
CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. Guri Sohi

Unit 1: Technology, Cost, Performance, Power, etc.

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 2

This Unit
• What is a computer and what is computer architecture

• Forces that shape computer architecture
• Applications (covered last time)
• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost
• Performance
• Power
• Reliability

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 3

What is Computer Architecture? (review)
• Design of interfaces and implementations…
• Under constantly changing set of external forces…

• Applications: change from above (discussed last time)
• Technology: changes transistor characteristics from below
• Inertia: resists changing all levels of system at once

• To satisfy different constraints
• This course mostly about performance
• Cost
• Power
• Reliability

• Iterative process driven by empirical evaluation
• The art/science of tradeoffs

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 4

Abstraction and Layering
• Abstraction: only way of dealing with complex systems

• Divide world into objects, each with an…
• Interface: knobs, behaviors, knobs → behaviors
• Implementation: “black box” (ignorance+apathy)

• Specialists deal with implementation; others interface
• Example: car drivers vs. mechanics

• Layering: abstraction discipline makes life even simpler
• Removes need to even know interfaces of most objects
• Divide objects in system into layers
• Layer X objects

• Implemented in terms of interfaces of layer X-1 objects
• Don’t even need to know interfaces of layer X-2 objects

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 5

Abstraction, Layering, and Computers
• Computers are complex systems, built in layers

• Applications
• O/S, compiler
• Firmware, device drivers
• Processor, memory, raw I/O devices
• Digital circuits, digital/analog converters
• Gates
• Transistors

• 99% of users don’t know hardware layers implementation
• 90% of users don’t know implementation of any layer
• That’s OK, world still works just fine

• But unfortunately, the layers sometimes breakdown
• Someone needs to understand what’s “under the hood”

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 6

Gray box: Peeking though the layers
• Layers of abstraction in a car

• Interface (drivers): steering
wheel, clutch, shift, brake

• Implementation (mechanic):
engine, fuel injection,
transmission

• But high-performance drivers
know the torque curve
• Achieve maximum performance

• Similar examples for computers
• Cache organization/locality
• Pipeline scheduling/interlocks

• Power users peek across layers
Keep RPM in range where

torque is maximized

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 7

A Computer Architecture Picture

• Computer architecture
• Definition of ISA to facilitate implementation of software layers

• This course mostly on computer micro-architecture
• Design CPU, Memory, I/O to implement ISA …

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Hardware

Software

Instruction Set Architecture (ISA)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 8

Semiconductor Technology Background
• Transistor (1947)

• A key invention of 20th century
• Fabrication

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 9

Shaping Force: Technology
• Basic technology element: MOSFET

• MOS: metal-oxide-semiconductor
• Conductor, insulator, semi-conductor

• FET: field-effect transistor
• Solid-state component acts like electrical switch
• Channel conducts source→drain when voltage applied to gate

• Channel length: characteristic parameter (short → fast)
• Aka “feature size” or “technology”
• Currently:3 (0.003 micron)
• Continued miniaturization (scaling) known as “Moore’s Law”

• Won’t last forever, physical limits approaching (or are they?)

channel

source

drain

gate

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 10

Complementary MOS (CMOS)
• Voltages as values

• Power (VDD) = 1, Ground = 0

• Two kinds of MOSFETs
• N-transistors

• Conduct when gate voltage is 1
• Good at passing 0s

• P-transistors
• Conduct when gate voltage is 0
• Good at passing 1s

• CMOS: complementary n-/p- networks form boolean logic

power (1)

ground (0)

input output
(“node”)

n-transistor

p-transistor

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 11

CMOS Examples
• Example I: inverter

• Case I: input = 0
• P-transistor closed, n-transistor open
• Power charges output (1)

• Case II: input = 1
• P-transistor open, n-transistor closed
• Output discharges to ground (0)

• Example II: look at truth table
• 0, 0 → 1 0, 1 → 1
• 1, 0 → 1 1, 1 → 0
• Result: this is a NAND (NOT AND)
• NAND is universal (can build any logic function)

0
1

1 0

BA

A

B

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 12

More About CMOS and Technology
• Two different CMOS families

• SRAM (logic): used to make processors
• Storage implemented as inverter pairs
• Optimized for speed

• DRAM (memory): used to make memory
• Storage implemented as capacitors
• Optimized for density, cost, power

• Disk is also a “technology”, but isn’t transistor-based

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 13

Aside: VLSI + Manufacturing
• VLSI (very large scale integration)

• Transistor manufacturing process
• Integrated Circuit (1958) as important as transistor itself
• Multi-step photochemical and electrochemical process
• Fixed cost per step
• Cost per transistor shrinks with transistor size

• Other production costs
• Packaging
• Test
• Mask set
• Design

First integrated circuit (1958)
Jack Kilby (UW, MSEE, 1950)

and Robert Noyce

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 14

MOSFET Side View

• MOS: three materials needed to make a transistor
• Metal - Aluminum, Tungsten, Copper: conductor
• Oxide - Silicon Dioxide (SiO2): insulator
• Semiconductor - doped Si: conducts under certain conditions

• FET: field effect (the mechanism) transistor
• Voltage on gate: current flows source to drain (transistor on)
• No voltage on gate: no current (transistor off)

channelsource drain
insulator

gate

Substrate

Note: former UW Chancellor Wiley co-invented the barrier layer process
that enables the use of copper interconnects.

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 15

Manufacturing Process
• Start with silicon wafer
• Grow SiO2
• Deposit photo-resist
• Burn positive bias mask

• Ultraviolet light lithography
• Dissolve unburned photo-resist

• Chemical etch
• Dissolve exposed SiO2
• Dissolve remaining photo-resist

• Chemical etch
• Continue with device formation

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 16

Manufacturing: Gate formation
• Deposit/grow gate oxide
• Deposit polysilicon
• Deposit/burn/dissolve photo resist
• Etch polysilicon, dissolve

unexposed resist
• Bomb wafer with negative ions (P)

• Doping gates, sources, and drains
• Self-aligning gate process

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 17

Manufacturing Process
• Grow SiO2
• Grow photo-resist
• Burn “via-level-1” mask
• Dissolve unburned photo-resist

• And underlying SiO2

• Grow tungsten “vias”
• Dissolve remaining photo-resist
• Continue with next layer

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 18

Manufacturing Process
• Grow SiO2
• Grow photo-resist
• Burn “wire-level-1” mask
• Dissolve unburned photo-resist

• And underlying SiO2

• Grow copper “wires”
• Dissolve remaining photo-resist
• Continue with next wire layer…

• Typical number of wire layers: 3-8

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 19

Defects
• Defects can arise

• Under-/over-doping
• Over-/under-dissolved insulator
• Mask mis-alignment
• Particle contaminants

• Try to minimize defects
• Process margins
• Design rules

• Minimal transistor size, separation

• Or, tolerate defects
• Redundant or “spare” memory cells

Defective:

Defective:

Slow:

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 20

Empirical Evaluation
• Metrics

• Cost
• Performance
• Power
• Reliability

• Often more important in combination than individually
• Performance/cost (MIPS/$)
• Performance/power (MIPS/W)

• Basis for
• Design decisions
• Purchasing decisions

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 21

Cost
• Metric: $

• In grand scheme: CPU accounts for fraction of cost
• Some of that is profit (Intel’s, Dell’s)

• Concerned about Intel/TSMC’s cost (transfers to you)
• Unit cost: costs to manufacture individual chips
• Startup cost: cost to design chip, build the fab line, marketing

Desktop Laptop PDA Phone
$ $100–$300 $150-$350 $50–$100 $40–$50
% of total 10–30% 10–20% 20–30% 5-15%
Other costs Memory, display, power supply/battery, disk, packaging

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 22

Unit Cost: Integrated Circuit (IC)
• Chips built in multi-step chemical processes on wafers

• Cost / wafer is constant, f(wafer size, number of steps)
• Chip (die) cost is proportional to area

• Larger chips means fewer of them
• Larger chips means fewer working ones
• Why? Uniform defect density

• Chip cost ~ chip areaα
• α = 2−3

• Wafer yield: % wafers that are
worth testing

• Die yield: % chips/wafer that work
• Yield is increasingly non-binary - fast vs slow chips

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 23

Yield/Cost Examples
• Parameters

• wafer yield = 90%, α = 2, defect density = 2/cm2

Die size (mm2) 100 144 196 256 324 400
Die yield 23% 19% 16% 12% 11% 10%
6” Wafer 139(31) 90(16) 62(9) 44(5) 32(3) 23(2)
8” Wafer 256(59) 177(32) 124(19) 90(11) 68(7) 52(5)
10” Wafer 431(96) 290(53) 206(32) 153(20) 116(13) 90(9)

Wafer
Cost

Defect
(/cm2)

Area
(mm2)

Dies Yield Die
Cost

Package
Cost (pins)

Test
Cost

Total

Intel 486DX2 $1200 1.0 81 181 54% $12 $11(168) $12 $35
IBM PPC601 $1700 1.3 196 66 27% $95 $3(304) $21 $119
DEC Alpha $1500 1.2 234 53 19% $149 $30(431) $23 $202
Intel Pentium $1500 1.5 296 40 9% $417 $19(273) $37 $473

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 24

Startup Costs (NREs)
• Startup costs: must be amortized over chips sold

• Research and development: ~$500M per chip
• 1500 person-years @ $300K per

• Fabrication facilities: ~$3B per new line
• Clean rooms (bunny suits), lithography, testing equipment

• If you sell 10M chips, fab startup adds ~$300/chip
• Must amortize the fab costs over many designs!

• R&D costs add $50/chip for 10M chips
• Reuse basic design many times
• Pentium Pro, Pentium II, Pentium III, and Pentium M share

common microarchitecture (more or less)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 25

Moore’s Effect on Cost
• Scaling has opposite effects on unit and startup costs

+ Reduces unit integrated circuit cost
• Either lower cost for same functionality…
• Or same cost for more functionality

– Increases startup cost
• More expensive fabrication equipment
• Takes longer to design, verify, and test chips

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 26

Performance
• Two definitions

• Latency (execution time): time to finish a fixed task
• Throughput (bandwidth): number of tasks in fixed time
• Very different: throughput can exploit parallelism, latency cannot

• Baking bread analogy
• Often contradictory
• Choose definition that matches goals (most frequently thruput)

• Example: move people from A to B, 10 miles
• Car: capacity = 5, speed = 60 miles/hour
• Bus: capacity = 60, speed = 20 miles/hour
• Latency: car = 10 min, bus = 30 min
• Throughput: car = 15 PPH (count return trip), bus = 60 PPH

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 27

Performance Improvement
• Processor A is X times faster than processor B if

• Latency(P,A) = Latency(P,B) / X
• Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if
• Latency(P,A) = Latency(P,B) / (1+X/100)
• Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example
• Latency? Car is 3 times (and 200%) faster than bus
• Throughput? Bus is 4 times (and 300%) faster than car

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 28

What Is ‘P’ in Latency(P,A)?
• Program

• Latency(A) makes no sense, processor executes some program
• But which one?

• Actual target workload?
+ Accurate
– Not portable/repeatable, overly specific, hard to pinpoint problems

• Some representative benchmark program(s)?
+ Portable/repeatable, pretty accurate
– Hard to pinpoint problems, may not be exactly what you run

• Some small kernel benchmarks (micro-benchmarks)
+ Portable/repeatable, easy to run, easy to pinpoint problems
– Not representative of complex behaviors of real programs

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 29

SPEC Benchmarks
• SPEC (Standard Performance Evaluation Corporation)

• http://www.spec.org/
• Consortium of companies that collects, standardizes, and

distributes benchmark programs
• Post SPECmark results for different processors

• 1 number that represents performance for entire suite
• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.
• Updated every few years: so companies don’t target benchmarks

• SPEC CPU 2006 (now SPEC 2017)
• 12 “integer”: bzip, gccs, perl, mcf, etc.
• 17 “floating point”: mesa (openGL), equake, facerec, etc.
• Written in C and Fortran (a few in C++)

http://www.spec.org/

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 30

Other Benchmarks
• Parallel benchmarks

• SPLASH2 - Stanford Parallel Applications for Shared Memory
• NAS
• SPEC’s OpenMP benchmarks
• SPECjbb - Java multithreaded database-like workload

• Transaction Processing Council (TPC)
• TPC-C: On-line transaction processing (OLTP)
• TPC-H/R: Decision support systems (DSS)
• TPC-W: E-commerce database backend workload
• Have parallelism (intra-query and inter-query)
• Heavy I/O and memory components

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 31

Adding/Averaging Performance Numbers
• You can add latencies, but not throughput

• Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A)
• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
• Average is not 60 miles/hour

• 0.033 hours at 30 miles/hour + 0.01 hours at 90 miles/hour
• Average is only 47 miles/hour! (2 miles / (0.033 + 0.01 hours))

• Throughput(P1+P2,A) =
2 / [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))]

• Same goes for means (averages)
• Arithmetic: (1/N) * ∑P=1..N Latency(P)

• For units that are proportional to time (e.g., latency)
• Harmonic: N / ∑P=1..N 1/Throughput(P)

• For units that are inversely proportional to time (e.g., throughput)
• Geometric: N√∏P=1..N Speedup(P)

• For unitless quantities (e.g., speedups)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 32

SPECmark
• Reference machine: Sun Ultra Enterprise II
• Latency SPECmark

• For each benchmark
• Take odd number of samples: on both machines
• Choose median
• Take latency ratio (Sun Ultrasparc / your machine)

• Take GMEAN of ratios over all benchmarks
• Throughput SPECmark

• Run multiple benchmarks in parallel on multiple-processor system

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 33

CPU Performance Equation
• Multiple aspects to performance: helps to isolate them

• Latency(P,A) = seconds / program =
• (instructions / program) * (cycles / instruction) * (seconds / cycle)

• Instructions / program: dynamic instruction count
• Function of program, compiler, instruction set architecture (ISA)

• Cycles / instruction: CPI
• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period
• Function of micro-architecture, technology parameters

• For low latency (better performance) minimize all three
• Hard: often pull against the other

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 34

Danger: Partial Performance Metrics
• Micro-architects often ignore dynamic instruction count

• Typically work in one ISA/one compiler → treat it as fixed
• Not always accurate for multithreaded workloads!

• CPU performance equation becomes
• seconds / instruction = (cycles / instruction) * (seconds / cycle)
• This is a latency measure, if we care about throughput …
• Instructions / second = (instructions / cycle) * (cycles / second)

• MIPS (millions of instructions per second)
• Instructions / second * 10-6

• Cycles / second: clock frequency (in MHz)
• Example: CPI = 2, clock = 500 MHz, what is MIPS?

• 0.5 * 500 MHz * 10-6 = 250 MIPS
• Example problem situation:

• compiler removes instructions, program faster
• However, “MIPS” goes down (misleading)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 35

MIPS and MFLOPS (MegaFLOPS)
• Problem: MIPS may vary inversely with performance

– Some optimizations actually add instructions
– Work per instruction varies (e.g., FP mult vs. integer add)
– ISAs are not equivalent

• MFLOPS: like MIPS, but counts only FP ops, because…
+ FP ops can’t be optimized away
+ FP ops have longest latencies anyway
+ FP ops are same across machines

• May have been valid in 1980, but today…
– Many programs are “integer”, i.e., light on FP
– Loads from memory take much longer than FP divide
– Even FP instructions sets are not equivalent

• Upshot: Neither MIPS nor MFLOPS are broadly useful

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 36

Danger: Partial Performance Metrics II
• Micro-architects often ignore dynamic instruction count…
• … but general public (mostly) also ignores CPI

• Equates clock frequency with performance!!

• Which processor would you buy?
• Processor A: CPI = 2, clock = 500 MHz
• Processor B: CPI = 1, clock = 300 MHz
• Probably A, but B is faster (assuming same ISA/compiler)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 37

Cycles per Instruction (CPI)
• This course is mostly about improving CPI

• Cycle/instruction for average instruction
• IPC = 1/CPI

• Used more frequently than CPI, but harder to compute with
• Different instructions have different cycle costs

• E.g., integer add typically takes 1 cycle, FP divide takes > 10
• Assumes you know something about instruction frequencies

• CPI example
• A program executes equal integer, FP, and memory operations
• Cycles per instruction type: integer = 1, memory = 2, FP = 3
• What is the CPI? (0.33 * 1) + (0.33 * 2) + (0.33 * 3) = 2
• Caveat: this sort of calculation ignores dependences completely

• Back-of-the-envelope arguments only

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 38

Another CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle
• Load: 20%, 5 cycle
• Store: 10%, 1 cycle
• Branch: 20%, 2 cycle

• Which change would improve performance more?
• A. Branch prediction to reduce branch cost to 1 cycle?
• B. A bigger data cache to reduce load cost to 3 cycles?

• Compute CPI
• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2
• A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8
• B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6 (winner)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 39

Increasing Clock Frequency: Pipelining

• CPU is a pipeline: compute stages separated by latches

• Clock period: maximum delay of any stage
• Number of gate levels in stage
• Delay of individual gates (these days, wire delay more important)

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem
a

d

+
4

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 40

Increasing Clock Frequency: Pipelining
• Reduce pipeline stage delay

• Reduce logic levels and wire lengths (better design)
• Complementary to technology efforts (described later)
• Increase number of pipeline stages (multi-stage operations)
– Often causes CPI to increase
– At some point, actually causes performance to decrease
• “Optimal” pipeline depth is program and technology specific

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 41

CPI and Clock Frequency
• System components “clocked” independently

• CPI = CPICPU + CPIMEM
• E.g., Increasing processor clock frequency doesn’t improve memory

performance

• Example
• Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz

• Base: CPI = 2 → IPC = 0.5 → MIPS = 250
• What is the speedup if we double clock frequency?

• Clock *= 2 → CPIMEM *= 2 → CPIMEM = 2
• New: CPI = 3 → IPC = 0.33 → MIPS = 333
• Speedup = 333/250 = 1.33 << 2

• What about an infinite clock frequency?
• Only a x2 speedup (Example of Amdahl’s Law)

Speedup
 = Told/Tnew

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 42

Measuring CPI
• How are CPI and execution-time actually measured?

• Execution time: time (Unix): wall clock + CPU + system
• CPI = CPU time / (clock frequency * dynamic insn count)
• How is dynamic instruction count measured?
• Want CPI breakdowns (CPICPU, CPIMEM, etc.) to see what to fix

• CPI breakdowns
• Hardware event counters

• Calculate CPI using counter frequencies/event costs
• Cycle-level micro-architecture simulation (e.g., Gem5)

+ Measures breakdown “exactly” provided
+ Models micro-architecture faithfully
+ Ran realistic workload

• Method of choice for many micro-architects (and you)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 43

Improving CPI
• This course is more about improving CPI than frequency

• Historically, clock accounts for 70%+ of performance improvement
• Achieved via deeper pipelines

• That will (have to) change
• Deep pipelining is not power efficient
• Physical speed limits are approaching
• 1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 3.8GHz: 2004, 5GHz: 2008
• Intel Core 2: 1.8-3.2GHz: 2008

• Techniques we will look at
• Caching, speculation, multiple issue, out-of-order issue
• Vectors, multiprocessing, more…

• Moore helps because CPI reduction requires transistors
• The definition of parallelism is “more transistors”
• But best example is caches

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 44

Moore’s Effect on Performance
• Moore’s Curve: common interpretation of Moore’s Law

• “CPU performance doubles every 18 months”
• Self fulfilling prophecy

• 2X every 18 months is ~1% per week
• Q: Would you add a feature that improved performance 20% if

it took 8 months to design and test?
• Processors under Moore’s Curve (arrive too late) fail spectacularly

• E.g., Intel’s Itanium, Sun’s Millennium

0

50

100

150

200

250

300

350

1982 1984 1986 1988 1990 1992 1994

Year

RISC

Intel x86

35%/yr

Chart1

		1982		1982		1982

		1983		1983		1983

		1984		1984		1984

		1985		1985		1985

		1986		1986		1986

		1987		1987		1987

		1988		1988		1988

		1989		1989		1989

		1990		1990		1990

		1991		1991		1991

		1992		1992		1992

		1993		1993		1993

		1994		1994		1994

		1995		1995		1995

&F

Page &P

RISC

Intel x86

35%/yr

Intel

RISC

Intel @1.35/year > 1987

Year

Performance

2

2

2.7

2.7

3.645

3.645

4.92075

4.92075

6.6430125

6.6430125

8.968066875

9

8.968066875

12.1068902812

13

12.1068902812

16.3443018797

18

16.3443018797

24.5164528195

30

22.0648075376

36.7746792293

51

29.7874901757

55.1620188439

80

40.2131117372

82.7430282659

117

54.2877008453

124.1145423989

190

73.2883961411

186.1718135983

300

98.9393347905

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 45

Performance Rules of Thumb
• Make common case fast

• “Amdahl’s Law”
• Speedupoverall = 1 / ((1 – fractionx) + fractionx/Speedupx)
• Corollary: don’t optimize 5% to the detriment of other 95%
• Speedupoverall = 1 / ((1 – 5%) + 5%/infinity) = 1.05

• Build a balanced system
• Don’t over-engineer capabilities that cannot be utilized
• Try to be “bound” by the most expensive resourses

(if not everywhere)

• Design for actual, not peak, performance
• For actual performance X, machine capability must be > X

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 46

Little’s Law
• Key Relationship between latency and bandwidth:

• Average number in system = arrival rate * avg. holding time

• Example:
• How big a wine cellar should I build?
• My family drinks (and buys) an average of 4 bottles per week
• On average, I want to age my wine 5 years

• bottles in cellar = 4 bottles/week * 52 weeks/year * 5 years
• = 1040 bottles (!!!)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 47

More Little’s Law
• How many outstanding cache misses?

• Want to sustain 5 GB/s bandwidth
• 64 byte blocks
• 100ns miss latency

• Requests in system = arrival rate * time in system
= (5 GB/s / 64 byte blocks) * 100ns
= 8 misses

• That’s an AVERAGE. Need to support many more if we
hope to sustain this bandwidth. (Rule of thumb is 2X)

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 48

Transistor Speed, Power, and Reliability
• Transistor characteristics and scaling impact:

• Switching speed
• Power
• Reliability

• “Undergrad” gate delay model for architecture
• Each Not, NAND, NOR, AND, OR gate has delay of “1”
• Reality is not so simple

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 49

Transistors and Wires

IBM SOI Technology

©
IB

M

From slides © Krste Asanović, MIT

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 50

Transistors and Wires

IBM CMOS7, 6 layers of copper wiring

©
IB

M

From slides © Krste Asanović, MIT

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 51

1→0
I

0→1

1→0

1→0

Simple RC Delay Model
• Switching time is a RC circuit (charge or discharge)

• R - Resistance: slows rate of current flow
• Depends on material, length, cross-section area

• C - Capacitance: electrical charge storage
• Depends on material, area, distance

• Voltage affects speed, too

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 52

1→0
I

0→1

1→0

1→0

Resistance
• Transistor channel resistance

• function of Vg (gate voltage)
• Wire resistance (negligible for short wires)

1

1

Off

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 53

1→0
I

0→1

1→0

1→0

Capacitance
• Source/Drain capacitance
• Gate capacitance
• Wire capacitance (negligible for short wires)

1

1

RC Delay

• Delay = RC

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 54

1→0
I

0→1
1→0

1

Off

R

C

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 55

Which is faster? Why?

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 56

Transistor Width

• Useful for driving large “loads” like long or off-chip wires

• “Wider” transistors have lower resistance, more drive
• Specified per-device

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 57

1→0
I

0→1

1→0

1→0

RC Delay Model Ramifications
• Want to reduce resistance

• “wide” drive transistors (width specified per device)
• Short wires

• Want to reduce capacitance
• Number of connected devices
• Less-wide transistors

(gate capacitance
of next stage)

• Short wires

1

1

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 58

Transistor Scaling

• Transistor length is key property of a “process generation”
• 90nm refers to the transistor gate length, same for all transistors

• Shrink transistor length:
• Lower resistance of channel (shorter)
• Lower gate/source/drain capacitance

• Result: transistor drive strength linear as gate length shrinks

Gate
Source

Drain

Bulk

Width

Length

Minimum Length=2λ

Width=4λSource Drain

Gate

Diagrams © Krste Asanović, MIT

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 59

Wires
Pitch

Width

LengthHeight

• Resistance fixed by (length*resistivity) / (height*width)
• Intel’s 45nm process uses copper with 3.3 Ω/µm on M1-M3

• Capacitance depends on geometry of surrounding wires and relative
permittivity, εr,of dielectric
• silicon dioxide εr = 3.9, new low-k dielectrics in range 1.2-3.1
• Intel’s 45nm M1-M3 have 0.20 fF/µm (160 nm pitch)

From slides © Krste Asanović, MIT

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 60

Wire Delay
• RC Delay of wires

• Resistance proportional to length
• Capacitance proportional to length

• Result: delay of a wire is quadratic in length
• Insert “inverter” repeaters for long wires to
• Bring it back to linear delay

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 61

Moore’s Effect on RC Delay
• Scaling helps reduce wire and gate delays

+ Wires become shorter (Length↓ → Resistance↓)
+ Wire “surface areas” become smaller (Capacitance↓)
+ Transistors become shorter (Resistance↓)
+ Transistors become narrower (Capacitance↓, Resistance↑)

• But also increases wire and gate delays
– Wires become narrower (Resistance↑)
– Wires become closer together (Resistance↑)
– Gate insulator thickness becomes smaller (Capacitance↑)
– Distance between wires becomes smaller (Capacitance↑)

• Bottom line: Long wires dominate delay

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 62

Improving RC Delay
• Exploit good effects of scaling
• Fabrication technology improvements

+ Use copper instead of aluminum for wires (ρ↓ → Resistance↓)
+ Use lower-dielectric insulators (κ↓ → Capacitance↓)

+ Design implications
+ Use bigger cross-section wires (Area↑ → Resistance↓)

• Typically means taller, otherwise fewer of them
• Need more layers higher fabrication cost
– Increases “surface area” and capacitance (Capacitance↑)

+ Use wider transistors (Area↑ → Resistance↓)
– Increases capacitance (not for you, for upstream transistors)
– Increases power (to charge/discharge capacitance)
– Use selectively

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 63

Another Constraint: Power and Energy
• Power (Watt or Joule/Second): short-term (peak, max)

• Was mostly a dissipation (heat) concern, now $$$ too
• Power-density (Watt/cm2): important related metric

– Thermal cycle: power dissipation↑ → power density↑ →
temperature↑ → resistance↑ → power dissipation↑…

• Cost (and form factor): packaging, heat sink, fan, etc.

• Energy (Joule): long-term
• Mostly a consumption concern
• Primary issue is battery life (cost, weight of battery, too)
• Low-power implies low-energy, but not the other way around

• 25 years ago, nobody cared except in embedded apps

Power Density

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 64

Year

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 65

Sources of Energy Consumption

CL

Diode Leakage Current

Subthreshold Leakage Current

Short-Circuit
Current

Capacitor
Charging
CurrentDynamic power:

• Capacitor Charging (85-90% of active power)
• Energy is ½ CV2 per transition

• Short-Circuit Current (10-15% of active power)
• When both p and n transistors turn on during signal transition

Static power:
• Subthreshold Leakage (dominates when inactive)

• Transistors don’t turn off completely
• Diode Leakage (negligible)

• Parasitic source and drain diodes leak to substrate
From slides © Krste Asanović, MIT

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 66

Moore’s Effect on Power
• Scaling has largely good effects on local power

+ Shorter wires/smaller transistors (Length↓ → Capacitance↓)
– Shorter transistor length (Resistance↓, Capacitance↓)
– Global effects largely undone by increased transistor counts

• Scaling has a largely negative effect on power density
+ Transistor/wire power decreases linearly
– Transistor/wire density increases quadratically
– Power-density increases linearly

• Thermal cycle
• Controlled somewhat by reduced VDD (5→3.3→1.6→1.3→1.1)

• Reduced VDD sacrifices some switching speed

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 67

Reducing Power
• Power proportional to CVDD

2f
• Reduce supply voltage (VDD)

+ Reduces dynamic power quadratically and static power linearly
• But poses a tough choice regarding VT
– Constant VT slows circuit speed → clock frequency → performance
– Reduced VT increases static power exponentially

• Reduce clock frequency (f)
+ Reduces dynamic power linearly
– Doesn’t reduce static power
– Reduces performance linearly
• Generally doesn’t make sense without also reduced VDD …

• Except that frequency can be adjusted cycle-to-cycle and locally
• More on this later

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 68

Dynamic Voltage Scaling (DVS)
• Dynamic voltage scaling (DVS)

• OS reduces voltage/frequency when peak performance not needed

±X-Scale is power efficient (6200 MIPS/W), but not IA32 compatible

Mobile PentiumIII
“SpeedStep”

TM5400
“LongRun”

Intel X-Scale
(StrongARM2)

Frequency 300–1000MHz
(50MHz steps)

200–700MHz
(33MHz steps)

50–800MHz
(50MHz steps)

Voltage 0.9–1.7V
(0.1V steps)

1.1–1.6V
(continuous)

0.7–1.65V
(continuous)

High-speed 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W
Low-power 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 69

Reducing Power: Processor Modes
• Modern electrical components have low-power modes

• Note: no low-power disk mode, magnetic (non-volatile)
• “Standby” mode

• Turn off internal clock
• Leave external signal controller and pins on
• Restart clock on interrupt
±Cuts dynamic power linearly, doesn’t effect static power
• Laptops go into this mode between keystrokes

• “Sleep” mode
• Flush caches, OS may also flush DRAM to disk
• Turn off processor power plane
– Needs a “hard” restart
+ Cuts dynamic and static power
• Laptops go into this mode after ~10 idle minutes

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 70

Reliability (better yet Availability)
• Reliability: Time until (first) failure

• Assume things fail (are repaired) at constant rate in time
• Begin a “Unit” with Mean Time To Failure & Repair
• MTTF(1 Unit) = 3 years & MTTR = 1 day

• Redundancy critical for masking failures
• MTTF(1 of 2 Units) = MTTF(1 Unit)/2 = 1.5 years
• MTTF(2 of 2 Units) = MTTF(1 of 2 Units)/[MTTR/MTTF(1 Unit)]

= 600K years (really?)

• Availability: Fraction of time usefully working
= MTTF(after masking)/[MTTF(after masking)+MTTR]

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 71

Moore’s Bad Effect on Reliability
• CMOS devices: CPU and memory

• Historically almost perfectly reliable
• Moore has made them less reliable over time

• Two common sources of electrical faults
• Energetic particle strikes (e.g., from sun)

• Randomly charge nodes, cause bits to flip, transient
• Electro-migration: change in electrical interfaces/properties

• Temperature-driven, happens gradually, permanent

• Large, high-energy transistors are immune to these effects
– Scaling makes node energy closer to particle energy
– Scaling increases power-density which increases temperature
• Memory (DRAM) was hit first: denser, smaller devices than SRAM
• Now SRAM is more susceptible (smaller capacitances)
• Flip-flops (e.g., registers and microarchitectural state) at risk???

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 72

Moore’s Good Effect on Reliability
• The key to providing reliability is redundancy

• The same scaling that makes devices less reliable…
• Also increase device density to enable redundancy

• Classic example
• Error correcting code (ECC) for DRAM
• ECC now on caches and register files for many designs
• More reliability techniques later

• Today’s big open questions
• How to efficiently protect logic?
• Can architectural techniques help hardware reliability?
• Can architectural techniques help with software reliability?

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 73

Summary: A Global Look at Moore
• Device scaling (Moore’s Law)

+ Increases performance
• Reduces transistor/wire delay
• Gives us more transistors with which to reduce CPI

+ Reduces local power consumption
– Which is quickly undone by increased integration
– Aggravates power-density and temperature problems

– Aggravates reliability problem
+ But gives us the transistors to solve it via redundancy

+ Reduces unit cost
– But increases startup cost

• Will we fall off Moore’s Cliff? (for real, this time?)
• What’s next: nanotubes, quantum-dots, optical, spin-tronics, DNA?

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 74

Summary
• What is computer architecture

• Abstraction and layering: interface and implementation, ISA
• Shaping forces: application and semiconductor technology
• Moore’s Law

• Cost
• Unit and startup

• Performance
• Latency and throughput
• CPU performance equation: insn count * CPI * clock frequency

• Power and energy
• Dynamic and static power

• Reliability

CS/ECE 752 (Sohi): Technology, Cost, Performance, Power, etc. 75

A Computer Architecture Picture

• Mostly about micro-architecture
• Mostly about CPU/Memory
• Mostly about general-purpose
• Mostly about performance
• We’ll still only scratch the surface

Application
OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

	U. Wisconsin CS/ECE 752�Advanced Computer Architecture I
	This Unit
	What is Computer Architecture? (review)
	Abstraction and Layering
	Abstraction, Layering, and Computers
	Gray box: Peeking though the layers	
	A Computer Architecture Picture
	Semiconductor Technology Background
	Shaping Force: Technology
	Complementary MOS (CMOS)
	CMOS Examples
	More About CMOS and Technology
	Aside: VLSI + Manufacturing
	MOSFET Side View
	Manufacturing Process
	Manufacturing: Gate formation
	Manufacturing Process
	Manufacturing Process
	Defects
	Empirical Evaluation
	Cost
	Unit Cost: Integrated Circuit (IC)
	Yield/Cost Examples
	Startup Costs (NREs)
	Moore’s Effect on Cost
	Performance
	Performance Improvement
	What Is ‘P’ in Latency(P,A)?
	SPEC Benchmarks
	Other Benchmarks
	Adding/Averaging Performance Numbers
	SPECmark
	CPU Performance Equation
	Danger: Partial Performance Metrics
	MIPS and MFLOPS (MegaFLOPS)
	Danger: Partial Performance Metrics II
	Cycles per Instruction (CPI)
	Another CPI Example
	Increasing Clock Frequency: Pipelining
	Increasing Clock Frequency: Pipelining
	CPI and Clock Frequency
	Measuring CPI
	Improving CPI
	Moore’s Effect on Performance
	Performance Rules of Thumb
	Little’s Law
	More Little’s Law
	Transistor Speed, Power, and Reliability
	Transistors and Wires
	Transistors and Wires
	Simple RC Delay Model
	Resistance
	Capacitance
	RC Delay
	Which is faster? Why?
	Transistor Width
	RC Delay Model Ramifications
	Transistor Scaling
	Wires
	Wire Delay
	Moore’s Effect on RC Delay
	Improving RC Delay
	Another Constraint: Power and Energy
	Power Density
	Sources of Energy Consumption
	Moore’s Effect on Power
	Reducing Power
	Dynamic Voltage Scaling (DVS)
	Reducing Power: Processor Modes
	Reliability (better yet Availability)
	Moore’s Bad Effect on Reliability
	Moore’s Good Effect on Reliability
	Summary: A Global Look at Moore
	Summary
	A Computer Architecture Picture

