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This Unit
• What is a computer and what is computer architecture

• Forces that shape computer architecture
• Applications (covered last time)
• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost
• Performance
• Power
• Reliability
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What is Computer Architecture? (review)
• Design of interfaces and implementations…
• Under constantly changing set of external forces…

• Applications: change from above (discussed last time)
• Technology: changes transistor characteristics from below
• Inertia: resists changing all levels of system at once

• To satisfy different constraints
• This course mostly about performance
• Cost 
• Power
• Reliability 

• Iterative process driven by empirical evaluation
• The art/science of tradeoffs
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Abstraction and Layering
• Abstraction: only way of dealing with complex systems

• Divide world into objects, each with an…
• Interface: knobs, behaviors, knobs → behaviors
• Implementation: “black box” (ignorance+apathy)

• Specialists deal with implementation; others interface
• Example: car drivers vs. mechanics

• Layering: abstraction discipline makes life even simpler
• Removes need to even know interfaces of most objects
• Divide objects in system into layers
• Layer X objects

• Implemented in terms of interfaces of layer X-1 objects
• Don’t even need to know interfaces of layer X-2 objects
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Abstraction, Layering, and Computers
• Computers are complex systems, built in layers

• Applications
• O/S, compiler
• Firmware, device drivers
• Processor, memory, raw I/O devices
• Digital circuits, digital/analog converters
• Gates
• Transistors

• 99% of users don’t know hardware layers implementation
• 90% of users don’t know implementation of any layer
• That’s OK, world still works just fine

• But unfortunately, the layers sometimes breakdown
• Someone needs to understand what’s “under the hood”
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Gray box: Peeking though the layers
• Layers of abstraction in a car

• Interface (drivers): steering 
wheel, clutch, shift, brake

• Implementation (mechanic): 
engine, fuel injection, 
transmission

• But high-performance drivers 
know the torque curve
• Achieve maximum performance

• Similar examples for computers
• Cache organization/locality
• Pipeline scheduling/interlocks

• Power users peek across layers
Keep RPM in range where

torque is maximized
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A Computer Architecture Picture

• Computer architecture
• Definition of ISA to facilitate implementation of software layers

• This course mostly on computer micro-architecture
• Design CPU, Memory, I/O to implement ISA …

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Hardware

Software

Instruction Set Architecture (ISA)
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Semiconductor Technology Background
• Transistor (1947)

• A key invention of 20th century
• Fabrication

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors
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Shaping Force: Technology
• Basic technology element: MOSFET

• MOS: metal-oxide-semiconductor
• Conductor, insulator, semi-conductor

• FET: field-effect transistor
• Solid-state component acts like electrical switch
• Channel conducts source→drain when voltage applied to gate

• Channel length: characteristic parameter (short → fast)
• Aka “feature size” or “technology”
• Currently:3 (0.003 micron)
• Continued miniaturization (scaling) known as “Moore’s Law”

• Won’t last forever, physical limits approaching (or are they?)

channel

source

drain

gate
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Complementary MOS (CMOS)
• Voltages as values

• Power (VDD) = 1, Ground = 0

• Two kinds of MOSFETs
• N-transistors

• Conduct when gate voltage is 1
• Good at passing 0s

• P-transistors
• Conduct when gate voltage is 0
• Good at passing 1s

• CMOS: complementary n-/p- networks form boolean logic 

power (1)

ground (0)

input output
(“node”)

n-transistor

p-transistor
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CMOS Examples
• Example I: inverter

• Case I: input = 0
• P-transistor closed, n-transistor open
• Power charges output (1)

• Case II: input = 1
• P-transistor open, n-transistor closed
• Output discharges to ground (0)

• Example II: look at truth table
• 0, 0 → 1         0, 1 → 1
• 1, 0 → 1         1, 1 → 0
• Result: this is a NAND (NOT AND)
• NAND is universal (can build any logic function)

0
1

1 0

BA

A

B
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More About CMOS and Technology
• Two different CMOS families

• SRAM (logic): used to make processors
• Storage implemented as inverter pairs
• Optimized for speed

• DRAM (memory): used to make memory
• Storage implemented as capacitors
• Optimized for density, cost, power

• Disk is also a “technology”, but isn’t transistor-based
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Aside: VLSI + Manufacturing
• VLSI (very large scale integration)

• Transistor manufacturing process
• Integrated Circuit (1958) as important as transistor itself
• Multi-step photochemical and electrochemical process
• Fixed cost per step
• Cost per transistor shrinks with transistor size

• Other production costs
• Packaging
• Test
• Mask set
• Design

First integrated circuit (1958)
Jack Kilby (UW, MSEE, 1950)

and Robert Noyce



CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 14

MOSFET Side View

• MOS: three materials needed to make a transistor
• Metal - Aluminum, Tungsten, Copper: conductor
• Oxide - Silicon Dioxide (SiO2): insulator
• Semiconductor - doped Si: conducts under certain conditions

• FET: field effect (the mechanism) transistor
• Voltage on gate: current flows source to drain (transistor on)
• No voltage on gate: no current (transistor off)

channelsource drain
insulator

gate

Substrate

Note: former UW Chancellor Wiley co-invented the barrier layer process
that enables the use of copper interconnects.
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Manufacturing Process
• Start with silicon wafer
• Grow SiO2
• Deposit photo-resist
• Burn positive bias mask

• Ultraviolet light lithography
• Dissolve unburned photo-resist

• Chemical etch
• Dissolve exposed SiO2
• Dissolve remaining photo-resist

• Chemical etch
• Continue with device formation
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Manufacturing: Gate formation
• Deposit/grow gate oxide
• Deposit polysilicon
• Deposit/burn/dissolve photo resist
• Etch polysilicon, dissolve 

unexposed resist
• Bomb wafer with negative ions (P)

• Doping gates, sources, and drains
• Self-aligning gate process
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Manufacturing Process
• Grow SiO2
• Grow photo-resist
• Burn “via-level-1” mask
• Dissolve unburned photo-resist

• And underlying SiO2

• Grow tungsten “vias”
• Dissolve remaining photo-resist
• Continue with next layer
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Manufacturing Process
• Grow SiO2
• Grow photo-resist
• Burn “wire-level-1” mask
• Dissolve unburned photo-resist

• And underlying SiO2

• Grow copper “wires”
• Dissolve remaining photo-resist
• Continue with next wire layer…

• Typical number of wire layers: 3-8
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Defects
• Defects can arise

• Under-/over-doping
• Over-/under-dissolved insulator
• Mask mis-alignment
• Particle contaminants

• Try to minimize defects
• Process margins
• Design rules

• Minimal transistor size, separation

• Or, tolerate defects
• Redundant or “spare” memory cells

Defective:

Defective:

Slow:
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Empirical Evaluation
• Metrics

• Cost 
• Performance
• Power 
• Reliability

• Often more important in combination than individually
• Performance/cost (MIPS/$)
• Performance/power (MIPS/W)

• Basis for
• Design decisions
• Purchasing decisions
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Cost
• Metric: $

• In grand scheme: CPU accounts for fraction of cost
• Some of that is profit (Intel’s, Dell’s)

• Concerned about Intel/TSMC’s cost (transfers to you)
• Unit cost: costs to manufacture individual chips
• Startup cost: cost to design chip, build the fab line, marketing

Desktop Laptop PDA Phone
$ $100–$300 $150-$350 $50–$100 $40–$50
% of total 10–30% 10–20% 20–30% 5-15%
Other costs Memory, display, power supply/battery, disk, packaging
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Unit Cost: Integrated Circuit (IC)
• Chips built in multi-step chemical processes on wafers

• Cost / wafer is constant, f(wafer size, number of steps)
• Chip (die) cost is proportional to area

• Larger chips means fewer of them
• Larger chips means fewer working ones
• Why? Uniform defect density

• Chip cost ~ chip areaα
• α = 2−3

• Wafer yield: % wafers that are 
worth testing 

• Die yield: % chips/wafer that work
• Yield is increasingly non-binary - fast vs slow chips
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Yield/Cost Examples
• Parameters

• wafer yield = 90%, α = 2, defect density = 2/cm2

Die size (mm2) 100 144 196 256 324 400
Die yield 23% 19% 16% 12% 11% 10%
6” Wafer 139(31) 90(16) 62(9) 44(5) 32(3) 23(2)
8” Wafer 256(59) 177(32) 124(19) 90(11) 68(7) 52(5)
10” Wafer 431(96) 290(53) 206(32) 153(20) 116(13) 90(9)

Wafer 
Cost

Defect 
(/cm2)

Area 
(mm2)

Dies Yield Die 
Cost

Package 
Cost (pins)

Test 
Cost

Total

Intel 486DX2 $1200 1.0 81 181 54% $12 $11(168) $12 $35
IBM PPC601 $1700 1.3 196 66 27% $95 $3(304) $21 $119
DEC Alpha $1500 1.2 234 53 19% $149 $30(431) $23 $202
Intel Pentium $1500 1.5 296 40 9% $417 $19(273) $37 $473
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Startup Costs (NREs)
• Startup costs: must be amortized over chips sold

• Research and development: ~$500M per chip
• 1500 person-years @ $300K per

• Fabrication facilities: ~$3B per new line
• Clean rooms (bunny suits), lithography, testing equipment

• If you sell 10M chips, fab startup adds ~$300/chip
• Must amortize the fab costs over many designs!

• R&D costs add $50/chip for 10M chips
• Reuse basic design many times
• Pentium Pro, Pentium II, Pentium III, and Pentium M share 

common microarchitecture (more or less)
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Moore’s Effect on Cost
• Scaling has opposite effects on unit and startup costs

+ Reduces unit integrated circuit cost 
• Either lower cost for same functionality…
• Or same cost for more functionality

– Increases startup cost
• More expensive fabrication equipment
• Takes longer to design, verify, and test chips
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Performance
• Two definitions

• Latency (execution time): time to finish a fixed task
• Throughput (bandwidth): number of tasks in fixed time
• Very different: throughput can exploit parallelism, latency cannot

• Baking bread analogy
• Often contradictory
• Choose definition that matches goals (most frequently thruput) 

• Example: move people from A to B, 10 miles
• Car: capacity = 5, speed = 60 miles/hour
• Bus: capacity = 60, speed = 20 miles/hour
• Latency: car = 10 min, bus = 30 min
• Throughput: car = 15 PPH (count return trip), bus = 60 PPH
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Performance Improvement
• Processor A is X times faster than processor B if

• Latency(P,A) = Latency(P,B) / X
• Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if
• Latency(P,A) = Latency(P,B) / (1+X/100)
• Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example
• Latency? Car is 3 times (and 200%) faster than bus
• Throughput? Bus is 4 times (and 300%) faster than car
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What Is ‘P’ in Latency(P,A)?
• Program

• Latency(A) makes no sense, processor executes some program
• But which one?

• Actual target workload?
+ Accurate
– Not portable/repeatable, overly specific, hard to pinpoint problems

• Some representative benchmark program(s)?
+ Portable/repeatable, pretty accurate
– Hard to pinpoint problems, may not be exactly what you run

• Some small kernel benchmarks (micro-benchmarks)
+ Portable/repeatable, easy to run, easy to pinpoint problems
– Not representative of complex behaviors of real programs
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SPEC Benchmarks
• SPEC (Standard Performance Evaluation Corporation)

• http://www.spec.org/
• Consortium of companies that collects, standardizes, and 

distributes benchmark programs
• Post SPECmark results for different processors

• 1 number that represents performance for entire suite
• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.
• Updated every few years: so companies don’t target benchmarks

• SPEC CPU 2006 (now SPEC 2017)
• 12 “integer”: bzip, gccs, perl, mcf, etc.
• 17 “floating point”: mesa (openGL), equake, facerec, etc. 
• Written in C and Fortran (a few in C++)

http://www.spec.org/
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Other Benchmarks
• Parallel benchmarks

• SPLASH2 - Stanford Parallel Applications for Shared Memory
• NAS
• SPEC’s OpenMP benchmarks
• SPECjbb - Java multithreaded database-like workload

• Transaction Processing Council (TPC)
• TPC-C: On-line transaction processing (OLTP)
• TPC-H/R: Decision support systems (DSS)
• TPC-W: E-commerce database backend workload
• Have parallelism (intra-query and inter-query)
• Heavy I/O and memory components
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Adding/Averaging Performance Numbers
• You can add latencies, but not throughput

• Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A)
• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
• Average is not 60 miles/hour

• 0.033 hours at 30 miles/hour + 0.01 hours at 90 miles/hour 
• Average is only 47 miles/hour! (2 miles / (0.033 + 0.01 hours))

• Throughput(P1+P2,A) =
2 / [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))]

• Same goes for means (averages)
• Arithmetic: (1/N) * ∑P=1..N Latency(P)

• For units that are proportional to time (e.g., latency)
• Harmonic: N / ∑P=1..N 1/Throughput(P)

• For units that are inversely proportional to time (e.g., throughput)
• Geometric: N√∏P=1..N Speedup(P)

• For unitless quantities (e.g., speedups)
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SPECmark
• Reference machine: Sun Ultra Enterprise II
• Latency SPECmark

• For each benchmark
• Take odd number of samples: on both machines
• Choose median
• Take latency ratio (Sun Ultrasparc / your machine)

• Take GMEAN of ratios over all benchmarks
• Throughput SPECmark

• Run multiple benchmarks in parallel on multiple-processor system
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CPU Performance Equation
• Multiple aspects to performance: helps to isolate them

• Latency(P,A) = seconds / program =
• (instructions / program) * (cycles / instruction) * (seconds / cycle)

• Instructions / program: dynamic instruction count
• Function of program, compiler, instruction set architecture (ISA)

• Cycles / instruction: CPI
• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period
• Function of micro-architecture, technology parameters

• For low latency (better performance) minimize all three
• Hard: often pull against the other
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Danger: Partial Performance Metrics
• Micro-architects often ignore dynamic instruction count

• Typically work in one ISA/one compiler → treat it as fixed
• Not always accurate for multithreaded workloads!

• CPU performance equation becomes
• seconds / instruction = (cycles / instruction) * (seconds / cycle)
• This is a latency measure, if we care about throughput …
• Instructions / second = (instructions / cycle) * (cycles / second)

• MIPS (millions of instructions per second)
• Instructions / second * 10-6

• Cycles / second: clock frequency (in MHz)
• Example: CPI = 2, clock = 500 MHz, what is MIPS?

• 0.5 * 500 MHz * 10-6 = 250 MIPS
• Example problem situation: 

• compiler removes instructions, program faster
• However, “MIPS” goes down (misleading)
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MIPS and MFLOPS (MegaFLOPS)
• Problem: MIPS may vary inversely with performance

– Some optimizations actually add instructions
– Work per instruction varies (e.g., FP mult vs. integer add)
– ISAs are not equivalent

• MFLOPS: like MIPS, but counts only FP ops, because…
+ FP ops can’t be optimized away
+ FP ops have longest latencies anyway
+ FP ops are same across machines

• May have been valid in 1980, but today…
– Many programs are “integer”, i.e., light on FP
– Loads from memory take much longer than FP divide
– Even FP instructions sets are not equivalent

• Upshot: Neither MIPS nor MFLOPS are broadly useful
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Danger: Partial Performance Metrics II
• Micro-architects often ignore dynamic instruction count…
• … but general public (mostly) also ignores CPI

• Equates clock frequency with performance!!

• Which processor would you buy?
• Processor A: CPI = 2, clock = 500 MHz
• Processor B: CPI = 1, clock = 300 MHz
• Probably A, but B is faster (assuming same ISA/compiler)
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Cycles per Instruction (CPI)
• This course is mostly about improving CPI

• Cycle/instruction for average instruction
• IPC = 1/CPI

• Used more frequently than CPI, but harder to compute with
• Different instructions have different cycle costs

• E.g., integer add typically takes 1 cycle, FP divide takes > 10
• Assumes you know something about instruction frequencies

• CPI example
• A program executes equal integer, FP, and memory operations
• Cycles per instruction type: integer = 1, memory = 2, FP = 3
• What is the CPI? (0.33 * 1) + (0.33 * 2) + (0.33 * 3) = 2
• Caveat: this sort of calculation ignores dependences completely

• Back-of-the-envelope arguments only
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Another CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle
• Load: 20%, 5 cycle
• Store: 10%, 1 cycle
• Branch: 20%, 2 cycle

• Which change would improve performance more?
• A. Branch prediction to reduce branch cost to 1 cycle?
• B. A bigger data cache to reduce load cost to 3 cycles?

• Compute CPI
• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2
• A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8
• B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6  (winner)
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Increasing Clock Frequency: Pipelining

• CPU is a pipeline: compute stages separated by latches

• Clock period: maximum delay of any stage
• Number of gate levels in stage
• Delay of individual gates (these days, wire delay more important)

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem
a

d

+
4
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Increasing Clock Frequency: Pipelining
• Reduce pipeline stage delay

• Reduce logic levels and wire lengths (better design)
• Complementary to technology efforts (described later)
• Increase number of pipeline stages (multi-stage operations)
– Often causes CPI to increase
– At some point, actually causes performance to decrease
• “Optimal” pipeline depth is program and technology specific
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CPI and Clock Frequency
• System components “clocked” independently

• CPI = CPICPU + CPIMEM
• E.g., Increasing processor clock frequency doesn’t improve memory 

performance

• Example
• Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz

• Base: CPI = 2 → IPC = 0.5 → MIPS = 250
• What is the speedup if we double clock frequency?

• Clock *= 2 → CPIMEM *= 2 → CPIMEM = 2 
• New: CPI = 3 → IPC = 0.33 → MIPS = 333
• Speedup = 333/250 = 1.33 << 2

• What about an infinite clock frequency?
• Only a x2 speedup (Example of Amdahl’s Law)

Speedup 
     = Told/Tnew
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Measuring CPI
• How are CPI and execution-time actually measured?

• Execution time: time (Unix): wall clock + CPU + system
• CPI = CPU time / (clock frequency * dynamic insn count)
• How is dynamic instruction count measured?
• Want CPI breakdowns (CPICPU, CPIMEM, etc.) to see what to fix

• CPI breakdowns
• Hardware event counters

• Calculate CPI using counter frequencies/event costs
• Cycle-level micro-architecture simulation (e.g., Gem5)

+ Measures breakdown “exactly” provided
+ Models micro-architecture faithfully
+ Ran realistic workload

• Method of choice for many micro-architects (and you)
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Improving CPI
• This course is more about improving CPI than frequency

• Historically, clock accounts for 70%+ of performance improvement
• Achieved via deeper pipelines

• That will (have to) change
• Deep pipelining is not power efficient
• Physical speed limits are approaching
• 1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 3.8GHz: 2004, 5GHz: 2008
• Intel Core 2: 1.8-3.2GHz: 2008

• Techniques we will look at
• Caching, speculation, multiple issue, out-of-order issue
• Vectors, multiprocessing, more…

• Moore helps because CPI reduction requires transistors
• The definition of parallelism is “more transistors”
• But best example is caches
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Moore’s Effect on Performance
• Moore’s Curve: common interpretation of Moore’s Law

• “CPU performance doubles every 18 months”
• Self fulfilling prophecy

• 2X every 18 months is ~1% per week
• Q: Would you add a feature that improved performance 20% if 

it took 8 months to design and test?
• Processors under Moore’s Curve (arrive too late) fail spectacularly

• E.g., Intel’s Itanium, Sun’s Millennium
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Performance Rules of Thumb
• Make common case fast

• “Amdahl’s Law”
• Speedupoverall = 1 / ((1 – fractionx) + fractionx/Speedupx)
• Corollary: don’t optimize 5% to the detriment of other 95%
• Speedupoverall = 1 / ((1 – 5%) + 5%/infinity) = 1.05

• Build a balanced system
• Don’t over-engineer capabilities that cannot be utilized
• Try to be “bound” by the most expensive resourses

(if not everywhere)

• Design for actual, not peak, performance
• For actual performance X, machine capability must be > X
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Little’s Law
• Key Relationship between latency and bandwidth:

• Average number in system = arrival rate * avg. holding time

• Example:
• How big a wine cellar should I build?
• My family drinks (and buys) an average of 4 bottles per week
• On average, I want to age my wine 5 years

• bottles in cellar = 4 bottles/week * 52 weeks/year * 5 years
• = 1040 bottles (!!!)
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More Little’s Law
• How many outstanding cache misses?

• Want to sustain 5 GB/s bandwidth
• 64 byte blocks
• 100ns miss latency

• Requests in system = arrival rate * time in system
= (5 GB/s / 64 byte blocks) * 100ns
= 8 misses

• That’s an AVERAGE. Need to support many more if we 
hope to sustain this bandwidth. (Rule of thumb is 2X)
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Transistor Speed, Power, and Reliability
• Transistor characteristics and scaling impact:

• Switching speed
• Power
• Reliability

• “Undergrad” gate delay model for architecture
• Each Not, NAND, NOR, AND, OR gate has delay of “1”
• Reality is not so simple
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Transistors and Wires

IBM SOI Technology

©
IB

M

From slides © Krste Asanović, MIT
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Transistors and Wires

IBM CMOS7, 6 layers of copper wiring

©
IB

M

From slides © Krste Asanović, MIT
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1→0
I

0→1

1→0

1→0

Simple RC Delay Model
• Switching time is a RC circuit (charge or discharge)

• R - Resistance: slows rate of current flow
• Depends on material, length, cross-section area

• C - Capacitance: electrical charge storage
• Depends on material, area, distance

• Voltage affects speed, too
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1→0
I

0→1

1→0

1→0

Resistance
• Transistor channel resistance

• function of Vg (gate voltage)
• Wire resistance (negligible for short wires)

1

1

Off
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1→0
I

0→1

1→0

1→0

Capacitance
• Source/Drain capacitance
• Gate capacitance 
• Wire capacitance (negligible for short wires)

1

1



RC Delay

• Delay = RC
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1→0
I

0→1
1→0

1

Off

R

C
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Which is faster?  Why?
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Transistor Width

• Useful for driving large “loads” like long or off-chip wires

• “Wider” transistors have lower resistance, more drive
• Specified per-device
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1→0
I

0→1

1→0

1→0

RC Delay Model Ramifications
• Want to reduce resistance

• “wide” drive transistors (width specified per device)
• Short wires

• Want to reduce capacitance
• Number of connected devices
• Less-wide transistors 

(gate capacitance 
of next stage)

• Short wires

1

1
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Transistor Scaling

• Transistor length is key property of a “process generation”
• 90nm refers to the transistor gate length, same for all transistors

• Shrink transistor length:
• Lower resistance of channel (shorter)
• Lower gate/source/drain capacitance

• Result: transistor drive strength linear as gate length shrinks

Gate
Source

Drain

Bulk

Width

Length

Minimum Length=2λ

Width=4λSource Drain

Gate

Diagrams © Krste Asanović, MIT
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Wires
Pitch

Width

LengthHeight

• Resistance fixed by (length*resistivity) / (height*width)
• Intel’s 45nm process uses copper with 3.3 Ω/µm on M1-M3

• Capacitance depends on geometry of surrounding wires and relative 
permittivity, εr,of dielectric
• silicon dioxide εr = 3.9, new low-k dielectrics in range 1.2-3.1
• Intel’s 45nm M1-M3 have 0.20 fF/µm (160 nm pitch)

From slides © Krste Asanović, MIT
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Wire Delay
• RC Delay of wires

• Resistance proportional to length
• Capacitance proportional to length

• Result: delay of a wire is quadratic in length
• Insert “inverter” repeaters for long wires to
• Bring it back to linear delay
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Moore’s Effect on RC Delay
• Scaling helps reduce wire and gate delays

+ Wires become shorter (Length↓ → Resistance↓)
+ Wire “surface areas” become smaller (Capacitance↓)
+ Transistors become shorter (Resistance↓)
+ Transistors become narrower (Capacitance↓, Resistance↑)

• But also increases wire and gate delays
– Wires become narrower (Resistance↑)
– Wires become closer together (Resistance↑)
– Gate insulator thickness becomes smaller (Capacitance↑)
– Distance between wires becomes smaller (Capacitance↑)

• Bottom line: Long wires dominate delay
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Improving RC Delay
• Exploit good effects of scaling
• Fabrication technology improvements

+ Use copper instead of aluminum for wires (ρ↓ → Resistance↓)
+ Use lower-dielectric insulators (κ↓ → Capacitance↓)

+ Design implications
+ Use bigger cross-section wires (Area↑ → Resistance↓)

• Typically means taller, otherwise fewer of them
• Need more layers  higher fabrication cost
– Increases “surface area” and capacitance (Capacitance↑)

+ Use wider transistors (Area↑ → Resistance↓)
– Increases capacitance (not for you, for upstream transistors)
– Increases power (to charge/discharge capacitance)
– Use selectively
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Another Constraint: Power and Energy
• Power (Watt or Joule/Second): short-term (peak, max)

• Was mostly a dissipation (heat) concern, now $$$ too 
• Power-density (Watt/cm2): important related metric

– Thermal cycle: power dissipation↑ → power density↑ →
temperature↑ → resistance↑ → power dissipation↑…

• Cost (and form factor): packaging, heat sink, fan, etc.

• Energy (Joule): long-term
• Mostly a consumption concern
• Primary issue is battery life (cost, weight of battery, too)
• Low-power implies low-energy, but not the other way around

• 25 years ago, nobody cared except in embedded apps



Power Density
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Year
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Sources of Energy Consumption

CL

Diode Leakage Current

Subthreshold Leakage Current

Short-Circuit 
Current

Capacitor 
Charging 
CurrentDynamic power:

• Capacitor Charging (85-90% of active power)
• Energy is ½ CV2 per transition

• Short-Circuit Current (10-15% of active power)
• When both p and n transistors turn on during signal transition

Static power:
• Subthreshold Leakage (dominates when inactive)

• Transistors don’t turn off completely
• Diode Leakage (negligible)

• Parasitic source and drain diodes leak to substrate
From slides © Krste Asanović, MIT
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Moore’s Effect on Power
• Scaling has largely good effects on local power

+ Shorter wires/smaller transistors (Length↓ → Capacitance↓)
– Shorter transistor length (Resistance↓, Capacitance↓)
– Global effects largely undone by increased transistor counts

• Scaling has a largely negative effect on power density
+ Transistor/wire power decreases linearly
– Transistor/wire density increases quadratically
– Power-density increases linearly

• Thermal cycle
• Controlled somewhat by reduced VDD (5→3.3→1.6→1.3→1.1)

• Reduced VDD sacrifices some switching speed
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Reducing Power
• Power proportional to CVDD

2f
• Reduce supply voltage (VDD)

+ Reduces dynamic power quadratically and static power linearly
• But poses a tough choice regarding VT
– Constant VT slows circuit speed → clock frequency → performance
– Reduced VT increases static power exponentially

• Reduce clock frequency (f)
+ Reduces dynamic power linearly
– Doesn’t reduce static power
– Reduces performance linearly
• Generally doesn’t make sense without also reduced VDD …

• Except that frequency can be adjusted cycle-to-cycle and locally
• More on this later
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Dynamic Voltage Scaling (DVS)
• Dynamic voltage scaling (DVS)

• OS reduces voltage/frequency when peak performance not needed

±X-Scale is power efficient (6200 MIPS/W), but not IA32 compatible

Mobile PentiumIII 
“SpeedStep”

TM5400 
“LongRun”

Intel X-Scale 
(StrongARM2)

Frequency 300–1000MHz 
(50MHz steps)

200–700MHz 
(33MHz steps)

50–800MHz 
(50MHz steps)

Voltage 0.9–1.7V        
(0.1V steps)

1.1–1.6V 
(continuous)

0.7–1.65V 
(continuous)

High-speed 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W 
Low-power 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W
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Reducing Power: Processor Modes
• Modern electrical components have low-power modes

• Note: no low-power disk mode, magnetic (non-volatile)
• “Standby” mode

• Turn off internal clock
• Leave external signal controller and pins on
• Restart clock on interrupt
±Cuts dynamic power linearly, doesn’t effect static power
• Laptops go into this mode between keystrokes

• “Sleep” mode
• Flush caches, OS may also flush DRAM to disk
• Turn off processor power plane
– Needs a “hard” restart
+ Cuts dynamic and static power
• Laptops go into this mode after ~10 idle minutes
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Reliability (better yet Availability)
• Reliability: Time until (first) failure 

• Assume things fail (are repaired) at constant rate in time
• Begin a “Unit” with Mean Time To Failure & Repair 
• MTTF(1 Unit) = 3 years  & MTTR = 1 day

• Redundancy critical for masking failures
• MTTF(1 of 2 Units) = MTTF(1 Unit)/2 = 1.5 years
• MTTF(2 of 2 Units) = MTTF(1 of 2 Units)/[MTTR/MTTF(1 Unit)] 

= 600K years (really?)

• Availability: Fraction of time usefully working
= MTTF(after masking)/[MTTF(after masking)+MTTR]
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Moore’s Bad Effect on Reliability
• CMOS devices: CPU and memory

• Historically almost perfectly reliable
• Moore has made them less reliable over time

• Two common sources of electrical faults
• Energetic particle strikes (e.g., from sun)

• Randomly charge nodes, cause bits to flip, transient
• Electro-migration: change in electrical interfaces/properties 

• Temperature-driven, happens gradually, permanent

• Large, high-energy transistors are immune to these effects
– Scaling makes node energy closer to particle energy
– Scaling increases power-density which increases temperature
• Memory (DRAM) was hit first: denser, smaller devices than SRAM
• Now SRAM is more susceptible (smaller capacitances)
• Flip-flops (e.g., registers and microarchitectural state) at risk???
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Moore’s Good Effect on Reliability
• The key to providing reliability is redundancy

• The same scaling that makes devices less reliable…
• Also increase device density to enable redundancy

• Classic example
• Error correcting code (ECC) for DRAM
• ECC now on caches and register files for many designs
• More reliability techniques later

• Today’s big open questions
• How to efficiently protect logic?
• Can architectural techniques help hardware reliability?
• Can architectural techniques help with software reliability?
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Summary: A Global Look at Moore
• Device scaling (Moore’s Law)

+ Increases performance
• Reduces transistor/wire delay
• Gives us more transistors with which to reduce CPI

+ Reduces local power consumption
– Which is quickly undone by increased integration
– Aggravates power-density and temperature problems

– Aggravates reliability problem
+ But gives us the transistors to solve it via redundancy

+ Reduces unit cost
– But increases startup cost

• Will we fall off Moore’s Cliff? (for real, this time?)
• What’s next: nanotubes, quantum-dots, optical, spin-tronics, DNA? 
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Summary
• What is computer architecture

• Abstraction and layering: interface and implementation, ISA
• Shaping forces: application and semiconductor technology
• Moore’s Law

• Cost
• Unit and startup

• Performance
• Latency and throughput
• CPU performance equation: insn count * CPI * clock frequency

• Power and energy
• Dynamic and static power

• Reliability
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A Computer Architecture Picture

• Mostly about micro-architecture
• Mostly about CPU/Memory
• Mostly about general-purpose
• Mostly about performance
• We’ll still only scratch the surface

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors
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