed (the line is displayed in red
also). You can evaluate the line of VHDL source and decide which of the
statements you think/expect to become active next.

4. Repeat step 3 until the red arrow disappears indicating that there are no more
statements to be evaluated for the current event.

5. Continue on through the next event by repeating steps 2, 3, and 4 while
noticing the following:

* Step Event runs the simulator to the next scheduled event which is on /PRE
and /CLR at time 100.0 ns.

* Step Into runsout of statements to evaluate before /Q and /QB are assigned
values (see /Q and /QB in the Monitor window and results_dff @@/Q and
results dff @@/QB in the Trace window).

6. Step through the next event by, again, repeating steps 2, 3, and 4 while noticing
the following:

* Step Event runs the simulator to the next scheduled event which is on /PRE
and /CLR at time 200.0 ns.

* Again, step Into runs out of statements to evaluate before/Q and /QB are
assigned values (see /Q and /QB in the Monitor window and
results dff @@/Q and results_dff @@/QB in the Trace window).

* Only the following two statements in the VHDL source are being activated
during the Step Into calls:

df f _beh: PROCESS(CLK, PRE, CLR) and

| F CLK' LAST_VALUE = '"0' AND CLK = '"1" AND PRE = '1" AND
CLR = '"1'" THEN
QuickSim Il Advanced Training Workbook, 8.5 1 3-55

November 1995

Debugging Timing and Unknowns

None of the other 'IF' statements in the VHDL source are being evaluated.
Further examination of the VHDL source shows that the following are only
evaluated when the first | F statement is true:

IF PRE = '0' THEN and
IF CLR = '0' THEN

The solution is to insert an EL SE statement after line 20 of the VHDL source.
But, before doing that, that there is another problem that causes /Q and /QB to
track one another rather than the inverse. The remaining steps continue the
debug process to locate that error.

7. Click onthe[Debug VHDL] Step Event palette icon to run the ssimulator to
the next scheduled event which is on /PRE at time 300.0 ns.

At thistime the /PRE signal isforced high to release the dff's preset state.
Because there are no changes expected in /Q or /QB the next step shows how
to avoid the repetitive Step Into process when not necessary.

8. Click onthe[Debug VHDL] Step End palette icon to move to the end of the
time step. Using Step End allow you to skip all the repetitive Step Into steps.

The message area at the bottom of the Session window displays a message
indicating that the simulator has run to the end of the time step (300.1ns).

9. Step through the next event by repeating steps 7, and 8 while noticing the
following:

* Step Event runs the ssimulator to the next scheduled event which ison /CLK
at time 450.0 ns.

* Step End runs the simulator to the end of the time step (450.1ns). Aswith
the previous /PRE event, there are no changes expected in /Q or /QB due to
the /CLK event, so you avoid the repetitive Step Into process by issuing the
Step End.

3-56 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

10. Click onthe [Debug VHDL] Step Event palette icon to run the smulator to
the next scheduled event which ison /CLK at time 500.0 ns.

At thistime the /CLK signal isforced high. This/CLK pulseis expected to
cause /Q and /QB to go low and high respectively. Therefore, the next step
reverts back to using the Step Into palette icon to see the details of the VHDL
source evaluation.

11. Step through the complete time step examining the source code statements and
the values assigned /Q and /QB by performing the following procedure:

a. Click onthe[Debug VHDL] Step Into palette icon to move to the next
active statement for this event.

The red arrow moves to the following line for evaluation:

| F CLK' LAST_VALUE = '0" AND CLK = "1" AND PRE = '1' AND
CLR = '"1" THEN

b. Click onthe[Debug VHDL] Step Into palette icon again.

Because the | F statement is evaluated as true, other portions of the source
are now evaluated (displayed in red).

C. To better monitor the changesto /Q and /QB, do the following:
I. Select the/Q and /QB objectsin one of the windows currently displayed.
li. Click onthe [Debug VHDL] Examine palette icon.

An Examine report window is displayed showing the current values of
/Q and /QB. (Notice that neither have been defined yet.)

d. Repeat step 11b to move to the next assignment statement and examine the
current values.

The Examine report window now shows that the next value to be assigned
/Q will be O due to an event at time 500 ns. (Notice however, that the
assignment has not yet been made.)

QuickSim Il Advanced Training Workbook, 8.5_1 3-57
November 1995

Debugging Timing and Unknowns

e. Repeat step 11b to move to the next statement within the IF clause and
examine the current values.

The Examine report window now shows that the next value to be assigned
/QB will be 0 due to an event at time 500ns.

At this point you can see that /Q and /QB will be assigned the value (0).
Look closely at the two assignment statements that were just evaluated.
Y ou should see that both Q and QB are assign the value of D:

Q<=0 B<=D

Because you know that /QB should be the inverse of /Q you can assume
that the assignment statement should be changed to the following:

Q<=D B <= NOr b

But, before making the changes to the VHDL source file, finish going
through the current timestep to see where in the timestep the values of /Q
and /QB actually change.

f. Continue to repeat step 11b until there are no more VHDL statements to
evauate in thisiteration.

At the end of iteration 1, /Q and /QB have still not been assigned their new
values.

g. Click onthe[Debug VHDL] Step Event palette icon to move to the next
event. In this case the next event isiteration 2 where /Q and /QB are
assigned the values that were scheduled in iteration 1. Notice that there are
no active statements indicated in red for iteration 2.

h. Verify that /Q and /QB were assigned their new values by clicking on the
[Debug VHDL] Examine palette icon.

12. This completes the debug portion of the lab. Y ou have found both errorsin the
VHDL source code: amissing EL SE statement and an incorrect QB
assignment statement. However, if you choose, now would be a good time to
exercise what you have learned by stepping through the VHDL source until
you reach time 1000.0 ns. If you choose to do so, try some of the other icons
available in the Debug VHDL palette.

3-58 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Procedure 5: Modify and Verify the VHDL Source

This, the last VHDL debug lab procedure, tells you how to modify the VHDL
source, recompile the modified source, reload the recompiled model into
QuickSim 11, and finally how to verify that the modifications corrected the

problems.
1. Restorethe Design Architect session (if it wasiconized).
2. Activate the VHDL source window and modify the VHDL source as follows
by using the VHDL source editor:
* Insert the following line after line 20:
ELSE
* Changeline 20 to read asfollows:
Q<= D B <= NOT D
3. Choose the Compile > Compile pulldown menu item to compile the new
VHDL source.
Verify that the Compilation Report returns the message:
Compilation Completed: 0 errors, 0 warnings.
4. This completesthe VHDL source modifications. Y ou can now exit Design
Architect.
5. Restore the QuickSim |1 session so you can test the VHDL source
modifications.
6. Reset the smulation state to 0.0.
7. ChoosetheFile > Load > New Models > All pulldown menu item to load the
VHDL model you just modified.
A Question box is displayed asking whether you want to close the existing
VHDL View window. Click on Yes.
QuickSim Il Advanced Training Workbook, 8.5 1 3-59

November 1995

Debugging Timing and Unknowns

When the load is complete anew VHDL View window is displayed containing
the new VHDL source you just compiled.

8. Runthe ssmulation 1000 ns.

Y ou can seein the Trace window that /Q and /QB now mirror the
results dff @@/Q and results_dff @@/QB waveforms as expected.

This completes the VHDL Debug lab. To further exercise the VHDL debug
features, you may choose to repeat some of the stepsin this lab using the new
VHDL source to see how the debugger steps through the corrected source.

3-60 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Debugging Timing and Unknowns

Module 3 Summary

This module, Debugging Timing and Unknowns, presents some of the problems
that occur in the simulation process, and gives you the steps to debug these
problems.

Incremental change allows you to make many debug changes without exiting
QuickSim 1. Property changes are stored in back annotation files, and edits
can be reloaded. The viewpoint determines the configuration of your design
and can 'latch' to specific versions, allowing design changes to occur without
affecting your simulation run.

Spikes, hazards, and oscillations, are timing problems. A spike indicates that a
signal pulseistoo short to be propagate through an instance. Hazards and
oscillations occur when zero-delay gates with feedback are used.

Special debug models can be placed in your design. These models are placed
in IF or CASE frames so that they can be configured out of the circuit when
they are not needed.

TimeBase has a powerful debug mode that you can use to analyze the design
timing data. Y ou can examine evaluated timing on amodel basis, or pre-build
timing for the entire design.

QuickSim |1 provides a powerful VHDL debugger. It can be used to step
through and highlight the VHDL source code as the ssmulation runs. Several
VHDL windows are provided to present information about this debug process.
A VHDL debug palette makes it easy for you to access the debug commands
and windows.

In the next module, Module 4, you will learn the factors that contribute to
simulation performance, and how to determine the size of a simulation run. Y ou
will aso setup and perform a batch simulation, saving the results for review using
SimView.

QuickSim Il Advanced Training Workbook, 8.5_1 3-61
November 1995

Debugging Timing and Unknowns

3-62 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Module 4
Optimizing Simulation Runs

Module 4 Overview 4-2
L essons 4-3
QuickSim |1 Optimization 4-4
Modeling for Performance 4-6
Hardware Considerations 4-8
Stimulus and Reporting 4-10
Limiting Display Updates 4-12
Estimating Accuracy 4-14
Estimating Performance (Run-time) 4-16
Estimating Memory Requirements 4-18

L ocating Existing Examples 4-20
Running Application Systests 4-22
Aliasing the quicksim Command 4-24
Batch Simulation Example 4-26
Lab Overview 4-28
Module 4 Lab Exercise 4-30
Procedure 1: Running the QuickSim |1 Systest 4-30
Procedure 2: Test Simulation Performance 4-33
Module 4 Summary 4-37
QuickSim Il Advanced Training Workbook, 8.5 1 4-1

November 1995

Optimizing Simulation Runs

Module 4 Overview

QuickSim i
Setup for
About This Training Workbook I Performance
Setting Up for QuickSim Il _Estimating
Simulation Run
Performance

Application
Examples and
System Tests

Advanced Stimulus Techniques I

Debugging Timing and Unknowns

Optimizing Simulation Runs

Viewpoints and Annotations I

Custom Design Checking I

Additional Topics:
Appendix A: Processes Using QuickSim Il
Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

Batch
Simulation

Viewing Batch
Results

4-2 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Lessons

On completion of this module, you should:

Understand the factors that interplay in the QuickSim |1 environment to reduce
or increase simulation performance.

Be able to use the MGC tree to locate existing design and application
examples.

Understand the structure of the Mentor Graphics system test utilities within the
MGC tree. Y ou should be able to run a system test on QuickSim |l and other
support application to verify proper operation.

Be able to perform a displayless simulation run.

Be able to perform a batch stimulation run, using redirected input and saving
your results for later viewing.

Know how to use SimView to examine your simulation results.

Y ou should allow approximately 1.5 hours to complete the Lesson,
@ Lab Exercise, and Test Y our Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5 1 4-3
November 1995

Optimizing Simulation Runs

QuickSim Il Optimization

Consider the following to improve performance:

4-4

Appropriate modeling method
Optimum Hardware

SimView setup

QuickSim Il kernel setup
Stimulus & reporting methods

Displayless and batch mode simulation

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

QuickSim Il Optimization

The optimization of your simulation is a balance between high or moderate
accuracy, interactive, modeling methods and volume of information output.
There are anumber of ways in which you can optimize your simulations to
improve the performance of the simulation times. The next several pages will
discuss the trade-offs that you can make to your design and to the QuickSim Il
simulation environment. These trade-offs are introduced in the following list:

Modeling methods. Simulation models may not be totally under your control,
but the way you use model information (timing, constraints, changes) is. For a
discussion of modeling performance, see “Modeling for Performance”’ on

page 4-6.

Hardware. Mentor Graphic application software is a network resource. As
such, you decide on which workstation your simulation is run. For workstation
and network performance issues, see “Hardware Considerations’ on page 4-8.

SimView setup. This 'environment' configures the interface input and output
information. Techniques on how to streamline the I/O environment are
described on page 4-9.

QuickSim 11 kernel setup. The global timing mode, error checking, constraint
monitoring, and logging of warning messages is determined in the kernel

setup. Y ou should always use minimum timing and checking when possible.

Y ou can aso incrementally customize checking in asmall part of your design.

Stimulus and Results. The method you use to apply stimulus during a
simulation can have a big effect on performance. The amount of information
you save (results) and the way it is stored will also change simulation
performance. For optimizing stimulus and reporting, see “ Stimulus and
Reporting” on page 4-10.

Displayless/Batch ssmulation. Many of your simulation activities don't
necessarily require direct interaction, or immediate viewing of results. For tips
on running displaylessin QuickSim I1, see “Batch Simulation Example” on
page 4-26.

QuickSim Il Advanced Training Workbook, 8.5 1 4-5
November 1995

Optimizing Simulation Runs

4-6

Modeling for Performance

Gate/Switch primitives

QuickPart Table models

QuickPart Schematic models

BLM (Behavioral Language Modeling)

VHDL (VHSIC Hardware Description Language)

LM-Family of hardware modelers

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Modeling for Performance

The type of models used in adesign will have a significant effect on the overall
simulation performance times.

The various modeling methods that are available can be used to build any ssmple
or complex models. However it would be extremely inefficient to build a
microprocessor model using the gate level modeling method instead of using
BLM or VHDL models. In asimilar way it would be inefficient to build an AND
gate model using VHDL as the modeling method rather than using a QuickPart

Table model.
The following table identifies the various modeling methods and a rule of thumb
for their usage:
Modeling Method | Technology Application
Switch primitive Built-in. Switch simulation.
Gate primitive Built-in.
QuickPart Table Built-in table look-up ASIC célls
(20 input, 4 output limit)
QuickPart Schematic | Event driven compiled | ASIC Soft macros
logic Board Level components
BLM 'C'/Pascal language Board level components
interface. > 10 instances
VHDL Built-in solver Board level components
> 200 instances
LM-Family Hardware modeler Board level components
> 1000 instances

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

4-7

Optimizing Simulation Runs

Hardware Considerations

To optimize hardware for your simulation:

Use highest performance platforms available
Compare platforms using MIPS rating

RAM memory size -- entire design must fit
Disc virtual memory (swap space) size

Types and location of swap files

o fastest--dedicated swap partitions on internal
disk

o slowest--file system swaps on external disk

Local storage of Application/Libraries/Designs

To check for local/remote design objects:

Turn off net service or library access

* Use “check references” in Design Manager

* Repair all 'broken’ references

4-8

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Hardware Considerations

If you are simulating for maximum performance, dictates that the highest
performance platform available should be utilized whenever possible. The MIPS
measure of processor performance is a universal measure of how many
calculations can be performed in a given length of time.

The overall nature of event driven simulations requires that a design fits within
RAM for maximum simulation performance. When adesign is unable to fit within
the available RAM, the simulation run time will increase dramatically due to disk
paging. In addition, RAM must be able to hold the simulation kernel, and any
frequently used data handling functions.

Another consideration to invocation and simulation performance is the access to
the design, library components, and application software. To avoid network
overhead, it is very much more efficient to store application software, libraries
and design data on the local disk whenever possible.

Hereisalist of applications and design objects used by QuickSim I1:

build_timing | chart | da_strrgy | pcv | pfgen | gpart | quicksim | reg_mode |
schematic_sv|se|se any |sim|simv |svdm | swf | syn_any | syn_techlib |
syn_techlib_any | sys 1076 base | tdm | tech_compiler | timebase | timing | tsv

If you install the quicksimll package locally, you will also get these packages
installed locally.

If it isnot possible to have local copiesof all libraries referenced by your design,
you can make local copies of only the component that are referenced by your
design. A good way to check for local referencesis to turn off accessto global
libraries (turn off network service, or disable library links) and then check design
references using the Design Manager. This process will give you alist of broken
(non-valid) references which need to be changed to point to local objects.

QuickSim Il Advanced Training Workbook, 8.5 1 4-9
November 1995

Optimizing Simulation Runs

Stimulus and Reporting

* Pre-compile force /log or MISL files into WDB
format

* Only keep required signals
e Setup awindow for signals to keep
* Use the “nofull” option when setting up Keeps

e Limit the List, Trace, and Monitor windows used

4-10 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Optimizing Simulation Runs

Stimulus and Reporting

QuickSim |1 supports an efficient architecture known as a waveform database.
When stimulus is applied using either forces, log filesor MISL file as the input
method, SimView will compile the stimulus into an appropriate waveform
database which is then used to drive the simulation kernel.

Once the waveform database has been created, it can be saved to disk asa
waveform database file. Future simulations can use this waveform database file
rather than recompiling the forcefile, logfile or MISL file input. The process of
loading and connecting a wdb is significantly faster than compiling force, log or
MISL statements.

Signals are “kept” whenever you trace, list, monitor or keep signals. You can
determine which signals will be kept by issuing the Report K egps command.

If you must keep signals, follow these rules to improve performance;

* Usethe Setup Keeps command to keep alimited number of signals. The more
signals 'kept', the slower the simulation performance.

* Specify only awindow of data. Windowed keeps are kept in the simulation
kernel and need not be constantly communicated to the simulation front-end.
Therefore, performance is better using windowed keeps. When the ssmulation
run is complete, these results must be saved to the results waveform database
in order to be preserved.

* Keep with the “nofull” option. The full option keeps both net states and the
driving pin states for the nets. If the driving pin information is not needed
(usually required only in contention debugging), use the nofull option so that
driving pin information is not kept.

QuickSim Il Advanced Training Workbook, 8.5_1 4-11
November 1995

Optimizing Simulation Runs

Limiting Display Updates

The “- nodisplay” invocation option

Freeze Gadgets and Unfreeze Gadgets command

Freeze Window and Unfreeze Window command

Set Update Rate command

Editing gadget control information

4-12 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Optimizing Simulation Runs

Limiting Display Updates

When you are performing an interactive simulation, you may want to run
efficiently for longer periods of time. If you have a number of signalsin the Trace,
List and Monitor windows, the time required to update these signals can be a
significant part of the simulation run. Here are some aids that can help you
perform these types of runs more efficiently.

* quicksim -nodisplay. Probably the most effective way to limit display
updates is not to display anything. This method does not allow graphical
interactions, but you can still issue commands on the shell command line.

* Freeze Gadgets. The $freeze gadgets() function freezes all of the list columns
or traces. Thisis useful when you want to keep awindow at a specific time
without updating.

* Freeze Window. The $freeze window() function can be allows you to inhibit
all activity within a QuickSim Il window. It allows you to perform numerous
window operations without a window update after each operation.

For example, you could freeze the schematic view window, and then run a
script that changed the rise and fall property on every component. No window
updates are made until the window is unfrozen ($unfreeze window()), at
which time a complete update is made.

* Set Update Rate. When you invoke QuickSim |1, the default update rate is at
the end of a simulation run. This maximizes performance. Y ou can change this
rate for each window or each gadget (trace, or list column) in awindow.

since each stop updates all windows. Y ou can change a run-stop-run

Note forcefileto the single run type using the by saving the forces
waveform database after you 'do’ thisfile the first time. Discard the
stimulusfile, save the forces waveform database, and use with a
single run command.

@ Limit the of run-stop-run in your stimulus file as much as possible,

* Edit Gadget control. Each of the display rows or columnsis controlled by a
set of parameters. By selecting the gadget and clicking on the
[palette] Change button. A dialog box allows you to change this information.

QuickSim Il Advanced Training Workbook, 8.5_1 4-13
November 1995

Optimizing Simulation Runs

Estimating Accuracy

QuickPart Table

Better with Technology File BLM
001 Tp=5 gsim_allocate()
””””” 10 11 Ts=10/ ~ gsim_delay(1,15)
A
g Primitive
e

U

R SRai e uy

A .

C Sheet-Based Schematic

v Without Technology File
Worse

Delay = x

Fanout=3

TECHNOLOGY
FILE

Instance 1

Dela fanout*.25
Y7 (N aToO b;)

Delay =y

Fanout=1

\J

Instance 2

4-14 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Estimating Accuracy

Technology Files offer several features that help you accurately describe timing
and technol ogy-dependent data for a digital model. These features include:

* A robust timing model and a complete set of timing delay and constraint
statements.

* Theability to specify timing as a function of technology, circuit
connections, and environmental factors

* Provisionsfor timing accuracy during both pre-layout and post-layout
design phases. Technology Files promote design accuracy during all phases of
the design cycle without requiring multiple libraries. To produce accurate
simulation, the Technology File must provide equations to resolve such things
asload and slope dependencies. But these values are only available after
design layout. During pre-layout, however, the Technology File provides an
efficient mechanism to specify estimated layout data and to perform estimated
or approximate timing analysis.

After pre-layout design analysis, the designer can use layout tools to determine
exact values for parasitics or physical layout effects, that are back annotated
into the design. The design is then re-simulated with even greater accuracy.
Note that in both cases, pre-layout and post-layout, the designer uses the same
Technology File. However, because the Technology File has more design-
context information to work with after back annotation, the resulting values are
more accurate. In this way, the component accuracy increases throughout the
entire design cycle.

* Theability to specify actionsin responseto constraint violations. You can
instruct the simulator to display messages that you define, following the
detection of a constraint violation. Simulators perform this task in response to
aspecial clause you append to Technology File constraint statements. These
messages | et you report violations in the model (not just instance names). The
same clause can also instruct the ssmulator to set the states of functional model
signalsto different states as aresult of the violation.

QuickSim Il Advanced Training Workbook, 8.5_1 4-15
November 1995

Optimizing Simulation Runs

4-16

Estimating Performance (Run-time)

Better Primitive with QuickPart Table
Technology File with Technology File
P 1 To= =
p=5 001 Tp=5
B L ts0f) 101 |Ts=10
F
O
R
"Xl Sheet-based Schematic BLM
N =D | i I
o = gsim_allocate()
CE: Qoﬁj D— ~—~~~|gsim_delay(1,15)

Worse
Gate Count--proportional to run time... up to
memory limit
Memory Size--does design fit?
Library and Design local--invoke time, reload time
Workstation CPU speed--MIPS factor
Simulation Resolution
Kernel setups--timing mode, checking, reporting

Keeps (results saved)--full, windowed

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Estimating Performance (Run-time)

A simulation run is a series of stimulus-response eval uations performed on your
circuit. Asthe simulation progresses, the QuickSim 11 kernel must keep track of
stimulus (events), your design connectivity, timing information, and results. How
rapidly the kernel can process thisinformation is determined by the following
factors:

Gate count. Does the design fit in memory, or must sections of your design be
paged in and out of memory.

Network Logistics. Isyour design and library information located on the
workstation that is running the QuickSim |1 kernel. If not, and the design
doesn't fit in memory, network accesses are needed during the simulation build
process. These accesses require more time than accessing alocal design.

CPU speed. The simulation speed is proportional to the workstation speed. A
40 MIP machine will run a simulation about twice as fast as a 20 MIP machine.
Run your simulation on the fastest machine possible. Also, don't let other
processes bog down the simulation run.

Simulation Resolution. The kernel stores events--the more event positionsin
the event queue, the larger the event queue. Streamline your simulation by
specifying the resolution only to the accuracy you need in your design.

Kernel setup. Timing mode, checking, and reporting all add tasks to your
simulation that the kernel must compute. Therefore, start ssmple. If you are
only testing functionality, don't turn on timing mode. Add kernel checking and
message reporting only when necessary.

K eeps. Keeps are results that must be saved by the kernel.

o Full keeps save both net and pin information. Use the -full option only
when necessary (debugging contention problems).

o Windowed keeps (enabled with -window switch) save the information in
the kernel. Thisis very efficient. Be sure to write windowed keeps at the
end of asimulation, or information will be lost.

QuickSim Il Advanced Training Workbook, 8.5_1 4-17
November 1995

Optimizing Simulation Runs

4-18

Estimating Memory Requirements

Primitive with QuickPart Table
Better Technology File with Technology File
= Tp=5 001 |Ip=>
””””””””” L Ts=10 0101 (Ts=10
C
A
P BLM
A gsim_allocate()
C|: **************************** gsim_delay(1,15)
T
Y Sheet-based Schematic
D B
************************************ jDO}D
Worse

Gate Count / Instance count
o 1 meg of ram per 2000 instances (ASIC)
o “Your capacity may vary!”

Timing Build Duration: gives you an idea of the
size or number of gates / instances

Stimulus Vector file size (WDB): may not be
proportional to design size, but to results size

Keep list / run-time: windowed keeps must be
stored in the kernel (memory)

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Estimating Memory Requirements

Will your design fit in memory? This question is a very important one when it
comes to simulation performance. Once a design exceeds memory, or other
processes bump QuickSim 11, asignificant time hit isincurred due to paging to
disk. Here are some methods of determining if your design will remain in memory
during asimulation run.

Use the general guideline that each 2000 instances in your design require
1 megabyte of RAM. This assumes that these instances are modeled using
Table models. The storage is required for the functional model, the timing
model, and the event queue. In addition, about 15 megabytesis required to
keep the simulation kernel in memory.

» Actua memory requirements for design loading may vary widely. For
example, amemory instance may require 1 megabyte for the

Note functional model and the modelfile data storage. The above guidelines

assume atypical ASIC design, with SSI building blocks.

Don't run other jobs on the QuickSim Il workstation while your design is
loading or during the simulation run. Other job also require memory space, and
may cause parts of the QuickSim Il simulation to page to disk.

Design timing isloaded into memory from atiming cache located beneath the
design viewpoint. If you are performing a timing simulation, you must |oad
timing into memory also. For most designs, timing models require as much
space as functional models. Use the guideline that each 2000 instances require
about 1 megabyte of RAM for timing.

Stimulus vector sizes (waveform database size) is not so much an indicator of
design size asit is of results waveform database size. Large results waveform
databases and windowed keep caches consume memory also.

QuickSim Il Advanced Training Workbook, 8.5_1 4-19
November 1995

Optimizing Simulation Runs

4-20

Locating Existing Examples

$MGC_HOME/shared/training
o Contain links to training data (designs)

o Must be installed first (unique pkg)

$MGC _HOME/shared/examples

o Contains links to application specific examples
of design or process

o README files explain how to use the example
$MGC_HOME/shared/systest

$MGC_HOME/shared/pkg/systest_data

o Contains design data and scripts used for
testing applications

o Related application test scripts include:
test.cibr

test.des_arch

test.dmgr

test.dve

test.qcheck

test.gpart

test.quicksim

test.simview

test.timing

O O 0O OO0 oo oo

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Locating Existing Examples

The MGC tree contains many example files and designs that can be used to
understand the concepts presented in this training material. Thisinformation is
located in directories beneath the $SMGC_HOM E/shared/pkgs/pkg_name
directory. These directories are named as follows:

training -- This directory contains training data used with “ Getting Started”
training material, and the PL P and workshop training courses. Training datais
not automatically installed when an application package isinstalled. Dueto the
Size requirements of some of this training data, the package must be installed
separately. For information about installing training data, use the Mentor
Graphics self-documented install program.

examples -- This directory contains usage examples for procedural languages,
applications, and processes. Many of the examples show you how to set up the
user interface for applications. Other examples provide AMPLE usg, or cals
from AMPLE to “c” programs. These examples are useful for users who
customize the user interface, or write macros to work with the applications.

systest -- This directory includes a macro that invokes the package on
“systest_data” information and performs a diagnostic to determine if the
application is functioning properly. Y ou can use these test scripts as atemplate
for writing your own scripts to use within the application, or to invoke the
application in “batch” mode.

systest_data -- Many of the systest scripts require some type of design object
in order to run properly. These design objects are located in the systest _data
directory. The type of object you find depends on the application, but can
include schematic sheets, VHDL source code, INFORM library objects,
references, and configurations. Y ou can copy any of this data and modify it for
your own use. Y ou also use this data when performing the systest for any of
the MGC applications (see previous page).

QuickSim Il Advanced Training Workbook, 8.5_1 4-21
November 1995

Optimizing Simulation Runs

Running Application Systests

systest_data
test.quicksim i test.quicksimi alu_state '

* Contains test files to perform application tests

* test.quicksim does the following:
o A minimum acceptance test
o Installation verification
o Version number verification
o Authorization code verification

* You issue the following “batch” shell script:
$MGC_HOME/shared/systest/test.quicksim

4-22 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Optimizing Simulation Runs

Running Application Systests

Systests are application test utilities that are created by Mentor Graphics and
provided in the MGC tree along with the application. Mentor Graphics uses these
test asaquick install verification to insure that applications have been installed
properly. These systests are not run when the install occurs, but must be manually
run after installation of the software package.

The $MGC_HOME/shared/systest directory is alinking directory to the actual
systest scripts which reside under SMGC_HOME/shared/pkgs/pkg_name/systest.
These scripts are named “test.<pkg_name>" and exercise the corresponding
application. Y ou should adhere to the following procedure when running a systest
for aMentor Graphics application:

* Verify that you have read/write/del ete rights to the SMGC_HOME/tmp
directory. Most of the test scripts use this directory to create or copy systest
data. Thisdirectory is also used to create and compare results, and to output an
error file upon failure.

* Inashell, set your working directory to the SMGC_HOME/shared/systest
directory. Y ou should see many objects (links) named “test.<appl_name>".

* Execute the appropriate script by issuing it on the command line. Most of these
scripts do not use arguments or switches.

* When the script completes, examine the bottom of the shell transcript. It will
indicate whether the test passed or failed. If the test passed, you will seea

message like:
PASS: Quicksim SYSTEST output correct.

* |f thetest fails, you can examine the transcript of the process to determine
where the error occurred. Y ou will see the following messages:

FAIL: ERROR IN Quicksim SYSTEST OUTPUT!

Test miscompares are located in: /idea/tmp/quicksim.log
Application transcript is located in: /idea/tmp/quicksim.out

QuickSim Il Advanced Training Workbook, 8.5_1 4-23
November 1995

Optimizing Simulation Runs

Aliasing the quicksim Command

Why? To customize environment on invocation
e setup window configuration
* include signals in windows
* setup explicit keeps and keep types

e waveform database connections

Create a script named “quicksim_custom” calls the
real quicksim command

EXAMPLEL: quicksim_custom <design_name>

qguicksim $1 -tim typ -consm messages -spc on

EXAMPLEZ2:
guicksim_custom guicksim
_ copy _
your custom script it default MGC script
edi

.../quicksim/lib/qgsim.mod I

4-24 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Aliasing the quicksim Command

There are times when you want to modify the QuickSim |1 invocation defaults for
your site. For example, you always run in typical timing mode (the default is unit
delay) and have certain checks enabled. Of course, you can enter the proper
switch combinations each time you invoke QuickSim |1, but thereis an easier

way.

A command aliasis application invocation script that is called first, or instead of,
the normal script. The normal script that is called when you invoke QuickSim Il is
located at $MGC_HOM E/pkgs/quicksim/bin/quicksim. This script performs all
the necessary pre-invocation checks and validates switches. The alias command
should perform the same checking.

Simple alias scripts call the main invocation script using the new switch settings.
Thisis shown in the first example on the previous page. The script named
guicksim_custom calls the normal quicksim command using custom switch
settings.

If you want a more complex invocation, or would like all switches fully
customizable, you may want to copy the complete MGC invocation script, and
modify it to meet your needs. The Lab Exercise for this module has you copy and
customize such a script.

» Thisscript should not replace the default quicksim script. The MGC
default quicksim script must be in place to properly perform
Note application diagnostics. Also, don't placed your edited copy in the
MGC tree since the installation process may not properly preserveit.

The Design Manager allows you to customize a toolbox entry for QuickSim 11 that
changes the default invocation switch options. When you use this different
toolbox, QuickSim Il isinvoked with the new defaults. Refer to the “Tool
Invocation” in the Design Manager User's Manual for information on
customizing toolbox entries.

QuickSim Il Advanced Training Workbook, 8.5_1 4-25
November 1995

Optimizing Simulation Runs

Batch Simulation Example
Pre-build the following:
* Design Viewpoint
* Stimulus (into waveform database format)
* Timing (build and check using TimeBase)

quicksim <design_name> -tim typ -nod
< $project_x/batch/batchfile

What does batchfile do?
e Loads and connects waveform databases

e Sets up kernel for mode and checking

Sets up “keeps” list (what goes in results)
* Run command(s)
e Saving information (results, states, messages)

e EXit

4-26 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Optimizing Simulation Runs

Batch Simulation Example

Batch ssimulation allows you to run a displayless simulation using a batchfile to
control the simulation. It is useful when the simulation runs overnight or on the
weekend.

* Pre-build the following prior to invoking QuickSim I1:

(0]

Design Viewpoint. Use your viewpoint creation scripts to create the
viewpoint needed by your design. Also, perform configured simulation
design checks prior to invoking QuickSim 1. Thiswill flush out design
problems as seen in the context of the design viewpoint.

Stimulus wavefor m databases. Use SimView to build these objects and
compile all other forms of stimulus into waveform database form.

Timing. Use TimeBase to pre-build the timing cache for the type of
simulation you desire. This can help you eliminate invoke problems due to
timing builds.

* Specify on the command line those things that don't or can't change during the
simulation run. Thisincludes simulator resolution (-Time_Scale), displayless
mode (-NODisplay), viewpoint, interface, and abstract signal file (-ABSfile).

» Specify in the batchfile script all setup conditions that can be changed during
the simulation. This batchfile should include:

0

(0]

L oading and connecting waveform databases.

Setting up the kernel for proper timing and error checking.
Setting up keeps (what goes into the results waveform database)
The run command(s)

Saving information (results, states, messages)

Proper exiting. Y ou may want to perform several runs, so exiting may not
be necessary before the next simulation is run.

QuickSim Il Advanced Training Workbook, 8.5_1 4-27
November 1995

Optimizing Simulation Runs

Lab Overview
In this lab exercise you will:
* Perform a QuickSim systest to verify QuickSim Il
 Perform a DVE systest

* Examine systest data and examples
Create a test design from the examples

* Estimate the time of a simulation run
Change setup and modeling conditions

4-28 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Optimizing Simulation Runs

Lab Overview

Thislab exercise will demonstrate performance trade-offs in a QuickSim ||
simulation. You will use an existing systest design to demonstrate these trade-
offs.

In the lab exercise for this module, you will:

Perform a QuickSim systest to verify that QuickSim Il and supporting
applications are properly installed and running.

Perform a DVE systest to verify that this application isinstalled and working
properly.

Examine systest_data and examples. You will look for specific examples of
design practice and userware creation. You will create atest design from the
examples.

Estimate the time of a simulation run using the principles and formulas you
were given in the lesson material. Y ou will also change many of the setup and
modeling conditions to determine their effect on performance.

Create an ASCII back annotation object to hand-annotate your design. Y ou
will import thisinformation into a back annotation object. Y ou will then
change one of the models in your design, to invalidate the back annotations.
Finally you will use the Design Architect to merge al non-protected back
annotations into the design.

QuickSim Il Advanced Training Workbook, 8.5_1 4-29
November 1995

Optimizing Simulation Runs

Module 4 Lab Exercise

If you are reading this workbook online, you might want to print
out the lab exercises to have them handy when you are at your
Note workstation.

N

Procedure 1: Running the QuickSim Il Systest

Thislab procedure will show you how to use the system test scriptsin the MGC
treeto test QuickSim Il and support utilities. The test scripts are accessed from a
linking directory at $SMGC_HOME/shared/systest.

1. Inanew shell, set your working directory (cd command) to
$MEC_HOVE/ shar ed/ syst est

2. Examine the contents of this directory, showing any linked text.

Note that these objects are really links to objects within the
$MGC_HOME/shared/pkgs directory. Each object is an executable script and
Is usually accompanied by systest data.

3. Examine the SMGC_HOME/shared/pkgs/quicksim directory. Y ou should see
the following objects:

syst est
systest data

4. Now examine the contents of the systest data directory. Y ou should see the
following objects:

alu state
al u_state.ngc_conponent. attr
qui cksi mr ef

The alu_stateis an MGC component used as the design for the test. The
quicksm.ref object is afile that contains valid results. The results of
subsequent tests are compared to thisfile.

4-30 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

5. Perform the QuickSim Il system test in ashell asfollows:
a. First, set your working directory to SMGC_HOME/shared/systest.

b. Then issue the following command:
SHELL> test. qui cksim

Asthe test runs, the transcript informs you of its progress:

-------------- Qui cksi m SYSTEST ---------------
Copyright (c) 1992
Ment or G aphi cs Corporation
Al Rights Reserved

The purpose of this SYSTEST is:
1. A mninmmacceptance test
2. Installation verification
3. Version nunber verification
4. Authorization code verification

All test results are logged in "$MC HOVE/ t np/ qui cksi m | og"
St andard output of the Quicksimsession is |logged in
"$MEC_HOME/ t np/ qui cksi mout”. These files are ASCI| text
files, and can be examned with file editor of your choice.

Successful conpletion of this test requires it be executed
fromsystest directory "$M3C HOVE/ shared/ systest”. You mnust
have RFW Del perm ssion for the "$M3C HOVE/ t mp" directory.

BEG N. Qui cksi m SYSTEST Wd May 26 13:51:09 1993
Copyi ng the design to $MSC_HOWE/ tnp/ al u_stat e
Ex: qui cksi m $MC _HOVE/ t np/ al u_st ate/ vi ewpoint -timtyp
Filtering output results...
Conparing transcript...
PASS: Qui cksi m SYSTEST out put correct.

-- Qui cksi m SYSTEST COWLETE Wd May 26 14:00:32 1993 --

If an error had occurred, instead of “PASS:” you would see:

FAIL: ERROR I N Qui cksi m SYSTEST OUTPUT!
Note Test m sconpares |oc: $MSC HOWE/ t np/ qui cksi m | og
Appl transcript loc: $M3C HOVE/ t np/ qui cksi m out

QuickSim Il Advanced Training Workbook, 8.5_1 4-31
November 1995

Optimizing Simulation Runs

6. Examinethe test results.

Test results are placed in $SMGC_HOME/tmp directory and are named:

qui cksi m 1 og (the shell transcript from "BEGIN" and std error)
qui cksi m out (actual run resultsto be compared to quicksm.ref file)

Examine the ASCII quicksim.log and quicksim.out files.

How long did it take for the test to run?

What isthe version of QuickSim 117?

7. Perform the DVE system test in the shell asfollows.

a. Remember to first set your working directory to the
$MGC_HOME/shared/systest directory.

b. Then issue the following systest command:

t est. dve

This script uses atar'd version of the design that is untar'd prior to test, as
shown in the following transcript:

Tar: bl ocksize = 20

I nvoki ng Desi gn Vi ewpoi nt Editor

Wed May 26 16:00: 43 1993

Wed May 26 16:01:50 1993

Conparing transcript...

PASS:. Design Vi ewpoi nt Editor SYSTEST output correct.

----- Desi gn Vi ewpoi nt Editor SYSTEST COWPLETE -----

4-32 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Procedure 2: Test Simulation Performance

In thislab procedure you will use the alu_state design to test the performance of
QuickSim |1 using different setup and modeling criteria. Y ou will enter the datain
the following chart that will help you understand performance trade-offs.

QuickSim Il Performance Tests
Test # 1 2 3 4 5
Elapsed Time
1. Using the Design Manager, copy the alu_state design to SMGC_HOME/tmp.

Choose the option that does not modify references.

Source: $MGC_HOME/shared/pkgs/quicksinVsystest_data/alu_state
Dest: $MGC_HOME/tmp

Set your working directory to SMGC_HOME/tmp and invoke QuickSim [l on
the design viewpoint named “viewpoint” as follows.

SHELL> qui cksi m al u_st at e/ vi ewpoi nt

L oad waveform database ...alu_state/test vectors as ‘forces.
Open the root sheet.

View all of the stimulusin the Trace window.

To do this, select al of the inputs and then click on the
[Waveform Editor] Edit Waveform palette icon.

Create the List window including all of the output signals.

Display the Transcript window in the vacant area above the List and schematic
view windows.

QuickSim Il Advanced Training Workbook, 8.5_1 4-33
November 1995

Optimizing Simulation Runs

8. Create an AMPLE script that does the following:
* Startsalocal runtime timer
* Runsfor 65000 nanoseconds
* Savesthe elapsed timein avariable named “finish”

When you have completed your function, it should look like the following:

{

| ocal start = $real time(); //start tiner

run 65000;

| ocal finish = $real tine(); //stop tinmer

$witeln("Tine Elapsed: ",finish, " seconds"); //transcript
}

Be sure to save your script:

9. Perform Test# 1 as described in the following list:

a. Issuethe following commands to perform the first smulation run.

$writeln("Testl: Default invocation with keep List window")
dof path_to_script

b. Now enter the runtime datain the table under Test# 1 (from your Transcript
window) next to “Elapsed Time”.

10. Perform Test# 2 asfollows:
a. Reset the simulation without saving anything.
b. Enable“Typ” timing using the Setup > Kernel (Analysis) dialog box.

C. Issuethe following commands to perform the simulation run.

$writeln("Test2: Typical timing with keep List window")
dof path_to_script

d. Enter the runtimein the table under Test# 2.

4-34 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

11. Perform Test# 3 with the following:
a. Reset the simulation without saving anything.

Enable all checking and messages using the Setup > Analysis dialog box.
Make sure that “Typ” timing mode is still enabled.

c. Issuethe following commands:

$writeln("Test3: Full timing and constraint checking")
dof path_to_script

Y ou should get a Simulation M essages window reporting spikes and
hazards. Close this window.

d. Enter the datain the table under Test# 3.
12. Perform Test# 4 with the following:
a. Reset the simulation without saving anything.

b. Select al of the signalsin the List window and add them as windowed so
that these signals are not Kept. Use the Add > K egps menu item. Y ou must
“Setup Keeps’ window for 65000 nanoseconds.

c. Closethe List window.

d. Issuethefollowing commands:

$writeln("Test4: Typical timing-full timing and constraint checking")
dof path_to_script

e. Enter the datain the table under Test# 4.

QuickSim Il Advanced Training Workbook, 8.5_1 4-35
November 1995

Optimizing Simulation Runs

13. Perform Test# 5 with the following:
a. Exit QuickSim Il without saving anything.

b. Invoke QuickSim Il in the same shell asfollows:
SHELL> qui cksim al u_state/viewoint -nodisplay

When QuickSim |1 invokes, there will not be a prompt. Y ou can still enter
commands in the shell entry box.

c. Load the waveform database into forces as follows:
$$load_wdb("$MGC_HOME/tmp/alu_state/test_vectors", "forces")

d. Issuethefollowing commands:

$writeln("Test5: Typical timing-full timing and constraint checking")
dof path_to_script

e. Enter the datain thetable under Test# 5

—

Exit QuickSim |1 asfollows:
$$force_exit()
14. Now examine the datain the table and draw conclusions about the
performance hit that these simulation modes incur. Note that significant

performance was gained running in nodisplay mode. Thisis the mode that
batch simulation uses.

This completes the lab exercise.

4-36 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Optimizing Simulation Runs

Module 4 Summary

In this module, Optimizing Simulation Runs, you learned about the factors and
trade-offs that contribute to simulation performance. Y ou also performed a batch
simulation, saving the results, and examining them with SimView.

There are many setup and design considerations that affect simulation
performance. By knowing and choosing the proper balance for your design and
environment, you can optimize QuickSim |1 performance.

o The simulation workstation should be a high-performance (high MIPS)
machine with lots of RAM. The design should fit completely into memory
when loaded. All design data should be on the local disk.

o Stimulus should be pre-loaded into a waveform database and should not be
of the run-stop-run type. Use any method to create this stimulus. Keep only
the results that you need to see, since keeping results slows the simulation
run. Windowed keeps are much faster than non-windowed keeps, since they
are kept in the kernel (but must be saved at the end of the ssmulation run).
The full option also keeps driving pin information, and should only be used
during critical debug.

o You can estimate accuracy, run-time, and memory requirements based on
the size of your design, and the timing models used.

The MGC tree contains design and userware examples in the shared/examples
directory. A systest directory allows you to test QuickSim I and supporting
application. The systest designs and scripts provide useful examples of batch
simulation with checking. Y ou can cut and paste sections of these scripts to
help you build your own batch files.

Y ou perform batch simulations to save run-time (night or weekends), and you
can view your resultsusing SimView. SimView provides al of the viewing
and waveform analysis portions of QuickSim I, but without creating any
results. In addition, SimView does not consume a QuickSim license.

The next module, Module 5, details Viewpoint considerations, back annotations,
and DVAS operations.

QuickSim Il Advanced Training Workbook, 8.5_1 4-37
November 1995

Optimizing Simulation Runs

4-38 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Module 5
Viewpoints and Annotations

Module 5 Overview 5-2
L essons 5-3
Design Viewpoint Review 5-4
Design Latching 5-6
Back Annotation Benefits 5-8
Back Annotations 5-10
Merging Back Annotations 5-12
Invalidation of Back Annotations 5-14
ASCII Back Annotations 5-16
ASCII Back Annotation File Syntax 5-18
ASCII Back Annotation File Examples 5-20
Sharing Viewpoint Annotations 5-22
Design Viewing and Analysis Support 5-24
Selection Examples 5-26
Minimize Impact of Build Timing 5-28
Lab Overview 5-30
Module 5 Lab Exercise 5-32
Procedure 1: Creating aDVE Script 5-32
Procedure 2: Managing Annotations 5-33
Procedure 3: Latching Design Objects 5-36
Procedure 4: Selection using System Properties 5-37
Procedure 5: Connect and Merge Annotations 5-38
Module 5 Summary 5-43
QuickSim Il Advanced Training Workbook, 8.5 1 5-1

November 1995

Viewpoints and Annotations

Module 5 Overview

Viewpoint

Concepts
About This Training Workbook I

Setting Up for QuickSim Il Latching
the Version

Writing Batch
Viewpoint Scripts

Advanced Stimulus Techniques I

Debugging Timing and Unknowns

Optimizing Simulation Runs Back Annotation
Concepts

Module

Viewpoints and Annotations :

Custom Design Checking I

Importing or
Exporting
Annotation Files

Multiple Back
Annotations

Additional Topics:
Appendix A: Processes Using QuickSim Il
Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

5-2 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Lessons

On completion of this module, you should:

* Know how to create a custom viewpoint creation script, and to create a script
the incrementally modify a design viewpoint.

* Beableto latch your design to the current version of components, and to
update the latch whenever the new versions are stable.

* Beableto create a back annotation ASCI| file, and import the file into a back
annotation object.

* Be ableto merge aback annotation object into your design, and know the
consequences of such amerge on reusable components.

* UseDesign Viewing and Analysis Support (DVAS) selection techniques to
select using System Properties and wildcards.

~ Youshould alow approximately 1.5 hours to compl ete the L esson,
Lab Exercise, and Test Your Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5_1 5-3
November 1995

Viewpoints and Annotations

Design Viewpoint Review

Benefits through design configuration/viewpoints

5-4

Lock the design at its current state

Check the complete design hierarchy
Selectively exclude portions of the design
Change, add, delete properties--back annotation
Simulate using mixed-models

Change the model definition type--without re-
invoking the simulator

Update a model to the newest version
Share models--called reusable models

Design viewpoint saves disk space by only
referencing components used within the design

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Design Viewpoint Review

The following list presents many of the benefits and capabilities that are available
to you through design configuration. Design viewpoints contain the configuration
information, and give you the ability to:

Lock thedesign at itscurrent state. Thislets you simulate or layout the
design in afixed state, while others continue working on the source of the
design. This processis called latching the design viewpoint.

Check the complete design hierarchy. Thislets you run default design syntax
checkson all levels of the design hierarchy. It also lets you run custom name
and electrical rule checks (which you can write using QuickCheck).

Selectively exclude portions of the design. This lets you simulate a small
portion of the design without taking the time to load the rest and calcul ate
timing. This feature isimplemented through setting the primitive level. Y ou
can create an annotation to the models (typically functional blocks) in the
design you want to exclude by setting the Model property to “null”.

Change, add, or delete properties. In most applications that use a design
viewpoint, you can add, change, or delete properties without affecting the
source. Thisfeatureis called back annotation.

Simulate mixed-levels. This lets you simulate using different types of models
(such as VHDL descriptions, schematics, QuickPart Tables, and BLMS) in the
same design, and is called mixed-level simulation.

Change the model definition type. This lets you change the type of model
you are using within the ssmulator without re-invoking the simulator, such as
changing a VHDL model to a schematic. Thisis called changing models.

Update a model to the newest version. This lets you make changes to the
model in Design Architect and reload the model in the simulator without re-
invoking the simulator. This feature is called updating models.

Share models. Thisfeatureis called reusable models. Also, the design
viewpoint saves disk space by only referencing components used within the
design, instead of copying every component to a new database.

QuickSim Il Advanced Training Workbook, 8.5_1 5-5
November 1995

Viewpoints and Annotations

Design Latching

]

Ii"llQ design_x
Syt

QumkSmIIgjj % dvpt i

m:: gsim.vpt

A, |
EYAVAYAYS })ﬁ fffff |
Accusim dvpt

=]y

=

design_arch

Latching/Unlatching operations:

* Latch aviewpoint -- all objects are frozen
Update latch -- unlatch and re-latch to newest
Unlatch the design viewpoint

Controlled latching -- latch specific objects
View references/versions

5-6 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Design Latching

When simulating a design, you can “freeze” (latch) the design in its current state
so that you can perform simulations over a span of time without being affected by
daily changes made by others on your design team. Also, you do not want to have
to wait until the design editing or layout is done before you can continue to work
on the design.

To accomplish this, you need to latch and then save the design viewpoint.
Latching prevents the currently referenced versions of objects from being deleted,
and specifies that only these versions should be used with the design viewpoint. It
also lets others continue with design capture or layout on other versions from
which to perform their tasks. Once a design viewpoint is latched, the design
(design viewpoint) does not use an updated version of a component until the
design viewpoint is specifically updated. Each time an application isinvoked on
that design viewpoint, the application uses the latched version of the referenced
objects.

Y ou can latch adesign viewpoint using DVE or QuickSim Il. The latching
capabilitieslet you:

» Latch (or freeze) aversion of every object referenced by the design viewpoint.
These objects include components, models, component interfaces, VHDL
source, and back annotation objects.

* Update the entire design to use the latest component and back annotation
objects. This action unlatches the design and re-latches with the newest
Versions.

* Unlatch the design viewpoint. This lets the design viewpoint use the newest
version of each object each time the design viewpoint is opened. Models must
be reloaded in order to view the latest version in the current analysis session.

* Control the latching or unlatching of a specific component or back annotation
object. Thislets you specify when you want the design viewpoint to use the
updated version of the component or back annotation object.

* View references and version numbers of some or all of the objects used by the
design viewpoint.

QuickSim Il Advanced Training Workbook, 8.5_1 5-7
November 1995

Viewpoints and Annotations

Back Annotation Benefits

Back annotation--adding or changing property value

5-8

Estimating Timing Values.
Back-annotate net segment delay information

Floor Planning.
Using derived geometrical information to improve
timing calculations

Layout Timing.
Back-annotating capacitance data from layout

Timing into Libraries.
Back-annotate cell schematics with the layout-
extracted data

Reference Designators.
Back-annotate reference designator properties

Pin Numbers.
Actual pin numbers used at PCB layout

Generic Properties.
Any property (power dissipation, temperature)

Model Selection.
Configure design to use given set of models for
that particular design viewpoint

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Back Annotation Benefits

Back annotation is the method of adding or changing property value design
information. Y ou can back-annotate properties in most applications that use a
design viewpoint. Some of the uses of back-annotated properties are:

Estimating Timing Values. Provide the smulators with values of timing
properties that take into account the effects of circuit connectivity (loading). If
you are using Quad Design PCB applications, you can back-annotate net
segment delay information for extremely accurate board level simulations.

Floor Planning. Improve the accuracy of estimated timing analysis of a high-
level layout or afloor plan of the major blocks of your design, by using the
derived geometrical information to improve timing calculations.

Layout Timing. Account for interconnect capacitance by back-annotating the
parasitic capacitance data from layout before the timing values are cal cul ated.

Timinginto Libraries. Timing analysisis often done on acell, out of the
context of any design, before it isinserted into alibrary. Therefore, it is helpful
to back-annotate the schematics of each cell with the layout-extracted data,
such as net capacitances and actual transistor sizes.

Reference Designator s. Back-annotate reference designator properties and
values to make PCB part packaging information available for design analysis
or reports generated from the design viewpoint.

Pin Numbers. Make the schematic reflect the actual pin numbers used at PCB
layout by assigning the pin numbers as back annotations.

Generic Properties. Add additional information to the design through any
arbitrary property (such as power dissipation or temperature).

Model Selection. Store annotations to model properties that can configure the
design to use a given set of models for that particular design viewpoint.

A back annotation object is a special database object that contains the back
annotation data. Back annotation objects are explained further in the following
topics.

QuickSim Il Advanced Training Workbook, 8.5_1 5-9
November 1995

Viewpoints and Annotations

Back Annotations

Back annotations may be opened from Design
Viewpoint pop-up menu

5-10

Back annotations are managed separately from
the design. They are connected and disconnected

Priority of BAO’s is dependent on order of
connection - the last connected object has highest
priority

ASCII BA’'s may be imported and exported

Can be shared between viewpoints
e.g. between PCB and simulation

Recommended input currently through ASCII file
format

Can also use DFI

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Back Annotations

If you are working with multiple back annotation objects, you need to be aware of
where property edits are being stored.

To help you maintain and organize your back annotations into specific groups of
changes, DVE provides many menu items, commands, and functions. These
capabilities include: connecting, disconnecting, importing, exporting, prioritizing,
and editing back annotation objects.

When you make a property change to your design through back annotation, the
application needs to know which back annotation object should receive the edit.
This back annotation object is called the “active” back annotation object. The
“active” back annotation object has the highest priority, 1, and it receives al
property edits until anew (different) back annotation object is specified. There are
four ways you can specify a back annotation object as“active’:

1. Supply adifferent back annotation name when executing a back annotation
menu item, command, or function.

2. Interactively select a specific back annotation object in the Design Viewpoint
window.

3. Make a specific Back Annotation window active and issue one of the property
maodification commands.

4. If no back annotation object has been specified during this session, the back
annotation object with the priority of “1” (highest) is active.

To change the priority of back annotation objects, you need to disconnect and then
connect them in a particular order to set your new priority. To disconnect a back
annotation, issue the Design Viewpoint > Disconnect Back Annotation menu
item. To connect a back annotation, issue the Design Viewpoint > Connect Back
Annotation menu item. If you currently have a back annotation object connected
to your design and you connect an additional back annotation object, both remain
connected with the new back annotation object having the highest priority. All
back annotation objects remain connected until they are disconnected.

QuickSim Il Advanced Training Workbook, 8.5_1 5-11
November 1995

Viewpoints and Annotations

Merging Back Annotations

* If amergeis performed, it is done directly into the
Design Sheet

* Merge replaces sheet property values with those
from all connected BA objects

* A successful property merge removes the
property from the back annotation objects

e NOTE:
Back annotations are not merged into protected
objects or properties

e CAUTION:
DO NOT use merge on instances of component
models that are reusable...all instances will
change

5-12 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Merging Back Annotations

Y ou can merge back annotations into the design sheet when you are operating
Design Architect in the context of a Design Viewpoint. When a schematic sheet is
open with back annotation displayed and schematic edits “on”, you can merge all
back annotations shown on the current schematic sheet using the Merge
Annotation command.

The Merge Annotation command replaces the schematic sheet property values
with the back annotated property values from the connected back annotation
objects on the current viewed sheet.

After this command is executed, if you decide to save the sheet, the back
annotation objects will no longer contain the property values which were
successfully merged into the schematic sheet.

Property values may not be successfully merged, for example, if the property has
a protection switch value that does not allow changes to the schematic sheet value.
These values will remain in the back annotation color (red) rather than the merged
color (dark blue).

» If youintend to perform a merge, be sure to disconnect the back
annotations that you do not want merged. All back annotations that
Note are connected will be merged. Once merged, the operation cannot

be reversed.

A If the schematic sheet is used in more than one place in your
/1 design, when you merge back annotation to that one sheet, all
Caution other components that use this sheet see the changes. So, do not
merge to reusable sheets any changes which are specific for just

one occurrence.

QuickSim Il Advanced Training Workbook, 8.5_1 5-13
November 1995

Viewpoints and Annotations

Invalidation of Back Annotations
Back annotations can become invalid when you:

* Change models

Delete an annotated object

Connect net with annotations to another net

Delete a pin, other pins can loose annotations

Update models

Invalid back annotations are deleted when you save
the design viewpoint.

Example: Changed model on instance 1$2
Annotations on I$2 and beneath become invalid.

]

1$1

1$3 1$4

5-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Viewpoints and Annotations

Invalidation of Back Annotations

Back annotations can become invalid when you either change models or update
models. All invalid back annotations are deleted when you save the design
viewpoint.

When you change models, all back annotations for a specific instance, and all of
the design hierarchy below that instance, are no longer valid. For example, if you
changed instance 1$2 (as shown in the figure on the previous page) to another
schematic or aVHDL model, the annotations on this instance, and all those
hierarchically beneath it, would become invalid.

When you update a model, only those back annotations that were associated with
the deleted or changed instance, net, or pin become invalid. If you delete an
instance from a sheet, all back annotations attached to or below that instance
become invalid. If you connect one net to another net, the back annotations for
one of the two nets become invalid because there is now only one net. If you
delete a pin, the back annotations on the other pins can also become invalid, due to
the pin identifiers changing.

QuickSim Il Advanced Training Workbook, 8.5_1 5-15
November 1995

Viewpoints and Annotations

ASCIlI Back Annotations

* Used for property changes from applications that
do not create “compiled” back annotations

 Can be “imported” into a back annotation object

 Back annotation object can be “exported” to
create ASCII back annotation file

Import ASCII
back annotation -
file in DVE
Ceate an ASCII Back Back
(ASCII editor) Annotation Annotation
File Export (Create) Object
ASCII BA file
Use DVE
5-16 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Viewpoints and Annotations

ASCII Back Annotations

ASCII back-annotation files are the recommended method by which you and third
party vendors can annotate data into the design. ASCII back annotation files are
especially useful to add large number of back annotations, rather than entering
each back annotation interactively within an application.

Using the Notepad text editor, you can create ASCII back annotation files that can
be imported by DVE into back annotation objects. Y ou can also create an ASCI|
back annotation file from a back annotation object in DVE. Then you import the
file using the DVE to make a back annotation object usable in QuickSim 1.

After creating an ASCII back annotation file, you must import it using DVE in
order to use it with the design viewpoint. Importing an ASCI| file createsaBAO
and connects this object to the design viewpoint. After the import is complete, you
can open the BAO from DVE, and to use it in the target application, such as
simulating the design with the changes.

An ASCII BA fileincludes special instructions used during import, individual
back annotations, and comments. The back annotation file format will be shown
In the next topic.

If you want to edit manually a BAO with Notepad editor or any ASCII editor, you
have to make ASCII file of it. Thisisdone in DVE by export command. “ Export”
isdone into a specified ASCII file. It has automatically the correct syntax.

For details about building and formatting ASCI1 back annotation files,
“ refer to “ASCII Back Annotation Files” in the Design Viewpoint Editor
User's and Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 5-17
November 1995

Viewpoints and Annotations

ASCIl Back Annotation File Syntax

Syntax Summary:
Character | Description

Defines acomment line. Followed by space.

Defines attached word as a directive, followed by the
arguments of the directive.

\ Escapes character that followsit. Only valid inside of
quoted strings.

A Specifies current context of the design.

v Specifies next instance closer to design root.

Directive Summary:

Directive Description

#! context Sets naming context for relative names.

#!header Required directive; specifies release version

#! property Assigns property name and its owner type to property
identifier.

#'synonym file Pathname to ASCII cross-referencefile.

#l'synonym_inst Name of property that contains back- annotated
synonym value for instances.

#l'synonym_net Provides name of property that contains back-
annotated synonym value for nets.

#lsynonym_pin Provides name of property that contains back-
annotated synonym value for pins.

Property annotation line:
design_path {value type prop_name-id prop_value}

5-18 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

ASCIlI Back Annotation File Syntax

A structured format is required in order to properly import ASCII back
annotations. Here are some of the syntax rulesfor thisfile:

* Comment. A line whose first two non-whitespace characters are a pound sign
(#) followed by a space (the space is required)

* Directive. Statement (similar to acommand) whose first non-whitespace
charactersare “#!” . Directives are used to set conditions in the ASCI|I file.
Back annotation directives are summarized in the table on the previous page.
The first non-comment line of the ASCII file must be the # header directive.

* Property annotation lines. There are four fields in the property annotation
format. The curly brackets ({}) around the property name and value pair means

that the pair is repeatable.
desi gn_path {value_type property nane-id property val ue}

o design_path. A full pathname or the relative pathname using the current
naming context established by the #! context directive.

o value type. Specifiesthe type of property value. Valid entriesare N
(numeric), S (string), T (triplet), or E (expression) and are not case
sensitive.

o property _name-id. Specifies the name of the property. The #! property
directive can set the property name or a numeric identifier.

o property value. A quoted string with no limit to its length.

Y ou can combine all back annotations that are relative to the current context on
the same line as the #! content directive as shown in the following line of text:

#lcontext /cpu/io/UL inl S cap 10pf out Nrise 12
out N fall 12

QuickSim Il Advanced Training Workbook, 8.5_1 5-19
November 1995

Viewpoints and Annotations

ASCIlI Back Annotation File Examples

#! header 1.0

This file annotates the reference designators in the design
| $1 s REF U1

| $231 s REF U2

| $24 s REF U3

#! header 1.0

#! property LOAD FACTOR PIN N O

#! property TRACE_TYPE NET S 1

#! property tenp instance E 2

#! property timng INSTANCE T 3

#! cont ext /

Next statenent will annotate prop pair TRACE TYPE/grid to
the specified object. The id of "1" has been defined in a
previous property directive statenent to nean "TRACE TYPE"
and grid has been defined in that sane directive to be of
type STRI NG

nmux/ground 1 grid

core/vcc 1 wide

Next statenent annotates 'mn,typ, max' TRI PLET prop val ue.
regi ster_bank 3 "6 8 10"

Next, set context to an instance, and annotate its pins
#! cont ext mux/ buf fer

outa 0 2.334

outb 0 2.335

outc 0 2.334

outd 0 2.332

next statenent establishes /nmux/ctrl has current context
#!context ../ctrl

The next statenents annotate several EXPRESSI ON property
values. Like all values, any enbedded bl anks nmean you need
to enclose the value in quotes.

i $324 2 x+3

i $335 2 (x+3)

i $441 2 "x + 3"

i $442 3 "6 8 12"

And here's a few than don't use the property ids

i $445 s position "upper left"

i $446 N size 12.34

5-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

ASCIlI Back Annotation File Examples

The previous page show severa examplesthat illustrate ways you can create
ASCII back annotation files. The following paragraphs give some helpful hints
that will aid you in creating your files.

The naming context lets you re-use a portion of the hierarchical pathname. The
#!context directive was kept simple in order to minimize the effort to switch the
naming context. Thiswas done so that annotation of more than one pin on an
instance could most likely benefit from changing context to the instance that the
pins are on.

A property name can be either encoded as an integer ID or used directly. To
minimize the length of property names, you can use an identifier (ID) in place of
the property name and value_type. Y ou should assign an identifier using the
#lproperty directive when anameisto be used multipletimesin thefile. You can
still use the property name in the file even though an identifier has been assigned
to it.

If you are importing large ASCII files, you can improve the performance by using
the -Clear option on the $import_back annotation() function and by turning off
the maintenance of back annotations with the $maintain_back_annotation()
function.

For details about building and formatting ASCII back annotation files,
“ refer to “ASCII Back Annotation Files” in the Design Viewpoint Editor
User's and Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 5-21
November 1995

Viewpoints and Annotations

Sharing Viewpoint Annotations

D
ASCII Import > VPT
\C

/ (root)

PAL1 I ASIC1 I ASIC2 I
Temperature = 90 Temperature = 100 Temperature = 70
Voltage = 3 Voltage = 5.5 Voltage =5.5
Process ="A" Process ="B" Process ="W"
Technology = P1 Technology = 1u Technology = VGX

a ') e —
ASCII Export

* ASIC on a Board--need to include ASIC
information in board viewpoint

* Add parameters from lower viewpoints as
properties on instances in root schematic

* Import annotation from lower viewpoint with
correct context

5-22 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Sharing Viewpoint Annotations

During the design process, you may have functional blocks on a board that
represent components, such as ASICs and PALS, that were simulated separately
using their own viewpoint and back annotation data. These components usually
require different values for the same parameter. In addition, unigue timing
information is contained in each back annotation object.

To manage thisinformation at the board or system level, you must make sure that
thisinformation is preserved in the new viewpoint for this system level. The
easiest way to accomplish thisisto do the following:

* Add parametersasinstance properties. Add the viewpoint parameter
information to the back annotation object as instance properties for each of the
lower level instances. For example, add a property named “Temperature” with
avalue of “100” to ASIC1. Also add the other three parameters (Voltage,
Process, Technology) as properties. These changes are added to the back
annotation object for ASICL1.

* Export back annotations. When you export a back annotation object, it
convertsit to ASCII formatted text. It can be edited, merged, and then
converted back into a back annotation object.

* |mport back annotationsto system. When you import ASCII back
annotation information, you can specify the context of that information. This
allows you to import several sets of back annotations at the system level and
still maintain the instance path that the annotations came from.

It is recommended that you maintain separate back annotation objects at the
system level, connecting all of them to the same viewpoint. Since the context
of each back annotation object isto a separate instance, none of the entries will
conflict.

QuickSim Il Advanced Training Workbook, 8.5_1 5-23
November 1995

Viewpoints and Annotations

Design Viewing and Analysis Support

* Bound together with DVE and QuickSim Il

e Provides:

5-24

o

o

o

Sheet Viewing

Synonyms

Naming Context

Selection

o by Property and by Name

o use UNIX expressions for selecting objects
Database query and access functions
Available in DVE, Quick* applications and PCB

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Design Viewing and Analysis Support

Design Viewing and Analysis Support (DVAS) is bound into the QuickSim Il
process during invocation. It provides many selection, naming, and database
guery functions that allow you to get the information required by your tasks.

DVASisavailablein DVE, QuickSim Il (and other Quick* applications), and in
PCB. Y ou can perform the following tasks using DVAS utilities:

Sour ce Viewing. This allows you to view the root sheet of a design, the sheets
of lower level instances, and the VHDL source for a design or model. Y ou can
select an object and view the schematic or VHDL source, or you can specify
the path to a source view, and view it in that context.

Synonyms. When you use the Synonym command or add a Probe to your
design, DVAS manages the synonym that is created. Y ou can use synonyms
interchangeably with the object name in adesign. The properties INST, NET,
and PIN also provide synonym names for design objects.

Naming Context. Thisisthe current reference for all object paths. When you
first invoke QuickSim I1, the root (/) is the naming context. When you view a
new source schematic or VHDL, the naming context is automatically changed
for you. Y ou can also specify a naming context with the Set Naming Context
command, but remember that an active source view takes priority to this
command. DV AS uses the naming context to manage all object path naming
for you.

Selection. Y ou can use Select > By Property and Select > By Nameto
perform local or global selection. This allows you to manipulate properties or
object groups. UNIX expressions and syntax can be used in this selection
process. Some examples are shown on the next few pages.

Database access. System functions alow you to directly access EDDM design
data. Y ou can use system properties (see examples on page 5-26) such as
$primitive, $driving_pin, $external, etc.

QuickSim Il Advanced Training Workbook, 8.5_1 5-25
November 1995

Viewpoints and Annotations

5-26

Selection Examples

Select all capacitors in board design
SELect BY Property REF C.* -reg -instance

Select all instances at one level of hierarchy
SELect BY Name /i$1/.* -instance -reg

Select all instances
SEL BY Prop $all -instance
SEL BY Prop $primitive -instance

Select all components with given filesystem path

SEL BY Prop $defining_comp_name
user/design/block

Other useful system properties
o Sinstance_pathname, $instance_name
o $external, $global_net

o $driving_pin, $driven_pin, $io_pin, $ixo_pin

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Selection Examples

Examples are usually the best way to show selection concepts using system
properties and wildcards. Here is a description of some examples.

To select all capacitors on aboard, you could select al the REF properties that
begin with a“C” (since thisis a common reference designator for capacitors). Ref
properties with values like C123, C007 and CXXX will be selected.

To select all instances at alevel of hierarchy, you can use an instance path and
then wild card all of the objects within that instance. Be sure to use the -instance
switch to select only instances.

To select al instances within a design, use the $all system property modified by
the -instance switch. The syntax is shown in Example 3 on the previous page.

To select objects by their filesystem path, you can use the
$defining_component_name system property and provide afilesystem type path
to the object.

Y ou can use the following system properties to allow you to select or unselect
design objects:

* Sinstance pathname. Type I(nstance). True if path provided is to instance.
* S$instance_name. Typel. Trueif name belongs to an instance.

e Sexternal. Type N(et). Trueif net connects ports outside of design.

* $global_net. Type N. Trueif net connects to global property (VCC, GND)
* $driving_pin. TypeP. Trueif pintypeis OUT, IO, or IXO

e $driven_pin. Type P(in) trueif pinistypelN, 10, or IXO.

* $io pin, $ixo_pin. Type P(in), Trueif either io pin or if ixo pin.

QuickSim Il Advanced Training Workbook, 8.5_1 5-27
November 1995

Viewpoints and Annotations

5-28

Minimize Impact of Build Timing

Use TimeBase to generate ASCIl back annotation
file that contains timing:

o timebase design -gs -type -export path

o creates files named "path.ascii.mdata"
"path.ascii.ndata"
"path.ascii.tdata"

The "path.ascii.tdata" file contains statements:
o "OUTNRISEO N FALL 0" rise/fall delays

o "N __tp._clr.al.qc.al 20" prop delay values

o "N __ fmax.clk.ah 25" maximum frequency
o "N __ts. clr.h.clk.ah 25" setup time

o "N _ th.enp.h.clk.ah 3" hold time

Import ASCII timing for ASICs with proper context
into system as properties

o #!CONTEXT /1$28/1$2 context statements

o Drastically improves timing performance

Latch design to isolate yourself from design
changes

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Minimize Impact of Build Timing

The build timing process can be a significant part of the invocation process. This
process |ocates timing properties from the design, parameters from the design
viewpoint, and timing equations from technology files to build the “timing.data”
information. Solving the timing equations can be a significant part of the build
timing process.

In addition, any time a component version changes, the invocation process
invalidates the timing cache and builds new information, even if the timing
information did not change. To prevent frequent and lengthy builds of timing
information, there are several things you can do:

Latch versions. ASICs with large and complex timing equations require
significant time to process the timing information. By latching these
components, timing information is not recalculated until the latch is updated to
anew version. This can save considerable invocation time.

Evaluate complex timing and then save as properties in a back annotation
object. These steps are used to compl ete this process:

o UseTimeBaseto generate an ASCII back annotation file that contains

evaluated timing. The command you use is similar to:

timebase design_asic -gs -typ -export /user/jsmith/timing.ascii

This builds “typical” timing for QuickSim |1 and exports the net delay
information to an ASCII file named “timing.ascii.ndata’.

// Note: Exporting timing for quicksim to file: /user/jsmith/timing.ascii
I/l - Model info file: /user/jsmith/timing.ascii.mdata

/Il - Instanceinfo file: /user/jsmith/timing.ascii.tdata

/I - Net Delay info file: /user/jsmith/timing.ascii.ndata

Import this ASCII timing from the “.ndata’ file into an ASIC back
annotation object, making sure that you use the proper context. These
annotations become back annotated net DELAY properties on the design.
When timing is build from property information, it builds much faster than
from technology file timing equations.

QuickSim Il Advanced Training Workbook, 8.5_1 5-29
November 1995

Viewpoints and Annotations

Lab Overview

—
I
~D(} —> Lk
4915 | &
51015 2% 613 25 —
P 132540
>
1 e ™
48 15
51020
o 74259 74259 D
= —Q _E Qo —QE Qo
74LS161A - ’CLRgé —Gow 8;
— e - N & 1w &
— ENT RCO — A2 Q5 — A2 Q5
—1 ENP Q6 Q6
(= —> CLK —iD Q7 —iD Q7
I
O SE
e s
05 SE
=
[
; 4915
2 51015
Yorsl %
L Ds 15~ 4915 48 ﬂ?ozl 915
51020 51015 510920 51015
[

5-30

Create multiple design viewpoints

Create and connect multiple back annotation
objects

Import ASCIl back annotation file
Merge back annotations into design
Create a null model

Use DVAS System Property selection techniques

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Lab Overview

In the lab exercise for this module, you will:

* Create multiple design viewpoints for the add_det design. One of the
viewpoints will use the default settings and one will be set up for PCB layout.

* Create multiple back annotations for the design. These back annotations will
be connected to several design viewpoints and will be prioritized using the
connect process.

* |mport ASCII back annotation information from the PCB processinto the
default design viewpoint.

* Merge back annotations to the root sheet.

* UseDesign Viewing and Analysis Support (DVAS) selection commands and
System Properties to select groups of design objects.

* Null out amodel in the design.

QuickSim Il Advanced Training Workbook, 8.5_1 5-31
November 1995

Viewpoints and Annotations

Module 5 Lab Exercise

If you are reading this workbook online, you might want to print out
the lab exercises to have them handy when you are at your

Note workstation.

Procedure 1: Creating a DVE Script

Thislab procedure gives you a simple way to create custom DV E scripts.

1. Invoke DVE and setup your viewpoint as follows:

a

5-32

Invoke DVE on the add det design. Thiswill create the “default”
viewpoint for the add_det design. Close this viewpoint without saving it.

Create a new viewpoint named gsim_pcb_vpt that is setup for both
QuickSim 1l and PCB. Use the following menu items to build the
viewpoint:

Setup > (Quick)SIM, Fault, Path and Grade
Setup > PCB

Show the Transcript window.

Copy the transcripted functions used to create this viewpoint to afile
(Notepad), beginning with the first function.

Remove comments and extra commands (such as the $show _transcript())

Note that this script renames both the viewpoint and the back annotation
object to “pcb_design_vpt” when it saves creates and saves them. These
commands are;

$add_back_annotation("pcb_design_vpt")
$save_design_viewpoint("pcb_design_vpt", @nolock)

Edit these commands, changing the name to “qsim_pcb_vpt”.

Save the script in your home directory named dve_custom_script.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

h. Exit DVE.

2. Invoke DVE, using the file path as redirected input to the application, as
follows:

dve add_det <$HOME/dve_custom_script

This script performs al of the DVE edits but remainsin DVE so you can edit
and save the new viewpoint.

3. Savethe viewpoint but do not exit DVE.

Procedure 2: Managing Annotations

Thislab procedure uses the gsim_pcb_vpt that you created in the last procedure to
attach a back annotation object to the design.

1. Opentheadd det sheet.
Choose: (Menu bar) > File> Open > Sheet

The schematic view window containing the add_det circuit appears in the
lower-right area of the session.

2. Add propertiesto the add_det design.

These properties are normally added to the design via a back annotation file
generated in PCB Package, but you will be doing it manually in this step, for
illustration purposes.

Select the dff symbol instance on the add_det sheet, and add the following
properties using the (schematic view) > Add > Property menu item.

(New Property Name) comp

(Property Value) 7474
(Property Type) string
(New Property Name) ref
(Property Value) UGA
(Property Type) string
QuickSim Il Advanced Training Workbook, 8.5_1 5-33

November 1995

Viewpoints and Annotations

3. Change the dff model to be the schematic model.
Choose: (Menu bar) > Edit > Change > M odel
4. Savethe viewpoint.
Choose: (Menu bar) > File > Save Design Viewpoint (> with same hame)

A message appears that the Viewpoint “gsim_pcb_vpt” issaved asversion 3,
which isreflected in the Design Viewpoint window title (path).

5. Open anew back annotation file named gsim_pcb_vpt asfollows.
a. Usethe (Design Viewpoint) > Open > Back Annotation menu item.
b. When the dialog box appears, examine the back annotation object name.

Note that the new properties that you added appear in this back annotation
object.

6. Open different level of hierarchy on the dff instance as follows.

a. Place your pointer on the dff instance and use the Open Down function key.
It doesn't work! Instead, you get the message: 'Instance “/1$245” is
primitive. No view is created.' Thisis because the “comp” property you just
added is primitive.

b. Select and delete the “comp <VOID>" entry from the PRIMITIVE listin
the Design Configuration window.

c. Now try the Open Down function key again on the dff symbol. The
schematic for the dff instance is successfully displayed.

d. Now open up using the Open Up function key.
Note the message 'Popping already existing “view / : sheetl”.'

e. Try viewing down and up again several times. Finish by removing the
“/1$245 sheet”.

5-34 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

7. From Notepad, create a PCB ASCI| file to import.
In a new Notepad window, enter the following ASCII text:
#! header 1.0
This file annotates the 7474 pin nunbers
| $245/ D N pin_no 3
| $245/CLK N pin_no 6
1$245/B N pin_no 2
| $245/ Q N pin_no 1
| $245/PRE N pin_no 4
| $245/CLR N pin_no 5
8. Savethis Notepad as ASCII file named pcb_bain your home directory.
Y ou can use the save option when you close the Notepad window.
9. Import pcb_ba (ASCII) aspcb _ba
Choose: (Menu bar) > File > Back Annotation > Import
The Import Back Annotation dialog box appears. Use the navigator button to
locate and select the ASCI|I file you just created.
Make sure that you use the new name “pcb_ba’ for the BA Namefield, or you
will add annotations to the existing gsim_pcb_vpt back annotation object.
What isthe priority of the two back annotation objects? 1.
2.
Also note that the annotations have been added as pin numbers to each of the
pins on the instance. All annotations are indicated in the default color (red).
10. Savethedesign viewpoint “gqsim_pcb_vpt”.
Choose: (Menu bar) > File > Save Design Viewpoint
Version 4 is now the current version.
QuickSim Il Advanced Training Workbook, 8.5 1 5-35

November 1995

Viewpoints and Annotations

Procedure 3: Latching Design Objects
1. Latchtheadd det design asfollows:

a. Choose the menu item (Menu Bar) > Edit > Latch Version > Latch
Version

b. Inthe“Latch Version” dialog box, verify that ALL is chosen.

Thefilter “SMGC.*” is used so that alatch is not added to any referenced
library component which are usually stable during the design process. If not
specified, latches would be placed on all library components, requiring
significant time.

c. OK thisdialog box.

The “Latching viewpoint references...” appears as each referenced
component is examined and latched. A Done message indicates the process
Is complete.

2. Unlatch the inv component as follows:

a. Choose the menu item (Menu Bar) > Edit > Latch Version > Unlatch
Version

b. Inthe“Unlatch Version” dialog box, choose the COMPONENT button.
Enter the path to the component you want to unlatch. Thisis not adesign
hierarchy path but afile system path:

$HOME/training/gsim_allib/inv
c. OK thisdiaog box.
The latch for this component is rel eased.
3. Unlatch the entire design as follows.
(Menu Bar) > Edit > Latch Version > Unlatch Version

Choosethe“ALL” button and OK the dialog box.

5-36 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Procedure 4: Selection using System Properties

In this procedure, you will experiment with design object selection using system
properties and wild cards.

1. Select all of the external nets as follows:

a

b.

First, make sure that everything is unselected (Unselect All)
Choose the popup menu item Select > By Property.

When the “ Select by Property” dialog box appears, enter “$external” for the
Property Name field.

OK the dialog box. All external nets (those that enter or leave the top level
of hierarchy) are selected. Thisisauseful way to trace or list I/O nets.

2. Select primitive instances in the design hierarchy, as follows.

a.

b.

C.

d.

Unselect All
I ssue the command: Sel by property $primitive

Note that nets and pins are also selected. These are considered primitive.
The dff component and the pullup component are not primitive and thus not
selected.

Unselect All

I ssue the command: Sel by prop $primitive -instance

This should give the correct result (only primitive instances sel ected).

3. Sdect dl instancesin the hierarchical design that are non-primitive:

Command: Sel by prop $all -inst

Which items are selected (Report Objects > Selected)?

. Unsel by prop $primitive

QuickSim Il Advanced Training Workbook, 8.5_1 5-37
November 1995

Viewpoints and Annotations

4. Select the clock signal local to the dff instance.

Unselect All
Sel by name 1$245/clk

Examine the sheet below the dff component. Note that the net “clk” on this
sheet is selected as well as the connect net on the root schematic.

5. Select any primitive instance that does not contain the ref property:

Unselect All
Sel by prop $primitive -instance
Unsel by prop REF

The ssmulator primitives NAND2 and INV should remain selected.

Procedure 5: Connect and Merge Annotations
1. Closethedesign viewpoint “gqsim_pcb_vpt”.

Choose: (Menu bar) > File > Close Design Viewpoint
2. Open the “default” viewpoint by performing the following steps:

a. Using the method you used previously in this lab exercise, open the
viewpoint named “default” for the add_det design.

b. When it has opened you should see the setup for QuickSim 1.

Note that no “default” back annotation object is attached. Thisis because
you haven't added any annotations yet. Y ou will create this back annotation
object in step 3.

c. Open the sheet for thisdesign.

Notice that the changes you made in the gsim_pcb_vpt do not show up
here. Welll fix that next.

5-38 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

3. Add the “default” back annotation object as follows:
a. Select the dff instance (former 7474 component)
Open the Change > Model dialog box.
c. Select the $gen _gpt mode.

d. Specify the“BA Name” as path/default. In other words, “default” should be
the leaf of the existing path, in place of “pcb_ba’.

e. OK thedialog box. The new “default” BA object is created as priority 1.
What is the current model for dff? Use Report > Object to determine this.

4. Connect both “pcb” back annotation objects to this default QuickSim 11
viewpoint as follows:

Choose: (Menu bar) > File > Back Annotation > Connect

The most recent connection has the highest priority. If more than one back
annotation object changes the same property, the change in the highest priority
back annotation object will prevail.

A Connect Back Annotation dialog box appears allowing you to enter the path
to the back annotation object. Click on the Navigator button and use the
navigator to locate the “gqsim_pcb_vpt” back annotation object. OK the
navigator and then OK the dialog box.

QuickSim Il Advanced Training Workbook, 8.5_1 5-39
November 1995

Viewpoints and Annotations

Using this same procedure, connect the “pcb_ba’ back annotation object to the
default viewpoint. At this point, all three back annotation object should be
shown connected in the Design Viewpoint window in the order shown:

=

Design Viewpoint: ...qsim_a/add_det/default_1 ‘J

=

1

DESI GN CONFI GURATI ON

BACK ANNOTATI ON: pcb_ba

2 BACK ANNOTATI ON: qgsi m pcb_vpt
3 BACK ANNOTATI ON: def aul t

~ L

N

|-

» Atthispoint, any additional changes made to the design viathe
Design Viewpoint Editor will be recorded in the “pcb_ba’ back
Note annotation file, because it is currently the highest priority back

annotation file connected to the viewpoint. If you don't want your
new annotations going into “pcb_ba,” you should create and
connect a new (blank) back annotation object to the viewpoint you
areusing. Then it will be the highest priority and will capture the
further changes you make to your design in either DVE or
QuickSim 1.

5. Savethe viewpoint.

6. CloseDVE.

7. Using DA, open adesign sheet on add_det using default viewpoint.

shel | > $M3C_HOVE/ bi n/ da -desi gn add_det default

When the sheet appears, check it for proper back annotations. Y ou should see
all of the back annotations that you just connected in DVE.

5-40

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

8. Reposition annotations using the “ Sel Txt & Move” function key.

If you are performing this on a HP-700 series workstation, use the
@ Select Area Property menu pick to select the property to move,
Note and then use the Move menu item -or- turn off the “Repeat Key”
function in HP VUE.

To usethe Sel Txt & Move function, place the pointer on the property text and
press/hold the Sel Txt & Move function key. Position the text to a new location
that is move visually appropriate. Then release the function key. (Y ou may
also want to resize the new values to match other properties displayed on the
sheet.) Y our sheet should look like the following when you have repositioned
the text:

1474

—
1
6 CLK

2 10*tcap

O
PRE
Q

CLR

(@)
vy)
®

U1lA

QuickSim Il Advanced Training Workbook, 8.5 1 5-41
November 1995

Viewpoints and Annotations

0.

10.

5-42

Merge al back annotations.
Choose: Miscellaneous > Merge Annotations (> All)

Merged properties change from red to the default colors of the owner for the
object. For example, “20.000000" turns orange to indicate it is attached to the
net. The comp property (7474) and the ref property (U1A) are now blue since
they are attached to the instance.

L ets say that you didn't want to merge all of the properties, but only some of
them. How would you selectively merge some back annotation properties that
aredisplayed in “red,” but not al of them?

Close Design Architect and save the design viewpoint.
Choose: (session window menu) > Close

Because you haven't saved the information yet, a question box appears asking
if you want to save the viewpoint changes. Answer “Yes’ to save and exit
Design Architect.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Viewpoints and Annotations

Module 5 Summary

This module, Viewpoints and Annotations, you learned about the following:

* The viewpoint determines the configuration of your design and can 'latch’ to
specific versions, allowing design changes to occur without affecting your
simulation run.

* ASIC vendors provide you a DVE script that configures your design to
properly recognize their specific library information. WWhen you netlist your
design, the viewpoint determines what is visible in the netlist.

* You can create your own site-specific or design-specific viewpoint scripts. It is
most useful to run these scripts from the shell as batch processing jobs.

* DVE isused to prioritize back annotation objects. This priority is determined
by the order in which back annotation objects are connected. The most recently
connected object has the highest priority.

* Back annotation objects are compiled property changes. Y ou can “uncompile’
the information into ASCII format using the Export operation. Y ou must
import formatted ASCI| files into back annotation format before the
information can be used in QuickSim 11.

In the next module, you will learn about modeling techniques that will help you
perform faster and more accurate simulation runs. Y ou will also examine
TimeBase and the Component Interface Browser.

QuickSim Il Advanced Training Workbook, 8.5 1 5-43
November 1995

Viewpoints and Annotations

5-44 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Module 6
Custom Design Checks

Module 6 Overview 6-2
L essons 6-3
Design Checking Concepts 6-4
Custom Design Checking 6-6
Design Checking Applications 6-8
QuickCheck 6-10
Customizing Name Checking 6-12
Name Checking Example 6-14
Customizing Electrical Rules Checking 6-16
Electrical Rules Checking Example 6-18
Netlisting Designs 6-20
EDIF Netlisting 6-22
DDP and DFI Netlisting 6-24
Hierarchical and Flat Netlisting 6-26
Lab Overview 6-28
Module 6 Lab Exercise 6-30
Procedure 1: Creating a Custom Naming Check 6-30
Procedure 2: Creating a Custom Electrical Rules Check 6-33
Module 6 Summary 6-36
QuickSim Il Advanced Training Workbook, 8.5 1 6-1

November 1995

Custom Design Checks

Module 6 Overview

About This Training Workbook I

Setting Up for QuickSim I

Advanced Stimulus Techniques I

Debugging Timing and Unknowns

Optimizing Simulation Runs I

Viewpoints and Annotations

Custom Design Checking

Additional Topics:

Appendix A: Processes Using QuickSim Il

Module

Design Check
Concepts

Customizing
Design Checks

QuickCheck

Name and
Electrical Rules
Checking

Netlisting
Designs

EDIF, DDP, DFI

Appendix B: Customizing the QuickSim Il Interface
Appendix C: Advanced Modeling Techniques

QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

Custom Design Checks

Lessons

On completion of this module, you should:

Understand the default design checking methods including: sheet checking,
schematic checking, and default simulation checking.

Know the types of custom design checking that you can perform.

Know what tools to use to customize design checking.

Be able to use the QuickCheck product to prepare custom design checking.
Understand the process of netlisting a design.

Be able to use Mentor Graphics netlist tools to create custom design netlists.

» You should alow approximately 1.5 hours to compl ete the L esson,
Lab Exercise, and Test Your Knowledge portions of this module.

Note

QuickSim Il Advanced Training Workbook, 8.5_1 6-3
November 1995

Custom Design Checks

Hierar[%%syi%qﬂecks

Design Checking Concepts

Symbol
Checks

Schematic
Checks

Schematic
Sheet Checks

Design Architect DVE
Create Design I y
Create Design Check nvoke
Design Architect P>~ Viewpoint | ™ Design | ™ Application
hecks
Fix Error or
Warning Messages
g g > Reload
Design Architect Model
hecks
A

6-4

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Design Checking Concepts

You can use DVE for interactive design hierarchy checking. Unlike symbol,
schematic sheet, or schematic checksin Design Architect, design hierarchy
checks examine the design at all levels (as shown on the previous page) with
respect to the current design configuration rules specified in the design viewpoint.
Design hierarchy checking is performed to verify the syntax of the evaluated
design to ensure that downstream applications can use the design. During design
hierarchy checks, you can also run name and electrical rule checks (written using
QuickCheck). Y ou can aso run the design hierarchy and QuickCheck checks
within QuickSim Il which can save unnecessary invocation of DVE.

For alist of checks performed, refer to “Design Checking” in the Design Viewing
and Analysis Support Manual. For more information on Design Architect checks,
refer to “Design Error Checking” in the Design Architect User's Manual.

In the scenario presented in the bottom figure on the previous page, you have both
Design Architect and DV E open on the same design at the same time (Design
Architect on the component, DV E on the design viewpoint). Y ou may want to use
this method on new designs, or on designs where you anticipate the possibility of
numerous errors. Using this technique can save time, by eliminating the need to
re-invoke applications.

Y ou are not required to run DV E checks every time your design changes, but it
can be helpful for some changes.

Y ou should perform design hierarchy checks prior to releasing the
design to downstream applications, such as board layout or before
Note hetlisting the design for submission to your ASIC vendor.

QuickSim Il Advanced Training Workbook, 8.5_1 6-5
November 1995

Custom Design Checks

6-6

Custom Design Checking

Design Creation <+

;

Design Checking

Schematic Sheet Checking
Schematic Checking

Design Syntax Checking

Name Checking & Translation < >

Electrical Rule Checking & Design Statistics

’

Design Verification & Analysis <>

v

Design Layout E—

WO——~=0DTO—=~T O~ ~0>>200 I

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Custom Design Checks

Custom Design Checking

The following list shows the applications in which checking occurs and when a
design viewpoint must be created:

Schematic-Based Checking. In Design Architect use the Check command.
This command performs schematic (all sheets within the schematic) or sheet-
level checks on instances, nets, and pins.

Design Syntax Checking. Y ou use the design checking capabilities available
within the analysis applications. This level of checking makes sure that
downstream applications can work with the design, and that the hierarchy of
the design is connected correctly and is complete.

Name Checking and Trandation. Mentor Graphics provides several options
for checking and translating object names:

o Name Checker (from the QuickCheck product) for checking pin, net, and
Instance names against any naming restrictions the vendor may have. A
trand ation feature can translate these pin, net, and instance names to nhames
that are legal in the vendor's environment. Back annotations are generated
for names that are incorrect, and are then applied to your design before
netlisting. For Name Checker concepts, refer to “Name Checker Concepts”
in the QuickCheck User's and Reference Manual.

o EDIF Netlist Write (ENWrite) interface creates an EDIF netlist of your
design, while providing functions for name and legal character checking,
trand ation, and mapping.

o Design Architect Netlisters create netlistsin Dracula, Lsim, VHDL,
Verilog, and Spice output formats, as well as providing functions for name
and legal character checking, trandlation, and mapping.

Electrical Rules Checking and Statistics. Y ou can use the Electrical Rules
Checker (from the QuickCheck product) for checking your design against a set
of technology-specific electrical design rules. It also provides design statistics,
such as gate count and I/O pad usage. Y ou can run these checks from within
DVE or QuickSim Il at the same time you are performing name and design
syntax checks.

QuickSim Il Advanced Training Workbook, 8.5_1 6-7
November 1995

Custom Design Checks

Design Checking Applications

Applications that allow checking:

* Design Architect

o Schematic Sheet Checks--the Check command

o Schematic checking--Check -schematic

* Design Viewpoint Editor/QuickSim 1lI/QuickCheck

6-8

o Design Syntax Checks--Check Design
command

o Name checking and translation
use Check Design command
checks design against naming restriction rules
can translate pin, net, and instance names

o Electrical rule checking and design statistics
use the DVE Check Design command
validate design against electrical design rules

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Design Checking Applications

Mentor Graphics provides applications that let you to perform checking at both
the schematic and the design level. The following list describes these applications
that allow checking, and describes each type of checking.

* Design Architect.

o Schematic Sheet Checks. Issue the Check command in DA. This
command performs checks on instances, nets, and pins within the current
active sheet or schematic.

o Schematic checking. Issuethe Check command with one of the schematic
switches. This command performs checks on instances, nets, and pins
within all the sheets for the schematic model.

Refer to “Error Checking in Design Architect” in the Design Architect
User's Manual.

* Design Viewpoint Editor/QuickSim 11/QuickCheck.

o Design Syntax Checks. Use the DVE Check Design command after
creating a design viewpoint. Downstream applications, such as
QuickSim 11, use this command during invocation on a design.

o Name checking and trandation. Use the DVE Check Design command
after creating a design viewpoint. It checks pin, net, and instance properties
against naming restriction rules you specify in an ASCII rulesfile, and can
trandlate these pin, net, and instance names into legal names.

o Electrical rule checking and design statistics. Use the DVE Check
Design command after creating a design viewpoint. These checks validate a
design against a set of electrical design rules you specify in an ASCII rules
file using the Electrical Rule Checker language.

Refer to “Design Checking” in the Design Viewpoint Editor User's and
Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 6-9
November 1995

Custom Design Checks

QuickCheck

A four-part customizable checking product

* Name Checker compiler
* Name Checker run-time
* Electrical Rule Checker compiler
* Electrical Rule Checker run-time

Used in DVE and analysis (QuickSim II)

Name Checker (NC)

* Checks instance, pin, and net property names
* Rule writers develop and compile rules so

* Rule runners used within DVE to check design

Electrical Rule Checker (ERC)

* Technology-specific electronic rule checking
e Statistics report generation

e List of ERC checks available:

Technology checks

Array-Dependent checks

External I/O checks

Pin and Net checks/global net shorts
Fanout checks

Clock Signal checks

Wired Logic/Parallel Drive/Tri-state checks
Estimate static power dissipation
Improper use of cell combinations
Statistical information

@)

O OO0 OO0 oo oo

6-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

QuickCheck

QuickCheck is a customizable checking product consisting of four parts: Name
Checker compiler, Name Checker run-time, Electrical Rule Checker compiler,
and Electrical Rule Checker run-time. The compilers are stand-alone applications
which compile an ASCII rulesfile into aformat that can be used from within
DVE. When you issue the DVE Check Design command and specify that you
want name checking and/or electrical rule checking, the run-time portions are
invoked to run the checksin the compiled rulesfiles.

Name Checker (NC). Thisis an application that checks instance, pin, and net
properties to ensure that the design complies with naming requirements specific to
your particular design environment. Name Checker has two types of users: rule
writers and rule runners. Rule writers use the Name Checker language to write
rules that check properties. Rule writers also compile the rules so that the rules can
be used by rule runners within DV E to check their design.

Electrical Rule Checker (ERC). This provides technol ogy-specific electronic
rule checking and statistics report generation. ERC has two types of users: rule
writers and rule runners. Rule writers use the ERC language to write rules that
check electrical characteristics of the design and provide statistics. Rule writers
also compile the rules so that the rules can be used by rule runners within DVE to
check the design. The following list gives you an idea of some of the ASIC rules
you can write using the ERC language:

* Technology checks

* Array-Dependent checks

* External 1/0O checks

* Pinand Net checks

* Fanout checks

* Clock Signal checks

* Wired Logic/Parallel Drive/Tri-state checks
* Estimate static power dissipation

* Evauate the improper use of cells when combined with other cells
* Check global net shorts

* Statistical information

QuickSim Il Advanced Training Workbook, 8.5_1 6-11
November 1995

Custom Design Checks

6-12

Customizing Name Checking

Process Step Application Icon
1. Create an ASCII rulesfile using the Name i =
Checker language. =
Notepad
2. Compile thefile using the config_nc compiler. v
Cm!:[:IG
config_nc
3. Place the binary output file in alocation =]
that can be accésseo’oby al designersin your @

team or company.

4. Invoke DVE to run the checksagainst a
design with respect to the design viewpoint.
Execute the Check Design command with the
pathname to the compiled binary file.

5. If the DOBA option is specified, aback
annotation obg ect is created and automatically
connected to the design viewpoint that
contains changes to the design.

Otherwise, an ASCII back annotation fileis
created. Next, import the ASCII fileinto a
back annotation object using the DV E Import
Back Annotation command. The new property
values are now available to the design.

Optionally, you can create a synonym file
for importing ASCII back annotation files
generated with different property names.

6. After design checking is complete, simulate

or netlist the design.

7. If you are importing aback annotation file

that uses different property names, then
use the synonym file generated in step 5.

A

dvpt
DVE

dvpt
DVE

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Custom Design Checks

Customizing Name Checking

Name Checker has two types of users: rule writers and rule runners. The figure on
the previous page shows the steps each type of user performsin the process along
with the corresponding application'sicon.

If you are arule writer, you start (in Step 1) by specifying property checks and
trandationsin an ASCII rulesfile. Next, you compile it using the config_nc
compiler. Test the checks against atest design to verify that the names are
properly translated. Once verified, provide this compiled file to othersin your
design team so that they can run it against their designs.

If you are arule runner, you start (in Step 4) by running the Name Checker on a
design (whilein DVE) using the compiled binary file supplied to you by your rule
writer. In step 5, DOBA means to “do automatic back annotation.” Any property
changes can be stored in a back annotation object which can either be used with
the design viewpoint or merged into the component through Design Architect.
After the design checks have been corrected, you are ready to netlist or simulate
the design.

The following list summarizes the mandatory and optional tasks you complete to
support Name Checker in your design process environment:

* Writethe ASCII rulesfile which contains the name checking rules.

* Compiletherulesfile, using config _nc to check for syntax and semantic errors
and to compile the data.

Y ou can optionally complete these tasks to further integrate Name Checker into
your environment:

* Create customized userware to control the use of Name Checker in DVE.
* Edit the ENWrite configuration file for synonyms and aliases.

* Provide custom encapsulation of the Name Checker within Design Manager.

QuickSim Il Advanced Training Workbook, 8.5_1 6-13
November 1995

Custom Design Checks

Name Checking Example

#! Header 1.0 DOBA
#! Reserved "FOO" "BAR"

Alias al instance INST properties
FOR_EACH INST WHERE PROPNAME =="Ingt" DO
ALIAS"Inst_ TID""1"i:41

FOR_EACH NET WHERE (PROPNAME == "net") DO BEGIN
FIRSTCHAR['A-'Z'" '] replace [* with']
OTHERCHAR ['A-Z"'0-'9"" "'("')' ']
DELETEREPLACE['$, * with']
SYNONYM "Net_tid"
END

FOR_EACH PIN DO BEGIN
IF(PROPNAME =="PIN") THEN BEGIN
FIRSTCHAR['A'-'Z'' "1 REPLACE [* with']
OTHERCHART['A-'Z"'0-9"" "'("")' "1
REPLACE[* with'
MAXLENGTH 10 TRUNCATE
SYNONYM "Pin_tid"
END
IF PROPNAME == "pintype" THEN BEGIN
Trandlate in place any property valuethat isnot IN,
#OUT, 10
FIRSTCHAR ['I' 'O # Fatal error if first character
#doesnot="l'or 'O
OTHERCHAR ['N''O' 'U' 'T'] delete# Delete dll illega
non-first chars.
END
END

6-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Custom Design Checks

Name Checking Example

The figure on the previous page shows a name checker rulesfile. Thisfile can be
created using any text editor, but must be compiled before it can be used by the
run-time check commands. The ASCI|I file name must include the “.mgc_nc”
suffix so that the Design Manager can recognize it as a special object. Example
names are ascii_rules.mgc_nc and cpu_name_rules.mgc_nc.

Once you complete your rulesfile for the Name Checker, you use the config_nc
compiler to check thefile for errors and to compile it into abinary format. Y ou
can invoke config_nc from the shell or the Design Manager. If your file has any
errors, config_nc does not produce the binary file.

Y ou run the name checks against your design using the Miscellaneous > Check
Design menu item or the Check Design command in DVE. Y ou can run these
checks with DVE open in either standard or batch mode. When you have DVE
open in standard mode, the user interface is visible and you can list the errorsin
the Design Syntax Messages window. When you have DV E open in batch mode,
no user interface is displayed and the messages are listed to the transcript, or to a
fileif the -File switch is specified.

Regardless of how DVE isrun, you use the Check Design command or
$check_design() function to check the design. To perform name checks and have
the messages appear in the Design Syntax M essages window, enter:

CHEck DEsign -NC -NC_Bin_file "$CPU_PROJECT/nc_checks/nc_rules.bin"

To generate a synonym file that contains synonym and alias mapping, enter the
same command, but include the -Nc_syn_file switch and the pathname to the file:

CHEck DEsign -NC -NC_Bin_file "$CPU_PROJECT/nc_checks/nc_rules.bin"
-NC_Syn_file "$CPU_PROJECT/nc_checks/nc_syn"

For additional information on the Check Design command or
$check design() function, refer to the $check design() reference pagein
the Design Viewpoint Editor User's and Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 6-15
November 1995

Custom Design Checks

Customizing Electrical Rules Checking

6-16

Process Step

Application Icon

1.

Create an ASCII rulesfile using
the ERC language.

Compile thefile using the
config_erc compiler.

Place the binary output filein a
location that can be accessed by all
designersin your team or company.

Invoke DVE to run the checks
against a design with respect to the
design viewpoint. Execute the
Check Design command with the
pathname to the complied file.

Fix errors and (optionally) warnings.

Repeat steps 4 and 5 until no
errors occur.

After design checking is complete,
simulate or netlist the design.

]

Notepad

TV

CONFIG

cRC

config_erc

i

DesignM gr

T

%l

=

)

dvpt

design_arch

DVE

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Custom Design Checks

Customizing Electrical Rules Checking

The Electrical Rule Checker (ERC) provides electronic rule checking and statistic
report generation that is technology-independent. ERC has two types of users: rule
writers and rule runners. The figure on the previous page shows the stepsin the
writing-running process along with the corresponding application'sicon.

If you are arule writer, you start (in Step 1) by specifying electrical rule checks
and statistics in an ASCI|I rulesfile. Y ou control the checks and statistics by
creating one or more rules files for each type of technology. Next, you compile the
rulesfiles using the config_erc compiler. Y ou then provide these compiled files to
othersin your design team for their use.

If you are arule runner, you start (in Step 4) by running ERC on adesign (whilein
DVE) using a compiled file supplied to you by the rule writer. Error, warning,
note and statistical messages are listed in the Design Syntax Messages window in
DVE and transcripted at the shell. Fix errorsin Design Architect. When errors are
eliminated, you are ready to netlist or smulate the design.

Y ou can execute multiple ERC filesfrom DVE. Y ou aso have the option to run
DVE in batch mode, which outputs messages to the transcript.

The following list summarizes the tasks you need to complete to support ERC in
your design process environment:

1. Writethe ASCII rulesfile which contains the ERC rules. Y ou can write
multiple rulesfiles, letting you switch ERC checks depending on the
conditions you specify. For example, you could have one rulesfile for statistic
checks and another for rules.

2. Compiletherulesfile(s) using config_erc to check for syntax and semantic
errors. You must compile multiple files one at atime.

Y ou can optionally complete these tasks Checker into your environment:
* Create userware to control the use of Electrical Rule Checker in DVE.

* Provide custom encapsulation of ERC within Design Manager.

QuickSim Il Advanced Training Workbook, 8.5_1 6-17
November 1995

Custom Design Checks

Electrical Rules Checking Example

#! Header 1.0
Check for Shorted Outputs on a net
FOR_EACH NET(netl) DO BEGIN
IF (COUNT (countl) OF PIN(pinl)
WHERE PROPERTY (pinl,"pintype") =="OUT" > 1)
THEN
OUTPUT(WARNING,"Net $1 contains shorted output pins. $2\\
output pins were found on net.",net1,countl)
END

Check for shorted outputs on an instance
FOR_EACH INST(instl) DO BEGIN
IF (COUNT OF PIN(pinl)
WHERE PROPERTY (pinl,"pintype") == "OUT" > 1) THEN BEGIN
FOR_EACH PIN(pin2)
WHERE PROPERTY (pin2,"pintype")=="0UT"
DO BEGIN
FOR_EACH PIN(pin3) ON pin2.net
WHERE PROPERTY (pin3,"pintype") == "OUT" AND\
pin3 <> pin2
DO BEGIN
IF (pin3.inst == instl) THEN
OUTPUT(WARNING,"Pin $1 and pin $2 are\\
shorted on instance $3.",pin2,pin3,instl)
END
END
END
END

6-18 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Electrical Rules Checking Example

The figure on the previous page shows an example of an ERC rulesfile. Thisfile
can be created within any text editor, but must be compiled beforeit isused. The
ASCII file name choose must contain the “.mgc_erc” suffix so that the Design
Manager can recognize it as a special object. Examples are ascii_rules.mgc_erc,
ascii_statistics.mgc_erc, and cpu_name_rules.mgc_erc.

Once you complete your rulesfile for ERC, you use the config_erc compiler to
check thefile for errors and to compile it into a binary format. Y ou can invoke
config_erc from the shell or Design Manager. If your rulesfile has any errors,
config_erc does not produce the binary file.

Y ou run the electrical rule checks against your design using the Miscellaneous >
Check Design menu item or the Check Design command in DVE. Y ou can run
these checks with DVE open in either standard or batch mode. When you have
DVE open in standard mode, the user interface is visible and you can list the
errorsin the Design Syntax Messages window. When you have DVE openin
batch mode, no user interface is displayed and the messages are listed to the
transcript, or placed in afile by specifying the -File switch.

Regardless of how DVE isrun, you use the Check Design command or

$check _design() function to check the design. To perform electrical rule checks
with all other defaults for the command and have the messages appear in the
Design Syntax Messages window, enter:

CHEck DEsign -ERC -ERC_Bin_file
["$CPU_PROJECT/erc_checks/config_datal/erc_rules.bin"]

Y ou can also specify multiple binary rules files to check the design by separating
each pathname by a comma.

For additional information on the Check Design command or
$check _design() function, refer to the $check design() reference pagein
the Design Viewpoint Editor User's and Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 6-19
November 1995

Custom Design Checks

Netlisting Designs

* EDIF (Electronic Design Interface File)
o ENWrite
o ENRead

* Design Architect netlisters--DAnet

MGC
Design

e N e,

DAnet N‘etlisters

V-Net LsimNet B S|c/)|cel\\ll\et

Ay v
(SpiceNet | DracNet | HspiceNet 3"custom")

v v v

Veril_o% Lsim Spice2G6{ | Dracula | HSPICE SPICE
Netlis Netlist Netlist Netlist Netlist Netlist

e Customized netlisters

o Procedural Interfaces
o Design File Interface (DFI)
o Design Dataport (DDP)

6-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Netlisting Designs

A common mechanism for transferring EDA design information from one tool to
another isanetlist. A netlist lists each element in the design (such as instances,
nets, and pins), describes each one (through the inclusion of properties), and
specifies how the elements connect. A netlist can take many forms, but usually a
netlist isan ASCII file. Many design, simulation, and layout applications can read
and understand netlists, and many require netlists to be in a particular format.

A netlister is an application that accesses a design database, retrieves the
necessary information, and creates anetlist in aformat specific to a downstream
application. Mentor Graphics provides avariety of netlisters:

* EDIF Netlist products. Read and write EDIF netlists

o ENWrite. Creates standard EDIF netlist file from Mentor Graphics database
format.

o ENRead. Converts a standard EDIF netlist file to Mentor Graphics type
database format.

The next topic discusses the EDIF processes and toolsin more detail.

* Design Architect Netlisters. Create Verilog, SPICE, and Lsim netlists. The
figure on the previous page shows the capabilities of the Design Architect
netlisters (DAnNet).

* Customized netlisters. If you need to create a custom netlister, Mentor
Graphics provides procedural interfaces, DFI, and Design Dataport (DDP).
Procedural interfaces are applications that provide programmatic (C or Pascal)
access to the design database. Uses of DDP include Design Architect sheet
checking, netlisting to non-Mentor Graphics applications, system-to-system
sheet conversion, and automatic symbol and schematic creation.

Refer to the Design Dataport User's and Reference Manual or the DFI
Users and Reference Manual for details.

QuickSim Il Advanced Training Workbook, 8.5_1 6-21
November 1995

Custom Design Checks

EDIF Netlisting

The EDIF Process:

Mentor Mentor Graphics Designs
Graphics

System . ’ . t ’

Create design Data created =%
Create configuration file :
Write EDIF netlist Information Used =

Convert from EDIF to other system
Convert from other system to EDIF
Create configuration file

Read EDIF file and create design

1.
2.
3.
4.
5.
6.
7.

6-22 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Custom Design Checks

EDIF Netlisting

EDIF, which stands for Electronic Design Interchange Format, is an industry
standard to facilitate formatting and exchanging electronic design data between
EDA (Electronic Design Automation) systems. It was approved as a standard by
the Electronic Industries Association (EIA) in 1987, and by the American
National Standards Institute (ANSI) in 1988. It accounts for all types of electronic
design information, including schematic design, symbolic and physical layout,
connectivity, and textual information, such as properties.

To support the EDIF standard, Mentor Graphics has created the EDIF Netlist
Read (ENRead) and EDIF Netlist Write (ENWrite) applications. These
applications allow you to both translate an EDIF file into a Mentor Graphics
design and create an EDIF netlist from a Mentor Graphics design.

The ENRead and ENWrite products are sold and authorized separately
m from QuickSim Il or |dea Station.

Note

To create an EDIF file for aMentor Graphics design:
1. Creating adesign using Design Architect or other MGC tool (step 1).

2. (optional) Create a configuration file of control commands (step 2). Thisfile
may be supplied by the ASIC vendor who's libraries are used.

3. Next, you invoke ENWrite, specifying the design name and the configuration
file, and trandlate your design into an EDIF representation (step 3).

4. To convert the EDIF file to another system, you must use whatever application
that system supports for EDIF conversions (step 4).

To convert an EDIF file into Mentor Graphics data form, you would reverse the
process, using a different configuration file, and ENRead. This processis shown
assteps 5, 6, and 7 in thefigure.

For information on the EDIF netlisting process, refer to the EDIF Netlist
User's and Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 6-23
November 1995

Custom Design Checks

DDP and DFI Netlisting

DDP in the Mentor Graphics Environment:

C
Program

Design Dataport

* Collection of C functions
* read/edit schematic sheets and symbols

* Uses:
o Design Architect sheet checking,
o Ssystem-to-system sheet conversion, and
o automatic symbol creation

DFI

Design
Architect

User Program

4

< 3 5
ommenf 4=~ g fee o |
6

* Uses design viewpoint to access visible objects

Design
Viewpoint

‘I

 Cor Pascal programs call DFI procedures

6-24 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Custom Design Checks

DDP and DFI Netlisting

Two procedural interfaces are Design Dataport (DDP) and Design File Interface.
These interfaces both use C-like functions to access the Mentor Graphics design
database. Hereis abrief description of each interface:

The DDP interfaceis a collection of C functions that lets you write a C program to
read and edit existing schematic sheets and symbols, as well as create new ones.
DDP “scans’ the database for a specific type of object. The scan returns a
reference to the object, which can then be used to extract information. Uses of this
interface include Design Architect sheet checking, system-to-system sheet
conversion, and automatic symbol creation. Although it is possible to netlist with
DDP, you should use the DFI interface for netlisting programs. In the future, a
CFl-compliant netlisting interface will also be available.

» Design Dataport may require an optional license to run in certain
. environments. If you are unable to run your DDP program, consult
Note Yyour system administrator.

Design File Interface (DFI) is a set of procedures and functions that your C
program can call to interface with a design through a design viewpoint. DFI
allows netlist-type reading from, and back annotation writing to, the design
viewpoint.

» TheDFI Pascal interface is only available on Apollo/Domain OS
. workstations, and is not recommended for any new programming.

Note

DFI accesses the design through the design viewpoint. Y ou write a Pascal or C
program that calls functions and procedures of DFI to gain access to the design
data. The bottom figure gives a pictorial explanation of this process. When you
invoke your program, you specify the design viewpoint you wish DFI to open on
the design. Y our program then accesses the design data, performing the tasks you
specified in your program.

For more information on DDP, refer to the Design Dataport User's and
Reference Manual. For information on DFI, refer to the DFI User's and
Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 6-25
November 1995

Custom Design Checks

Hierarchical and Flat Netlisting

Hierarchical Design:

(1$1) (1$3)
A B
L (1%$2) (1$4)
A C
(1$5) (1$6) 1$7) (1$8)
DI E F| G
(159)
H
Flattened Design:
N1$1/1$5 /1$1/1$6 /1$3
D E B

6-26

N1$2/1$5 /1$2/1$6

D

E

N$4/1$7 /1$4/1$8/1$9

F

H

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Custom Design Checks

Hierarchical and Flat Netlisting

Design connectivity can be listed in one of two ways: hierarchical or flat.

* Hierarchical netlisting describes the connectivity of the design at each level of
the design hierarchy, and then describes how that hierarchy is assembled. The
top figure on the previous page represents a hierarchical view of adesign.
Hierarchical netlisting lists both hierarchical and primitive components.

* Flat netlisting describes the connectivity of the design asif it was al one giant
sheet, with no hierarchical components used at all. Flat netlisting looks through
the hierarchical components and shows only the primitives.

Flat netlisting lists out connectivity in aflattened design format, meaning that
each occurrence of a primitive instance in the entire design is described, while
hierarchical instances are not described at all. Notice (in the bottom figure) that
this flattened view of the design contains only primitive instances--hierarchical
components A, C, and G are no longer visible.

How do you know which type of netlisting to use? Examine the following criteria
to decide. Hierarchical netlisting:

* Isamore efficient way of representing the design.

* Preservesinformation about hierarchical componentsin the design.
* Hascertain hierarchical nesting limitations.

Flat netlisting:

* Requires more time to examine the design in aflattened manner.

* Generates amuch larger output EDIF file.

* |sfreefrom some of the hierarchical netlisting limitations, but has some
capacity limitations.

Y ou should use hierarchical netlisting whenever possible. However, if you intend
to read the EDIF file produced by ENWrite with atool that only accepts flat
netlists, you should use flat netlisting.

QuickSim Il Advanced Training Workbook, 8.5_1 6-27
November 1995

Custom Design Checks

Lab Overview

= g

RAM1 $MTM ROM1 $MTM
74LS139A — A(7:0) — A(7:0)
N b
o~ — DATA_IN(15:0) — DATA_IN(15:0)
b
q o DATA_OUT(15:0) DATA_OUT(15:0)
—> CLOCK —>CLOCK
e —{ READ_EN — READ_EN
— WRITE_EN — WRITE_EN
= —{ CHIP_EN — CHIP_EN
RAM2 $MTM ROM2 $MTM
— A(7:0) — A(7:0)
[> — DATA_IN(15:0) 1 DATA_IN(15:0)
DATA OUT(15:0)[—* DATA_OUT(15:0)—*
> —> CLOCK —> CLOCK
— READ_EN — READ_EN
— WRITE_EN — WRITE_EN
— CHIP_EN — CHIP_EN
I

>

Create an ASCII naming check file

Compile the naming check file using config_nc

Create an ASCII electrical rules check file

Compile the ERC file using config_erc

In DVE, check the MEMORY design with both
custom naming and erc files

6-28 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Lab Overview

In the lab exercise for this module, you will:

* Use Notepad to create an ASCII naming check file that names all nets and
checks for net names that are too long.

* Usethe QuickCheck config_nc tool to compile the ASCII naming check
source file and create a binary run-timefile.

* Use Notepad to create an ASCII electrical rules check file that determines for
pintype “OUT” if more than one driver is connected to a net.

* Usethe QuickCheck config_erc tool to compile the ASCII electrical rules
check source file and create a binary run-timefile.

* |Invoke DVE, and use the design checking options to run your custom naming
and electrical rules checks.

* Fix any design problems uncovered by the custom checks, rerun the checks to
verify that the problems have been fixed.

QuickSim Il Advanced Training Workbook, 8.5_1 6-29
November 1995

Custom Design Checks

Module 6 Lab Exercise

» If you arereading this workbook online, you can print out the lab
exercises to have them handy when you are at your workstation.
Note

Procedure 1: Creating a Custom Naming Check

Thislab procedure gives you a simple way to create custom name checking file
that can be used with DVE and QuickSim I1.

1. Invokethe Design Manager in ashell.

2. Open anew Notepad edit session and enter the following:

#! Header 1.0 DOBA
#! Reserved "FOO' "BAR'
FOR_EACH | NST WHERE PROPNAME == "I nst" DO
ALIAS "Inst _TID" "I" i:4 1
FOR_EACH NET WHERE (PROPNAME == "net") DO BEG N
FIRSTCHAR ["A'-"Z" " "] replace [* with " _"]
OTHERCHAR [' A -"Z" "0'-"9" " " "(" ")" ":"]
DELETEREPLACE ['$" , * with ' _']
SYNONYM "Net _tid"
END
FOR_ EACH PIN DO BEA N
| F (PROPNAME == "PIN') THEN BEG N
FIRSTCHAR ["A'-"Z" " '] REPLACE [* with " _"]
OTHERCHAR [" A -"Z" "0"-"9" " " "(" ")" ":"]
REPLACE[* wth ' ']
MAXLENGTH 10 TRUNCATE
SYNONYM "Pi n_tid"
END
| F (PROPNAME == "pintype") THEN BEG N
Translate in place any property value that is not IN,
QUT, 10
FIRSTCHAR ['I' '"O] # Fatal error
OTHERCHAR ['N 'O 'U 'T'] delete # Delete all illegal
END
END
6-30 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Custom Design Checks

3. Savethefileto the following path:
$HOME/training/gsim_a/MEMORY/name_rules.mgc_nc
4. Compilethisfile asfollows:
a. Navigate beneath the MEMORY object, and select the name _rules object.
b. Choose: Open > config_nc from the popup menu.

c. When the dialog box appears, enter the path to the source file you just
created (path shown in step 3).

d. Inthesecond entry field, enter the path to the new binary file as:
$HOME/training/gsim_a/MEMORY/name_rules.bin
e. OK thedialog box.

The config_nc tool compiles the source file and saves the binary file. A
window appears informing you if any errors occurred during the compile.

f. Close the config_nc window.
5. Check your design using this new file, asfollows:
a. Invoke DVE onthe MEMORY design using any method.
b. In DVE, choose: Miscellaneous > Check Design > Check Options
c. Enable”Simulation Checks?’ (YES)
d. Enablethe“Name Checks?’ option.

e. Fill inthe path to your compiled name_rulesfile, but leave the “NC
Synonym File” entry blank.

f. OK thedialog box.

The check algorithm checks the MEMORY design using the default rules, and
then runs your custom compiled name_rulesfile.

QuickSim Il Advanced Training Workbook, 8.5_1 6-31
November 1995

Custom Design Checks

6. Examine the Syntax Message window.

Thiswindow reports numerous errors similar to the one shown:

Error: Duplicate property value of < DATA_OUT(1 > created during synonym
generation for property < PIN > on Pin < /RAM2/DATA_OUT(15) > and
</RAM2/DATA_OUT(15:0) >. Synonym property name is < PIN_TID >.
(from: Capture/Name_checking 06)

This error occurs because the truncated names have created identical net
names. Normally, you would change your name to fit the rule, but in this case,
we will change therule.

7. Fix the cause of the error, as follows:

a. Using the Notepad editor, edit the file by changing the following line:
MAXLENGTH 10 TRUNCATE
© MAXLENGTH 14 TRUNCATE
b. Savethefile under the same source pathname.
c. Recompilethe name_rules.mgc_nc fileto:
$HOME/training/gsim_a/MEMORY/name _rules2.bin
d. InDVE, run the check again, with the new compiled file.

The check runs successfully thistime, the Back Annotation is created and
added to the viewpoint, and the schematic view window is displayed.

8. Maximize and examine the schematic view window.
Note the back annotations that have been added to the nets and instances.

9. Do not close the DVE window or the Design Manager window. Y ou will use
them in the next procedure.

6-32 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

Procedure 2: Creating a Custom Electrical Rules
Check

Thislab procedure gives you a simple way to create custom electrical rules check

(ERC) file that can be used with DVE and QuickSim 1.
1. Invoke Design Manager, if not already invoked.

2. Open anew Notepad edit session and enter the following (note--\\ means next

line should be on the current line):

#! Header 1.0
Check for Shorted Qutputs on a net
FOR_EACH NET(net1) DO BEG N
| F (COUNT(count1l) OF PIN(pinl)
VWHERE PROPERTY(pi nl1, "pintype") == "QUT" > 1)
THEN

out put pins were found on net.", netl, countl)
END

Check for shorted outputs on an instance
FOR_EACH | NST(inst1) DO BEG N
| F (COUNT OF PI N(pinl)

FOR_EACH PI N(pi n2)
WHERE PROPERTY(pi n2, " pi nt ype") ==" QUT"
DO BEG N
FOR_EACH PI N(pi n3) ON pi n2. net
WHERE PROPERTY(pi n3, "pi ntype") == "OUT" AND\\
pi N3 <> pin2
DO BEG N
IF (pin3.inst == instl) THEN
OUTPUT(WARNI NG "Pin $1 and pin $2 are\\
shorted on instance $3.", pi n2, pi n3,instl)
END
END
END
END

OUTPUT(WARNI NG, "Net $1 contains shorted output pins. $2\\

WHERE PROPERTY(pi n1,"pintype") == "OUT" > 1) THEN BEG N

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

6-33

Custom Design Checks

3. Savethefileto the following path:

$HOME/training/gsim_a/MEMORY/elec_rules.mgc_erc

4. Compilethisfile asfollows:

a

Navigate beneath the MEMORY design object, and select the elec_rules
object.

Choose: Open > config_erc from the popup menu.

When the dialog box appears, enter the path to the directory as follows:
$HOME/training/gsim_a/MEMORY

Enter the prefix: erc_rules

OK the dialog box.

The config_erc tool compiles the naming check source file and creates:

config_data/erc_rules.bin
string_registry/default/erc_rules.xstring.tab

5. Check your design using this new file, asfollows:

a
b.

C.

6-34

Invoke DVE on the MEMORY design using any method.
In DVE, choose: Miscellaneous > Check Design > Check options

Click on the “Electrical Rule Checks?” (Y es) button and fill in the path to
your compiled elec_rules.bin file as follows:

$HOME/training/gsim_a/MEMORY/config_data/erc_rules.bin
Notice that you can enter more than one ERC pathname at atime.
OK the dialog box.

The check algorithm checks the MEMORY design using your custom
electrical rules checks. The Design Syntax window appears with results.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Custom Design Checks

6. Examinethe Design Syntax messages window.

Notice that each of the 16 MOUT signalsis being driven by four outputs. This
Is because two RAMs and two ROMs output on these nets (the MOUT bus).
Since only one driver is enabled onto the bus at atime (the other 3 are hi-
impedance Z) this condition is OK.

Also notice that several Error messages appeared. These are because several
component pins do not have the “pintype” property. Using naming selection
techniques, report on the objects specified to determine if the errors are valid.

7. Add (back annotate) the following pintype properties into the design:

1$7/IN pintype = IN
1$7/0UT pintype= OUT
1$12/1$2/IN pintype=IN
1$12/1$2/0UT pintype= OUT

8. Rerun the électrical rules check to verify that the errors have been fixed.
9. Exit DVE, saving the new annotations.

10. Exit the Design Manager.

This concludes the Lab Exercise for Module 6.

QuickSim Il Advanced Training Workbook, 8.5_1 6-35
November 1995

Custom Design Checks

Module 6 Summary

This module, Custom Design Checks, you learned about the following:
* There are three types of checking that you can perform on your design:

o Sheet checks--Check the individual sheet to determine if design creation
rules were followed.

o Schematic checks--Checks all sheets contained within a schematic to
determineif design creation rules were followed in Design Architect.
Requires the -schematic option with the check command.

o Configured Simulation Checks--Uses the rules and definitions in the design
viewpoint along with the design structure.

* Design Architect allows you to check both schematics and sheets.

* DVE, QuickSim Il and other downstream application allow you to perform
configured checks. A configured check uses viewpoint information. In
addition, custom checks can be performed in addition to the standard
configured checks, or instead of the standard checks.

o The QuickCheck utilities allow you to write and compile your own naming
and electrical rules checks. The following tools compile these files:

o config_nc. Thistool compiles an ASCII naming check sourcefileto a
binary run-timefile.

o config_erc. Thistool compilesthe ASCII electrical rules check sourcefile
to abinary run_timefile, and a string registry of error messages.

This completes the QuickSim Il Advanced Training. There is additional
information contained in the Appendixes that may be useful to you.

6-36 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Processes Using QuickSim I Appendix A Lessons

Appendix A
Processes Using QuickSim Il

Appendix A Lessons

Principles of Top-Down Design A-2
Using Functional Blocks A-4
Design Process--ASIC A-6
Design Process--Board A-8
Creating VHDL Models A-10
Customizing Technology Files A-12
QuickSim Il Advanced Training Workbook, 8.5 1 A-1

November 1995

Appendix A Lessons Processes Using QuickSim Il

A-2

Principles of Top-Down Design

Create a high level, functional model
o Technology independent

Partition using functional blocks

Use High-level Language Models
o VHDL (System-1076) or AutoLogic Blocks

Simulate Functional Blocks
o Verify functionality
o models simulated directly in QuickSim Il

Synthesize for Technology -- Create gate-level
design from high-level language model

Simulate Synthesized Design -- QuickSim I
o verify synthesized design functions
o estimate timing information

Layout Design
o provides real timing and delay value
o timing saved in ASCII file or back annotations

Simulate System Timing -- QuickSim Il
o merge back annotated timing

o simulate to verify entire design

o check all constraints

0 generate (save) test vectors

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Principles of Top-Down Design

The top-down design process involves specifying a design from the abstract to the
detailed using computer aided tools. This process involves several steps that may
be new to a simulation engineer who has only been involved in board-level or
chip-level smulation. Here are the steps involved in the top-down process:

* Functional Blocks. Model the design with functional blocks. These blocks
represent arough partitioning of the design, usually by the type of
technology used to build the devices. This step is similar to sketching a
rough view of the system and its interconnections.

* High-level Language Models. Describe the functionality of the blocks
with some type of high level language, such asVVHDL, or AutoLogic
Blocks.

* Simulate Functional Blocks. Verify the functionality of the design. VHDL
and other block models can be simulated directly in QuickSim I1. Source
code debugging is essential to rapid refinement at this step.

* Synthesizefor Technology. Create a gate-level design from the high-level
language model. Synthesis is performed with a technology focus for each
functional block.

* Simulate Synthesized Design. This step allows you to verify that the
synthesized design functions the same. Also, estimated timing information
Is added so that timing effects can be considered.

* Layout Design. Whatever technology you use (board, ASIC, custom IC,
FPGA, etc.), the layout process provides real timing and delay values.
These values can be saved in an ASCI| file or back annotation object.

* Simulate System Timing. Merge back annotated timing and simulate to
verify the entire design. Check al constraints. Generate (save) test vectors
for manufacturing test.

QuickSim Il Advanced Training Workbook, 8.5_1 A-3
November 1995

Appendix A Lessons Processes Using QuickSim Il

Using Functional Blocks

VHDL
Descriptions

Schematic
Descriptions

Schematic

VHDL Descriptions

Descriptions

v
0sC
> ANALOG_OUT
CLll?:REQ—DET
>
RE£i, OS¢ ACCESS_CHK
A RED_LED L~
ANALOG_OUT g ACCESS(15:0) =
GREEN_LED
ANALOS s CLR REEN_LED
FULL AccEss(15:0)
> ANALOG_OUT ACCESS(15:0)
ADD_DET

A-4 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Using Functional Blocks

When creating a hierarchical design, it isvery useful to create functional blocks.
Y ou can think of functional blocks as partitioning (or decomposing) a hardware
design and associated descriptions into smaller units.

The top figure on the previous page shows aflat-level design (no hierarchy)
partitioned into smaller units. The function of each hardware partition is described
with a hardware description language or schematic. The hardware language
descriptions are associated with the partitioned schematic sections.

To create true functional blocks, the individual blocks must be self-contained. A

self-contained block isindependent, so changes are easily implemented and only
affect the individual block.

When creating a hierarchical design, you first create a schematic sheet or high-
level language description that has nothing but several functional blocks
connected. The bottom figure shows schematic blocks connected with nets.

Beneath a functional block in the design are descriptions of the block's
functionality. These descriptions can take many forms, for example: VHDL, PLA,
and Boolean descriptions. After you have created the functional blocks for your
design, you can then add lower-level descriptions to define each blocks
functionality.

Maintaining a hierarchical design provides you the ability to independently test
and simulate each block in the design. A hierarchical design lets you verify the
functionality of each portion of the design as you traverse the hierarchy of the
design. This gives you confidence in each modul€'s correctness early in the design
process when changes to the design can be easily implemented. In addition, a
block developed asaVHDL model can simulate the function of the design at the
system level. This can be useful in detecting design flaws early in the design
process.

In summary, functional blockslet you divide the design into self-contained
portions in which the lower-level descriptions can be created and simulated by
different engineers, or that will be created by different layout technologies.

QuickSim Il Advanced Training Workbook, 8.5_1 A-5
November 1995

Appendix A Lessons Processes Using QuickSim Il

Design Process--ASIC

(Specifications)
—» % <

Design Creation

High-level Descriptions
Synthesis and Optimization
Schematic Capture

Design Checking

Schematic-Based Checking
Design Viewpoint Creation

Design Syntax Checking
Name Checking & Translation
Electrical Rules Checking & Statistics

Design Verification & Analysis

Tester Constrained Test Vector Generation
Unit Delay Simulation
Delay Estimation
Estimated or Actual Wirelength Delay Simulation
Timing Analysis
Dynamic Power Analysis
Test Vector Grading
Design Release for Board-Level Analysis

C

Release Design To Vendor

EDIF Netlist Generation
Test Vector Translation
Bonding Diagram Generation
Design Release

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Modify Design With Vendor Revisions *
Design Changes
Actual Delay Back Annotation

Bonding Diagram Back Annotation

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A-6 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Design Process--ASIC

The figure shows the typical ASIC design process and how design revisions can
occur. Boxes outlined in dashed lines indicate steps that you, the ASIC designer,
typically do not perform. The shaded test in the figure are areas where Mentor
Graphics does not currently provide a solution.

1.
2.
3.

Create the design.
Check the design, making changesto fix errors.

Verify the functionality of the design by using test vectors (stimulus) and
perform other types of analysis. Y ou may Repair, Check and Verify many
times. An early version of the ASIC may go to engineering test to verify the
operation of the ASIC in the board beforeit is sent to the vendor.

Release the design to the ASIC vendor. This can include the source design
itself, the netlist of the design, and the test vectors.

The vendor then:
o Usesverification tools on the design and performs the layout.

o Returnsrevisions back to you (designer) for design modifications. This
includes actual wire capacitance (pre-layout used estimated capacitance
values). It also includes actual pin-to-pin propagation delay.

Re-simulate the design with the more accurate timing values or physical
parameters (inter-connect capacitance) to verify proper operation of the
“post-layout” design. This can include re-simulating at the system or board
level with the ASIC again with more accurate post-layout timing.

Possibly modify the design with vendor revisions and repeat previous steps.

When the ASIC meets both your standards and the vendor's standards,
release the ASIC to the engineering team that istesting the printed circuit
board to verify the operation of the final ASIC in the board.

Most ASIC vendors perform only the “Vendor Verification and Layout” step in
this process, but may perform some of the other stepsin the ASIC design process.
If this occurs, you will release your design to them at a different point in the
process, so they can complete the additional stepsin the process.

QuickSim Il Advanced Training Workbook, 8.5_1 A-7
November 1995

Appendix A Lessons Processes Using QuickSim Il

Design Process--Board

<Specifications>

4‘ Design Creation }7

High-level Descriptions
—» Synthesis and Optimization
Schematic Capture * Design Rule Setup

—‘ Design Checking }—

Schematic-Based Checking

Design Viewpoint Creation
Design Syntax Checking
Electrical Rules Checking & Statistics

4‘ Design Verification & Analysis }7

Tester Constrained Test Vector Generation *
Unit Delay Simulation * Delay Estimation -
Estimated or Actual Wirelength Delay Simulation
Timing Analysis * Test Vector Grading
Board-Level Analysis

4{ Component Package Creation }7

PCB Creation * Geometry Creation
Part Number Creation * Design Library Setup

4 Logic Symbols Assigned to Packages }—

Package Config Setup * Symbol Assignment #
Assignment Changes * Geometry Resolution
Back Annotation

4‘ Component Package Placement }7 %A

Design Rule Changes * Placement
Placement Changes * Back Annotation

* —‘ Thermal Analysis }—

Thermal Analysis of Board
Component Placement Changes

} Trace Routing }
Design Rule Changes * Routing * Changes #
Testpoint Creation * Back Annotation

4‘ Manufacturing Data Generation }7

Photoplotter Data Creation * Drill Data
Mill Data Creation * Neutral File Creation
Fabrication and Assembly Drawings
Back Annotation * Bill of Materials

A-8 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Design Process--Board

The figure shows atypical PCB design process and design iterations.

1.

2.

Create the design.
Check the design, making changesto fix errors.

Verify design functionality by using test vectors and performing other types
of analysis. You may have to make changes to the design and proceed
through the “Design Checking” step, and possibly through the “Design
Verification and Analysis’ step, severa times until the design is complete.

Create geometries and assign part numbers.

Assign logic symbolsto the physical components that are used in the layout
of the design on the board.

Place the components on the board.

Analyze the thermal characteristics of the placement of components on the
board with regard to the airflow across the board.

Route the traces between components on the board.

Generate manufacturing data used in the final stages of manufacturing to
create the PCB. Thisincludes photoplotter data, fabrication and assembly
drawings, NC drill and mill data, bill of materials, and other reports.

PCB design engineers typically create, check, then verify and analyze the design.
They could also assign logic symbols to components. PCB layout designers
typically assign logic symbols to components, place components, perform thermal
analysis, route the design, and generate manufacturing data. They could also
create geometries and part numbers, but thisistypically performed by alibrarian.

The manufacturing data is passed to the production department so they can start
building the board. The potential partslist is passed on to production during the
initial pass through the processto verify the availability of the parts.

QuickSim Il Advanced Training Workbook, 8.5_1 A-9
November 1995

Appendix A Lessons Processes Using QuickSim Il

Creating VHDL Models

Start
VHDL Design

Create symbol and
instantiate it on a
schematic sheet

Create VHDL
source file

+i+

Compile
code

Create

custom

No .viewpoint
I)

Correct
compile-time
errors

Compile-
time
errors?

v

Simulate the
compiled code

Design
simulates
correctly?

Correct model
Debug or routing
code errors

A-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Creating VHDL Models

A VHDL model isregistered with a component when it is compiled. The
component is specified when the VHDL source object is opened. If a component
name is not specified, a component is created at that location.

A Mentor Graphics VHDL description consists of a set of instructions and data
types. The process of creating and simulating a model covers a number of Mentor
Graphics applications. The figure on the previous page shows each of the design-
flow steps outlined in the following list.

1. Optionally, create a symbol for your design using the Symbol Editor from
within the Design Architect with the appropriate properties. For
information on creating symbols, refer to “ Creating a Symbol” in the
Design Architect User's Manual.

2. Enter the VHDL instructions using the System-1076 language in the VHDL
Editor in Design Architect. For concepts and procedures related to creating
VHDL models, refer to “ Creating and Compiling Source Code” in the
System-1076 Design and Model Devel opment Manual.

3. Issuethe System-1076 compiler command on the source code. The
compiler isaprogram that checks source code for proper syntax and
semantics, displays and highlights any errors encountered, then (once you
correct any errors) translates the source code into the common database.

4. You can create a custom design viewpoint for your design, rather than
using the design viewpoint automatically-generated during the invocation
of QuickSim |1 or the opening of a design sheet in Design Architect.
Custom viewpoints allow you to specify unique parameters, primitives,
visible properties, and back annotation objects.

5. Finaly, test your VHDL model by using the source level debugger
available with QuickSim I1. For information about simulation, refer to the
SmView Common Smulation User's Manual. Errors encountered in a
System-1076 model during this step are called run-time errors. For
information about debugging the model, refer to “ Debugging System-1076
Models’ in the System-1076 Design and Model Devel opment Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 A-11
November 1995

Appendix A Lessons

Processes Using QuickSim Il

Customizing Technology Files

Text Editor
or
Model Generator

Library Data
Technology File

Include | Technology
File File

Technology Compiler
(TC)

Compiled
Technology
Model
Optional
List Files
‘ TimeBase
. (Equation Analysis)
Saved Timing Optional
Cache for a Evaluated Timing
Complete Design y Data Files

QuickSim 1l
(Function and Timing Interaction)

A-12

Specification

Functional Model

Graphical Model

Compiled Library
Data Technology
Model

Graphical and
Functional Model

Compiled
Technology
Model

Complete Design

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Processes Using QuickSim Il Appendix A Lessons

Customizing Technology Files

To complete the overall view of the Technology File creation process, the figure
on the previous page shows the results of your steps through this process, and the
tools you use to produce these results. This picture shows:

* You start with a specification for the model's timing and technol ogy.

* You then use the text editor of your choice to create the Technology File
and Library Data Technology File. Also, some companies develop tools to
generate Technology Files given input data. Y ou can create an includefile
with common statements al so.

* You compile the Technology File, checking for errors, using the
Technology Compiler (TC). Using a switch in the TC command, you aso
compile the Library Data Technology File.

These actions create a compiled version of your source files that the
analysistools use. You can also have TC (through a switch) produce an
optional list file that shows information such as error locations, debugging
information, and documentation of the model.

* You can then use TimeBase to debug your Technology File and evaluate
the Technology File equations. Y ou can use QuickSim 11 to evaluate the
timing that the Technology File provides. Y ou can debug on a stand-alone
basis (a single model) or using a complete design. If you work with a
complete design, you can save the information that TimeBase createsin a
cache file that the analysis tools can use. Y ou can also save evaluated
timing data.

Thisisahigh-level view of the process results and tools. For the details
about the Technology File creation process, refer to “Creating
Technology Files” in the Technology File Development Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 A-13
November 1995

Appendix A Lessons Processes Using QuickSim Il

A-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Appendix B
Customizing QuickSim Il Interface

Appendix B Lessons

Appendix B Lessons B-1
Customizing the Simulation Interface B-2
Creating Custom Key Definitions B-4
Creating Custom Strokes B-6
Available QuickSim Il Strokes B-8
The Userware Environment B-10
L oading Custom Userware Files B-12
Customizing Startup Files B-14
Lab Overview B-16

Appendix B Lab Exercise B-18
Procedure 1: Define Keysto Run Simulation B-18
Procedure 2: Define Strokes to Scroll List Window B-21
Procedure 3: Prompt for Working Directory B-23
Procedure 4: Create a QuickSim |1 Startup File B-26

QuickSim Il Advanced Training Workbook, 8.5 1 B-1

November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Customizing the Simulation Interface

RS

Directory if
Link if user
o e (userare) iree

> = Link

* Changing the Defaults
o Shell invocation
o Design Manager invocation

e Custom key definitions
* Custom stroke definitions
* Developing custom userware

* Personal userware files
o Can be automatically loaded in QuickSim Il
o Manually load at run-time

* Sharing personal userware with others
o Can be automatically loaded in QuickSim Il
o Manually load at run-time

B-2 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Customizing the Simulation Interface

The MGC Tree contains Mentor Graphics application software and support
utilities/designs. The figure on the previous page shows the structure of the MGC
Tree. Thistree structure has been devel oped to support customization without
interfering with the default operation of the software. In the next few pages, you
will learn how to create or modify objects within the MGC Tree to customize the
simulation user interface.

The ultimate purpose of using QuickSim Il is not just to learn how to perform and
debug digital smulations accurately, but to perform them efficiently. The
QuickSim Il and SimView user interfaces allow you to customize for performance
(and the way you like to work). Here are some of the productivity modifications
you can make to the QuickSim Il user interface:

* Changingthe defaultsthat are used at invocation. Y ou can create your
own QuickSim Il invocation script that runs as a shell command that uses
different defaults. Do not modify the existing quicksim shell command.

* Automatically preparing the QuickSim Il environment. You can
accomplish thisin two ways:

o Create acustom QuickSim Il startup file that runs during invocation.

o Create asetup file that is run when you invoke QuickSim 11 using the
-Setup switch and setup_file with the quicksim command.

Any of the following can be defined within the custom startup or setup
files:

o Custom key definitions. Y ou can define/redefine any non-
aphanumeric key, including the mouse keys, to perform custom tasks.

o Custom stroke definitions. Y ou can issue graphical commands, called
strokes, that perform custom tasks.

o Personal and group userware. You can also load your own custom
userware files (or shared userware) automatically during invocation, or
manually at any time during the simulation.

QuickSim Il Advanced Training Workbook, 8.5_1 B-3
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Creating Custom Key Definitions

To create a custom key definition:

1. Determine the key identifier

2. Create function with same name as key identifier
3. Create the body of the function

4. Compile or load the function

EXAMPLE 1--Customize the Activate (Enter) key:

function $key nanme() // identifier for a key

{
}

AVMPLE st atenents

EXAMPLE 2--Define Help key to display quick help:

function $key_hel p(function_name : string)

{
$nmessage($f uncti on_hel p(function_nane)); // AVPLE
functions

}
EXAMPLE 3--Sets Again key to repeat last command:

function $key_again()

{

$key command(); // gets a conmand |ine
$key_undo(); /1l brings up | ast comuand
$key return(); // executes sequence

}

EXAMPLE 4--Define Select Mouse button to get time:
function $key | nb()
$nmessage($tinme());

}

B-4 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Creating Custom Key Definitions

Y ou can create akey definition by writing an AMPLE function that has the same
name as the key identifier of the key you want to customize. The procedure for
creating a custom key definition follows:

1. Determinethe key identifier for the key you want to customize. Refer to the
“Logical Key Names’ section in Customizing the Common User Interface.

2. Create afunction with the same name as the key identifier. Refer to
workstation-specific key identifier tables in Customizing the Common User
Interface.

Create the body of the function.

4. Compile or load the function. Refer to “L oading Userware into a Scope” in
Customizing the Common User Interface.

Example 1 on the previous page shows structure for defining akey. Y ou can
include any valid AMPLE statements or functions in the function body.

Example 2 uses the $key _help() function to define the Help key to display a quick
help string for afunction. The $function_help() function returns the quick help
string associated with the specified function, and the $message() function displays
the string in the message area.

Example 3 defines the Again to execute the last command. It pops up the
command line, uses Undo to bring back the text for the last command, then
executes the command line.

Like defining keys, you can define single and multiple mouse button
combinations. The Common User Interface also supports the notion of “double-
clicking” a mouse button, which doubles the number of available mouse button
definitions. A double click is rapid succession of two presses and releases. Y ou
can use the $set_double _click_interval() to define the interval during which two
clicks are treated as a double click.

To define the downstroke of the left mouse button, create a function called
$key Imb(). Example 4 causes aclick of the left mouse button to display the
current time in the message area.

QuickSim Il Advanced Training Workbook, 8.5_1 B-5
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Creating Custom Strokes
The Stroke Grid:

1 2 3 1 2 /

4 5 6 4 /5/6

EXAMPLE 1:

function $stroke_753()

{
| ocal pat = $get _pattern();

$set _pattern(pat + 1);
$nessage($strcat ("Pattern nunber: ", pat));

}
EXAMPLE 2:
function $stroke 321456987()

$dof i | e(SHOVE/ bi n/ ny_qui cksi m set up) ;
$nmessage(" my_qui cksi m setup conpl eted. ")

B-6 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Creating Custom Strokes

A stroke is amethod of executing afunction by drawing a pattern on the screen
with the graphic input device (mouse). For example, you could define a U-shaped
stroke to undo the last action. Y ou use the Stroke/Drag mouse key to issue strokes.
Strokes have the following characteristics:

* Stroke Name. A stroke nameisanumerical sequence taken from its grid
path and preceded by “$stroke ”. Asyou draw a stroke, the system
identifies it according to the path the stroke traces on the numerical 3x3
grid. Thisgrid is shown on the previous page. For example, $stroke 753()
Is the name of a stroke that beginsin the lower-left corner of the grid and
continues to the upper-right corner, as shown in the right figure.

* Stroke Function. You can create, issue, delete, and report strokes by using
the stroke functions provided by the Common User Interface. For more
information about these functions, refer to the “ Function Dictionary”
section of the Common User Interface Reference Manual.

A strokeisidentified by a $stroke name() function, where name is a numerical
sequence that defines the stroke pattern. By defining a function named after a
stroke, you can issue one or more commands and functions when a stroke is
executed. The following procedure explains how to create a stroke that increments
the active window's foreground pattern by 1:

1. Enter the function declaration in a Userware Notepad. Thisis shownin
Example 1 on the previous page.

2. Compile the function by entering the following in the popup command line:

$compile_userware();

3. Issuethe stroke by pressing and holding the Stroke/Drag mouse button and
moving the mouse along the 753 pattern shown in the figure on the previous
page, then releasing the Stroke/Drag mouse button.

For information about creating and using strokes, refer to “Customizing
Strokes’ in the Customizing the Common User Interface.

QuickSim Il Advanced Training Workbook, 8.5_1 B-7
November 1995

Appendix B Lessons

Customizing QuickSim Il Interface

Avallable QuickSim Il Strokes

Quick Help on Strokes

Common SimView Strokes

Activate Window
5

View Centered
Double Click MMB

Pop Window
98741

Select Window
1475963

Add Traces
96321

Add Lists
14789

IR ST

Snap Trace Cursor
321456987

Schematic View Strokes

" Select Area
74123

" Open Down Nearest
Y 258

Unselect All
1478963

Report Selected
1474123

1N G

= Set Select Filter
32147

Clear Select Filter
1236987

v

Delete
741236987

[

Change
95123

v

Move
74159

K

Copy
3214789

7.

View Area
159

View All
951

357

Zoom Out (2)
753

Open Selected
78963

RN
\KO
/’ Zoom In (2)
~
A

Open Down Selected

* 258
(@) 0]
Py

® Open Sheet
AJ 36987

Stroke Recognition Grid
P DN R

More help on strokesl

More Help on SimView Strokes
Other Strokes Dialog Strokes Palette Strokes Report Strokes
. Execute Last Menu Execute * Scroll Up Close Window
Y 12369 "> 456 X 753 "> 456
Execute prompt bar Cancel Scroll Down Close Window
)
456 " 654 S 3y " 654
_¢w Cancel prompt bar Stroke Recognition Grid _ _
654 2| 3 Strokes are drawn with the middle
1 mouse key. They are recognized by
S Help on Strokes fitting the stroke path onto a 3x3
123658 4 5 6 grid creating a numerical sequence.
71819
Print | Ref Helpl ’ Closel

B-8

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Available QuickSim Il Strokes

There are a certain number of strokes that are available in QuickSim I1. Many of
these strokes duplicate the functions and operations that are available using the
menus and palette. In many cases, these strokes take fewer steps to issue, and thus
less time. Therefore they are very useful for repetitive operations.

The figure on the previous page shows the strokes that are defined for you within
the QuickSim Il application. Thisfigureisavailable in adialog box when you
access the Help > On strokes menu item. If you click on the “More help on
strokes’ button, a second dialog box is presented with another 9 strokes and
information on how to issue strokes.

Strokes are context sensitive (only defined within a specific scope), and may not
be available in all windows. Title fields define this context. For example, the Open
Down Nearest stroke is only valid when the schematic view window is the active
window.

Note that many strokes are defined the same in all Idea Station applications. For
example, you will find the following definitions in Design Architect, Design
Viewpoint Editor, QuickSim |1, and SimView:

Activate Window Execute Set Select Filter
Cancel Execute Prompt Bar Unselect All
Cancel Prompt Bar Help on Strokes View All
Change Move View Area
Close Window Report Selected View Centered
Copy Select Window Zoom In

Delete Select Area Zoom Out

For additional information about creating and using strokes, click on the
Ref Help button in one of the Quick Help on Strokes dialog boxes, or
refer to “ Strokes’ in the Getting Started with Falcon Framework.

QuickSim Il Advanced Training Workbook, 8.5_1 B-9
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

The Userware Environment
Two general methods of loading userware:

* Invocation-time loading

a. $MGC _HOME/pkgs/pkg_name/userware/LANG/
scope.ample

b. $MGC_HOME/shared/etc/cust/a_package name
/luserware/a_language

c. $MGC_HOME/etc/cust/a_package name
/luserware/a_language

d. Determined by AMPLE_PATH or defaults to:
$HOME)/mgc/userware/a_package name

* User loading:

$load userware() function
Optional environment variables:

* LANG -- language and set of characters that are
required by the user

* AMPLE PATH -- Define alternate location where
the system looks for userware

B-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

The Userware Environment

When you invoke a Mentor Graphics application, such as QuickSim I1, there are
certain rules that determine how userware isloaded. There are two general
methods of |oading userware, invocation-time and on demand:

* Invocation-time loading. Invocation |oading rules determine the order and
location of userware that gets loaded. Mentor Graphics applications
automatically load userware in the following order:

a. Mentor Graphics supplied userware in the directories:
IMGC_HOME/pkgs/pkg_name/userwar e/LANG/scope.ample

b. Site-specific userware located in the directory:
$MGC_HOME/shared/etc/cust/pkg_name/userwar e/language

c. Workstation-specific userware located in the directory:
SMGC_HOME/etc/cust/pkg_name/userware/language

d. User-specific userware located in directories specified in the
AMPLE_PATH shell environment variable. If this environment
variableis not set, it defaults to: SHOME)/mgc/userware/pkg _name

* Demand loading. During a simulation, you can load custom userware
using the $load _userware() function. Thisis discussed in alater topic.

As noted above, environment variables can be defined to change where
QuickSim Il looks for userware:

* LANG. The LANG environment variable provides applications with the
language and set of characters that are required by the user.

* AMPLE_PATH. The AMPLE_PATH environment variable allows you to
define alternate locations where the system looks for userware.

For information on userware organization and the LANG or the
AMPLE_PATH environment variables, refer to “ Userware
Organization” in the AMPLE User's Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 B-11
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Loading Custom Userware Files
Scope -- environment (set of conditions)
Three ways to load custom userware:

e Direct command line

function say_hi() {$writeln(“Hi!");
$writeln(* Good Day!”); };
/[“Hi!”
/[“Good Day!”
e $dofile() function

$dofile(* custom_pchb.ample”);

e $load_userware() function

$load userware(“custom_bold.ample”,
“ol _document_area”);

B-12 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Loading Custom Userware Files

Y ou control where (scope) functions and variables are loaded within an
application by when and where you load the userware. Remember that the active
window for Common User Interface applications determines the current scope.
The following lists methods you can use to |load custom userware files.

Direct command line. Y ou can load userware into the current scope at the
popup command line by typing a series of statements, separated by
semicolons. For example, to load the function $say _hi(), you enter the
following in a popup command line:

function say_hi() {$writeln("Hi!") ;$writeln("Good Day!") ;};

Once loaded, if you type say_hi() the following output appears on $stdout:

/I “Hil"
/I "Good Day!"

$dofile() function. The $dofile() function compiles and loads the specified
userware into the currently active scope, and executes callables that are
outside function declarations. The $dofile() function requires the pathname
to the file and optionally permits you to specify arguments to thefile.

To load the userware in the file custom_pch.ample into the current scope,
for example, you type the following in a popup command line:

$dofile("custom_pcb.ample");

$load_userware() function. Thisfunction compiles and loads the
specified userware into either the current scope or a specified scope. The
function requires the file pathname and permits you to specify the scope
into which the userware is to be loaded. In the following example, the

$load userware() function call resultsin the file custom bold.ample being
loaded into the ol _document_ar ea scope:

$load_userware("custom_bold.ample", "ol_document_area");

For more information on the $dofile() and $load userware() functions,
refer to the Common User Interface Reference Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 B-13
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Customizing Startup Files

Startup file -- AMPLE program executes specified actions
automatically when you invoke application

$MGC_HOME >

@D @ GO o @ @
* * S G
| |

bold_bro.startup quicksim.startup

simview.startup quicksim.startup

dve.startup

dve.startup

Q = Directory D = Link
@ = Additional directory entries = File

sta@
| |

bold_bro.startup quicksim.startup

dve.startup

B-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Customizing Startup Files

A startup fileisan AMPLE program or list of commands and functions that
allows you to execute specified actions automatically when you invoke an
application. Startup files are like $dofile functions and are executed automatically
at the end of the invocation process. There are four locations for application
startup files, that applications execute in the following order:

1. Site-specific startup files. These files are customized to applications for
your workplace. For QuickSim |1, the default path is:

$MGC_HOME/shared/etc/cust/star tup/quicksim.startup

2. Node-specific startup files. These files are customized to invoke
applications for your type of workstation. See your system manager if you
need modifications to thisfile. The default QuickSim Il pathiis:

$MGC_HOME/etc/cust/startup/quicksim.startup

3. User-specific startup files. These files are customized to suit your personal
working environment. They are associated with the $SHOME environment
variable and are usually define by your login account. The default path is:

($HOME)/mgc/startup/quicksim.startup

4. Design-specific startup files. These files are customized to set up specific
design conditions. Each design viewpoint can use a different startup file.
The default path to thisfileis:

design_path/viewpoint_name/quicksim.startup

Invoking QuickSim 11 will always execute these files, and will not
@ execute any other application.startup file. To disable a startup file,
Note YOU must remove or renameit.

Refer to Customizing the Common User Interface for a detailed
discussion of startup files. Application manuals also contain examples

QuickSim Il Advanced Training Workbook, 8.5_1 B-15
November 1995

Appendix B Lessons Customizing QuickSim Il Interface

Lab Overview

= g

RAM1 $MTM ROM1 $SMTM
74LSl39A& — A(7:0) — A(7:0)
N\ o — DATA_IN(15:0) — DATA_IN(15:0)
b
g o DATA_OUT(15:0) F— DATA_OUT(15:0)F—
—>CLOCK —>CLOCK
e — READ _EN — READ _EN
— — WRITE_EN — WRITE_EN
— CHIP_EN — CHIP_EN
RAM2 $MTM ROM2 $MTM
— A(7:0) — A(7:0)
> — DATA_IN(15:0) —————1 DATA_IN(15:0)
DATA_OUT(15:0)—* DATA_OUT(15:0)—*
> —p> CLOCK —p> CLOCK
— READ _EN — READ _EN
— WRITE_EN — WRITE_EN
— CHIP_EN — CHIP_EN

> > L L

[>
* Define function keys to run simulation
* Define strokes to scroll window
* Create dialog box to set working directory
» Make a startup file for QuickSim Il
B-16 QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

Customizing QuickSim Il Interface Appendix B Lessons

Lab Overview

The figure on the previous page shows the MEMORY circuit. It isthis design that
you use during this lab exercise. In the lab exercise for this module, you will:

* Create key definitions for the Alt-F1, Alt-F2, Alt-F3 and Alt-F4 function
keys to run the simulation for varying periods of time.

e Define severa strokes to scroll the contents of the list window.

* Create afunction that overlaysthe $set_working_directory() function. This
new function gives you the path to the current working directory, and
provides alarger text entry box.

* MakeaQuickSim Il startup file located in your $SHOME/mgc directory that
automatically defines the function keys, strokes, and working directory
upon invoking QuickSim I1.

QuickSim Il Advanced Training Workbook, 8.5_1 B-17
November 1995

Appendix B Lab Exercise Customizing QuickSim Il Interface

Appendix B Lab Exercise

» If you are reading this workbook online, you might want to print
out the lab exercises to have them handy when you are at your
Note Workstation.

Procedure 1: Define Keys to Run Simulation

In this procedure, you will define several function keys to issue the Run command
with increasing time values. Y ou will end up with definitions as shown in the
following table:

Function Key | Physical Key Name Command
Alt-F1 Run 10
Alt-F2 Run 50
Alt-F3 Run 100
Alt-F4 Run 1000

1. Set your working directory to $SHOME/training/gsim_a.

2. Invoke QuickSim Il on the MEMORY circuit using default invocation.

B-18 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Customizing QuickSim Il Interface Appendix B Lab Exercise

3. Find out what key names correspond to the function keys in the table by
performing the following steps:

a. Issuethe following menu path:

Help > On Keys > Open Logical Key Name Mapping

Thisinvokes the Bold Browser (you may need to OK the Question
Box) and takes you to a section of workstation-specific tables that map
logical key to physical key. Note that you do not find the function keys
in these tables. Thisis because thereis no logical key defined for any of
the Alt-Function Keys, you must use the physical key name.

b. Usethe Bold Browser to locate the “ Programmable Keys' sectionin
Appendix A of the Common User Interface Manual.

Here you will find alist of physical key names. Locate the key map for
the function keys in the table above.

c. Now fill in the Physical Key Namesfield of the previous table with the
names you found. Y ou will use these namesin alater function.

4. Activate the QuickSim Il session window.

By activating a window prior to defining userware, you are setting the
“scope” of the userware, that is, where the userware is defined. Defining
userware for the sessions allows it to function anywhere in the session.

5. Open anew userware ASCII file for edit:
MGC > Userwar e > Define

This menu choice understands that the file you create is executable
userware, and provides you with “Compiling” options from the window's
popup menul.

QuickSim Il Advanced Training Workbook, 8.5_1 B-19
November 1995

Appendix B Lab Exercise Customizing QuickSim Il Interface

6. Create akey definition for the Alt-F1 key so that it runs the simulation for
10 nanoseconds, and makes an entry in the softkey area, asfollows:

/1 This function defines Alt-F1 to run for 10ns
extern $key | abel fla = "Run 10";

$updat e_soft key | abel s();

function $key fla(), indirect

{
s

Run 10
7. Using the above function as atemplate, create key definitions for the Alt-
F2, Alt-F3, and Alt-F4 keys as defined in the table on page B-18.

When you have finished, you should have four key definition function in
the ASCII file.

8. Compile and then save the ASCI|I file to the following location:

$HOME/training/gsim_a/MEMORY/keys run.uw

Use the Compile menu item from the this edit window to load this
“ userware, and then use the File > Save As menu item.

9. Verify your new key definitions as follows:
a. Create the schematic view window.
b. Select one or more signals and create the Monitor window.

c. Presseach of the newly defined function keys in sequence and watch
the simulation time increment in the Monitor window.

B-20 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Customizing QuickSim Il Interface Appendix B Lab Exercise

Procedure 2: Define Strokes to Scroll List Window

When you have alarge number of signalsin the List window, you need an easy
way to scroll to the hidden information. This lab shows you how to define several
strokes that can be used to scroll the List window (or any other window).

1. Using the Common User Interface Reference Manual accessed from the
BOLD Browser, find the functions that scroll information horizontally in a
window. List thisinformation in the following table:

Operation Function

Scroll right horizontally
Scroll left horizontally

There are several functions that perform a horizontal window scroll. Use
the one that suits your needs.

2. Using the QuickSim Il help system, access help on strokes to determine
which strokes have already been defined.

Help > On Strokes also [More help on strokes]

Convenient strokes for this operation are $stroke 456 and $stroke 654. But
these strokes are already being used for closing the window. Y ou can
replace this definition with a new one (and close the windows using another
method).

3. First, open aList window (or activate the List window, if it already exists).
This step sets the “scope” of the following userware definition.
4. Open anew Userware ASCII edit pad:

MGC > Userware > Define

QuickSim Il Advanced Training Workbook, 8.5_1 B-21
November 1995

Appendix B Lab Exercise Customizing QuickSim Il Interface

5. Enter the stroke function to scroll the List window |eft as follows:

function $stroke 654() //Scrolls List windowleft

{
$scrol | _left_by wi ndow()
}

6. Enter the stroke function to scroll the List window right.

7. Compile the stroke definition userware and save the ASCI| file to the
following location:

$HOME/training/gsim_a/MEMORY/stroke_scroll.uw
8. Verify your new key definitions as follows:
a. Create the schematic view window (if one doesn't already exist).
b. Select all netsin the circuit using the Select > All > Nets menu item.

c. Createthe List window (adding these signals). If the signals you added
are not enough to fill the List window, list the signals again so that
multiple entries are created.

d. Using the Stroke mouse button, issue the two strokes several timesto
verify that the List window scrolls horizontally. Remember that the List
window must be active for this to work.

Will this stroke work in the Trace, Monitor, and schematic view
windows? Test your hypothesis.

Y ou can modify your stroke definition so that the window scrolls
m the opposite direction for each stroke. This gives the appearance
Note that you are pushing the window contents.

9. Now load the stroke definitions to work in all windows.

Perform step 7 again, but this time make the session active. Verify that
“ the strokes scroll all windows now.

B-22 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Customizing QuickSim Il Interface Appendix B Lab Exercise

Procedure 3: Prompt for Working Directory

Y ou must set the MGC_WD environment variable prior to entering QuickSim 11
or your working directory will be set to the current directory upon invocation.
This AMPLE userware prompts you to set the working directory.

1. Verify that you have QuickSim |1 invoked locally on the MEMORY circuit
using default invocation options.

2. Set your working directory to your home directory as follows:
a. Choose the following menu item:
MGC > Location Map > Set Working Directory

When the prompt bar appears, note that it does not give you the path to
your current working directory.

b. Now enter the path to your home directory:
$HOME
c. OK the prompt bar. Y ou have now set a new working directory.

It would be niceif this operation showed you where your current
working directory was defined. In addition, the small prompt bar is too
small to display such a path. In the next steps, you will create afunction
that overlays this function with a new and improved one.

3. First, activate the Session window so that the scope is globally defined.

QuickSim Il Advanced Training Workbook, 8.5_1 B-23
November 1995

Appendix B Lab Exercise Customizing QuickSim Il Interface

4. Create anew userware ASCII file for edit:
MGC > Userware > Define

A Notepad window appears named “Ample Userware for Kernel
(untitled)”.

5. Enter the following function that overwrites the current function, creating a
large entry areato alow you to set your working directory:

/I This file overloads the $$set_working_directory() function so that the
/I current working directory comes up in the menu bar.

fuction $set_working_directory(name :string {default =
$$get_working_dil

{

$$set_working_directory(name);

}

/Il This function creates a bigger popup form

function $set_working_directory_form(),INVISIBLE
{
local accept_button = $form_button(" OK ", "$execute()", @true);
local can_button = $form_button("Cancel", "$forget()");
local button_parts = $form_row(@false, accept_button, can_button);
local title = $form_column(@false, $form_label("Set Working Directory"));
local text_val = $form_string_entry_box_gadget ("New Directory");
local Text_gadget = $form_argument(0, $form_gadget_value(text_val),600);
$create_form("session_area”,
@$%$set_working_directory,
@true,

$form_column(
@true,
title,
text_gadget,
button_parts

)
);
}

$set_working_directory();

B-24 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Customizing QuickSim Il Interface Appendix B Lab Exercise

6. Compilethis userware file and save it to the following location:
$HOME/training/gsim a/MEMORY/set_wd.uw

7. Verify your new function for setting the working directory:
MGC > Location Map > Set Working Directory

Y ou should now see alarge dialog box containing the path to the current
working directory. Enter anew path and OK the dialog box.

8. Now issue the menu item once again and verify that your new working
directory isthe path listed in the dialog box.

QuickSim Il Advanced Training Workbook, 8.5_1 B-25
November 1995

Appendix B Lab Exercise Customizing QuickSim Il Interface

Procedure 4: Create a QuickSim Il Startup File

While you may need some userware only occasionally, other customization is
desired al the time. The userware that you just wrote can be placed in a startup
filesothat it is executed every time you invoke QuickSim I1.

1.

B-26

Verify that you have QuickSim Il invoked locally on the MEMORY circuit
using default invocation options.

Open a new Notepad for edit.

Append al of the userware files that you created in Procedures 1-3 into this
file. Use the following menu item:

File> Import

The order is not important, since all of the functions are self-contained. Be
sure to move the cursor to the location you want to append the file before
you issue the menu item.

Save the file to the following path:
$SHOME/mgc/startup/quicksim.startup

Exit QuickSim 11 without saving results.

Invoke QuickSim Il on MEMORY.

During the invocation, the default userware will be loaded. Then your
guicksim.startup file will be overloaded. The Set Working Directory dialog
box is displayed.

Verify that the key definitions, strokes, and set_ working_directory
operation function as in the previous procedures.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Modeling Techniques Appendix C Lessons

Appendix C
Advanced Modeling Techniques

Appendix C Lessons

Appendix C Lessons C-1
Simulating with Different Models C-2
Updating Models vs. Re-invoking C-4
Updating Models in Simulation C-6
Re-using Models (review) C-8
Schematic Models (review) C-10
Advanced Modeling Process (AMP) C-14
Creating QuickPart Table Models C-16
QuickPart Functional Description C-18
Using IF and FOR Frames C-20
VHDL (System-1076) C-22

Appendix C Summary C-24

QuickSim Il Advanced Training Workbook, 8.5 1 C-1

November 1995

Appendix C Lessons

Advanced Modeling Techniques

Simulating with Different Models

True Mixed-Model Simulation:

QuickPart ||
@7 Table
Model Schematic VHDL
Model ——| Level
B Model
Vendor
Hardware Hgae A | |
Model Video Gate
\ Intgﬂ‘_ace Level
B Behavioral ASII(% Model
Language ()
] Model
Models can be changed in QuickSim Il
@ Invoke Simulator or DVE
@ Change Model
@ Continue Simulation and Test
C-2 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Modeling Techniques Appendix C Lessons

Simulating with Different Models

In many cases, you may want to use multiple models for asingle portion of a
design to speed simulation, ease development, and increase timing accuracy.

This allows design functions modeled at different levels of abstraction to be
simulated and tested. The results of this testing can then be compared at each level
of abstraction to verify design implementation.

The Mentor Graphics QuickSim Il digital smulator can simulate a design using
many different model typesin the same design.

While you arein QuickSim Il or DVE, you can change the type of functional
model for a particular instance. The top figure on the previous page shows
different smulation models for instances of the same component within adesign.
For example, you have a system-level description that you modeled using VHDL.
Y ou use this model to verify design functionality. Next, you create or synthesize a
schematic model for layout purposes and want to verify its behavior. Change the
Model property for the instance, then simulate the design. Y ou can compare the
results to verify that the schematic and VHDL models are equivalent.

The bottom figure shows the major steps in changing a functional model. The
following list explains each step:

1. Invoke Simulator or DVE. You can switch models while in QuickSim ||
or DVE. For procedures on invoking these applications, refer to “Invoking
QuickSIm 11" in the QuickSm Il User's Manual, and “Invoking DVE” in
the Design Viewpoint Editor User's and Reference Manual.

2. Change Moddl. Y ou can change which model is used by specifying a new
value for the Model Property. For concepts on changing models, refer to
“Changing Models’ in the Design Viewpoint Editor User's and Reference
Manual. For procedures on changing models, refer to “ Changing Model
Types’ in the Design Viewpoint Editor User's and Reference Manual.

3. Continue Simulation and Test. Once the model is replaced, you can
continue simulating and testing your design at time zero. All stimulus for
your design still exist. In DVE, you can recheck the design with the new
model.

QuickSim Il Advanced Training Workbook, 8.5_1 C-3
November 1995

Appendix C Lessons

Advanced Modeling Techniques

Updating Models vs. Re-invoking

4 5 Re-invoke

2**

Reload design

o |~ W N

Load application
Load design

Build timing

Set up environment

Apply stimulus

Time —»

** De-allocate and re-allocate memory on reload may
take longer than invocation load.

* Re-invoke if major changes made at root level

* Re-invoke if more than half the design is affected

* Re-invoke if current design is close to memory

limit

C-4

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Modeling Techniques Appendix C Lessons

Updating Models vs. Re-invoking

When getting the design ready to simulate with QuickSim 11, the following
actions take time (as shown in the top figure on the previous page), and must be
taken into account when making the decision whether to reload models, or to re-
invoke QuickSim |1 on the design:

1. Load application. Thetime it takes to load the application software.

2. Load design. Thetimeit takesto load the design, plusinitializing the
contents of any RAM or ROM components.

3. Build timing. The time it takes to build the timing for AMP modelsin the
design. Thistiming datais cached so that timing does not need to be re-built
on subsequent QuickSim Il invocations (when the design has not changed).
If any part of the design changes, then the timing is re-built for all of the
affected circuitry. No timing is built if you are using the unit delay
simulation mode.

4. Set up Environment. Thetime it takes to define buses, synonyms,
breakpoints, waveform tests, and action points within QuickSim 11. It also
includes setting up the following types of reports or windows for the
simulation: lists, traces, and keep signals.

5. Apply Stimulus. Thetimeit takes to connect awaveform database to the
design or apply (by hand or AMPLE dofile) the forces and functions to
exercise the design.

In general, if achangeis necessary at the root level of the design (the top-level
schematic), then it is faster to quit and re-invoke. In this situation, re-invoking the
application is faster because during a reload, memory must be de-allocated for the
old circuitry before the new circuitry isre-built in memory. If timingison (notin
unit delay simulation), then timing is also re-built for the affected portion of the
design.

Another point to consider isthat if more than half of the design is affected by the
reload, it may take longer to rebuild the circuit than it would to load the design
from scratch (re-invoke).

QuickSim Il Advanced Training Workbook, 8.5_1 C-5
November 1995

Appendix C Lessons Advanced Modeling Techniques

Updating Models in Simulation

Invoke Simulator or
DVE

Found Design Errors

: Continue Simulation
Edit Model and Test

¢ ¢ ¢ ¢

Save Model Reload Model @

C-6 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Modeling Techniques Appendix C Lessons

Updating Models in Simulation

If the amount of time to set up the environment or apply stimulus to the simulation
islong, you may save time by reloading the design, even if more than half the
design is affected. When reloading, you also save the time to load the application.
Also, the timing calculations are only performed for the affected portion of the
design, rather than for the entire design as when you re-invoke.

It isfaster to reload selected models than to reload all models. During a “reload
model all,” the smulator must check the revision level of every object referenced
by the design viewpoint to seeif it has changed, whereas, the “reload model
selected” causes only the version of the selected objects to be checked.

The figure shows the major stepsin updating a model. The following list explains
each step and where each hypertext link points.

1. Invoke Simulator or DVE. Update modelsin QuickSim Il or DVE.

2. Found Design Errors. You found an error in the design that should be
corrected before continuing the analysis of the design.

3. Edit Model. Leave the analysis application open, and invoke Design
Architect to correct the error if the model is a schematic or VHDL model.

4. Save Moddl. After you make the corrections, check and save the schematic
sheets or recompile the VHDL source code. Y ou do not have to close
Design Architect. For concepts, refer to “ Design Capture Concepts’ in the
Design Architect User's Manual. For procedures, refer to “ Operating
Procedures’ in the Design Architect User's Manual.

5. Reload Model. Reload the model in the analysis application. For concepts
on updating models, refer to “Updating Models’ in the Design Viewpoint
Editor User's and Reference Manual. For procedures on updating models,
refer to “Updating aModel” in the Design Viewpoint Editor User's and
Reference Manual.

6. Continue Simulation and Test. Once the model is replaced, you can
continue simulating and testing your design at time zero. All stimulus for
your design still exists. In DVE and QuickSim |1, you can recheck the
design with the new model.

QuickSim Il Advanced Training Workbook, 8.5_1 C-7
November 1995

Appendix C Lessons Advanced Modeling Techniques

Re-using Models (review)

f;

Referenced

component

Timing changes kept in back annotations
CAUTION:
* Do not merge back annotations

* When releasing design, BAO kept separately

C-8 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Modeling Techniques Appendix C Lessons

Re-using Models (review)

In your design, you may have a component or functional block of your design that
can be used many times within the design. To save disk space, only one
description of thisfunctionality needsto exist. All instances of this component in
the design reference this one copy of the component. For example, if you have
500 instances of the same component on a sheet in your design, you would
actually have only one component on disk, and 500 references to that component,
instead of 500 copies of that component. See the figure on the previous page.

Through back annotation, you can place location-specific delay timing
information, reference designators, and pin names on each instance of the
component or functional block. When using reusable models, you need to keep
your back annotation objects when you release or archive the design, because you
cannot merge these annotations onto the source schematic sheets.

A If you are using reusable models, do not merge back annotation
information onto the source sheet. If you do, you could lose your
Note instance-specific information. For more information on merging back
annotations, refer to “Merging Back Annotations to Schematic” in the
Design Architect User's Manual.

QuickSim Il Advanced Training Workbook, 8.5_1 C-9
November 1995

Appendix C Lessons Advanced Modeling Techniques

Schematic Models (review)

Instance of Symbol @

Create a Component

2

Create a Schematic

O

Check the Schematic

O

Save the Schematic

)
Create a

Design Viewpoint

Simulate the Design I

| échematic Sheet

C-10 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Modeling Techniques Appendix C Lessons

Schematic Models (review)

For large designs that are hard to organize on one sheet you may partition your
schematic into many different sheets, so that you can have multiple designers
editing different sheets of the same schematic at the same time. All of the
schematic sheets together comprise a schematic model, also called a schematic.
Signals between schematic sheets (of the same schematic model) are connected
together by offpage and onpage connectors.

Thefirst figure on the previous page shows the relationship between schematic
sheets and schematic models. Schematic sheets cannot be ssmulated by
themselves; you can only simulate a schematic model as awhole.

Schematic Model Registration

Schematic models are not usable with QuickSim I or other downstream
applications until they are associated (registered) with a component. A schematic
model is registered when the schematic sheet(s) that comprise the model is saved.
For more information on opening and registering a schematic, refer to “Open a
Schematic Editor Window” and “ Schematic Registration” in the Design Architect
User's Manual.

Y ou can register your schematic with more than one component interface of the
component. To do this you need to understand the component structure, including
the concept of a component interface and how it works. The Component Interface
Browser (CIB) allows you to examine this component structure and interface.

Schematic Creation Process

Schematic models describe the functional aspects of the design. The flow diagram
on the previous page shows the major steps in creating schematic models.

QuickSim Il Advanced Training Workbook, 8.5_1 C-11
November 1995

Appendix C Lessons Advanced Modeling Techniques

BRES Resistor Model

Board Simulation Resistor model:

BRES

MM@
4

RESI ST A

e MODEL Property = BRES

 BRES_VALUE Property:

o RESIST - acts as “RES” resistor
“strong” signhal changed to “resistive”

o SHORT - acts as connection between nets
signals are wire-or'd together

o OPEN - acts as open circuit
no signal connection is made

 RISE/FALL Properties - used to assign delay to
this component

C-12 QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

Advanced Modeling Techniques Appendix C Lessons

BRES Resistor Model

A new bidirectional resistor model is available for the A.3 release. A resistor
component can be created by setting the MODEL property on the component
symbol to “BRES’. This model works with the full 12 state QuickSim state
abstraction. This new component will be a built-in primitive made availablein
gen_lib. Thismodel will benefit board simulation users.

The BRES_VALUE Property

A BRES model may be assigned one of three resistive value's. A property
“BRES _VALUE” on theresistor instance will be provided to set the value. The
values that BRES VALUE can take and the associated mode of operation is:

* RESIST - BRES will function as aregular resistor where signals propagate
through with the same logic value and strengths with the exception that
“Strong” strengths get transformed to “Resistive” strengths.

* SHORT -- Operate as aswitch that is enabled at al times. This means that
the nets on elther sides of the resistor will be “wire-or’ d” together. Under
this situation the final net value will be determined by resolving the logic
values on either side of the resistor.

* OPEN -- Setting BRES VALUE to OPEN indicatesinfinite resistance. An
infinite resistance resistor will function as an open circuit.

For more information on the BRES VALUE property, refer to
“ “bres_value’ in the Properties Reference Manual.

Modeling Timing

The designer will be able to provide resistor delays by pin RISE/FALL properties.
BRES will not support technology files. The BRES model will use the inertial
delay spike model mode set in QuickSim, either SUPRESS or X IMMEDIATE.

QuickSim Il Advanced Training Workbook, 8.5_1 C-13
November 1995

Appendix C Lessons Advanced Modeling Techniques

Advanced Modeling Process (AMP)

What is Advanced Modeling Process?

New modeling techniques
o QuickPart Table models (QPT)
o Memory Table models (MTM)

Enhancements to existing modeling techniques
o Many QuickPart Schematic restrictions gone
o New Technology Files equations

Enhancements to design tools
o QuickSim Il supports Unit and Linear delays
o TimeBase creates/edits timing cache

Enhanced modeling and design methodology

o Component interface allows shared elements

o Incremental design changes in QuickSim Il

o Modular Technology File support

AMP benefits the design process through:
 Accuracy of models

* Improved simulator performance

* Improved simulator capacity

C-14 QuickSim Il Advanced Training Workbook, 8.5_1
November 1995

Advanced Modeling Techniques Appendix C Lessons

Advanced Modeling Process (AMP)

The Advanced Modeling Process (AMP) isalibrary development process that
was implemented to improve the performance of simulator modelsused in ASIC
designs. AMP training is available for ASIC vendors and Mentor Graphics
customers who want to optimize the simulation performance of their library
models. Hereis alist of issues addressed by AMP:

* QuickPart Table models (QPTs) and Memory Table Models (MTMs) have
been developed as high performance modeling techniques.

* Many of the QuickPart Schematic restrictions, such as hierarchical models,
have been removed so these models are more flexible. Technology File
capabilities have been expanded.

* New timing modes (Unit, Lmin, Ltyp, Lmax) are available in QuickSim I1.
An independent timing calculator/editor (TimeBase) is available. Parts
menus are user-definable.

* Shared parts elements; incrementally; modular Technology File support.

The changes that have been made to applications and models provide the
following benefits to simulation performance and accuracy:

* Timing equations (pre- & post-layout) allow performance/accuracy trade-
offs; signal handling (X, tri-state) can be defined; timing error handling.

* |nstance count reduction. Table models replace multiple gate models to
reduce gate/instance count. Simulator instance/gate evaluations and event
scheduling is reduced.

* BLM replacements (QPTs & MTMSs). Although BLMs can replace many
gates, they hinder simulation performance. QPTs and MTMs have replaced
most smaller BLMs.

QuickSim Il Advanced Training Workbook, 8.5_1 C-15
November 1995

Appendix C Lessons Advanced Modeling Techniques

Creating QuickPart Table Models

Modeling
Decisions and
Strategy Create and
register graphical
description

Create and
register functional
description

Need Create and
technology register technology
file description

Release to
Library

$QPT
1A

n

C
out

— B

n

C-16 QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

Advanced Modeling Techniques Appendix C Lessons

Creating QuickPart Table Models

QuickPart Table models are created by combining a functional logic table
description with atechnology file of timing and constraint information. QuickPart
Table models provide the following advantages:

Increased performance.

Increased capacity. The compiled QuickPart Table model uses far less
memory that equivalent gate and behavioral models.

Truth table format. Thisformat is easy to create and support.

As the figure on the previous page shows, there are 3 mgjor steps you use to create
QuickPart Table models:

1.

Graphical Description (Symbol). Y ou use the Design Architect symbol
editor to create and register the symbol. The bottom figure on the previous
page shows a symbol for asimple NAND device. Refer to “ Graphical
Description (Symbol)” in the QuickPart Table Model Devel opment
Manual.

Functional Description. You create and compile an ASCII file. This piece
of the digital model isreferred to as the “ QuickPart table”. Compiling file
provides some error checking and also registers the resulting binary file.

Technology Description. The technology description is an optional piece
of the QuickPart Table model. In it you can supply technology-specific
timing information such as propagation delays and timing constraints.
Without atechnology description, you are able to only apply pin delays that
you attach as Rise or Fall propertiesto individual pins on the graphical
description. The Technology File Development Manual describesin detall
the language and devel opment process needed to create a Technology File.

Model Verification. Create a schematic that contains an instance of your
model and use QuickSim Il to verify that your model works as required. It
Isagood ideato save your verification scheme for others to use.

QuickSim Il Advanced Training Workbook, 8.5_1 C-17
November 1995

Appendix C Lessons Advanced Modeling Techniques

QuickPart Functional Description

The “toggle jk” QuickPart Table:

Model Statement:
MODEL 'toggle jk': TABLE =

Pin Declarations:

| NPUT CLR, PRE, J, K
EDGE_SENSE | NPUT CLK;
QUTPUT Q _Q

State_Table Statements:
STATE_TABLE CLR, PRE, CLK,

“
x
O
0
O
/e

Logic Table:
0, 1, [??], 2?2, 2, 2, 2 0, 1;
1, 0, [??], 2, 2, 2?2, 7 1, O;
0, 0, [??7], 2, 2, 2, 2 1, 1;
1, 1, [o01], O, O, 2, ? N, N
1, 1, [O01], 1, O, ?, ? 1, O;
1, 1, [o01], O, 1, 2, ? 0, 1;
1, 1, [01], 1, 1, 2, 7 ((9Q,(9;
1, 1, [?0], ?2, ?, O, 2 N, N
1, 1, [?0], 2, ?, ?, O N, N
1, 1, [1?], ?, ?, O, ? N, N;
1, 1, [1?], 2, ?, 2?2, O N, N
1, 1, [?0], ?, 2, '0, !0 X, X
1, 1, [1?], ?, 2, '0, 10 X, X
0, X [??7], ?, 2, 2, 2 X, 1
X, 0, [??2], 2, 2, 2, 2 1, X
1, 1, [0X], 2?2, ?, ?, 2 X, X
10, X, [??], 2, ?, 2, ? X, X
X, 10, [??], 2, 2, 2, ? X, X

End Statement:

END ['toggle jk': TABLE]; MODEL st atenent

C-18 QuickSim Il Advanced Training Workbook, 8.5_1

November 1995

Advanced Modeling Techniques Appendix C Lessons

QuickPart Functional Description

The ASCII sourcefilefor afunctional description isorganized in two main
sections that provide pin declarations and a state table. The following shows the
basic form of thefile:

Model Statement. The required model statement must be the first
executable statement in the description. This statement names the
functional description and provides the beginning of the model/end pair.

Pin Declarations. The pin declaration area of the functional description
declares every pin that is a part of the symbol. Y ou use statements such as
input and output in this section to declare pin characteristics.

State Table Statement. This statement starts the logical description of the
device. It provides a column/header format that defines the ordering and
behavior of “present” and “next” states during the operation of the device.

Logic Table. This section describes the logical behavior of the device. Itis
divided into two sides by the double colon (::). The left sideis the “ present-
state” side. Theright side isthe “next-state” side. It is these state variables
the simulators assign to the device during the model's eval uation.

The following list shows the types of state variables you can include on the
present state side of the state table:

o Input pins

o Bidirectiona pins (current driven value)
o User-defined internal states

o Internal states of output pins

The following are the types of state variables you can include on the next
state side of the state table:

o Output pins

o Bidirectional pins (the next state value)

o User-defined internal states

End Statement. The required end statement must be the last executable
statement in a QuickPart Table sourcefile.

QuickSim Il Advanced Training Workbook, 8.5_1 C-19
November 1995

Appendix C Lessons

Advanced Modeling Techniques

Using IF and FOR Frames

FOR frame example:

1 0(

\ sa0, sal

sa0, sal sa0, sal

—

ENC- sao, sgl EH;"QO

a

8

saO,sa1%+H%§o,

1) }

(TPZHy

1

ﬁm

sa0, sal
DO ETRI SE; L

TFALL
a0, sal

sa0,|sal

sal;
sa0, sadal) sal \sa0, sal

sal 8 sa0] sal 8
8

(TPZLy

> QUT(I)

FOR |

=0 TON1

IF frame example:

| F

| ogi c==TTL

C-20

QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Modeling Techniques Appendix C Lessons

Using IF and FOR Frames

Frames provide you with the ability to repeat or conditionally include acircuitina
schematic sheet. The number of iterations, or the conditions determining inclusion
or selection are controlled by parameters assigned during design creation and
evaluation, and make use of the frame expression assigned as a value to the Frexp
property. The figureillustrates atypical FOR Frame.

FOR <clause>
Clause: variable_name := expression TO expression
or
Clause: variable name := expression DOWNTO expression

The FOR frame expression specifies that the frame contents are to be repeated on
the sheet “n” times. The variable “n” can be avariable in aframe expression on an
outer frame. The value of “i” asit iterates through the values 0 to n-1 in the
following example can be used to evaluate the value within this frame.

Example: FORi:=0TOn-1

DOWNTO works the same way as the TO example, except it decrements the start
index value by one. For example, FOR i :=n-1 TO O, would generate the “1”
values of n-1, n-2, to 0 in that order.

Do not use negative indices. If you use them, you can get unexpected
@ (and possibly unpleasant) results.
Note

| F <clause>

If the IF expression evaluates to FALSE (or zero) at design evaluation time, the
frameis not included in the design. Otherwise, the frame isincluded.

Frame expressions can involve property names that are valid for instance items. In
the following example, the contents of the IF frame are included on the sheet, if
the instance property “logic” is set to the property value“TTL”.

Example: IFlogic==“TTL"

QuickSim Il Advanced Training Workbook, 8.5_1 C-21
November 1995

Appendix C Lessons

Advanced Modeling Techniques

VHDL (System-1076)

(Menu Bar)

< Maximize Windowl

= \‘ Design Architect By
MGC File Edit Search) Templates Compile View Options Help \
= VHDL Editor - $QVLAB/aol_model | 1]
1 LIBRARY ieee; USE ieee.std logic_ 1164 .ALL
2 There is no active symbol
3 ENTITY aoi IS
4 PORT (A, B, C. D: IN std_ ulogic vhdl_palette
g END aoi - E . QUT std_ulogic); Select Window...
; Compile...
9 ARCH TECTURE behav3 OF aoi IS Set Compiler Options...
10 SIGNAL O1, 2, 3: std_ul ogic; Expand Template...
_ Insert Template...
/
Next Template
N A = ;
Delete Template
: Comment/Un-
VHDL dEdltor> indent Righ
Inaow Indent Left
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Toggle Sel| Unselect Popup Me Text Templ . [Find Comp|Toggle Tra||Setup Ses|Pulldown M|Command |Pop Windo
(5: Read File || Close Win
Al W
EI\/Iessage Area> Soft Keys
C-22 QuickSim Il Advanced Training Workbook, 8.5 1

November 1995

Advanced Modeling Techniques Appendix C Lessons

VHDL (System-1076)

VHDL isahigh-level description language used to describe the electrical
characteristics of adesign. It can be used to describe a functional block or
component. VHDL is often the first description created for a design, because it
can be used to determine if the concepts work at a high level.

VHDL models are written as an ASCI| text file using the System-1076 language.
System-1076 is based on the IEEE Std 1076-1987, IEEE Sandard VHDL
Language Reference Manual. Y ou must compile these models before using them
with the Mentor Graphics digital analysis and synthesis applications.

A VHDL model, described in VHDL terms as a design entity, consists of two
main pieces. an entity declaration and an architecture body. The entity declaration
defines the interface between the design entity and the environment outside of the
design entity, much like a symbol model does.

The architecture body describes the rel ationships between the design entity inputs
and outputs in terms of a behavioral, a data flow, or astructural level description.
Y ou can have multiple architecture bodies for a given entity declaration. You can
include both the entity declaration and one or more architecture bodies in the same
text file or inindividual files. You have the ability to select which architecture
body is associated with a given instance of a given design entity.

The Mentor Graphics VHDL Editor within Design Architect lets you create and
edit VHDL text files by inserting and expanding VHDL language constructs. The
System-1076 compiler built into the VHDL Editor lets you compile System-1076
VHDL text without exiting Design Architect.

For more information on VHDL fundamentals, refer to the Mentor
Graphics Introduction to VHDL manual.

QuickSim Il Advanced Training Workbook, 8.5_1 C-23
November 1995

Appendix C Summary Advanced Modeling Techniques

Appendix C Summary

Appendix C presented modeling details considered more advanced than those
presented in the introductory training.

C-24

Models are the backbone of a software simulation. Some models, such as
off-the-shelf component models, should not be modified, while other
models (VHDL system implementations, for example) are continually
edited. Reusable models are those that are instantiated more than once in
your design. Do not merge back annotations to reusable models.

The most efficient simulation models are modeled by state tables.
Examples of these are QuickPart Table models and Memory Table models.
A Technology file provides the timing and constraint information for these
models. The ASIC Modeling Process (AMP) identifies how to create and
work with these model types.

Memory Table models are an efficient way to model RAMs and ROMs.

Y ou can provide an ASCI| initialization file to provide a starting value for
each memory location. Thisfileisidentified by a modelfile property
attached to each instance of amemory device. Special initialization is
required of RAM inputs and outputs for proper operation of the device.

The Component Interface Browser (CIB) alows you to examine and edit
component interfaces. The information contained in the interfaceisapin
list, a property list, and amodel table. The model table provides labels and
paths to functional and timing models used with each interface. CIB
validates the paths to these models.

IF and FOR frames are created in Design Architect to provide conditional
or repetitive functionality. Y ou can place amodel in a FOR frame and use a
parameter to determine the number of repetitions of the model. IF frames
allow you to place models in a design that can be enabled or disabled under
certain conditions.

QuickSim Il Advanced Training Workbook, 8.5 1
November 1995

