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ABSTRACT

We derive, from unified principles, local convergence and rate-of-convergence results for the
classical Gauss-Newton method in a variety of settings. These include overdetermined and
underdetermined systems of equations, constrained and unconstrained, possibly with inexact
solution of subproblems, as well as the projected variant in the constrained case. More-
over, by a counter-example we show that contrary to some results claimed in the literature,
the projected Gauss-Newton method in general does not converge superlinearly under any
reasonable assumptions. We then establish its linear rate of convergence.
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1 Introduction

We consider the constrained equation

Φ(u) = 0, u ∈ P, (1.1)

where Φ : Rp → Rq is a given smooth mapping, and P ⊂ Rp is a given nonempty closed
convex set. Constrained equations often arise as reformulations of systems containing com-
plementarity conditions; see, e.g., [18]. Some examples are the first-order optimality systems
for optimization and variational problems, including mathematical programs with comple-
mentarity constraints [13], and generalized Nash equilibrium problems [12]. Some other
applications are discussed in [20, 22].

Without imposing any relations between the number of variables and equations (p and
q) and any assumptions on the structure of the set P , a natural Newton-type method for
solving (1.1) is the constrained Gauss–Newton method. For a current iterate u ∈ P , the next
iterate is u+v, where v is some minimizer of the (squared) residual of the linearized equation
from (1.1) over the set P − u, i.e., v is a solution of the optimization problem

minimize
1

2
∥Φ(u) + Φ′(u)v∥2 subject to u+ v ∈ P. (1.2)

Due to the Frank–Wolfe Theorem [16] (alternative proofs of which can be found in [7, 11]
and in [23, Theorem 2.1]), the subproblem (1.2) with a nonnegative (thus bounded below)
quadratic objective function always has a solution when P is polyhedral, but it need not be
unique. The solution is necessarily unique when

kerΦ′(u) = {0}, (1.3)

as in this case the matrix (Φ′(u))⊤Φ′(u) of the quadratic objective function in (1.2) is positive
definite, and hence, this function is strongly convex. Moreover, in this case the solution exists
even if P is not polyhedral. In the unconstrained case, i.e., when P = Rp, this solution is
explicitly available from setting the gradient of the objective function in (1.2) equal to zero
and resolving the corresponding linear equation. This yields the classical Gauss–Newton
method for overdetermined systems of equations [17, 21, 25], most commonly introduced in
the context of solving nonlinear least-squares problems (i.e., minimizing the squared residual
∥Φ(·)∥2 over Rp).

However, (1.3) may not hold along all the iterations. In fact, it never holds in the case of
underdetermined systems of equations, i.e., when p > q. Then there is no reason to expect
that the subproblem (1.2) is uniquely solvable, and for any convergence rates analysis one has
to complement the iteration by some rule for choosing a specific solution of the subproblem
(1.2), or demonstrate that any solution of (1.2) is acceptable. A natural option is to consider
the minimal-norm solution of (1.2). In the unconstrained case, under reasonable assumptions,
the minimal-norm solution of (1.2) can be found explicitly, as will be recalled in Section 3
below. This yields the classical Gauss–Newton method for undetermined systems of equations
[21].

In the constrained case when P is polyhedral, finding the minimal-norm solution of (1.2)
amounts to solving two quadratic programming (QP) problems. The first computes some
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solution of (1.2), which is a QP in this case. The second QP computes the minimal-norm
point of the solution set of (1.2), which is a polyhedral set and can be explicitly characterized
as explained in [24], once some solution of (1.2) is known.

However, the approach just described requires solving two QPs per iteration, where the
matrix of the objective function of the first QP is positive semidefinite but not positive
definite, while the second QP involves p + 1 extra equality constraints in addition to those
defining P . When computing the metric projection πP (·) onto P is cheap (e.g., when P is
a box), it makes sense to consider instead the projected Gauss–Newton method [1, 22]: for
u ∈ P , it defines the next iterate as πP (u + v(u)), where v(u) is the minimal-norm solution
of the unconstrained counterpart of (1.2), with P replaced by Rp.

The main purpose of this paper is to derive local convergence properties of the Gauss–
Newton method and its variants in a variety of settings (unconstrained, constrained, overdert-
ermined, underdetermined, inexact) from a unified perspective (in particular, from the ab-
stract framework developed in [15]). Apart from giving a general view and insights, this also
leads to some new results for the constrained case; specifically, for the constrained Gauss-
Newton method in the case when the solution in question is isolated, and for the projected
Gauss-Newton method in the cases of square or underdetermined systems.

The rest of the paper is organized as follows. In Section 2 we provide the auxiliary tools
needed for our analysis. One is the general local convergence framework from [15]. Section 3
deals with local superlinear convergence of the Gauss–Newton method for the unconstrained
equations, mainly addressing the case of square and underdetermined systems. The case of
possibly overdetermined or undetermined systems is treated in Section 4 for the more general
constrained setting, and for the constrained Gauss–Newton method. In particular, apart from
results concerned with the variant of the method employing the minimal-norm solutions,
we provide assumptions ensuring that any solution of subproblem (1.2) yields superlinear
local convergence. Finally, in Section 5, by a counter-example we demonstrate that under
reasonable assumptions, one cannot expect superlinear convergence of the projected Gauss–
Newton method. This is in contrast to some previous results that do claim superlinear
convergence. Once this issue is settled, we establish local R-linear convergence for the square
or underdetermined constrained systems of equations.

Our notation is quite standard, but some comments are in order, to avoid any misun-
derstandings. For a convex P , by riP we denote its relative interior, by TP (u) the tangent
cone to P at u ∈ P , i.e., the closure of the cone {v ∈ Rp | ∃ t > 0 : u + tv ∈ P}
of feasible directions to P at ū, and by NP (u) the normal cone to P at u ∈ Rp, i.e.,
NP (u) = {v ∈ Rp | ⟨v, ũ − u⟩ ≤ 0 ∀ ũ ∈ P} if u ∈ P , and NP (u) = ∅ otherwise, where
⟨u, v⟩ is the Euclidean inner product of u, v ∈ Rp. Let ∥ · ∥ stand for the Euclidean norm
throughout. For P closed and convex, πP (u) is the unique Euclidean projection of u onto P .
For a set U ⊂ Rp and a point u ∈ Rp, let dist(u, U) = infv∈U ∥v − u∥ stand for the distance
from u to U , and let B(u, δ) = {v ∈ Rp | ∥v − u∥ ≤ δ} be the (closed) ball of radius δ ≥ 0
centered at u. For a sequence {uk} ⊂ Rp convergent to some ū ∈ Rp, we say that the rate of
convergence is R-linear if there exist c > 0 and ρ ∈ (0, 1) such that ∥uk − ū∥ ≤ cρk for all
k. Furthermore, we say that convergence is of Q-order θ > 1 if there exists c > 0 such that
∥uk+1 − ū∥ ≤ c∥uk − ū∥θ for all k large enough. Such rate of convergence is superlinear, and
it is at least quadratic if θ ≥ 2.
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2 Preliminaries

Our analysis will make use of the abstract local convergence framework, recently proposed
in [15]. Consider a scalar constrained equation

φ(u) = 0, u ∈ P, (2.1)

with φ : Rp → R+ and P ⊂ Rp for now assumed just closed. Let U stand for the solution set
of (2.1).

Observe that the constrained equation (1.1) can be equivalently stated in the form (2.1)
by taking, say,

φ(u) = ∥Φ(u)∥. (2.2)

We consider an abstract iterative process updating the current iterate u ∈ P to Ψ(u),
where Ψ : P → P is a given mapping. The following is a simplified version of [15, Theo-
rem 2.1].

Theorem 2.1 Let φ : Rp → R+ be a continuous function, P ⊂ Rp be a closed set, ū ∈ U .
Assume that

φ(u) = O(dist(u, U)) as u ∈ P tends to ū. (2.3)

Moreover, let Ψ : P → P be a mapping such that

Ψ(u)− u = O(φ(u)) as u ∈ P tends to ū, (2.4)

and, with some θ > 1,

φ(Ψ(u)) = O((φ(u))θ) as u ∈ P tends to ū. (2.5)

Then, for every δ > 0 small enough, and every u0 ∈ P close enough to ū, the sequence
{uk} defined by uk+1 = Ψ(uk) for all k is contained in B(ū, δ) and converges to some u∗ ∈ U ,
with the rate of convergence being superlinear with the Q-order θ.

From now on, let U stand for the solution set of (1.1). Then the assumption (2.3) evidently
holds for φ defined in (2.2) provided Φ is Lipschitz-continuous on P near ū, and this will be
the case under the assumptions of all the results that follow.

Observe further that any u ∈ U is a (global) solution of the optimization problem

minimize
1

2
∥Φ(u)∥2 subject to u ∈ P,

and if Φ is differentiable at u, the objective function of this problem is also differentiable at
u, with the gradient being (Φ′(u))⊤Φ(u). Therefore, any such u must satisfy the first-order
necessary optimality condition given by the variational inequality (VI)

u ∈ P, ⟨(Φ′(u))⊤Φ(u), ũ− u⟩ ≥ 0 ∀ ũ ∈ P,

which in the sequel we shall use in its equivalent form of

(Φ′(u))⊤Φ(u) +NP (u) ∋ 0. (2.6)

3



The analysis in Section 4 will rely upon two key assumptions. The first is semistability
of ū as a solution of the VI (2.6), as defined in [5] (see also [17, Definition 1.29]). The second
assumption is an adaptation of hemistability, also defined in [5] (see also [17, Definition 3.1]).
The relations of those assumptions to some others, including less abstract ones, and those
typically used in the context of unconstrained Gauss–Newton methods, will be explored in
due course.

Definition 2.1 A solution ū of the VI (2.6) is semistable if for any ω ∈ Rp, and for any
solution u of the perturbed VI

(Φ′(u))⊤Φ(u) +NP (u) ∋ ω, (2.7)

with this solution u close enough to ū, it holds that

u− ū = O(∥ω∥) as ω → 0. (2.8)

Theorem 2.2 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a convex set. Assume
that Φ is differentiable near a solution ū of (1.1), and its derivative is continuous at ū with
respect to P (that is, Φ′(u) → Φ′(ū) as u ∈ P tends to ū).

Then the following three properties are equivalent:

(a) The point ū is semistable as a solution of the VI (2.6).

(b) The constrained error bound holds:

u− ū = O(∥Φ(u)∥) as u ∈ P tends to ū. (2.9)

(c) It holds that
kerΦ′(ū) ∩ TP (ū) = {0}. (2.10)

Proof. We first show that (a) implies (b). To that end, let ū be semistable. Take any u ∈ P

and set ω = (Φ′(u))⊤Φ(u). Then u is a solution of (2.7), and under the stated smoothness
assumptions it holds that ω → 0 as u→ ū. Therefore, by (2.8),

u− ū = O(∥ω∥) = O(∥(Φ′(u))⊤Φ(u)∥) = O(∥Φ(u)∥) as u ∈ P tends to ū,

i.e., (2.9) holds.
We proceed with showing that (b) implies (c). Let (2.9) be satisfied, and suppose that

(2.10) is violated, that is, there exists v ∈ kerΦ′(ū) ∩ TP (ū), ∥v∥ = 1. As v ∈ TP (ū),
there exists a sequence {uk} ⊂ P \ {ū} convergent to ū such that the sequence {vk} with
vk = (uk − ū)/∥uk − ū∥ converges to v. Therefore, as Φ′(ū)vk → Φ′(ū)v = 0 as k → ∞, we
obtain that

Φ(uk) = Φ(ū) + Φ′(ū)(uk − ū) + o(∥uk − ū∥)
= ∥uk − ū∥Φ′(ū)vk + o(∥uk − ū∥)
= o(∥uk − ū∥) as k → ∞.
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Hence, by (2.9),
uk − ū = o(∥uk − ū∥) as k → ∞,

which is a contradiction.
Finally, we show that (c) implies (a). Let (2.10) be satisfied, and suppose ū is not

semistable, that is, there exist sequences {uk} ⊂ P \ {ū} converging to ū, and {ωk} ⊂ Rp,
such that for every k, the point uk is a solution of (2.7) with ω = ωk, and

ωk = o(∥uk − ū∥) as k → ∞.

Then, substituting Φ(uk) in (2.7) again by its expansion Φ′(ū)(uk − ū) + o(∥uk − ū∥), we
obtain that

(Φ′(uk))⊤Φ′(ū)(uk − ū) +NP (u
k) ∋ o(∥uk − ū∥) as k → ∞.

Dividing both sides of this inclusion by ∥uk − ū∥, defining vk = (uk − ū)/∥uk − ū∥, and
recalling that NP (u

k) is a cone (and hence, dividing by a positive number does not change
it), we obtain that for each k, there exists ηk ∈ NP (u

k) such that

(Φ′(uk))⊤Φ′(ū)vk + ηk → 0 as k → ∞.

Multiplying both sides by vk, we then obtain that

⟨Φ′(ū)vk, Φ′(uk)vk⟩+ ⟨ηk, uk − ū⟩
∥uk − ū∥

→ 0 as k → ∞.

Since ū ∈ P and ηk ∈ NP (u
k), the second term in the left-hand side of the relation above

is nonnegative. Assuming without loss of generality that {vk} converges to some v ∈ Rp,
∥v∥ = 1, and passing onto the limit as k → ∞, we then obtain that ∥Φ′(ū)v∥2 = 0, i.e.,
v ∈ kerΦ′(ū). At the same time, the definition of vk implies that v ∈ TP (ū). Since v ̸= 0,
this yields a contradiction with (2.10).

We mention that assuming twice differentiability of Φ at ū, the fact that (a) implies (c),
as well as the converse implication under the additional assumption that P is a polyhedral
set, can also be obtained from [5, Theorem 3.1, Remark 3.2].

Since semistability implies the constrained error bound (2.9), it follows, in particular,
that a semistable solution is an isolated point in U . We note also that semistability does
not assert the existence of solutions of the perturbed VIs (2.7), or solvability of the iteration
subproblems (1.2). Existence of solutions of (1.2) is part of hemistability, defined next.

Definition 2.2 Assuming that Φ is differentiable near a solution ū of (1.1), we say that ū is
hemistable if for any u ∈ P close enough to ū, the subproblem (1.2) has a solution v(u) such
that v(u) → 0 as u→ ū.

The first-order necessary and sufficient optimality condition for the convex problem (1.2)
has the form

(Φ′(u))⊤(Φ(u) + Φ′(u)v) +NP (u+ v) ∋ 0, (2.11)
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so one can think of v(u) as a solution of (2.11). Note that this is not exactly hemistability
for the VI (2.11) as defined in [5], as the latter would require involving second derivatives of
Φ, the existence of which we never assume in this paper. Rather, the definition is adapted to
the structure of the Gauss–Newton iteration subproblem (1.2), or more precisely, specifically
to that of the VI (2.11).

3 The unconstrained case

Within this short section P = Rp. The case of square or overdetermined systems (when p ≤ q)
is the most classical. It is considered, e.g., in [8, Corollary 10.2.2], [25, Exercise 10.2.10], [21,
Theorem 2.4.1] and references therein. The standard regularity assumption for convergence
is

kerΦ′(ū) = {0}. (3.1)

We shall cover these results in Section 4, in the more general constrained case.
The rest of this section is concerned with square or underdetermined systems, i.e., those

with p ≥ q. The solutions of (1.2) with P = Rp are characterized by the gradient of the ob-
jective function in (1.2) being equal to zero, which yields the linear equation (Φ′(u))⊤(Φ(u)+
Φ′(u)v) = 0. Then computing the minimal-norm solution of (1.2) is the following QP:

minimize
1

2
∥v∥2 subject to (Φ′(u))⊤(Φ(u) + Φ′(u)v) = 0. (3.2)

If
rankΦ′(u) = q (3.3)

(and hence ker(Φ′(u))⊤ = {0}, so that the matrix Φ′(u)(Φ′(u))⊤ is nonsingular), the con-
straint in (3.2) reduces to Φ(u) + Φ′(u)v = 0. Then the subproblem (3.2) further simplifies
to

minimize
1

2
∥v∥2 subject to Φ(u) + Φ′(u)v = 0. (3.4)

Moreover, the unique solution of (3.4) can be explicitly obtained from its Lagrange optimality
conditions, resulting in

v(u) = −(Φ′(u))⊤(Φ′(u)(Φ′(u))⊤)−1Φ(u). (3.5)

Assume that ū ∈ U satisfies the regularity condition

rankΦ′(ū) = q. (3.6)

Assume further that Φ is differentiable near ū, and with some τ > 0, it holds that

Φ′(u1)− Φ′(u2) = O(∥u1 − u2∥τ ) as u1, u2 → ū, (3.7)

i.e., Φ′ is Hölder-continuous near ū with the exponent τ . Then (3.3) holds for all u ∈ Rp close
enough to ū, and since the inverse matrices to those close enough to a nonsingular square
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matrix are uniformly bounded, we conclude that v(u) in (3.5) is well-defined for all u ∈ Rp

close enough to ū, and moreover, for φ defined in (2.2), we have that

v(u) = O(∥Φ(u)∥) as u→ ū. (3.8)

This implies that (2.4) is satisfied as well, if we set Ψ(u) = u+ v(u).
Furthermore, by the constraint in (3.4) and the Mean-Value Theorem (e.g., [17, Theo-

rem A.10]), employing (3.7) we derive that

∥Φ(u+ v(u))∥ = ∥Φ(u+ v(u))− Φ(u)− Φ′(u)v(u)∥
≤ sup

t∈[0, 1]
∥Φ′(u+ tv(u))− Φ′(u)∥∥v(u)∥

= O(∥v(u)∥1+τ )

= O(∥Φ(u)∥1+τ ) as u→ ū, (3.9)

where the last estimate is by (3.8). According to (2.2), this yields (2.5) with θ = 1 +
τ , and hence, Theorem 2.1 is applicable. This proves the following results, covering [21,
Theorem 2.4.2].

Proposition 3.1 Let Φ : Rp → Rq be differentiable near a solution ū of the equation

Φ(u) = 0, (3.10)

with the derivative of Φ satisfying (3.7) with some τ > 0. Let the regularity condition (3.6)
be satisfied.

Then, for every δ > 0 small enough, and every u0 ∈ Rp close enough to ū, there exists the
unique sequence {uk} such that for every k, the displacement uk+1 − uk equals v(uk) defined
by (3.5) with u = uk, which is the minimal-norm solution of the problem

minimize
1

2
∥Φ(u) + Φ′(u)v∥2, u ∈ Rp, (3.11)

(that is, of (1.2) with P = Rp), this sequence is contained in B(ū, δ) and converges to some
solution u∗ of (3.10), with the rate of convergence being superlinear with the Q-order 1+τ . In
particular, if the derivative of Φ is Lipschitz-continuous near ū, then the rate of convergence
is quadratic.

The last claim follows by observing that under the Lipschitz-continuity of Φ′ near ū, (3.7)
automatically holds with τ = 1.

4 Constrained Gauss–Newton method

The analysis in this section starts with a local convergence result under semistability and
hemistability of the solution in question.
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Theorem 4.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a closed convex set.
Assume that Φ is differentiable near a solution ū of (1.1), and

Φ′(u1)− Φ′(u2) = O(∥u1 − u2∥τ ) as u1, u2 ∈ P tend to ū (4.1)

with some τ > 0 (i.e., Φ′ is Hölder-continuous on P near ū with the exponent τ). Let ū be
semistable and hemistable.

Then, for every u0 ∈ P close enough to ū, there exists the unique sequence {uk} such that
for every k, the displacement uk+1 − uk is the minimal-norm solution of the problem (1.2)
with u = uk, this sequence converges to ū, and the rate of convergence is superlinear with the
Q-order 1+ τ . In particular, if the derivative of Φ is Lipschitz-continuous on P near ū, then
the rate of convergence is quadratic.

Proof. By the hemistability of ū, for any u ∈ P close enough to ū, the subproblem (1.2) has

a solution tending to 0 as u→ ū. Hence, the solution set of this convex problem is nonempty,
closed and convex. Therefore, it has the unique minimal-norm solution v(u), and v(u) → 0
as u → ū. As in Section 3, we aim to apply Theorem 2.1 with φ defined in (2.2), and with
Ψ(u) = u+ v(u). To begin with, from the differentiability of Φ at ū, it evidently follows that
the assumption (2.3) in Theorem 2.1 is satisfied in the form

φ(u) = O(∥u− ū∥) as u→ ū.

Furthermore, u+ v(u) is a solution of the VI (2.7) with

ω = (Φ′(u+ v(u)))⊤Φ(u+ v(u))− (Φ′(u))⊤(Φ(u) + Φ′(u)v(u))

=
(
(Φ′(u+ v(u)))⊤ − (Φ′(u))⊤

)
Φ(u)

+
(
(Φ′(u+ v(u)))⊤ − (Φ′(u))⊤

)
(Φ(u+ v(u))− Φ(u))

+(Φ′(u))⊤(Φ(u+ v(u))− Φ(u)− Φ′(u)v(u)). (4.2)

Taking into account that u ∈ P and u + v(u) ∈ P , and employing again the Mean-Value
Theorem and (4.1), we then obtain the estimate

ω = O(∥v(u)∥τ∥Φ(u)∥) +O(∥v(u)∥1+τ ) as u ∈ P tends to ū. (4.3)

In particular, ω → 0 as u→ ū, and by the semistability of ū it holds that

u+ v(u)− ū = O(∥v(u)∥τ∥Φ(u)∥) +O(∥v(u)∥1+τ ) as u ∈ P tends to ū.

Furthermore, since v(u) → 0 as u→ ū, it holds that

u+ v(u)− ū = o(∥Φ(u)−Φ(ū)∥)+ o(∥v(u)∥) = o(∥u− ū∥)+ o(∥v(u)∥) as u ∈ P tends to ū.

Employing now the error bound (2.9) from Theorem 2.2, this yields the estimate

v(u) = O(∥u− ū∥) = O(∥Φ(u)∥) as u ∈ P tends to ū. (4.4)
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This justifies (2.4).
Finally, by the differentiability of Φ at ū, and by (4.3) and (4.4),

Φ(u+v(u)) = Φ(u+v(u))−Φ(ū) = O(∥u+v(u)−ū∥) = O(∥Φ(u)∥1+τ ) as u ∈ P tends to ū,

justifying (2.5) with θ = 1 + τ .
The needed conclusions now follow by applying Theorem 2.1.

We next discuss some verifiable sufficient conditions ensuring semistability and hemista-
bility of ū. Assume first that ū ∈ U satisfies the regularity condition (3.1) (or equivalently,
rankΦ′(ū) = p), which is of course only possible when p ≤ q. What follows extends the
classical results on local convergence of the Gauss–Newton method for square and overdeter-
mined systems of equations (see [17, 21, 25] and references therein), from the unconstrained
to the constrained case. In this case, there is no need to refer to the minimal-norm solution
of (1.2), as the solution of this problem is unique, at least for u ∈ P near ū. Furthermore,
since (3.1) evidently implies (2.10), from Theorem 2.2 we have that semistability of ū holds
under (3.1). Hemistability is addressed in the next lemma.

Lemma 4.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a closed convex set.
Assume that Φ is differentiable near a solution ū of (1.1), and its derivative is continuous at
ū with respect to P . Let the regularity condition (3.1) be satisfied.

Then ū is hemistable. More precisely, for every u ∈ P close enough to ū, the problem
(1.2) has the unique solution v(u), and v(u) → 0 as u→ ū.

Proof. As Φ is differentiable on P near ū, and its derivative is continuous at ū with respect

to P , from (3.1) it also follows that (1.3) holds for all u ∈ P close enough to ū, and hence, for
such u, the subproblem (1.2) has the unique solution v(u). It remains to show that v(u) → 0
as u → ū. But this readily follows by noting that v = 0 is feasible in problem (1.2) for any
u ∈ P , and hence, ∥Φ(u) + Φ′(u)v(u)∥ ≤ ∥Φ(u)∥. Since Φ(u) → 0 as u → ū, (3.1) implies
that this is only possible when v(u) → 0 as u→ ū.

Combining Theorem 4.1 with Theorem 2.2 and Lemma 4.1 yields the following result.

Corollary 4.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a closed convex set.
Assume that Φ is differentiable near a solution ū of (1.1), and (4.1) holds with some τ > 0.
Let the regularity condition (3.1) be satisfied.

Then, for every u0 ∈ P close enough to ū, there exists the unique sequence {uk} such that
for every k, the displacement uk+1 − uk is the solution of (1.2) with u = uk, this sequence
converges to ū, and the rate of convergence is superlinear with the Q-order 1+τ . In particular,
if the derivative of Φ is Lipschitz-continuous on P near ū, then the rate of convergence is
quadratic.

In the discussion that follows, we need some more (standard) notation. Given a set
S ⊂ Rp, we denote by spanS the linear subspace spanned by S, by aff S the affine hull of S,

9



and by intS the interior of S. For an affine S, let LinP stand for a linear subspace parallel
to S.

One seemingly natural possibility to relax the regularity assumption (3.1) in Corollary 4.1,
while preserving the property that the solutions of subproblems are unique, would be to
involve strong metric regularity of ū as a solution of the VI (2.6). According to [9, Section 3.G],
this property means that for any ω ∈ Rp close enough to 0, the perturbed VI (2.7) has
near ū the unique solution u(ω), and u(·) is Lipschitz-continuous. This evidently implies
semistability of ū.

Furthermore, considering now u ∈ P as a parameter, and setting ũ = u+ v, the VI (2.11)
with respect to v = ũ − u can be treated as a parametric perturbation of the VI (2.6) with
u substituted by ũ. Assuming that the derivative of Φ is Lipschitz-continuous near ū, and
employing again the Mean-Value Theorem, one can see by [9, Theorem 3G.4] (which is a
variant of Robinson’s implicit function theorem [26]) that for u ∈ P close enough to ū, (2.11)
has near 0 the unique solution v(u), and v(·) is Lipschitz-continuous. In particular, this gives
the hemistability of ū, with subproblems uniquely solvable for u ∈ P near ū.

Observe also that under the stated smoothness assumptions, from [9, Theorem 3G.3] it
follows that strong metric regularity of ū as a solution of (2.6) is equivalent to its strong
metric regularity as a solution of the VI

(Φ′(ū))⊤Φ′(ū)(u− ū) +NP (u) ∋ 0 (4.5)

with an affine base mapping, while the latter is the same as strong regularity as defined in
[26].

However, it turns out that if intP ̸= ∅, condition (3.1) is necessary for strong regularity
of a solution ū of (4.5). In order to show this, consider the general VI with an affine base
mapping

a+Au+NP (u) ∋ 0, (4.6)

and assume that a+Aū = 0 for a given ū ∈ P , implying, in particular, that ū is a solution of
(4.6). Observe that this setting covers (4.5) with a = −(Φ′(ū))⊤Φ′(ū)ū, A = (Φ′(ū))⊤Φ′(ū).
Then the condition

kerA ∩ Lin aff P = {0} (4.7)

is necessary for strong regularity of the solution ū of (4.6).
Indeed, suppose that there exists v ∈ (kerA ∩ Lin aff P ) \ {0}. By the line segment

principle [27, Theorem 6.1], one can take ũ ∈ riP arbitrarily close to ū, and then ω = a+Aũ
can be made arbitrarily close to 0. For a fixed such ũ, and for any real t close enough to zero,
it holds that ũ+ tv ∈ P , and hence, NP (ũ+ tv) is nonempty (contains 0 at least). Therefore,

a+A(ũ+ tv) +NP (ũ+ tv) ∋ a+Aũ = ω,

that is, ũ+ tv is a solution of the perturbed VI

a+Au+NP (u) ∋ ω.

Hence, for ω arbitrarily close to 0, this VI has more than one solution arbitrarily close to ū.
Thus, strong regularity of ū as a solution of (4.6) does not hold.
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If intP ̸= ∅, it holds that aff P = Rp, and (4.7) takes the form kerA = {0}. In our case
of interest when A = (Φ′(ū))⊤Φ′(ū), this is equivalent to (3.1).

We complete this discussion by mentioning that by the critical (super)face criterion in
[9, Theorem 4H.9] (coming from [10, Theorem 2]), for a polyhedral P , making use of the
equality

Lin aff P = spanTP (ū) ∀ ū ∈ P,

it can be derived that (4.7) is not only necessary but also sufficient for strong regularity of
the solution ū of (4.6), satisfying a+Aū = 0.

We next demonstrate that in the case of P polyhedral, the weaker than (3.1) condition
(2.10) still implies hemistability (as well as semistability, according to Theorem 2.2). We
emphasize that (2.10) may hold for any p and q. In this case, solutions of (1.2) need not
be unique, even for u ∈ P near ū. But as will be demonstrated below, there is still no
need to refer to the minimal-norm solutions: taking any solution results in local superlinear
convergence.

Lemma 4.2 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a polyhedral set. Assume
that Φ is differentiable near a solution ū of (1.1), and its derivative is continuous on P near
ū. Let condition (2.10) be satisfied.

Then ū is hemistable. More precisely, the solution set S(u) of the problem (1.2) is
nonempty for all u ∈ P , and it holds that

sup
v∈S(u)

∥v∥ → 0 as u ∈ P tends to ū. (4.8)

Proof. In the case of polyhedral P , the set S(u) is nonempty for all u ∈ P by the

Frank–Wolfe Theorem. Moreover, the condition (2.10) evidently implies that S(ū) = {0},
and (4.8) will follow, e.g., by applying [6, Proposition 4.4] to the problem (1.2) with u ∈ P
regarded as a parameter, once the assumptions therein are verified. To that end, define the
function f : P × Rp → R+, f(u, v) = ∥Φ(u) + Φ′(u)v∥, and the multifunction F : P → 2R

p
,

F (u) = P − u. Under the stated smoothness assumptions, f is continuous on (P ∩O)× Rp,
where O is some neighborhood of ū, yielding assumption (i) in [6, Proposition 4.4]. Further,
from closedness of P it follows that F is closed (i.e., its graph is closed), yielding assumption
(ii) in [6, Proposition 4.4]. Furthermore, F (u) ∋ 0 for all u ∈ P , which verifies assumption
(iv). The remaining assumption (iii) in [6, Proposition 4.4] is the inf-compactness condition
that in the current setting reduces to saying that there exists α > 0 such that the level sets

Lα(u) = {v ∈ P − u | ∥Φ(u) + Φ′(u)v∥ ≤ α}

are nonempty and uniformly bounded for all u ∈ P near ū. Fix any α > 0. Then, by the
continuity of Φ at ū, for any u ∈ P close enough to ū, the set Lα(u) contains 0, and in
particular, it is nonempty. Suppose there exist sequences {uk} ⊂ P and {vk} ⊂ Rp \{0} such
that uk ∈ Lα(u

k) (i.e., uk + vk ∈ P and ∥Φ(uk) + Φ′(uk)vk∥ ≤ α) for all k, and ∥vk∥ → ∞
as k → ∞. Without loss of generality, we may assume that {vk/∥vk∥} converges to some
v ∈ Rp \ {0}. For all k, by the convexity of P , it holds that

uk + t
vk

∥vk∥
∈ P ∀ t ∈ [0, ∥vk∥],

11
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(a) u = (0.5, 0.5)
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(b) u = (0.2, 0.2)

Figure 1: Example 4.1.

and ∥∥∥∥Φ(uk)∥vk∥
+Φ′(uk)

vk

∥vk∥

∥∥∥∥ ≤ α

∥vk∥
.

Passing in the last two relations onto the limit as k → ∞, since P is closed, we obtain that

ū+ tv ∈ P ∀ t ≥ 0, Φ′(ū)v = 0.

In particular, 0 ̸= v ∈ kerΦ′(ū) ∩ TP (ū), in violation of (2.10).

From Theorem 2.2 and Lemma 4.2, by evident modifications of the proof of Theorem 4.1
consisting of making use of an arbitrary solution of the problem (1.2) instead of the minimal-
norm solution, we obtain the following result.

Corollary 4.2 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a polyhedral set.
Assume that Φ is differentiable near a solution ū of (1.1), and (4.1) holds with some τ > 0.
Let the condition (2.10) be satisfied.

Then, for every u0 ∈ P close enough to ū, there exists a sequence {uk} such that for
every k, the displacement uk+1−uk is a solution of (1.2) with u = uk, and any such sequence
converges to ū, and the rate of convergence is superlinear with the Q-order 1+τ . In particular,
if the derivative of Φ is Lipschitz-continuous on P near ū, then the rate of convergence is
quadratic.

The next example demonstrates that under (2.10), the solution set S(u) of the subproblem
(1.2) may be not a singleton for u ∈ P arbitrarily close to ū, but (4.8) holds, and any choice
of v ∈ S(u) results in superlinear convergence.

Example 4.1 Let p = 2, q = 1, P = R2
+, Φ(u) = u1 + u2 + χu21, where χ ≥ 0 is a scalar

parameter. Then U = {ū}, with ū = 0, and kerΦ′(ū) = {v ∈ R2 | v1 + v2 = 0}, while
TP (ū) = P = R2, and condition (2.10) is satisfied.
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One can directly verify that for every u ∈ P , the set of unconstrained minimizers of
the objective function of the problem (1.2) is the straight line spanned by the line segment
connecting the points (−u1, −u2+χu21) and (−(u1+χu

2
1)/(1+2χu1), −u2) on the boundary

of the feasible set P − u = {v ∈ R2 | v1 ≥ −u1, v2 ≥ −u2} of that problem. In particular,
the solution set S(u) of (1.2) is precisely this line segment, and it shrinks to 0 as u→ ū, but
for u ̸= 0, it is not a singleton. It can be easily seen that taking any v ∈ S(u) yields the next
iterate satisfying u+ v = O(∥u− ū∥2) as u ∈ P tends to ū.

Figure 1 shows the feasible set of the problem (1.2), the straight line corresponding to the
set of unconstrained minimizers of the objective function of that problem, and the set S(u),
for χ = 10, and for two points u ∈ P : for u = (0.5, 0.5) in Figure 1a, and for u = (0.2, 0.2)
in Figure 1b.

We next characterize the level of inexactness that can be allowed when solving the sub-
problems (1.2), for the local convergence and rate of convergence properties of the Gauss–
Newton method established in Theorem 4.1 to be preserved. Let the process of solving the
subproblem (1.2) be terminated once (2.11) is satisfied approximately, in the following sense:

(Φ′(u))⊤(Φ(u) + Φ′(u)v) +NP (u+ v) ∋ r, (4.9)

where r ∈ Rp is smaller by norm than some given tolerance. As is natural in inexact Newton-
type methods, inexactness must be related to the residual of the equation in (1.1); in our
case, as follows:

r = O(∥Φ(u)∥1+τ ) as u ∈ P tends to ū. (4.10)

Observe that (4.9) is a necessary and sufficient optimality condition for the following (tilt)
perturbation of the subproblem (1.2):

minimize
1

2
∥Φ(u) + Φ′(u)v∥2 − ⟨r, v⟩ subject to u+ v ∈ P. (4.11)

One can now repeat almost literally the proof of Theorem 4.1, with the following modi-
fication: ω defined in (4.2) should be substituted by ω + r. Then, employing (4.10), for this
new ω we have the estimate

ω = O(∥v(u)∥τ∥Φ(u)∥) +O(∥v(u)∥1+τ ) +O(∥r∥) as u ∈ P tends to ū.

This yields the following result.

Theorem 4.2 Under the assumptions of Theorem 4.1, let the function ψ : P → R+ satisfy
ψ(u) = O(∥Φ(u)∥1+τ ) as u ∈ P tends to ū.

Then, for every u0 ∈ P close enough to ū, there exists a sequence {uk} such that for
every k, the displacement uk+1 − uk is the minimal-norm solution of the problem (4.11) with
u = uk, with some r ∈ Rp satisfying ∥r∥ ≤ ψ(uk), and any such sequence converges to ū, and
the rate of convergence is superlinear with the Q-order 1 + τ . In particular, if the derivative
of Φ is Lipschitz-continuous on P near ū, then the rate of convergence is quadratic.
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Figure 2: The iterates of the projected Gauss–Newton method in Example 5.1.

The corresponding extensions of Corollaries 4.1 and 4.2 to the case of inexact solutions
of subproblems are straightforward.

To end this section, we mention that under appropriate assumptions, it must be possible
to extend its material to the piecewise smooth case, along the lines of the analysis in [19] for
the Levenberg–Marquardt method.

5 Projected Gauss–Newton method

Local convergence analysis of the constrained Gauss–Newton method in Section 4 concerns
the case when the solution ū in question is isolated. In this section, we deal with local con-
vergence of the projected Gauss–Newton method, and our assumptions allow for nonisolated
solutions. Specifically, we shall make use of the regularity condition (3.6) and the constrained
error bound

dist(u, U) = O(∥Φ(u)∥) as u ∈ P tends to ū. (5.1)

For the current iterate u ∈ P , let now v(u) be the solution of (3.2) (if it exists, i.e., if this
subproblem is feasible), and let the next iterate be defined as πP (u+ v(u)).

The example below demonstrates that under the assumptions (3.6) and (5.1), and for very
simple constraints (P in the example is a half-space), the projected Gauss–Newton method
may not converge superlinearly (but only linearly). This contradicts the claims of superlinear
convergence in [22] and in [1, Theorem 4.1].

Example 5.1 Let p = 2, q = 1, P = {u ∈ R2 | u2 ≤ 0}, Φ(u) = χu1−u2, where χ is a scalar
parameter. Then U = {(t, χt) | χt ≤ 0}, and the regularity condition (3.6) holds at every
ū ∈ U . Moreover, the constrained error bound (5.1) holds as well.

For every u ∈ R2, the unconstrained Gauss–Newton displacement is correctly defined by
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(3.5):

v(u) =
χu1 − u2
1 + χ2

(−χ, 1),

and hence,

u+ v(u) =
1

1 + χ2
(u1 + χu2)(1, χ).

If χ(u1 + χu2) ≥ 0, then

πP (u+ v(u)) =
1

1 + χ2
(u1 + χu2, 0).

Therefore, for the subsequent iterates of the projected Gauss–Newton method, it holds that
u2 = 0, and

πP (u+ v(u)) =
1

1 + χ2
u.

If χ ̸= 0, this yields linear convergence to ū = 0, with the common ratio ρ = 1/(1+χ2). This
behavior is illustrated in Figure 2 for two values of χ.

Observe that ρ → 1 as χ → 0, thus making the linear convergence arbitrarily slow.
At the same time, ρ → 0 as χ → ∞, thus making the linear convergence arbitrarily fast.
This dependence of ρ on χ agrees with the theory developed below, because the constant
in O(∥Φ(u)∥) in the right-hand side of the constrained error bound (5.1), employed in this
analysis, is no less than 1/|χ|.

We mention, in the passing, that the same example also demonstrates linear convergence
of the projected Levenberg–Marquardt method [14], in which the subproblem (3.2) is replaced
by its regularized version

minimize
1

2
∥Φ(u) + Φ′(u)v∥2 + 1

2
σ(u)∥v∥2, u ∈ Rp,

where σ(u) ≥ 0 is a regularization parameter. Indeed, at u ∈ R2 such that σ(u) > 0, the
displacement defined by this subproblem is

v(u) =
χu1 − u2

1 + χ2 + σ(u)
(−χ, 1),

and hence,

u+ v(u) =
1

1 + χ2 + σ(u)
((1 + σ(u))u1 + χu2, χu1 + (χ2 + σ(u))u2).

If χu1 + (χ2 + σ(u))u2 ≥ 0, then

πP (u+ v(u)) =
1

1 + χ2 + σ(u)
((1 + σ(u))u1 + χu2, 0).

Therefore, for the subsequent iterates of the projected Levenberg–Marquardt method, it holds
that u2 = 0, and then

πP (u+ v(u)) =
1 + σ(u)

1 + χ2 + σ(u)
u,
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yielding linear convergence to ū = 0 if χ ̸= 0, with the asymptotic common ratio ρ =
1/(1 + χ2), assuming only that σ(u) > 0 for u ∈ P \ U , and σ(u) → 0 as u→ ū. This agrees
with the local convergence results in [3, 4].

Having settled the issue of the absence of superlinear convergence, we proceed with es-
tablishing the linear rate.

Lemma 5.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a closed convex set.
Assume that Φ is differentiable near ū ∈ U , and its derivative is continuous at ū with respect
to P . Let the regularity condition (3.6) and the constrained error bound (5.1) be satisfied.

Then there exist δ > 0 and ρ ∈ (0, 1) such that

dist(πP (u+ v(u), U) ≤ ρ dist(u, U) ∀u ∈ P ∩B(ū, δ), (5.2)

where v(u) is well-defined by (3.5).

Proof. Under the stated smoothness assumptions, from (3.6) it follows that if δ > 0 is

taken small enough, then v(u) is well-defined by (3.5) for all u ∈ P ∩B(ū, δ), and there exist
γ > 0 and Γ > 0 such that

γ∥Φ(u)∥ ≤ ∥v(u)∥ ≤ Γ∥Φ(u)∥ ∀u ∈ P ∩B(ū, δ).

Employing now (5.1), reducing δ > 0 and γ > 0 if necessary, and enlarging Γ > 0 if necessary,
we obtain that

γ dist(u, U) ≤ ∥v(u)∥ ≤ Γdist(u, U) ∀u ∈ P ∩B(ū, δ). (5.3)

Let û ∈ U be some projection of u ∈ Rp on U , that is,

∥u− û∥ = dist(u, U). (5.4)

Since πP (·) is nonexpansive, and since û ∈ P , for u ∈ P ∩B(ū, δ) we have that

∥πP (u+ v(u))− û∥ = ∥πP (u+ v(u))− πP (û)∥ ≤ ∥u+ v(u)− û∥.

To establish the needed property (5.2), it is sufficient to show that there exist ρ ∈ (0, 1) such
that

∥u+ v(u)− û∥ ≤ ρ∥u− û∥ ∀u ∈ P ∩B(ū, δ), (5.5)

provided δ > 0 is taken small enough. To do this, some extra preparations are needed.
Set

v̄(u) = −(Φ′(ū))⊤(Φ′(u)(Φ′(u))⊤)−1Φ(u) ∈ im(Φ′(ū))⊤ = (kerΦ′(u))⊥.

According to (3.5), it holds that

v(u) = v̄(u) +O(∥Φ′(u)− Φ′(ū)∥∥Φ(u)∥) = v̄(u) + o(∥u− û∥) as u ∈ P tends to ū. (5.6)
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On the other hand, employing again the Mean-Value Theorem, we obtain that

∥Φ(u+ v(u))− Φ′(ū)(u+ v(u)− û)∥ = ∥Φ(u+ v(u))− Φ(û)− Φ′(ū)(u+ v(u)− û)∥
= o(∥u+ v(u)− û∥)
= o(∥u− û∥) as u ∈ P tends to ū, (5.7)

where the last estimate is by the second inequality in (5.3) and by (5.4). Moreover, as in
(3.9), under the current smoothness assumptions we obtain that

Φ(u+ v(u)) = o(∥v(u)∥) = o(∥u− û∥) as u ∈ P tends to ū,

where the last estimate is again by the second inequality in (5.3) and by (5.4). Combining
this with (5.7), we conclude that

Φ′(ū)(u+ v(u)− û) = o(∥u− û∥) as u ∈ P tends to ū.

Therefore, since there evidently exists c > 0 such that

dist(v, kerΦ′(ū)) ≤ c∥Φ′(ū)v∥ ∀ v ∈ Rp,

there exists ṽ(u) ∈ kerΦ′(ū) such that

u+ v(u)− û = ṽ(u) + o(∥u− û∥) as u ∈ P tends to ū. (5.8)

Observe that from (5.6) and (5.8), and again from the second inequality in (5.3), and from
(5.4), it follows that

v̄(u) = O(∥u− û∥), ṽ(u) = O(∥u− û∥) as u ∈ P tends to ū. (5.9)

Since thus defined v̄(u) and ṽ(u) are orthogonal, by (5.6), (5.8), (5.9), and by (5.4), we
obtain that

⟨v(u), u+ v(u)− û⟩ = ⟨v̄(u) + o(∥u− û∥), ṽ(u) + o(∥u− û∥)⟩
= o(∥u− û∥2) as u ∈ P tends to ū.

Therefore,

∥u− û∥2 = ∥v(u)− (u+ v(u)− û)∥2

= ∥v(u)∥2 + ∥u+ v(u)− û∥2 − 2⟨v(u), u+ v(u)− û⟩
= ∥v(u)∥2 + ∥u+ v(u)− û∥2 + o(∥u− û∥2) as u ∈ P tends to ū. (5.10)

We now get back to establishing (5.5). If u ∈ U , then v(u) = 0 and û = u, and (5.5)
evidently holds with any ρ. Therefore, it remains to establish (5.5) for u ̸∈ U . We argue by
contradiction: suppose there exists a sequence {uk} ⊂ P \U such that it converges to ū, and

lim
k→∞

∥uk + v(uk)− ûk∥
∥uk − ûk∥

≥ 1. (5.11)
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Substituting u in (5.10) by uk, and dividing both sides by ∥uk − ûk∥2, we obtain that

∥v(uk)∥2

∥uk − ûk∥2
+

∥uk + v(uk)− ûk∥2

∥uk − ûk∥2
− 1 → 0 as k → ∞.

By the first inequality in (5.3) and by (5.4), the first term in the left-hand side of the last
relation above is staying no smaller than γ > 0, while according to (5.11), the limit of the
second term as k → ∞ is greater or equal to 1. Therefore, the limit of the left-hand side
above is greater or equal to γ, yielding a contradiction.

The proof of the next theorem is along the lines of that in [3, Theorem 1], which deals
with the projected Levenberg–Marquardt method. Nevertheless, we need to give the proof
in full, to work out all the details specifically for the algorithm considered here, i.e., the
projected Gauss–Newton method. In particular, our proof employs Lemma 5.1 instead of [3,
Lemma 4].

Theorem 5.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a closed convex set.
Assume that Φ is differentiable near ū ∈ U , and its derivative is continuous at ū with respect
to P . Let the regularity condition (3.6) and the constrained error bound (5.1) be satisfied.

Then, for any δ > 0, and every u0 ∈ P close enough to ū, there exists the unique sequence
{uk} such that for every k, it holds that uk+1 = πP (u

k + v(uk)), where v(uk) is the solution
of (3.2) with u = uk, this sequence is contained B(ū, δ) and converges to some u∗ ∈ U , and
the rate of convergence is R-linear.

Proof. Let δ > 0 and ρ ∈ (0, 1) be chosen according to Lemma 5.1. Observe that this

allows to take δ > 0 arbitrarily small, and if the assertion of the theorem is true for some
δ > 0, it is evidently true for any larger δ. Moreover, if δ > 0 is taken small enough, under
the stated smoothness assumption, from (3.5) and (3.6) it follows that there exists C > 0
such that

∥v(u)∥ = O(∥Φ(u)∥) ≤ C dist(u, Φ−1(0)) ≤ C dist(u, U) ∀u ∈ P ∩B(ū, δ). (5.12)

Fix any ε > 0 satisfying

ε ≤
(
1 +

C

1− ρ

)−1

δ. (5.13)

We first prove by induction that if u0 ∈ B(ū, ε), then the algorithm specified in the statement
of the theorem generates a well-defined unique sequence {uk} ⊂ B(ū, δ).

Suppose that the iterates u1, u2, . . . , uk ∈ B(ū, δ) are already generated. Then, by the
choice of δ, we have that uk+1 = πP (u

k + v(uk)) is also well-defined, and

∥uk+1 − ū∥ ≤ ∥u0 − ū∥+
k∑

i=0

∥ui+1 − ui∥. (5.14)
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For every i ∈ {0, 1, . . . , k}, since ui ∈ P , we have that

∥ui+1 − ui∥ = ∥πP (ui + v(ui))− ui∥ = ∥πP (ui + v(ui))− πP (u
i)∥ ≤ ∥v(ui)∥ ≤ C dist(ui, U),

(5.15)
where the last estimate is by (5.12). Combined with (5.14), and employing (5.2), this yields

∥uk+1 − ū∥ ≤ ∥u0 − ū∥+ C
k∑

i=0

dist(ui, U)

= ∥u0 − ū∥+ C dist(u0, U) + C
k∑

i=1

dist(πP (u
i−1 + v(ui−1)), U)

≤ ∥u0 − ū∥+ C dist(u0, U)
k∑

i=0

ρi

≤
(
1 +

C

1− ρ

)
∥u0 − ū∥. (5.16)

Since u0 ∈ B(ū, ε), employing (5.13) we now obtain that uk+1 ∈ B(ū, δ), thus proving the
claim that the unique sequence {uk} ⊂ B(ū, δ) is well-defined.

In particular, (5.15) holds for all i, and similarly to (5.16) we derive that for any k and l

∥uk+l − uk∥ ≤
k+l−1∑
i=k

∥ui+1 − ui∥

≤ C

k+l−1∑
i=k

dist(ui, U)

≤ Cρk dist(u0, U)

l−1∑
i=0

ρi

≤ C

1− ρ
∥u0 − ū∥ρk

≤ C

1− ρ
ερk. (5.17)

As the right-hand side in (5.17) tends to 0 as k → ∞, this implies that {uk} is a Cauchy
sequence, and hence, it converges to some u∗ ∈ B(ū, δ).

Moreover, the choice of δ ensuring (5.2) in Lemma 5.1 implies the estimate dist(uk+1, U) ≤
ρdist(uk, U) for all k, yielding dist(uk, U) → 0 as k → ∞, and hence, u∗ ∈ U .

Finally, passing onto the limit in (5.17) as l → ∞ yields the estimate

∥uk − u∗∥ ≤ C

1− ρ
ερk

for all k. This completes the proof of the R-linear convergence rate.
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As demonstrated by [3, Examples 1, 2], assumptions (3.6) and (5.1) are independent, i.e.,
one does not imply the other. In [4], it was also established that for the projected Levenberg–
Marquardt method (with exact projections!), assumption (3.6) can be avoided, i.e., only the
constrained error bound (5.1) is needed, apparently unlike the case of inexact projections as
in [3], where the unconstrained error bound

dist(u, Φ−1(0)) = O(∥Φ(u)∥) as u→ ū,

implied by (3.6), is also needed.

Remark 5.1 Local superlinear convergence of the projected Gauss–Newton method can be
established under the regularity condition (3.6) complemented by the very restrictive (for the
constrained case) error bound of the form

dist(u, U) = O(∥Φ(u)∥) as u→ ū, (5.18)

which is much stronger than (5.1). In particular, (5.18) implies that Φ−1(0) ⊂ U , the property
that does not hold in Example 5.1.

Indeed, set Ψ(u) = πP (u + v(u)), where v(u) is the solution of (3.2) (given by (3.5) if
rankΦ′(u) = q). Under the smoothness assumptions as in Theorem 4.1,

∥Ψ(u)− u∥ = ∥πP (u+ v(u))− πP (u)∥ ≤ ∥v(u)∥ = O(φ(u)) as u ∈ P tends to ū, (5.19)

where the last estimate is by (3.8). Hence, (2.4) is satisfied. Furthermore, let û now stand
for any projection of u+ v(u) onto U . Then

∥πP (u+ v(u))− û∥ = ∥πP (u+ v(u))− πP (û)∥
≤ ∥u+ v(u)− û∥
= dist(u+ v(u), U)

= O(∥Φ(u+ v(u))∥)
= O((φ(u))1+τ ) as u ∈ P tends to ū,

where the next-to-last estimate is by (5.18), while the last one is by (3.9). Therefore,

φ(Ψ(u)) = ∥Φ(πP (u+ v(u)))− Φ(û)∥
= O(∥πP (u+ v(u))− û∥)
= O((φ(u))1+τ ) as u ∈ P tends to ū,

yielding (2.5) with θ = 1 + τ . Local superlinear convergence with Q-order 1 + τ now follows
from Theorem 2.1.

Remark 5.2 Local superlinear convergence of the projected Gauss–Newton method is also
guaranteed when p ≤ q and (3.1) holds. In this case, assuming that the derivative of Φ is
continuous at ū with respect to P , for u ∈ P close enough to ū, it holds that v(u) is the
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unique solution of the problem (3.11). Setting Ψ(u) = πP (u + v(u)), the needed result can
be again derived from Theorem 2.1. However, it also readily follows from the estimate

∥πP (u+ v(u))− ū∥ = ∥πP (u+ v(u))− πP (ū)∥ ≤ ∥u+ v(u)− ū∥

and from the above-mentioned classical results for square or overdetermined unconstrained
systems, contained in Corollary 4.1 applied with P = Rp. Under the smoothness assumptions
as in Theorem 4.1, this yields local superlinear convergence with Q-order 1 + τ .
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- Instituto Nacional de Matemática Pura e Aplicada. Rio de Janeiro, 2011.

[2] R. Behling and A. Fischer. A unified local convergence analysis of inexact constrained
Levenberg–Marquardt methods. Optim. Lett. 6 (2012), 927–940.

[3] R. Behling, A. Fischer, M. Herrich, A. Iusem, and Y. Ye. A Levenberg-Marquardt method
with approximate projections. Comput. Optim. Appl. 59 (2014), 2–26.

[4] R. Behling, A. Fischer, G. Haeser, A. Ramos, and K. Schonefeld. On the constrained
error bound condition and the projected Levenberg-Marquardt method. Optimization 66
(2017), 1397–1411.

[5] J.F. Bonnans. Local analysis of Newton-type methods for variational inequalities and
nonlinear programming. Appl. Math. Optim. 29 (1994), 161–186.

[6] J.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer–
Verlag, New York, 2000.

[7] E. Blum and W. Oettli. Direct proof of the existence theorem for quadratic programming.
Oper. Res. 20 (1972), 165–167.

[8] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, 1983.

[9] A.L. Dontchev and R.T. Rockafellar. Implicit Functions and Solution Mappings. Second
edition. Springer, New York, 2014.

21



[10] A.L. Dontchev and R.T. Rockafellar. Characterizations of strong regularity for varia-
tional inequalities over polyhedral convex sets. SIAM J. Optim. 6 (1996), 1087–1105.

[11] B.C. Eaves. On quadratic programming. Management Sci. 11 (1971), 689–711.

[12] A. Fischer, M. Herrich, A.F. Izmailov, and M.V. Solodov. Convergence conditions for
Newton-type methods applied to complementarity systems with nonisolated solutions.
Comput. Optim. Appl. 63 (2016), 425–459.

[13] A. Fischer, A.F. Izmailov, M. Punke, and Z. Yan. Error bounds and Newton-
type methods for reformulations of Karush-Kuhn-Tucker systems of mathemat-
ical programs with complementarity constraints. Comput. Optim. Appl. 2025.
https://doi.org/10.1007/s10589-025-00729-1.

[14] A. Fischer, A.F. Izmailov, and M.V. Solodov. The Levenberg–Marquardt method: An
overview of modern convergence theories and more. Computational Optimization and Ap-
plications 89 (2024), 33–67.

[15] A. Fischer and N. Strasdat. An extended convergence framework applied to comple-
mentarity systems with degenerate and nonisolated solutions. Pure Appl. Func. Analys. 8
(2023), 1039–1054.

[16] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Lo-
gistics Quarterly 3 (1956), 95–110.

[17] A.F. Izmailov and M.V. Solodov. Newton-Type Methods for Optimization and Varia-
tional Problems. Springer Series in Operations Research and Financial Engineering, Cham,
2014.

[18] A.F. Izmailov and M.V. Solodov. A general perturbed Newtonian framework and critical
solutions of nonlinear equations. Set-Valued Var. Anal. 33 (2025), 3.

[19] A.F. Izmailov, E.I. Uskov, and Z. Yan. Newton method vs. semismooth Newton method
for singular solutions of nonlinear complementarity problems. Adv. Syst. Sci. Appl. 23
(2023), 16–26.

[20] C. Kanzow, N. Yamashita, and M. Fukushima. Levenberg–Marquardt methods with
strong local convergence properties for solving nonlinear equations with convex constraints.
J. Comput. Appl. Math. 172 (2004), 375–397.

[21] C.T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[22] M. Macconi, B. Morini, and M. Porcelli. A Gauss-Newton method for solving bound-
constrained underdetermined nonlinear systems. Optim. Meth. Software 24 (2009), 219–
235.

[23] G.M. Lee, N.N. Tam, and N.D. Yen. Quadratic Programming and Affine Variational
Inequalities. Springer, New York, 2005.

22



[24] O.L. Mangasarian. A simple characterization of solution sets of convex programs. Oper.
Res. Lett. 7 (1988), 21–26.

[25] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academiv Press, New York, London, 1970.

[26] S.M. Robinson. Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–
62.

[27] R.T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1970.

23


