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3 IMPA – Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico,

Rio de Janeiro, RJ 22460-320, Brazil.

Email: solodov@impa.br



1 Introduction

Consider the system of nonlinear equations

Φ(x) = 0, (1.1)

where Φ : Rn → Rn is a given mapping. For a given iterate x ∈ Rn such that Φ is differentiable
at x, the basic Newton method (NM) for solving (1.1) generates the next iterate as x + ξ,
where ξ satisfies the linear iteration system

Φ(x) + Φ′(x)ξ = 0. (1.2)

Assuming that x̄ is a nonsingular solution of (1.1), that is, Φ′(x̄) is nonsingular, local
convergence and rate of convergence properties of this basic algorithm belong to classics
of numerical analysis. Specifically, if Φ is differentiable near x̄, with its derivative being
continuous at x̄, any starting point x0 ∈ Rn close enough to such x̄ uniquely defines an
iterative sequence of the NM, this sequence converges to x̄, and the rate of convergence is
superlinear; see, e.g., [20, Theorem 2.2]. The case of singular solutions will be discussed in
Section 2.

The perturbed Newtonian framework is given by

Φ(x) + Φ′(x)ξ = ω(x), (1.3)

with some mapping ω : Rn → Rn characterizing perturbations/differences with respect to
the basic NM. We refer to the iteration x+ ξ with ξ defined by (1.3) as the perturbed Newton
method (pNM). We emphasize that (1.3) is not necessarily related to some inexactness in
solving the NM subproblem (1.2) as, for instance, in [7]. Indeed, the nature of ω in (1.3)
can be rather different, as would be the case, in particular, for our developments concerning
transformation of variables and transformation of equations.

For the case of nonsingular solutions, conditions on ω ensuring that local convergence
properties of the NM are preserved for the pNM were studied in [20, Section 2.1]. Singular
solutions will be addressed in Section 2, where in particular a new result, specifically relevant
for transformation of variables, will be obtained (Theorem 2.1(c)). For related pNM frame-
works, including more general settings, see the recent survey [22] and references therein, and
in particular [11, 12, 17, 21].

Consider now a given solution x̄ of (1.1), and a transformation of variables φ : U → Rn,
where U is a neighborhood of some z̄ ∈ Rn, φ(z̄) = x̄. Consider the basic NM for the
transformed equation

Ψ(z) = 0, (1.4)

where Ψ : U → Rn is defined by
Ψ(z) = Φ(φ(z)). (1.5)

For a motivation of such constructions, see, e.g., [3]. Under the appropriate assumptions on
φ, we shall show that the NM applied to the transformed equation (1.4) can be interpreted
as the pNM (1.3) for the original equation (1.1). Specifically, convergence properties of the
NM applied to (1.4) can be recovered from the known properties of the pNM (1.3). Apart
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from giving an insight from the unified principles, this line of analysis also leads to some new
results in the case of singular solutions.

Next, consider the case when transformation is applied not to the variables but rather to
the equations. Let V be a neighborhood of 0 in Rn and a mapping ψ : V → Rn be such that
ψ(0) = 0, ψ(V ) a neighborhood in Rn of a solution x̄ of (1.1). Let Ψ : Φ−1(V ) → Rn be
defined by

Ψ(x) = ψ(Φ(x)), (1.6)

and consider the problem
Ψ(x) = 0. (1.7)

This kind of transformations are discussed as a possible form of a nonlinear preconditioner in
[5, p. 184]; for related constructions in the context of discretized partial differential equations,
see, e.g., [6, 9]. Again, under the appropriate assumptions on ψ, we shall show that the
NM applied to (1.7) can be interpreted as the pNM (1.3) for the original equation (1.1). In
particular, convergence properties of the former follow from convergence results for the latter.

In Section 2, we provide the needed preliminaries regarding the pNM in cases of nonsingu-
lar and singular solutions, with a new result established in Theorem 2.1(c). In Section 3, these
results are applied to transformations of variables. In Section 4, we consider transformations
of equations.

Some words about our notation and terminology are in order. The null space and the
range space of a linear operator A will be denoted by kerA and imA, respectively. For any
x̄, ξ̄ ∈ Rn, and any given scalars ε > 0 and δ > 0, we define the set

Kε, δ(x̄; ξ̄) = {x ∈ Rn | ∥x− x̄∥ ≤ ε, ∥∥ξ̄∥(x− x̄)− ∥x− x̄∥ξ̄∥ ≤ δ∥x− x̄∥∥ξ̄∥}.

A set S ⊂ Rn is said to be starlike with respect to x̄ ∈ Rn if tx + (1 − t)x̄ ∈ S holds for all
x ∈ S and t ∈ (0, 1]. A vector ξ ∈ Rn, with ∥ξ∥ = 1, is called an excluded direction for a
set S starlike with respect to x̄ if x̄ + tv ̸∈ S for all t > 0. A set S starlike with respect to
x̄ is called asymptotically dense at x̄ if the corresponding set of excluded directions is thin,
i.e., the complement of the latter is open and dense in the unit sphere in Rn (with topology
induced from Rn).

If Φ : Rn → Rn is twice differentiable at x̄ ∈ Rn, it is 2-regular at x̄ in the direction
ξ̄ ∈ Rn if

imΦ′(x̄) + Φ′′(x̄)[ξ̄, kerΦ′(x̄)] = Rn. (1.8)

For some background and usage of the notion of 2-regularity see, e.g., [1] and references
therein. Some more recent applications (possibly with reduced smoothness assumptions on
Φ) can be found in [2, 11, 12, 13, 14, 17, 18, 19, 22, 23, 24].

Recall that for a given integer r, a mapping φ : U → V is a Cr-diffeomorphism of an open
set U ⊂ Rn onto an open set V ⊂ Rn if φ is a bijection, r times continuously differentiable
on U , and φ−1 is r times continuously differentiable on V . Recall also that the derivative
φ′(x) of a C1-diffeomorphism is necessarily nonsingular for all x ∈ U .

Finally, for a mapping v : Rn → Rn, the notation v(x) = O(∥x− x̄∥) as x→ x̄ means that
there exists c > 0 such that ∥v(x)∥ ≤ c∥x− x̄∥ for all x ∈ Rn close enough to x̄. Accordingly,
v(x) = o(∥x− x̄∥) as x→ x̄, means that v(x)/∥x− x̄∥ → 0 as x ∈ Rn \ {x̄} tends to x̄.
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2 Preliminaries

If x̄ is a singular solution of (1.1), that is, Φ′(x̄) is singular, there may exist points x ∈ Rn

arbitrarily close to x̄, such that Φ′(x) is singular, and the NM iteration from x is not well-
defined. Nevertheless, even in this case, if Φ is twice differentiable at x̄, and there exists
ξ̄ ∈ kerΦ′(x̄) such that Φ is 2-regular at x̄ in the direction ξ̄ (recall (1.8)), it follows from
[15, Theorem 6.1] that there exists a large (asymptotically dense at x̄) starlike set of starting
points x0 ∈ Rn uniquely defining an iterative sequence of the NM, this sequence converges
to x̄, and the rate of convergence is linear with the asymptotic common ratio equal to 1/2.
Observe that nonsingularity of Φ′(x̄) implies (1.8) with any ξ̄ ∈ Rn, including ξ̄ = 0. However,
(1.8) may certainly hold (with nonzero ξ̄) even at singular solutions.

For the pNM (1.3), conditions on ω ensuring local convergence are given in [20, Section 2.1]
for the case of nonsingular solutions, and in [17] for the case when the weaker 2-regularity
condition above is satisfied; see also the recent survey of related material for the 2-regular
case in [22]. We summarize the corresponding results relevant for our developments in Theo-
rem 2.1 below, also providing one addition useful specifically for dealing with transformation
of variables.

We shall make use of the unique decomposition of every x ∈ Rn into the sum x = x1+x2
with x1 ∈ (kerΦ′(x̄))⊥, x2 ∈ kerΦ′(x̄). Let Π be the orthogonal projector onto (imΦ′(x̄))⊥ in
Rn. Observe that with this definition, the 2-regularity condition (1.8) is equivalent to saying
that the linear operator x 7→ Φ′(x̄) + ΠΦ′′(x̄)[ξ̄, x] : Rn → Rn is nonsingular, and also to
saying that the linear operator

B(ξ̄) : kerΦ′(x̄) → (imΦ′(x̄))⊥, B(ξ̄)x = ΠΦ′′(x̄)[ξ̄, x],

is nonsingular. The latter interpretation, in particular, makes it clear that 2-regularity is
indeed a directional property, i.e., it holds in a direction ξ̄ if and only if it holds in a direction
tξ̄, for any t ̸= 0.

Theorem 2.1 (a) Let Φ be differentiable near a solution x̄ of (1.1), with its derivative
being continuous at x̄. If Φ′(x̄) is nonsingular, and

ω(x) = o(∥x− x̄∥) (2.1)

as x→ x̄, then any starting point x0 ∈ Rn close enough to x̄ uniquely defines an iterative
sequence of the pNM (1.3), this sequence converges to x̄, and the rate of convergence is
superlinear. Moreover, the rate of convergence is quadratic provided

ω(x) = O(∥x− x̄∥2) (2.2)

as x→ x̄, and the derivative of Φ is Lipschitz-continuous with respect to x̄, that is,

Φ′(x)− Φ′(x̄) = O(∥x− x̄∥) (2.3)

as x→ x̄.
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(b) Let Φ be twice differentiable near x̄, with its second derivative being Lipschitz-continuous
with respect to x̄, that is,

Φ′′(x)− Φ′′(x̄) = O(∥x− x̄∥) (2.4)

as x → x̄. If Φ is 2-regular at x̄ in a direction ξ̄ ∈ kerΦ′(x̄), that is, (1.8) holds, and
(2.2) holds as well, complemented by

Πω(x) = O(∥x− x̄∥∥x1 − x̄1∥) +O(∥x− x̄∥3) (2.5)

as x→ x̄, then there exist ε > 0 and δ > 0 such that any starting point x0 ∈ Kε, δ(x̄, ξ̄)
uniquely defines an iterative sequence of the pNM (1.3), this sequence converges to x̄,
and the rate of convergence is linear with the asymptotic common ratio equal to 1/2.

(c) If in item (b) it additionally holds that

Πω(x) = o(∥x− x̄∥2) (2.6)

as x → x̄, then there exists a set S ⊂ Rn starlike with respect to x̄ and asymptotically
dense at x̄, and such that any starting point x0 ∈ S uniquely defines an iterative sequence
of the pNM (1.3), this sequence converges to x̄, and the rate of convergence is linear
with the asymptotic common ratio equal to 1/2.

Before talking about the proofs of the items in Theorem 2.1 (or citing the proofs), some
general comments are in order. Of course, the local convergence and rate of convergence
results for the basic NM are recovered from Theorem 2.1 by taking ω ≡ 0. The convergence
domain in item (b) of Theorem 2.1 is Kε, δ(x̄, ξ̄), and it need not be asymptotically dense
at x̄, even if one would consider the union of such domains coming with all appropriate
directions ξ̄ ∈ kerΦ′(x̄) (i.e., those in which Φ is 2-regular at x̄). For the basic NM (without
perturbations), the argument in the proof of item (i) of [15, Theorem 6.1] allows to further
extend the convergence domain and obtain an asymptotically dense set. As commented at the
end of Section 2 of [17], this kind of an extension for pNM would require further assumptions
on the perturbation terms, and (2.6) in item (c) of Theorem 2.1 is precisely an example of
such an assumption on ω. The result in item (c) of Theorem 2.1 is new. This assumption
may seem to be somewhat restrictive in general, but as we shall see, it holds in the situation
of transformation of variables in Section 3. It does not hold for transformation of equations
in Section 4.

Proof. [of Theorem 2.1]

Item (a) follows from [20, Theorem 2.12], while item (b) is by [17, Theorem 1] (see also
[22, Theorem 1]). Therefore, we only need to prove item (c).

Consider any ξ0 ∈ Rn, with ∥ξ0∥ = 1, such that Φ is 2-regular at x̄ in the direction ξ0.
Then by [22, Lemma 1], which a sharper version of [17, Lemma 1], there exists τ > 0 such
that for x = x̄+ tξ0 with any t ∈ (0, τ ], the pNM iteration (1.3) has the unique solution ξ(x),
and

x+ ξ(x)− x̄ =
1

2
π(x− x̄) +O(∥ω(x)∥) +O(∥∥x− x̄∥−1∥Πω(x)∥) +O(∥x− x̄∥2)
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as t → 0, where π is a positively homogeneous mapping from the cone of directions ξ ∈ Rn

of 2-regularity of Φ at x̄ to Rn, defined by

π(ξ) =
1

2
(ξ2 + (B(ξ))−1ΠΦ′′(x̄)[ξ, ξ1]). (2.7)

Taking into account (2.2) and (2.6), this implies that

x+ ξ(x)− x̄ =
1

2
tπ(ξ0) + o(t) (2.8)

as t→ 0.
Assume now that Φ is 2-regular at x̄ in the direction π(ξ0). If π(ξ0) = 0, then this implies

that Φ′(x̄) is nonsingular, in which case the needed (and much stronger) assertion follows
from item (a) of the theorem. Therefore, in what follows, we suppose that π(ξ0) ̸= 0.

Fix ε > 0 and δ > 0 according to item (b) of the theorem for ξ̄ = π(ξ0). From (2.8)
we have that if τ = τ(ξ0) > 0 is taken small enough, it holds that ∥x + ξ(x) − x̄∥ ≤ ε, and
assuming that π(ξ0) ̸= 0, we also have that

∥∥π(ξ0)∥(x+ ξ(x)− x̄)− ∥x+ ξ(x)− x̄∥π(ξ0)∥ =
1

2
∥∥π(ξ0)∥(tπ(ξ0) + o(t))

−∥tπ(ξ0) + o(t)∥π(ξ0)∥
= o(t)

≤ δ∥x+ ξ − x̄∥∥π(ξ0)∥.

Therefore, x+ ξ ∈ Kε, δ(x̄; π(ξ
0)), and by item (b) of the theorem applied with the starting

point x0 = x+ ξ, we conclude that the pNM uniquely defines the sequence with the needed
convergence and rate of convergence properties.

Next, define S as the union of the sets {x̄+ tξ0 | t ∈ (0, τ(ξ0)]} over all ξ0 ∈ Rn such that
Φ is 2-regular at x̄ in the two directions ξ0 and π(ξ0). This set S is evidently starlike with
respect to x̄, and the excluded directions for this set are those ξ ∈ Rn, with ∥ξ∥ = 1, satisfying
either detB(ξ) = 0, or detB(ξ) ̸= 0 but detB(detB(ξ)π(ξ)) = 0. Indeed, according to the
interpretation of 2-regularity given before the statement of the theorem, the former exactly
means violation of 2-regularity of Φ at x̄ in the direction ξ, while the latter characterizes the
case when 2-regularity holds in the direction ξ but is violated in the direction detB(ξ)π(ξ),
which is equivalent to saying that 2-regularity is violated in the direction π(ξ). Since B(·)
depends linearly on its argument, detB(ξ) is a homogeneous polynomial in ξ. Moreover, from
(2.7) and from the formula for the inverse of a matrix through its adjugate matrix, it follows
that detB(detB(ξ)π(ξ)) is also a homogeneous polynomial in ξ. Therefore, all excluded
directions belong to the null sets of the specified two homogeneous polynomials, which are
both nontrivial: the assumption that Φ is 2-regular at x̄ in a direction ξ̄ ∈ kerΦ′(ū) implies
that detB(ξ̄) ̸= 0 and

detB(detB(ξ̄)π(ξ̄)) = detB

(
1

2
detB(ξ̄)ξ̄

)
̸= 0.

This implies that the set of excluded directions is thin, and hence, S is asymptotically dense
at x̄.

5



3 Transformations of variables

In this section we discuss a version of the NM applied to the equation with transformed
variables. For a given solution x̄ of (1.1), let an open neighborhood U of some z̄ ∈ Rn and
a mapping φ : U → Rn be such that φ(z̄) = x̄, φ(U) is an open neighborhood of x̄ in Rn,
and φ is a C1-diffeomorphism of U onto φ(U). Therefore, φ can be regarded as a smooth
nonsingular local transformation of variables in Rn, with the new variable z ∈ U related to
the original one x ∈ φ(U) by the equality x = φ(z).

We consider the basic NM for the transformed equation given by (1.4) and (1.5). Assuming
that Φ is differentiable on φ(U), by the chain rule we have that Ψ is differentiable on U and

Ψ′(z) = Φ′(φ(z))φ′(z) ∀ z ∈ U. (3.1)

In particular, continuity of Φ′ at x = φ(z) implies continuity of Ψ′ at z, and the Jacobians
Ψ′(z) and Φ′(x) are nonsingular and singular simultaneously. Therefore, for a given iterate
z ∈ U , the next iterate is z + ζ, where ζ satisfies

Ψ(z) + Ψ′(z)ζ = 0. (3.2)

The issue to investigate are precise relations between the iterates produced this way and
the NM for the original equation (1.1), which naturally leads to the pNM scheme (1.3).
To that end, it makes sense to consider the following procedure that we call the Newton
method with transformed variables (NMTV). We start with an iterate x ∈ φ(U) serving as an
approximation of the solution x̄ of the original equation (1.1), transform it into z = φ−1(x),
compute ζ satisfying (3.2), ensuring somehow that z + ζ ∈ U , and then restore φ(z + ζ)
as the new iterate for the original equation. The question is how does the displacement
ξ = φ(z + ζ) − x fit (1.2), or more precisely, what are the properties of the corresponding
perturbation term ω in (1.3). This question is natural, as one is primarily interested in the
performance of the algorithm in the original (rather than transformed) variables. In addition,
our interpretation provides a new insight for this technique of variable transfromation, from a
unified perspective (which includes many other Newtonian techniques), and gives new results
in the case of singular solutions.

Consider, for a start, the case of an affine transformation φ(z) = Az + b, where A is a
nonsingular n× n matrix, and b ∈ Rn. Then, by (3.1), it holds that

Ψ′(z) = Φ′(Az + b)A ∀ z ∈ U.

Further, ζ solves (3.2) with Ψ defined in (1.5) if and only if

0 = Φ(Az + b) + Φ′(Az + b)Aζ = Φ(x) + Φ′(x)ξ

holds with x = φ(z) = Az + b and ξ = Aζ = A(z + ζ) + b − x = φ(z + ζ) − x, i.e., this ξ
exactly solves (1.2). These observations recover the folklore fact that the NM is “invariant”
with respect to nonsingular affine transformations of variables [8]. It is certainly natural to
ask if any similar properties can be established for transformations that are not necessarily
affine.
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For instance, if Φ is continuously differentiable near x̄, and Φ′(x̄) is nonsingular, then
from the classical Implicit Function Theorem (e.g., [10, Theorem 1B.1]) it easily follows that
for any z̄ ∈ Rn, one can choose U and φ in such a way that in addition to the properties
specified above, it will hold that (φ′(z̄) is the identity and)

Φ(φ(z)) = Φ′(x̄)(z − z̄) ∀ z ∈ U.

Then according to (1.5), the transformed equation (1.4) is linear, with a nonsingular matrix,
and the unique solution of the iteration system (3.2) is ζ = z̄ − z. Thus, the NM for the
equation (1.4) hits its unique solution z̄ in a single step. Therefore, a single iteration of
the NMTV produces x̄ = φ(z̄) provided the current iterate x is in U . Considering this
from the viewpoint of the pNM, we have that for x close enough to x̄, the displacement
ξ = φ(z + ζ)− x = x̄− x fits (1.3) with

ω(x) = Φ(x)− Φ′(x)(x− x̄), (3.3)

and by the Mean-Value Theorem [20, Theorem A.10], it holds that

∥ω(x)∥ = ∥Φ(x)− Φ(x̄)− Φ′(x)(x− x̄)∥ ≤ sup
t∈[0, 1]

∥Φ′(tx+ (1− t)x̄)− Φ′(x)∥∥x− x̄∥.

Hence, the NMTV used with the specified transformation of variables fits the pNM with the
perturbation term satisfying (2.1), as x→ x̄, or even (2.2) provided Φ′ is Lipschitz-continuous
with respect to x̄, that is, (2.3) holds as x→ x̄.

Generally, suppose that the displacement ζ is uniquely defined by (3.2), ζ = O(∥z − z̄∥)
as z → z̄, and z + ζ ∈ U . Observe that these properties are guaranteed for z = φ−1(x),
for any x close enough to x̄, if x̄ is a nonsingular solution of (1.1). Indeed, in this case, z̄
is a nonsingular solution of (1.4), and the needed properties follow by the standard local
properties of the step of the NM (see, e.g., [20, Theorem 2.2]) applied to the equation (1.4),
and by the fact that z → z̄ as x→ x̄.

From (1.5)–(3.2) we then have that

0 = Φ(φ(z)) + Φ′(φ(z))φ′(z)ζ = Φ(x) + Φ′(x)ξ − Φ′(x)(ξ − φ′(z)ζ) (3.4)

with ξ = φ(z + ζ)− x. Therefore, the NMTV fits (1.3) with

ω(x) = Φ′(x)(φ(z + ζ)− φ(z)− φ′(z)ζ), (3.5)

where both z and ζ are uniquely defined through x, and therefore, ω can indeed be regarded
as a function of x only. Employing again the Mean-Value Theorem [20, Theorem A.10], we
derive the estimate

∥φ(z + ζ)− φ(z)− φ′(z)ζ∥ ≤ sup
t∈[0, 1]

∥φ′(t(z + ζ) + (1− t)z)− φ′(z)∥∥ζ∥

= o(∥ζ∥)
= o(∥z − z̄∥)
= o(∥φ−1(x)− φ−1(x̄)∥)
= o(∥(φ−1)′(x̄)(x− x̄) + o(∥x− x̄∥)∥)
= o(∥x− x̄∥) (3.6)
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as x → x̄, where the assumption that φ is a C1-diffeomorphism was also used. Moreover,
assuming that φ is a C2-diffeomorphism, this argument leads to the estimate

∥φ(z + ζ)− φ(z)− φ′(z)ζ∥ = O(∥x− x̄∥2). (3.7)

Combining (3.5) with (3.6) and (3.7), we respectively obtain (2.1) and (2.2). Assuming
that x̄ is a nonsingular solution of (1.1), this allows to apply item (a) of Theorem 2.1 to
derive the following result.

Proposition 3.1 Let Φ be differentiable near a solution x̄ of (1.1), with its derivative being
continuous at x̄, and assume that Φ′(x̄) is nonsingular. Let an open neighborhood U of some
z̄ ∈ Rn and a mapping φ : U → Rn be such that φ(z̄) = x̄, φ(U) is an open neighborhood of
x̄ in Rn, and φ is a C1-diffeomorphism of U onto φ(U).

Then any starting point x0 ∈ Rn close enough to x̄ uniquely defines an iterative sequence of
the NMTV, this sequence converges to x̄, and the rate of convergence is superlinear. Moreover,
the rate of convergence is quadratic provided the derivative of Φ is Lipschitz-continuous with
respect to x̄, that is, (2.3) holds as x→ x̄, and φ is a C2-diffeomorphism.

Taking into account the first equality in (3.4), observe that in the case of a linearizing
diffeomorphism, (3.5) is the same as (3.3).

We now turn our attention to the case when x̄ is a singular solution of (1.1). From (3.1)
it follows that

imΨ′(z̄) = imΦ′(x̄), kerΨ′(z̄) = (φ′(z̄))−1 kerΦ′(x̄). (3.8)

Assume that Φ is twice differentiable near x̄, with its second derivative Lipschitz-continuous
with respect to x̄, and let Φ be 2-regular at ū in some nonzero direction ξ̄ ∈ kerΦ′(x̄). Set
ζ̄ = (φ′(z̄))−1ξ̄ ∈ kerΨ′(z̄). From (3.1) it then follows that

Ψ′′(z̄)[ζ̄, ζ] = Φ′′(x̄)[φ′(z̄)ζ̄, φ′(z̄)ζ] + Φ′(x̄)φ′′(z̄)[ζ̄, ζ],

and hence, according to (3.8),

ΠΨ′′(z̄)[ζ̄, ζ] = ΠΦ′′(x̄)[ξ̄, φ′(z̄)ζ]

for ζ ∈ Rn, implying that 2-regularity of Φ at x̄ in the direction ξ̄ is equivalent to 2-regularity
of Ψ at z̄ in the direction ζ̄.

Furthermore, for any ε̃ > 0 and δ̃ > 0, there exist ε > 0 and δ > 0 such that the inclusion
x ∈ Kε, δ(x̄, ξ̄) implies the inclusion z = φ−1(x) ∈ K

ε̃, δ̃
(z̄, ζ̄). Indeed, observe first that

since φ is a C1-diffeomorphism, similarly to the intermediate relations in (3.6) one derives
the estimates

x− x̄ = O(∥z − z̄∥), z − z̄ = O(∥x− x̄∥) (3.9)

as z → z̄ and x→ x̄, respectively. And in particular, for any ε̃ > 0, if ∥x− x̄∥ ≤ ε with ε > 0
small enough, then ∥z − z̄∥ ≤ ε̃. By the standard formula for the derivative of the inverse
mapping [10, Theorem 1A.1], we have that

φ−1(x) = φ−1(x̄) + (φ−1)′(x̄)(x− x̄) + o(∥x− x̄∥)
= z̄ + (φ′(z̄))−1(x− x̄) + o(∥x− x̄∥), (3.10)
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and ∣∣∥(φ′(z̄))−1ξ̄∥∥x− x̄∥ − ∥(φ′(z̄))−1(x− x̄)∥∥ξ̄∥
∣∣

≤
∥∥∥x− x̄∥(φ′(z̄))−1ξ̄ − ∥ξ̄∥(φ′(z̄))−1(x− x̄)

∥∥
≤ ∥(φ′(z̄))−1∥

∥∥∥x− x̄∥ξ̄ − ∥ξ̄∥(x− x̄)
∥∥ .

(3.11)

Employing (3.10)–(3.11), we derive the following chain of estimates∥∥∥ζ̄∥(z − z̄)− ∥z − z̄∥ζ̄
∥∥ =

∥∥∥(φ′(z̄))−1ξ̄∥(φ−1(x)− z̄)− ∥φ−1(x)− z̄∥(φ′(z̄))−1ξ̄
∥∥

=
∥∥∥(φ′(z̄))−1ξ̄∥(φ′(z̄))−1(x− x̄)

−∥(φ′(z̄))−1(x− x̄)∥(φ′(z̄))−1ξ̄
∥∥+ o(∥x− x̄∥)

= ∥(φ′(z̄))−1∥
∥∥∥(φ′(z̄))−1ξ̄∥(x− x̄)− ∥(φ′(z̄))−1(x− x̄)∥ξ̄

∥∥
+o(∥x− x̄∥)

= ∥(φ′(z̄))−1∥∥(φ
′(z̄))−1ξ̄∥
∥ξ̄∥

∥∥∥∥∥ξ̄∥(x− x̄)

−∥(φ′(z̄))−1(x− x̄)∥
∥(φ′(z̄))−1ξ̄∥

∥ξ̄∥ξ̄
∥∥∥∥+ o(∥x− x̄∥)

≤ ∥(φ′(z̄))−1∥2
∥∥∥ξ̄∥(x− x̄)− ∥x− x̄∥ξ̄

∥∥
+∥(φ′(z̄))−1∥2

∣∣∣∣∥x− x̄∥ − ∥(φ′(z̄))−1(x− x̄)∥
∥(φ′(z̄))−1ξ̄∥

∥ξ̄∥
∣∣∣∣ ∥ξ̄∥

+o(∥x− x̄∥)
= O

(∥∥∥ξ̄∥(x− x̄)− ∥x− x̄∥ξ̄
∥∥)

+O
(∣∣∥(φ′(z̄))−1ξ̄∥∥x− x̄∥ − ∥(φ′(z̄))−1(x− x̄)∥∥ξ̄∥

∣∣)
+o(∥x− x̄∥)

= O
(∥∥∥ξ̄∥(x− x̄)− ∥x− x̄∥ξ̄

∥∥)+ o(∥x− x̄∥)

as x→ x̄. Taking also into account the first relation in (3.9), this implies that for any δ̃ > 0
there exist ε > 0 and δ > 0 such that the inclusion x ∈ Kε, δ(x̄, ξ̄) implies that∥∥∥ζ̄∥(z − z̄)− ∥z − z̄∥ζ̄

∥∥ ≤ δ̃∥ζ̄∥∥z − z̄∥,

completing the proof of the fact that z ∈ K
ε̃, δ̃

(z̄, ζ̄).

Therefore, assuming that x ∈ Kε, δ(x̄, ξ̄) with sufficiently small ε > 0 and δ > 0, we can
use the characterization of the NM step near a singular solution of a nonlinear equation,
given in [15, Lemma 4.1] (see also [13, Lemma 1]), applying it to the equation (1.4). This
yields that ζ is uniquely defined by (3.2), ζ = O(∥z − z̄∥) as z → z̄, and z + ζ ∈ U . Then
from (3.7) (that holds assuming that φ is a C2-diffeomorphism) we have that ω defined in
(3.5) satisfies (2.2) and

Πω(x) = Π(Φ′(x)− Φ′(x̄))(φ(z + ζ)− φ(z)− φ′(z)ζ) = O(∥x− x̄∥3)

as x→ x̄, implying both (2.5) and (2.6). These estimates on the perturbation term allow to
apply item (c) of Theorem 2.1, which yields the following result.
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Proposition 3.2 Let Φ be twice differentiable near x̄, with its second derivative being Lip-
schitz-continuous with respect to x̄, that is, (2.4) holds as x→ x̄, and let Φ be 2-regular at x̄
in a direction ξ̄ ∈ kerΦ′(x̄), that is, (1.8) holds. Let an open neighborhood U of some z̄ ∈ Rn

and a mapping φ : U → Rn be such that φ(z̄) = x̄, φ(U) is an open neighborhood of x̄ in Rn,
and φ is a C2-diffeomorphism of U onto φ(U).

Then there exists a set S ⊂ Rn starlike with respect to x̄ and asymptotically dense at x̄,
and such that any starting point x0 ∈ S uniquely defines an iterative sequence of the NMTV,
this sequence converges to x̄, and the rate of convergence is linear with the asymptotic common
ratio equal to 1/2.

4 Transformations of equations

We next discuss the case when transformation is applied not to the variables but rather to
the equations. Let an open neighborhood V of 0 in Rn and a mapping ψ : V → Rn be such
that ψ(0) = 0, ψ(V ) is an open neighborhood in Rn of a solution x̄ of (1.1), and ψ is a
C1-diffeomorphism of V onto ψ(V ). Let Ψ : Φ−1(V ) → Rn be given by (1.6).

Assuming that Φ is differentiable on some neighborhood O ⊂ Φ−1(V ) of x̄, by the chain
rule we have that Ψ is differentiable on O and

Ψ′(x) = ψ′(Φ(x))Φ′(x) ∀x ∈ O, (4.1)

and in particular, continuity of Φ′ at x ∈ O implies continuity of Ψ′ at x, and the Jacobians
Ψ′(x) and Φ′(x) are nonsingular and singular simultaneously.

For a given current iterate x ∈ O, the basic NM for the transformed equation (1.7), with
Ψ defined in (1.6), generates the next iterate as x+ ξ, where ξ satisfies

Ψ(x) + Ψ′(x)ξ = 0,

and we shall refer to this iteration process as the Newton method with transformed equations
(NMTE).

Employing (1.6) and (4.1), the iteration equation of the NMTE takes the form

ψ(Φ(x)) + ψ′(Φ(x))Φ′(x)ξ = 0,

and hence, according to (1.3),

ω(x) = Φ(x) + Φ′(x)ξ = Φ(x)− (ψ′(Φ(x)))−1ψ(Φ(x)). (4.2)

Again with the use of the Mean-Value Theorem [20, Theorem A.10], we obtain that

∥ψ(Φ(x))− ψ′(Φ(x))Φ(x)∥ = ∥ψ(Φ(x))− ψ(0)− ψ′(Φ(x))Φ(x)∥
≤ sup

t∈[0, 1]
∥ψ′(tΦ(x))− ψ′(Φ(x))∥∥Φ(x)∥ (4.3)

and hence,
ψ(Φ(x)) = ψ′(Φ(x))Φ(x) + o(∥Φ(x)∥) (4.4)
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as x→ x̄. Combining this with (4.2), we obtain that

ω(x) = o(∥Φ(x)∥) = o(∥Φ′(x̄)(x− x̄) + o(∥x− x̄∥)∥) = o(∥x− x̄∥) (4.5)

as x→ x̄.
Moreover, assuming that ψ is a C2-diffeomorphism, from (4.3) we have that

∥ψ(Φ(x))− ψ′(Φ(x))Φ(x)∥ ≤ sup
t∈[0, 1]

sup
θ∈[0, 1]

∥ψ′′(θtΦ(x) + (1− θ)Φ(x))∥(t− 1)∥Φ(x)∥2,

and (4.4) takes the stronger form

ψ(Φ(x)) = ψ′(Φ(x))Φ(x) +O(∥Φ(x)∥2).

If Φ′ is Lipschitz-continuous with respect to x̄, again making use of the Mean-Value Theorem
[20, Theorem A.10], from (4.2) we then obtain that

ω(x) = O(∥Φ(x)∥2)
= O(∥Φ(x̄) + Φ′(x̄)(x− x̄) +O(∥x− x̄∥2∥2)
= O((∥Φ′(x̄)(x1 − x̄1) +O(∥x− x̄∥2∥2)
= O(∥x1 − x̄1∥2) +O(∥x− x̄∥3) (4.6)

as x→ x̄.
The obtained (under the corresponding assumptions) estimates (4.5) and (4.6) allow to

apply items (a) and (b) of Theorem 2.1, giving the following two propositions, respectively.

Proposition 4.1 Let Φ be differentiable near a solution x̄ of (1.1), with its derivative being
continuous at x̄, and assume that Φ′(x̄) is nonsingular. Let an open neighborhood V of 0 in
Rn and a mapping ψ : V → Rn be such that ψ(0) = 0, ψ(V ) is an open neighborhood in Rn

of x̄, and ψ is a C1-diffeomorphism of V onto ψ(V ).
Then any starting point x0 ∈ Rn close enough to x̄ uniquely defines an iterative sequence of

the NMTE, this sequence converges to x̄, and the rate of convergence is superlinear. Moreover,
the rate of convergence is quadratic provided the derivative of Φ is Lipschitz-continuous with
respect to x̄, that is, (2.3) holds as x→ x̄, and ψ is a C2-diffeomorphism.

Proposition 4.2 Let Φ be twice differentiable near x̄, with its second derivative being Lip-
schitz-continuous with respect to x̄, that is, (2.4) holds as x→ x̄, and let Φ be 2-regular at x̄
in a direction ξ̄ ∈ kerΦ′(x̄), that is, (1.8) holds. Let an open neighborhood V of 0 in Rn and
a mapping ψ : V → Rn be such that ψ(0) = 0, ψ(V ) is an open neighborhood in Rn of x̄, and
ψ is a C2-diffeomorphism of V onto ψ(V ).

Then there exist ε > 0 and δ > 0 such that any starting point x0 ∈ Kε, δ(x̄, ξ̄) uniquely
defines an iterative sequence of the NMTE, this sequence converges to x̄, and the rate of
convergence is linear with the asymptotic common ratio equal to 1/2.

Observe that one cannot apply in this case item (c) of Theorem 2.1 to obtain an asymp-
totically dense convergence domain, because the estimate (2.6) cannot be guaranteed: since
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ψ appears as an outer mapping in the composition defined in (1.6), application of Π to the
corresponding ω does not allow to improve the estimate (4.6).

Preconditioners actually used in [5, 6, 9] are different, and much more involved by struc-
ture than what is discussed above, i.e., they are not just compositions of Φ with some trans-
formation ψ. However, in the case of a nonsingular solution (and this is certainly the case in
the cited references), the following general observations are applicable.

Suppose that one has at hand some iterative process generating, for a current iterate
x ∈ Rn, a displacement ξ ∈ Rn such that

x+ ξ − x̄ = o(∥x− x̄∥) ( or O(∥x− x̄∥2)) (4.7)

as x→ x̄. Observe that these properties are guaranteed if the process in question is the NM
for the equation (1.7) with Ψ : Rn → Rn satisfying the appropriate smoothness requirements,
and being such that x̄ is a nonsingular solution of (1.7). Moreover, one can use, say, the
Gauss-Newton method and Ψ : Rn → Rm with m ≥ n, assuming that kerΨ′(x̄) = {0}.

According to (1.3), employing again the Mean-Value Theorem [20, Theorem A.10], from
(4.7) we obtain that under the appropriate smoothness requirements on Φ,

∥ω(x)∥ = ∥Φ(x) + Φ′(x)ξ∥
≤ ∥Φ(x)− Φ(x̄)− Φ′(x)(x− x̄) + Φ′(x)(x+ ξ − x̄)∥
≤ sup

t∈[0, 1]
∥Φ′(tx+ (1− t)x̄)− Φ′(x)∥∥x− x̄∥+ ∥Φ′(x)(x+ ξ − x̄)∥

= o(∥x− x̄∥) ( or O(∥x− x̄∥2)) (4.8)

as x→ x̄. Assuming that x̄ is a nonsingular solution of (1.1), these estimates allow to interpret
the iterative process in question as the pNM. However, this is of course merely a matter of
interpretation: one can apply item (a) of Theorem 2.1, with the resulting conclusions about
superlinear (or quadratic) local convergence of the process in question, but this is given
directly by (4.7), or by local convergence theories of the specific methods applied to (1.7),
yielding (4.7).

The case of a singular solution x̄ of (1.1) is a whole different story, even if it becomes
nonsingular for (1.7) in the sense that kerΨ′(x̄) = {0} (assuming that m ≥ n). In the latter
case, (1.7) is called a defining system for the solution x̄ of (1.1) (and the approach itself
is sometimes called bordering, or unfolding-cut), and there exists quite a rich literature on
this approach to numerical treatment of nonlinear equations with singular solutions; see,
e.g., [16, Section 5], as well as more recent considerations in [4, 25], and references therein.
However, (4.8) does not imply the estimates on the perturbation term needed for the pNM
in this case, and this is only natural since the behavior of the iterative process in question
(superlinear convergence, following from (4.7)) and of the basic Newton method for (1.1)
(linear convergence with the asymptotic common ratio equal to 1/2) is totally different.
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