
A Dantzig-Wolfe Decomposition Method for

Quasi-Variational Inequalities

Manoel Jardim1*, Claudia Sagastizábal2 and Mikhail Solodov1

1IMPA, Estrada Dona Castorina, Rio de Janeiro, 22460-320, RJ, Brasil.
2IMECC, Unicamp, Rua Sérgio Buarque de Holanda, Campinas,

13083-859, SP, Brasil.

*Corresponding author(s). E-mail(s): manoel.jardim@impa.br;
Contributing authors: sagastiz@unicamp.br; solodov@impa.br;

Abstract

We propose an algorithm to solve quasi-variational inequality problems, based
on the Dantzig-Wolfe decomposition paradigm. Our approach solves in the sub-
problems variational inequalities, which is a simpler problem, while restricting
quasi-variational inequalities in the master subproblems, making them generally
(much) smaller in size when the original problem is large-scale. We prove global
convergence of our algorithm, assuming that the mapping of the quasi-variational
inequality is either single-valued and continuous or it is set-valued maximally
monotone. Quasi-variational inequalities serve as a framework for several equilib-
rium problems, and we apply our algorithm to an important example in the field
of economics, namely the Walrasian equilibrium problem formulated as a gener-
alized Nash equilibrium problem. Our numerical assessment demonstrates good
performance and usefullness of the approach for the large-scale cases.

Keywords: Quasi-variational inequality; Dantzig-Wolfe decomposition; Variational
inequality; Walrasian equilibrium problem; Generalized Nash equilibrium problem.

1



1 Introduction

The framework provided by a quasi-variational inequality (QVI) setting encompasses
many problems related to optimization and equilibrium; see [1]. The goal of a QVI
problem is to find a pair (x∗, z∗) such that

x∗ ∈ K(x∗) with z∗ ∈ F (x∗) satisfy ⟨z∗, y − x∗⟩ ≥ 0 for all y ∈ K(x∗). (1)

In these relations, ⟨·, ·⟩ stands for the Euclidean inner product in Rn and F : Rn ⇒ Rn

and K : Rn ⇒ Rn are two maps associating vectors in Rn to subsets of Rn. A
variational inequality (VI) corresponds to a less general case, with K in (1) being a
constant set-valued map, i.e., K(x) = D ⊂ Rn for all x ∈ Rn. In most meaningful
VI settings, in particular those subsuming local optimality conditions in optimization,
the set D is convex. If D is further the nonnegative orthant, the corresponding VI is
a nonlinear complementarity problem. The so-called mixed complementarity problem
arises when the set D is a generalized box (given component-wise by one-sided or two-
sided bound constraints, or no constraints at all for some components). For details
and related discussions, we refer again to [1].

The introduction in [2] provides a good review of the history of QVIs. We recall
here that the first work on the subject dates back to [3], where impulsive control
problems were formulated according to the format (1). The framework has proven
effective in handling important applications in engineering [4, 5], transportation [6],
and economics [7]. In particular, QVIs offer a favorable environment for modeling
equilibria, of the Radner type as in [8], or resulting from a generalized Nash game [9].

Much of QVI literature focuses mainly on theoretical results, especially concerning
the existence of solutions. Algorithmic research on the subject is less developed, prob-
ably due to certain inherent difficulties associated to QVIs. The proposal in [10], to
solve (1) by minimizing a nonsmooth gap function, does not present a specific solution
algorithm. Inspired by the structure of generalized Nash games, [10] solves sequen-
tially VIs that are shown to converge to a solution of (1). The scheme was revisited
and enhanced in [11–13]. Newtonian approaches for solving the system of optimal-
ity conditions derived from (1) were considered in the works [14, 15], reporting only
some limited numerical experiments. The specialized potential reduction interior point
method proposed in [16] exhibits good performance on the test library in [17].

It is, nonetheless, unclear how well the aforementioned algorithms scale for large
instances. In mathematical optimization, decomposition methods are best suited to
handle large problems. To provide a first step in this direction when dealing with QVIs,
we introduce a Dantzig-Wolfe-like method that is shown to converge to a solution of
(1) under natural assumptions. Borrowing the linear programming terminology, the
proposed algorithm alternates between solving a simple QVI as its “master program”
and a VI as its “subproblem”. Thus, the approach departs from the sequential solution
of VIs that has been predominant in the literature. The motivation is to tailor the
method to facilitate subproblem separability, crucial when dimensions in (1) are large.

We mention, in passing, that sometimes QVIs can be reduced to a VI, as is the case
of variational equilibria of some Nash games [18, 19]. For a discussion of related issues

2



in the context of energy markets we refer to [20]. Furthermore, the reproducible set-
valued maps introduced in [21] identify situations in which solving a VI provides all
the solutions of a QVI. But these are very specific configurations, far from representing
general situations. Indeed, QVIs have a significantly more complex structure than VIs,
and therefore more sophisticated tools and developments are needed to solve problems
such as (1) using decomposition techniques.

The Dantzig-Wolfe (DW) decomposition method was introduced in [22] to solve
large linear programs having a structured feasible set, whose constraints can be sepa-
rated into “hard” and “easy” ones (generally separable). Each iteration solves a master
program followed by a subproblem, respectively aiming at guaranteeing feasibility and
objective function decrease. The master program outputs multipliers associated with
the hard constraints, which define the subproblem objective function. The subproblem
then has an “easy” feasible set (usually yielding separable subproblems). The sub-
problem solution is informed to the master program, so that in the next iteration the
approximation of the master’s feasible set is improved. Because subproblems can often
be solved in parallel, the computational burden is dominated by the master program
solution, whose size grows at each iteration.

The DW decomposition for VIs was introduced in [23, 24]. The approach was
extended and improved in [25], including several theoretical generalizations and an
application to large-scale generalized Nash games. Another use of DW techniques of
[25] is given in [26], where a class of risk-averse stochastic equilibrium problems is
considered, numerically assessed on the “real-world” European market of natural gas.
Benders decomposition for VIs, which is the dual approach to DW, is presented in [27].

In this work, we show how the DW approach can be applied to very general QVIs.
When iterating between solving QVI-master problems and VI-subproblems sequen-
tially, our DW method computes in the process a certain gap function that provides
information about convergence. As illustrations, we start by computing the Walrasian
equilibrium of large economies, a very classical and important problem in economics,
recently considered in [28, 29]. We afterwards solve also some academic QVI exam-
ples from [16, 17], said to have “moving sets”. In both cases, our approach gives the
same results as the commercial solver GAMS [30], with substantially less computa-
tional effort for the larger dimensions. Over many random instances generated for the
Walrasian equilibrium problem, the DW method computing times are not only shorter
but consistently less volatile than those for the direct solution by GAMS.

The rest of the paper is organized as follows. In Section 2, we give the mathematical
formulation of our DW algorithm. Section 3 is devoted to convergence results. When
the problem has a certain special structure, Section 4 gives details about techniques
to uncouple variables and make subproblems separable. Presenting the two sets of
numerical experiments (Walrasian equilibrium and moving set example), the results
in Section 5 provide empirical evidence of the good performance of our method on
large-scale problems, when compared with the direct application of GAMS software.

Some final words about our notation and terminology. The Euclidean inner product
in Rn is denoted by ⟨·, ·⟩ and ∥ · ∥ is the associated norm. By ∥ · ∥∞ we denote the
maximum norm. For a set D ⊂ Rn, its interior is denoted by int(D) and its convex
hull (the smallest convex set in Rn that contains D), is denoted by CoD. For a convex

3



set D, the notation ND(x) = {u : ⟨u, y − x⟩ ≤ 0, ∀ y ∈ D} stands for the normal
cone to D at x when x ∈ D (ND(x) = ∅ otherwise). The mapping F : Rn ⇒ Rn is
strongly monotone if there exists c > 0 such that ⟨u− v, x− y⟩ ≥ c∥x − y∥2 for all
x, y ∈ dom(F ) = {z ∈ Rn : F (z) ̸= ∅} and all u ∈ F (x), v ∈ F (y). Also, F is monotone
if the above inequality holds for c = 0. A monotone set-valued mapping F : Rn ⇒ Rn

is maximally monotone if its graph {(x, u) ∈ Rn × Rn : x ∈ dom(F ), u ∈ F (x)}
is not properly contained in the graph of any other monotone mapping. We also use
the properties that a maximally monotone operator F is both locally bounded in
int(dom(F )) [31], and outer-semicontinuous [32, Chapter 4].

2 Dantzig-Wolfe decomposition for QVI

Let there be given functions h : Rn → Rl and g(·, ·) : Rn × Rn → Rm, with h convex,
and g(·, x) convex and differentiable for each x ∈ Rn, and the set in (1) be given by

K(x) = Kg(x) ∩Kh, where
Kg(x) = {y ∈ Rn : g(y, x) ≤ 0}
Kh = {y ∈ Rn : h(y) ≤ 0} . (2)

The QVI setting is a good candidate for the DW technique, as in (2) “difficult” con-
straints can be considered those involving both variables x and y, while the constraints
in y are naturally “easy” (or at least easier).

We assume that Kh ⊂ int(dom(F )), and that some y1 ∈ Kg(y
1) ∩Kh is given, to

start the process.

2.1 General organization and master QVI definition

In (2), it seems easier to ensure feasibility with respect to Kh. Since the x-
parameterized constraints g(y, x) are naturally harder to handle, they are dealt with
in the master. Similarly to the DW scheme in linear programming, the corresponding
multiplier associated to the parametrized constraint provides its Lagrangian relax-
ation, which is incorporated into the definition of the operator in the subproblem,
whose feasible set is Kh, and it is therefore a VI.

(xk, µk)

yk+1

MASTER
a QVI, with
operator F and
set Kg(x) ∩Kk

h

SUBPROBLEM
a VI, with
operator F k

and set Kh

Fig. 1 Some elements of the DW decomposition for (1)-(2). On the left, the master problem solves
a QVI that outputs xk and a multiplier µk associated to the g-constraints. This primal-dual pair is
used by the subproblem on the right to define the operator Fk, and return a solution yk+1 to the
master problem. The output of the subproblem is used by the master in the next iteration, to define
the set Kk+1

h .

4



To introduce gradually the notation, the scheme in Figure 1 reports the information
exchanged between the master problem and the subproblem at each iteration k of the
process. The information generated when solving the VI subproblem at iteration k,
which is yk+1, is used by the master QVI at iteration k+1 to approximate the set Kh.
The approximation takes the convex hull of the output from the past VI-subproblems.

When formulating the master QVI solved at iteration k, the last subproblem infor-
mation available to the master is yk. Accordingly, the QVI master (3) at iteration k
finds a pair (xk, zkm) for which

xk ∈ Kg(x
k)∩ Kk

h , z
k
m ∈ F (xk) satisfy

〈
zkm, x− xk

〉
≥ 0

for all x ∈ Kg(x
k) ∩Kk

h

where Kk
h = CoY k and Y k =

{
y1, . . . , yk

}
.

(3)

Another part of the output of the QVI master (3) is a multiplier µk associated to
the g-constraints. Because the intersection with CoY k reduces the search for feasible
elements to a (k−1)-dimensional simplex, the master problem (3) is a relatively simple
QVI even if n is very large.

2.2 Subproblem definition

As shown by Figure 1, after the master (3) is solved, the VI-subproblem receives
in addition to xk, information on µk, the multiplier associated with the constraints
defining Kg(x

k). The pair (xk, µk) is used to define the subproblem operator F k, for
example as

F k(y) = F (y) +

m∑
i=1

µk
i∇ygi(x

k, xk) . (4)

Other choices are possible, depending on how the first and second terms, respectively
involving F and ∇yg, are approximated. For the latter, notice that (4) makes a con-
stant approximation of the gradient of the hard constraint. The approximation could
also let the first variable free or, to have a more flexible framework, both options
could be combined using a parameter ωk

i ∈ [0, 1]. It is then notationally convenient to
write the second term in (4) in matrix-vector form. Thus, we introduce a (transposed
Jacobian) matrix Γk(y) of order n×m with columns defined as below, for j = 1, . . . ,m:

Γk
j (y) =


∇ygj(x

k, xk) (constant)
∇ygj(y, x

k) (free)
ωk
j ∇ygj(x

k, xk) + (1− ωk
j )∇ygj(y, x

k) (convex combination).
(5)

Some comments regarding (5) are in order. When the product Γk(y)µk is computed
using the (constant) first option above, it coincides with the expression for the second
term in (4). The second option in (5) can be advantageous when we aim to retain more
information about the g constraints in the subproblem formulation. For our instances
of Walrasian equilibrium in Section 5, the function g depends linearly on y (see (33)),
and then all the options become the same. In general though, this need not be the
case, and having this feature adds to the broader flexibility and applicability of the

5



framework. The impact of the third option is assesed in the numerical experiments
on moving set problems in Subsection 5.2. Finally, notice that, although not made
explicit in the notation, the third option involves the parameter ωk ∈ [0, 1]m.

A similar approach can be employed for the first term in (4), that is, approximating

F by an operator F̂ k that uses information output by the master QVI. Along the lines
in [25], the approximation can be constant, of first-order, or the actual mapping:

F̂ k(y) =

 {z
k
m} for zkm ∈ F (xk) from (3) (constant)

F (xk) +∇F (xk)(y − xk), if F ∈ C1 is single-valued (first order)
F (y) (exact).

(6)

Finally, if needed or advantageous, the VI-subproblem operator can also be regularized
using an n× n positive (semi)definite matrix Qk.

In full generality, the VI subproblem (7) at iteration k finds a pair (yk+1, zk+1
s ) for

which

yk+1 ∈ Kh , z
k+1
s ∈ F k(yk+1) satisfy

〈
zk+1
s , y − yk+1

〉
≥ 0 for all y ∈ Kh

where F k(y) = F̂ k(y) + Γk(y)µk +Qk(y − xk)

with F̂ k from (6) and Γk from (5).

(7)

For later use notice that, after solving (3) and (7), the inclusions

ζk = zkm + Γk(xk)µk ∈ F k(xk) and

ζ̂k = zk+1
s − Γk(yk+1)µk −Qk(yk+1 − xk) ∈ F̂ k(yk+1)

(8)

hold for all the approximating variants proposed in (5) and (6).
Both QVI-master (3) and VI-subproblem (7) are assumed to be solvable at all

iterations. We shall not go into extensive discussions on sufficient conditions for that
assumption to hold, because they are well known. For the VI subproblems, in particu-
lar, solvability follows if the set Kh is compact. Regardless of compactness of that set,
subproblems are always solvable if the approximation F k in (7) is strongly monotone,
a property that can be ensured in our setting, as explained next.
Remark 1 (On strong monotonicity of subproblem operators). The approximating
mapping F k in (7) can always be chosen to be strongly monotone.

Note that F k involves three terms, the first one being the approximation F̂ k defined
in (6). If F is monotone, any option in (6) preserves monotonicity. If F is not monotone,

the constant option in (6) makes the term F̂ k monotone. Regarding the second term
defining F k, it is always monotone because, by (5) and by the convexity of gi(·, xk),
it holds that

〈
Γk(y)µk − Γk(x)µk, y − x

〉
=

m∑
i=1

µk
i (1− ωk

i )
〈
∇k

ygi(y, x
k)−∇ygi(x, x

k), y − x
〉
≥ 0.

Since the first two terms in F k are monotone, and in the third term we can take
a positive definite matrix Qk (if needed), the claim of strong monotonicity of F k

follows.

6



3 Algorithm statement and its convergence

After the master QVI is solved, the information xk, zkm, µk is available. For y ∈ Rn,
we define the gap function

gap(y) =
〈
ζk, y − xk

〉
with ζk = zkm +

m∑
i=1

µk
i∇ygi(x

k, xk) ∈ F k(xk), (9)

where the inclusion ζk ∈ F k(xk) is by (8), recalling also (5) to evaluate ζk.
Convergence of our DW decomposition method is determined as in the linear pro-

gramming setting, by monitoring the value of the gap function at yk+1, the subproblem
solution. The framework of the method is outlined in Algorithm 1.

Algorithm 1 Dantzig-Wolfe decomposition for QVI

Require: y1 ∈ Kg(y
1) ∩Kh.

Ensure: Accumulation points of the iterates solving QVI (1)-(2).
Set gap1 = −∞ and k ← 1.
while gapk < 0 do

master solution: solve (3) to compute the pair (xk, zkm) and the multiplier µk.
subproblem solution: solve (7) to compute yk+1.
stopping criterion: Compute gapk+1 = gap(yk+1) defined in (9).
update: k ← k + 1

end while

In Theorem 4 we shall prove that accumulation points of the iterates generated by
Algorithm 1 solve QVI (1)-(2).

We first state the Karush-Kuhn-Tucker (KKT) conditions for (3), which among
other things specify the multiplier µk employed in both (7) and (9).
Theorem 1 (KKT conditions for master QVI). Under any suitable constraint qual-
ification, if the pair

(
xk, zkm ∈ F (xk)

)
solves the master QVI (3) at iteration k, then

there exists a Lagrange multiplier µk ∈ Rm such that

0 ∈ zkm +

m∑
i=1

µk
i∇ygi(x

k, xk) +NKk
h
(xk), (10)

µk
i ≥ 0, gi(x

k, xk) ≤ 0, µk
i gi(x

k, xk) = 0, i = 1, . . . ,m. (11)

We do not include a proof of this result, referring to the corresponding theorem in
[2] in a more general setting of QVIs in Banach spaces, under the Robinson’s constraint
qualification. For other suitable constraint qualifications in finite dimensions, see [33].

3.1 Gap function and finite termination

Convergence of Algorithm 1 relies on the stopping criterion gapk being driven to
zero by the iterative process. For this reason, we start by examining the properties of

7



the gap function. Recall that according to Remark 1, the mapping F k can always be
chosen to be strongly monotone.
Lemma 2 (Gap properties). Let F k be strongly monotone. At each iteration k of
Algorithm 1, the following holds for the gap function defined in (9):
1. gap(yk+1) ≤ 0;
2. gap(y) ≥ 0 for all y ∈ Kk

h ;
3. gap(yk+1) = 0 if and only if xk = yk+1; and
4. if gap(yk+1) < 0 then yk+1 ̸∈ Kk

h . Hence, K
k
h ⊊ Kk+1

h .

Proof. Let
(
yk+1, zk+1

s ∈ F k(yk+1)
)
be the pair solving the VI subproblem. The first

inclusion from (8) states that ζk = zkm + Γk(xk)µk ∈ F k(xk), so

zk+1
s ∈ F k(yk+1) and ζk ∈ F k(xk) =⇒

〈
zk+1
s − ζk, yk+1 − xk

〉
≥ 0 , (12)

by the monotonicity of F k. Recalling the gap definition (9), we obtain that

gap(yk+1) =
〈
ζk, yk+1 − xk

〉
≤

〈
zk+1
s , yk+1 − xk

〉
.

Because xk ∈ Kh, the inequality in the first line in (7) yields
〈
zk+1
s , xk − yk+1

〉
≥ 0.

We conlude that
gap(yk+1) ≤

〈
zk+1
s , yk+1 − xk

〉
≤ 0, (13)

proving item 1.
To show item 2, let νk ∈ NKk

h
(xk) be the normal element in Theorem 1 that makes

the inclusion (10) an equality:

0 = zkm +

m∑
i=1

µk
i∇ygi(x

k, xk) + νk = ζk + νk, with
〈
νk, y − xk

〉
≤ 0 for all y ∈ Kk

h .

By definition (9), we have that gap(y) = −
〈
νk, y − xk

〉
for all y ∈ Rn . In particular,

gap(y) = −
〈
νk, y − xk

〉
≥ 0 for all y ∈ Kk

h ,

which proves item 2.
To continue with item 3, suppose that xk = yk+1. Then gap(yk+1) =〈

ζk, yk+1 − xk
〉
= 0, recalling once again the gap definition in (9). Conversely, when

gap(yk+1) =
〈
ζk, yk+1 − xk

〉
= 0, we see from (13) that

〈
zk+1
s , yk+1 − xk

〉
= 0. In

(12) when have that
〈
zk+1
s − ζk, yk+1 − xk

〉
= 0, which implies that xk = yk+1, by

strong monotonicity of F k.
For the final item, for the sake of contradiction, assume that yk+1 ∈ Kk

h . Then, by
item 2, gap(yk+1) ≥ 0. This contradicts the hypothesis gap(yk+1) < 0, concluding
the proof of item 4.

We can now show convergence when the method terminates finitely. Note that
according to Lemma 2 we have that gapk ≤ 0 for all k, and therefore, Algorithm 1
stopping finitely at some iteration k means that gapk+1 = 0 is computed.

8



Corollary 3 (Finite termination). If at some iteration k of Algorithm 1, gapk+1 = 0

is computed, then the algorithm stops. In this case, the pair
(
xk, ζ̂k

)
, with xk solving

the master problem (3) and ζ̂k from (8), solves the original QVI, given by (1) and (2).

Proof. By item 3 in Lemma 2, having gap(yk+1) = 0 is equivalent to xk = yk+1. In
particular,

xk ∈ Kg(x
k) ∩Kh because xk solves (3) and (7), and

ζ̂k ∈ F (xk) because ζ̂k ∈ F̂ k(yk+1) = F̂ k(xk) ⊂ F (xk) for any choice in (6).

To verify that the pair
(
xk, ζ̂k ∈ F (xk)

)
solves (1)-(2), it only remains to show that

〈
ζ̂k, y − xk

〉
≥ 0 for all y ∈ Kg(x

k) ∩Kh . (14)

Since xk solves the VI subproblem (7), it holds that〈
zk+1
s , y − xk

〉
≥ 0 for all y ∈ Kh, in particular for all y ∈ Kg(x

k) ∩Kh .

Then, as zk+1
s = ζ̂k + Γk(xk)µk by the definition of ζ̂k in (8), it holds that〈

ζ̂k + Γk(xk)µk, y − xk
〉
≥ 0 for all y ∈ Kg(x

k) ∩Kh .

The inequality (14) will hold if〈
Γk(xk)µk, y − xk

〉
≤ 0 for all y ∈ Kg(x

k) ∩Kh . (15)

First recall that Γk(xk)µk =
m∑
i=1

µk
i∇ygi(x

k, xk). Second, note that because the

functions gi(·, xk) are convex, for all y ∈ Rn we have that〈
∇ygi(x

k, xk), y − xk
〉
≤ gi(y, x

k)− gi(x
k, xk) .

Then multiplying this inequality by µk
i ≥ 0 and using the condition µk

i gi(x
k, xk) = 0

from (11) in Theorem 1 yields, for any y ∈ Kg(x
k) ∩Kh, that

µk
i

〈
∇ygi(x

k, xk), y − xk
〉
≤ µk

i gi(y, x
k)− µk

i gi(x
k, xk) = µk

i gi(y, x
k) .

Since y ∈ Kg(x
k), the right-hand side in the relation above is nonpositive. Summing

up these inequalities for i = 1, . . . ,m yields (15), as claimed.

3.2 Asymptotic convergence of Algorithm 1

Corollary 3 states that whenever the master QVI solution is also a solution to the VI
subproblem, the algorithm stops having found a solution to the original QVI. Oth-
erwise, the iterative process continues and, by item 4 in Lemma 2, the algorithm

9



makes progress by defining a larger feasible set for the master QVI (3), better approx-
imating the original problem. To complete our convergence analysis, it remains to
consider the asymptotic behavior of Algorithm 1. Since now we are dealing with an
infinite number of iterations, the strong monotonicity of the approximations discussed
in Remark 1 needs to be ensured in a uniform manner, for all iterates. Before stating
the result, we note that existence results about QVI solutions usually require some
kind of monotonicity or continuity of F , assumptions also used below.

Theorem 4. Suppose that the operator F in (1) is either continuous and single-valued
or maximally monotone set-valued, and that the function g in (2) has a continu-
ous gradient ∇yg(·, ·). Let the VI-operator approximations F k in (7) be defined to
be uniformly strongly monotone with parameter c > 0, and let the matrices {Qk} be
taken bounded. Finally, suppose that if Algorithm 1 generates an infinite number of
itarations, the sequences {µk} and {yk+1} are bounded.

Then,
lim
k→∞

gap(yk+1) = 0, lim
k→∞

∥yk+1 − xk∥ = 0,

and every accumulation point of
{(

xk, ζ̂k
)}

is a solution to QVI (1)-(2).

Proof. By Lemma 2 and Corollary 3, for Algorithm 1 to make an infinite number of
iterations, it must hold that gap(yk+1) < 0 for all k. Suppose the claim were not
true, i.e., lim infk→∞ gap(yk+1) < 0. Then there exist ε > 0 and an infinite subset
of iterations Nε, such that gap(yk+1) ≤ −ε for all k ∈ Nε. Recalling (9), for this
subsequence it holds that〈

zkm +

m∑
i=1

µk
i∇ygi(x

k, xk), yk+1 − xk

〉
≤ −ε . (16)

Consider k, j ∈ Nε, with j > k. As xj solves the QVI master (3) at iteration j, by (10)
in Theorem 1 there exists νj ∈ NCoY j (xj) such that

0 = zjm +

m∑
i=1

µj
i∇ygi(x

j , xj) + νj . (17)

By the construction of (3), and since j > k, we have that yk+1 ∈ CoY j , and hence,〈
νj , yk+1 − xj

〉
≤ 0.

Combining the latter relation with (17), we obtain that〈
zjm +

m∑
i=1

µj
i∇ygi(x

j , xj), yk+1 − xj

〉
≥ 0. (18)

As {yk} is bounded, the sets Y k are uniformly bounded in k, and hence so are the
sets Kg(·) ∩ Kk

h in (3). It follows that the sequence {xk} is bounded. Let x̄ be any

10



accumulation point of the (bounded) subsequence {xj}, j ∈ Nε. Without ambiguity
for further developments, we can assume that the whole {xj}, j ∈ Nε, converges to
some x̄ (otherwise, just pass onto a subsequence within Nε, and re-define Nε). We can
then assume that {µj}, j ∈ Nε, converges to some µ̄ (again, passing onto a further
subsequence, if necessary).

If F is continuous single-valued, then zjm = F (xj) → F (x̄) = z̄m, j ∈ Nε. If F is
a maximally monotone set-valued mapping, then it is locally bounded in Kh because
Kh ⊂ int(dom(F )), and it is also outer-semicontinuous. Then, again passing onto a
further subsequence if necessary, we can assume that zjm → z̄m ∈ F (x̄), j ∈ Nε.

Then, taking the limit j →∞, j ∈ Nε, in (18), we conclude that〈
z̄m +

m∑
i=1

µ̄i∇ygi(x̄, x̄), y
k+1 − x̄

〉
≥ 0, z̄m ∈ F (x̄). (19)

Again, passing onto a subsequence if necessary, we can assume that {yk+1}, k ∈ Nε,
converges to some ȳ. Taking this limit in (16), we obtain that〈

z̄m +

m∑
i=1

µ̄i∇ygi(x̄, x̄), ȳ − x̄

〉
≤ −ε,

while taking the same limit in (19) yields〈
z̄m +

m∑
i=1

µ̄i∇ygi(x̄, x̄), ȳ − x̄

〉
≥ 0.

This contradiction shows that lim infk→∞ gap(yk+1) ≥ 0, which means that
limk→∞ gap(yk+1) = 0, as gap(yk+1) < 0 for all k.

Since yk+1 solves the VI subproblem (7) at iteration k and xk ∈ Kh, it holds that〈
zk+1
s , xk − yk+1

〉
≥ 0, (20)

with zk+1
s ∈ F k(yk+1) by (7). As F k is uniformly strongly monotone (with modulus c),〈

ζk − zk+1
s , xk − yk+1

〉
≥ c ∥xk − yk+1∥2,

because ζk ∈ F k(xk) by (8). As a result, recalling (8), we have that〈
zkm + Γk(xk)µk − zk+1

s , xk − yk+1
〉
≥ c ∥xk − yk+1∥2. (21)

Combining (21) and (20), and recalling (9), we obtain that

−gap(yk+1) ≥ c ∥xk − yk+1∥2. (22)

Since gap(yk+1) → 0 as k → ∞ (as established previously), it follows that ∥xk −
yk+1∥ → 0 as k →∞.

11



Let (x̄, ζ̄) be an accumulation point of {(xk, ζ̂k)}. Since xk ∈ Kg(x
k)∩Kk

h ⊂ K(xk),
and g and h are continuous, we have x̄ ∈ K(x̄). We can take a subsequence {kj} such
that xkj → x̄, ωkj → ω̄, µkj → µ̄ and Qkj → Q̄, as j →∞.

As
∥x̄− ykj+1∥ ≤ ∥x̄− xkj∥+ ∥xkj − ykj+1∥,

taking the limit as j →∞, we obtain that ykj+1 → x̄.

Let y ∈ K(x̄) be arbitrary. It holds that y ∈ Kh. As (ykj+1, z
kj+1
s ) ∈ Kh ×

F kj (ykj+1) solves the VI subproblem (7) at iteration kj , we have that〈
zkj+1
s , y − ykj+1

〉
≥ 0 and zkj+1

s ∈ F kj (ykj+1). (23)

Recalling the relation ζ̂kj = z
kj+1
s − Γkj (ykj+1)µkj + Qkj (ykj+1 − xkj ) from (8), we

obtain that

⟨ζ̂kj + Γkj (ykj+1)µkj −Qkj (ykj+1 − xkj ), y − ykj+1⟩ ≥ 0. (24)

Note that Γkj (ykj+1)µkj tends to
m∑
i=1

µ̄i∇ygi(x̄, x̄) for any choice in (5), and

Qkj (ykj+1 − xkj ) tends to zero, as j → ∞. If F is a continuous single-valued map,

then for any choice of F̂ k in (6), ζ̂kj = F̂ kj (ykj+1) tends to ζ̄ = F (x̄). For the set-
valued case, since F is maximally monotone, it is outer semicontinuous and locally
bounded. Then any accumulation point of any elements in {F̂ kj (ykj+1)} belongs to
F (x̄). In either case, passing onto a subsequence in the second case if necessary, we

have ζ̂kj+1 → ζ̄ ∈ F (x̄). Taking the limit in (24), we obtain that〈
ζ̄ +

m∑
i=1

µ̄i∇ygi(x̄, x̄), y − x̄

〉
≥ 0, with ζ̄ ∈ F (x̄).

Because µ̄i ≥ 0 and gi(y, x̄)− gi(x̄, x̄) ≥ ⟨∇ygi(x̄, x̄), y − x̄⟩ by convexity of g(·, x̄), we
have that

〈
ζ̄, y − x̄

〉
≥ −

m∑
i=1

µ̄i ⟨∇ygi(x̄, x̄), y − x̄⟩

≥ −
m∑
i=1

µ̄i(gi(y, x̄)− gi(x̄, x̄)). (25)

By condition (11) in Theorem 1, µ
kj

i gi(x
kj , xkj ) = 0 and, hence, µ̄igi(x̄, x̄) = 0. Also,

µ̄i ≥ 0 and, since y ∈ K(x̄), µ̄igi(y, x̄) ≤ 0. From (25) it follows that
〈
ζ̄, y − x̄

〉
≥ 0,

which shows that (x̄, ζ̄) ∈ K(x̄)× F (x̄) solves (1)-(2), as stated.

We next discuss an important class of problems with a certain block-separable
structure.

12



4 Block-Separable Approximations

In many applications, including the one considered in Subsection 5.1, the subproblem
decision vector y ∈ Rn can be split into subvectors, say,

y =
∏
a∈A

ya for ya ∈ Rna and
∑
a∈A

na = n ,

according to decomposable structures observed in the set Kh in (2). Specifically, when

Kh =
∏
a∈A

Kha for Kha = {ya ∈ Rna : ha(ya) ≤ 0} ,

then the VI operator in subproblem (7)

F k(y) = F̂ k(y) + Γk(y)µk +Qk(y − xk) , for F̂ k(y) from (6) and Γk(y)µk from (5),

can be further decomposed as the product of VI-operators of smaller dimensions:

F k(y) =
∏
a∈A

Fk
a (ya) where y =

∏
a∈A

ya .

This is achieved by means of a Jacobi-like approach, similar to the one in [25]. The
process starts rearranging the n components of F k according to the block structure:

F k(y) =
∏
a∈A

F k
a (y) where y ∈ Rn .

Then, each block F k
a (y) is approximated by an operator depending only on the ath

subvector ya ∈ Rna , fixing the remaining components to those of a known vector, for
instance xk ∈ Rn:

F k
a (y) ≈ Fk

a (ya) = F k
a (ya, x

k
−a) where ya ∈ Rna and xk

−a =
∏

a ̸=j∈A

xk
j ∈ Rn−na .

(26)
With this approximation, (7) amounts to solving separate VI subproblems, each one
of dimension na:

for a ∈ A find (yk+1
a , zk+1

sa ) such that yk+1
a ∈ Kha

and zk+1
sa ∈ Fk

a (y
k+1
a )

satisfy
〈
zk+1
sa , ya − yk+1

a

〉
≥ 0 for all ya ∈ Kha

where Fk
a (ya) is given in (26).

(27)

To see that all the theoretical results in Section 3 remain valid for this approxiomation,
notice first that evaluating each Jacobi block in (26) at ya = xk

a gives the identity

13



F k
a (x

k
a) = Fk

a (x
k
a). Taking the product over all the blocks,

F k(xk
a) = Fk(xk) where Fk(y) =

∏
a∈A

Fk
a (ya) . (28)

As the gap definition in (9) remains the same, both Lemma 2 and Corollary 3 hold.
Regarding the result on asymptotic convergence, a crucial property shown below is
that the Jacobi approximation preserves the monotonicity of the original map. As a
result, the (regularized) Jacobi approximation Fk can always be strongly monotone as
long as F is monotone. Actually, Jacobi approximations need a weaker setting, referred
to as block-wise monotonicity of F . Specifically, monotonicity of the whole operator
F k in Theorem 4 can be replaced by requiring monotonicity of the individual blocks
Fk

a . This relaxed assumption can be useful in cases where F is not monotone but has
blocks which are monotone when some components are fixed. Block-wise monotonicity
occurs naturally, for example, in GNEPs.

To simplify the notation, we illustrate these remarks for the single-valued maps
only.
Proposition 5 (Monotonicity properties of the Jacobi approximation). Consider
Jacobi approximations as in (26), defined for a single-valued operator F k.

If for all a ∈ A the Jacobi blocks Fk
a (ya) are monotone with respect to ya ∈ Rna ,

then the full operator Fk(y) =
∏
a∈A

Fk
a (ya) is monotone with respect to y ∈ Rn .

Proof. By definition of the full Jacobi approximation, we need to show that

∀y, y′ ∈ Rn,
〈
Fk(y)−Fk(y′), y − y′

〉
=

∑
a∈A

〈
Fk

a (ya)−Fk
i (y

′
a), ya − y′a

〉
≥ 0 .

The result follows, because each term in the right hand side is non negative, by
assumption.

The statements in Theorem 4 remain valid when replacing the VI operator F k and
subproblem (7) by the Jacobi approximation Fk and (27). Most of the proof remains
the same, replacing throughout F k by Fk (for instance, using (28) in (21) and (20),
yields (22)).

5 Numerical Results

In order to assess the performance of our proposal, we apply Algorithm 1 to two well-
known problems formulated as quasi-variational inequalities. The first application,
that aims at determining a stable state of equilibrium in an abstract economy, pro-
vides a good setting to illustrate the interest of the Jacobi approximations presented
in Section 4. In the second application, an instance from [17] called the moving-set
problem, we examine the impact of employing different approximations in (5) in the
VI subproblems (7).

14



The employed variants of the DW decomposition in each application are compared
against the direct solution of (1)-(2), without decomposition. The two approaches are
respectively referred to as dw and direct.

All of our runs were done on a computer running Ubuntu 22.04 with AMD Ryzen
Threadripper 1950X processors, featuring 16 cores (32 threads) and 64GB of RAM.
The codes are available in https://github.com/ManoelJardim/DWQVI/tree/main/
DWQVI. The codes were written in Python, calling GAMS [30] and using its Extended
Mathematical Programming (EMP) tools. The EMP tool was introduced in [34] to
ease the GAMS formulation of specific equilibrium problems and their solution using
PATH [35]. We do not assign any parameters for GAMS and use its default values.

5.1 Walrasian Equilibrium Problems

The model introduced in [36], stated here as in [11, 16], is a generalized Nash game
involving firms, consumers, and market players. More precisely, there is one firm pro-
ducing G goods that are bought by C consumers, and a player in charge of finding a
price p for the goods that clears the market (having more firms is possible, but not
essential for this application). The Walrasian equilibrium prices the goods in a manner
that maximizes profit for the firm, utility for the consumers, and clears the market to
the best possible extent.

5.1.1 Problem formulation and QVI blockwise structure

On the demand side, letting i = 1, . . . , C, and given a price p, the ith consumer defines
the goods to be bought, xi ∈ RG, according to preferences determined by a concave
utility function U i(·) and taking into account an initial endowment E ij for each good
(that impacts on the consumer willingness to buy more of the good). The ith consumer
problem is

max
xi≥0

{
U i(xi) :

〈
p, xi

〉
≤

〈
p, E i

〉}
. (29)

The firm, denoted here as player C+1, decides its production of goods, xC+1 ∈ RG,
by solving the problem

max
xC+1≥0

{〈
p, xC+1

〉
:

G∑
j=1

(xC+1
j )2 ≤M

}
, (30)

where the capacity constraint depends on a parameter M > 0 and the price p ∈ RG

is given.
The equilibrium condition means that the supply meets exactly the demand in

every market. Because the economy has G goods and there are endowments, the player
in charge of clearing the market looks for (normalized) prices that solve the problem

max
p≥0

{〈
p,

C∑
i=1

(xi − E i)− xC+1

〉
:

G∑
j=1

pj = 1

}
. (31)

15

https://github.com/ManoelJardim/DWQVI/tree/main/DWQVI
https://github.com/ManoelJardim/DWQVI/tree/main/DWQVI


The Walrasian equilibrium results from reformulating the generalized Nash game
associated with (29), (30), and (31) as a quasi-variational inequality (1)-(2). To this
aim, we rename the market-clearing player solving (31) as agent C+2 and its decision

variable xC+2 = p, so that the decision variable is x =
[
x1 . . . xC xC+1 xC+2

]T
.

For x ∈ R(C+2)G, the game in the format (1)-(2), has the operator

F (x) =

C∏
i=1

(
−∇xiU i(xi)

)
×

 −xC+2

C∑
i=1

(E i − xi) + xC+1

 , (32)

revealing a separable structure in its first C components. The constraint sets in (2) are

Kg(x) =

{
y ∈ R(C+2)G : gi(y, x) =

G∑
j=1

xC+2
j (yij − E ij) ≤ 0, for 1 ≤ i ≤ C

}
,

Kh =

y ∈ R(C+2)G :

 −y
G∑

j=1

(yC+1
j )2 −M

 ≤ 0 and
G∑

j=1

yC+2
j − 1 = 0

 .

(33)

Since the easy constraints are uncoupled for the different players, we separate Kh

following the structure observed in (32). Accordingly, we first define the sets

Ka
h =

{
ya ∈ RG : −ya ≤ 0

}
, if 1 ≤ a ≤ C.

Constraints involving variables with index larger than C are gathered into one set,
indexed by D:

KD
h =

{
yD = (yC+1, yC+2) ∈ RG × RG : −yD ≤ 0 ,

G∑
j=1

(yC+1
j )2 −M ≤ 0 ,

G∑
j=1

yC+2
j − 1 = 0

}
,

so that
for A = {1, . . . , C} ∪ {D} , y =

∏
a∈A

ya and Kh =
∏
a∈A

Ka .

In this notation, the operator in (32) has the blockwise expression

F (y) =

C∏
a=1

Fa(y
a)× FD(y) for


Fa(y

a) = −∇yaUa(ya) if 1 ≤ a ≤ C , and

FD(y) =

 −yC+2

C∑
i=1

(E i − yi) + yC+1

 .

To achieve separability in the VI subproblem operator, we make a Jacobi approxima-
tion for FD, fixing the consumer variables to their value at xk:

F k
D(y) ≈ Fk

D(yD) = F k
D(xk

1 , . . . , x
k
C , y

C+1, yC+2) .

16



Because of the linear dependence on y for g(y, x) in the current setting, any choice for

Γk in (5) reduces to the constant approximation. We take the exact option for F̂ k in
(6).

5.1.2 Solvers, data generation, and results

For the direct solver, we follow the recommendations in [34, Section 3] to describe
GNEPs using EMP. The combination of EMP and GAMS was also employed in dw
to solve all master QVI problems (3) and the VI subproblems (27) for the block
corresponding to a = D. The remaining VI subproblems (27), the consumers’ blocks
a = 1, . . . C, are simple quadratic programs solved calling the CVXOPT package in
Python.

To create random instances for (32)-(33), we follow [11, 16, 17] and consider

quadratic concave utilities U i(xi) = −1

2

〈
xi, Rixi

〉
+
〈
bi, xi

〉
for i = 1, . . . , C .

The vector bi has G normally distributed components ranging between 0 and 10. The
positive semidefinite matrix Ri is created as follows. First a random matrix Ai of order
G is generated, with elements uniformly distributed in [−1, 1]. Then, for Bi = AiTAi,
we set Ri = 10

∥Bi∥∞
Bi, so that Ri elements belong to [−10, 10] regardless the size of G.

Endowments are randomly generated with a uniform distribution in [0, 10]. Finally,
the firm’s capacity M was set at a sufficiently large value to meet the market demand
in the large problems (the chosen value for M had none or little impact in the results).

The numerical experiments were designed by varying the number of consumers C
and goods G, leading to QVI dimensions n = (C + 2)G ranging between 100 and
50,000. The results are grouped in two different benchmarks, noting that 20 different
random instances were run for each considered dimension in all the cases.

In benchmark 1, we fix the number of consumers and vary the number of goods:
(C,G) ∈ {20} × {20, 30, 50, 100, 150, 200, 250}. Both solvers were run until triggering
their respective stopping test. For this benchmark, and as a sanity test, we also checked
that the solutions found by direct and dw were numerically identical.

Table 1 CPU time for solvers direct and dw, and number of dw iterations
with 140 instances of benchmark 1. In each row, the solver in bold face is
the one having the lowest mean time of execution.

n (C,G)
ratio direct time (s) dw time (s) dw iterations
G/C mean max mean max mean max

440 (20,20) 1 0.17 0.19 1.51 2.78 9.75 16
660 (20,30) 1.5 0.27 0.29 1.49 2.28 9.30 12
1,100 (20,50) 2.5 0.59 0.65 1.41 2.65 7.50 13
2,200 (20,100) 5 2.26 2.51 1.21 2.54 5.45 10
3,300 (20,150) 7.5 5.44 5.91 1.30 1.80 4.05 5
4,400 (20,200) 10 10.99 11.87 1.32 2.37 4.25 7
5,500 (20,250) 12.5 19.57 20.97 1.54 1.94 4.05 5

17



As seen in the output reported in Table 1, direct performs with almost instanta-
neous execution times for dimensions up to 1,100. But as the problem size increases,
dw becomes competitive and largely surpasses direct. The benchmark confirms the
positive impact of decomposition: the sequential dw iterative process, solving small
QVI master problems and decoupled VI-subproblems, finds the same solutions as
direct with eventually less computational effort. Table 1 also hints at an interest-
ing phenomenon, related to the values reported in the third column. Specifically, dw
surpasses direct when the ratio G/C is larger than 2.5. Moreover for G/C ≥ 5 the
number of dw iterations and its mean running time remains practically the same, even
though the dimension n grows from 2,200 to 5,500.

0 5000 10000 15000 20000 25000

10 1

100

101

102

103

G=C
G=C/2
G=2C

DIRECT
DW

Fig. 2 Time statistics (median and 25%-75% quantiles) for direct and dw, separating the three
different ratios between goods and consumers in Table 2. For better illustration, three different econ-
omy configurations are plotted separately, in a semilogarithmic scale and barring the last two lines
in the table.

In order to include more configurations favorable to the direct solution, the next
benchmark varies the ratio C/G in {0.5, 1, 2}, generating instances with QVI dimen-
sion n ∈ [120, 40, 400]. Statistics for the corresponding results are reported graphically
in Figure 2, with full details in Table 2.

Figure 2 gives a clear graphical confirmation that, as n increases, dw solving time
remains stable while direct’s exhibits an exponential growth. Also, the wide shaded
areas observed for direct when G = C and G = C/2 correspond to the direct solution
approach being more sensitive than dw to the ration G/C. In the detailed output in

18



Table 2, for different configurations of the economy dw performs better than direct
as soon as the QVI dimension n = (C + 2)G becomes larger than 5,000.

Table 2 CPU time for solvers direct and dw, and number of dw iterations with 540
instances of benchmark 2. In each row, the solver in bold face is the one having the
lowest mean time of execution.

n (C,G) ratio
direct time (s) dw time (s) dw iterations

G/C mean max mean max mean max

120 (10, 10) 1 0.09 0.14 1.04 1.86 7.80 13
220 (20, 10) 0.5 0.11 0.16 2.12 4.06 12.90 22
240 (10, 20) 2 0.13 0.15 1.11 2.02 8.30 14
625 (25, 25) 1 0.25 0.29 2.10 3.21 11.95 17
1,300 (50, 25) 0.5 0.47 0.60 4.99 9.80 19.05 30
1,350 (25, 50) 2 0.73 0.78 1.67 3.28 8.05 14
2,520 (70, 35) 0.5 1.27 2.00 10.09 21.60 23.55 38
2,600 (50, 50) 1 1.49 1.61 3.79 5.69 13.15 18
5,100 (100, 50) 0.5 15.81 65.71 11.53 26.89 21.25 36
5,200 (50, 100) 2 6.10 6.84 2.96 6.56 8.20 16
5,775 (75, 75) 1 8.18 14.21 5.00 8.46 11.75 18
8,580 (130, 65) 0.5 107.90 327.86 13.29 23.29 18.95 28
8,710 (65, 130) 2 19.73 45.98 4.76 8.08 6.95 11
10,200 (100, 100) 1 84.27 638.98 5.96 11.25 10.20 17
11,400 (150, 75) 0.5 260.89 749.89 15.21 29.71 18.35 29
11,550 (75, 150) 2 31.73 82.83 5.74 9.00 6.70 10
14,620 (170, 85) 0.5 513.31 1,499.38 17.73 31.99 18.25 28
15,875 (125, 125) 1 438.68 2,903.90 7.81 11.60 9.30 13
16,560 (90, 180) 2 68.37 195.74 4.18 8.38 5.40 10
20,200 (200, 100) 0.5 953.97 2,420.30 18.08 31.22 15.85 24
20,400 (100, 200) 2 75.97 113.51 4.34 9.13 4.90 9
22,800 (150, 150) 1 450.60 2,331.93 13.01 24.37 8.15 14
24,420 (220, 110) 0.5 1,638.28 4,765.29 21.32 37.76 15.80 24
24,640 (110, 220) 2 156.74 604.68 5.24 8.32 4.85 7
30,975 (175, 175) 1 583.40 5,192.05 9.23 21.55 6.25 13
31,750 (125, 250) 2 179.81 306.53 5.31 5.47 4.00 4
40,400 (200, 200) 1 1,186.40 9,133.32 10.12 22.72 6.10 12

For both solvers, the lower the ratio G/C, the harder the problem becomes, because
of the number of constraints. In all the considered instances, dw took less than 20
seconds in average, while direct times varied between 0.09 seconds and 30 minutes.
As hinted by the shaded areas in Figure 2 and noticeable in the fifth column in Table 2,
direct’s maximum execution times appear to be highly sensitive to the economy
configuration.

5.2 Moving Set Problems

We now turn our attention to problems MovSet3A1, MovSet3B1, MovSet3A2, and
MovSet3B2 from [17], see also [16]. In these problems, there is no h constraint and
g(x, y) depends quadratically on y.

19



Given positive dinite matrices A,R ∈ Rn×n, B ∈ Rn×n, b ∈ Rn, and d ∈ R, the
QVI operator in (1) and constraint sets in (2) are

F (x) = Ax+ b for x ∈ Rn ,
Kg(x) = {y ∈ Rn : g(y, x) = ⟨R(y −Bx), y −Bx⟩ − d ≤ 0}, and Kh = Rn .

As ∇yg(y, x) = 2R(y − Bx), the setting is suitable to analyze the impact of dif-
ferent values of ω for Γk

j (y) in (5). Since F is a linear operator, we take the (exact)

approximation F̂ k(y) = F (y) in (6), which yields, for ωk ∈ [0, 1] and µk ≥ 0, the
following VI operator:

F k(y) = Ay + b+
(
(1− ωk)2k(Ry −Bxk) + ωk2(R−B)xk

)
µk .

As Kh = Rn, in this case subproblems (7) are simple linear systems of equations on y.
The comparison with direct is reported in Table 3, indicating with bold face the

fastest solver for each run. For this simple test set, subproblems are solved with no

Table 3 MovSet problems using different ω in Γk for DW.

Problem n direct (s) DW (s) DW (s) DW (s)
ω = 1 ω = 0 ω = 0.5

MovSet3A1 1,000 51.97 1.71 (11 it.) 0.74 (5 it.) 0.83 (6 it.)
MovSet3B1 1,000 50.88 1.64 (11 it.) 0.72 (5 it.) 0.90 (6 it.)
MovSet3A2 2,000 285.02 4.60 (12 it.) 1.90 (5 it.) 3.00 (7 it.)
MovSet3B2 2,000 284.24 4.44 (11 it.) 1.75 (5 it.) 1.92 (6 it.)

effort and it is best to include the full information of the relaxed constraint g (ω = 0
i.e. the free option in (5)).

Declarations

Conflicts of Interest. The authors declare that they have no conflict of interest of any kind

related to the manuscript.

Acknowledgements. The second author is supported by CNPq Grant
307509/2023-0 and by PRONEX–Optimization. The third author is supported in
part by CNPq Grant 306775/2023-9, by FAPERJ Grant E-26/200.347/2023, and by
PRONEX–Optimization.

The authors thank to Professor Paulo J. S. Silva from UNICAMP for facilitating
the access to IMECC’s computational resources that were necessary for conducting
our numerical experiments.

20



References

[1] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Com-
plementarity Problems. Springer Series in Operations Research and Financial
Engineering. Springer, New York (2004). https://doi.org/10.1007/b97543

[2] Kanzow, C., Steck, D.: Quasi-variational inequalities in Banach spaces: The-
ory and augmented Lagrangian methods. SIAM Journal on Optimization 29(4),
3174–3200 (2019) https://doi.org/10.1137/18m1230475

[3] Bensoussan, A., Goursat, M., Lions, J.L.: Controle impulsionnel et inequations
quasi-variationnelles stationnaires. Comptes Rendus de l’Académie des Sciences
Paris, Series A 276, 1279–1284 (1973)

[4] Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Prob-
lems with Equilibrium Constraints. Springer, US (1998). https://doi.org/10.1007/
978-1-4757-2825-5

[5] Kravchuk, A.S., Neittaanmäki, P.J.: Variational and Quasi-Variational Inequal-
ities in Mechanics. Springer, Netherlands (2007). https://doi.org/10.1007/
978-1-4020-6377-0

[6] Scrimali, L.: Quasi-variational inequalities in transportation networks. Math-
ematical Models and Methods in Applied Sciences 14(10), 1541–1560 (2004)
https://doi.org/10.1142/s0218202504003714

[7] Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Euro-
pean Journal of Operational Research 54(1), 81–94 (1991) https://doi.org/10.
1016/0377-2217(91)90325-p

[8] Aussel, D., Donato, M.B., Milasi, M., Sultana, A.: Existence results for quasi-
variational inequalities with applications to Radner equilibrium problems: Resolu-
tion through variational inequalities. Set-Valued and Variational Analysis 29(4),
931–948 (2021) https://doi.org/10.1007/s11228-021-00608-x

[9] Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3),
173–210 (2007) https://doi.org/10.1007/s10288-007-0054-4

[10] Fukushima, M.: A class of gap functions for quasi-variational inequality problems.
Journal of Industrial and Management Optimization 3(2), 165–171 (2007) https:
//doi.org/10.3934/jimo.2007.3.165

[11] Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash
equilibrium problems. SIAM Journal on Optimization 20(5), 2228–2253 (2010)
https://doi.org/10.1137/090749499

21

https://doi.org/10.1007/b97543
https://doi.org/10.1137/18m1230475
https://doi.org/10.1007/978-1-4757-2825-5
https://doi.org/10.1007/978-1-4757-2825-5
https://doi.org/10.1007/978-1-4020-6377-0
https://doi.org/10.1007/978-1-4020-6377-0
https://doi.org/10.1142/s0218202504003714
https://doi.org/10.1016/0377-2217(91)90325-p
https://doi.org/10.1016/0377-2217(91)90325-p
https://doi.org/10.1007/s11228-021-00608-x
https://doi.org/10.1007/s10288-007-0054-4
https://doi.org/10.3934/jimo.2007.3.165
https://doi.org/10.3934/jimo.2007.3.165
https://doi.org/10.1137/090749499


[12] Kanzow, C.: On the multiplier-penalty-approach for quasi-variational inequal-
ities. Mathematical Programming 160(1–2), 33–63 (2016) https://doi.org/10.
1007/s10107-015-0973-3

[13] Kanzow, C., Steck, D.: Augmented Lagrangian and exact penalty methods
for quasi-variational inequalities. Computational Optimization and Applications
69(3), 801–824 (2017) https://doi.org/10.1007/s10589-017-9963-0

[14] Hintermüller, M., Rautenberg, C.N.: A sequential minimization technique for
elliptic quasi-variational inequalities with gradient constraints. SIAM Journal on
Optimization 22(4), 1224–1257 (2012) https://doi.org/10.1137/110837048

[15] Outrata, J.V., Zowe, J.: A Newton method for a class of quasi-variational
inequalities. Computational Optimization and Applications 4(1), 5–21 (1995)
https://doi.org/10.1007/bf01299156

[16] Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities
via their KKT conditions. Mathematical Programming 144(1–2), 369–412 (2013)
https://doi.org/10.1007/s10107-013-0637-0

[17] Facchinei, F., Kanzow, C., Sagratella, S.: QVILIB: A
library of quasi-variational inequality test problems. (2012).
https://api.semanticscholar.org/CorpusID:119087660

[18] Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational
inequalities. Operations Research Letters 35(2), 159–164 (2007) https://doi.org/
10.1016/j.orl.2006.03.004

[19] Kulkarni, A.A., Shanbhag, U.V.: On the variational equilibrium as a refinement
of the generalized Nash equilibrium. Automatica 48(1), 45–55 (2012) https://doi.
org/10.1016/j.automatica.2011.09.042

[20] Luna, J.P., Sagastizábal, C., Solodov, M.: In: Kovacevic, R.M., Pflug, G.C.,
Vespucci, M.T. (eds.) Complementarity and Game-Theoretical Models for Equi-
libria in Energy Markets: Deterministic and Risk-Averse Formulations, pp. 231–
258. Springer, Boston, MA (2013). https://doi.org/10.1007/978-1-4614-9035-7
10

[21] Aussel, D., Sagratella, S.: Sufficient conditions to compute any solution of a quasi-
variational inequality via a variational inequality. Mathematical Methods of Oper-
ations Research 85(1), 3–18 (2016) https://doi.org/10.1007/s00186-016-0565-x

[22] Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs.
Econometrica 29(4), 767 (1961) https://doi.org/10.2307/1911818

[23] Fuller, J.D., Chung, W.: Dantzig-Wolfe decomposition of variational inequali-
ties. Computational Economics 25(4), 303–326 (2005) https://doi.org/10.1007/

22

https://doi.org/10.1007/s10107-015-0973-3
https://doi.org/10.1007/s10107-015-0973-3
https://doi.org/10.1007/s10589-017-9963-0
https://doi.org/10.1137/110837048
https://doi.org/10.1007/bf01299156
https://doi.org/10.1007/s10107-013-0637-0
https://doi.org/10.1016/j.orl.2006.03.004
https://doi.org/10.1016/j.orl.2006.03.004
https://doi.org/10.1016/j.automatica.2011.09.042
https://doi.org/10.1016/j.automatica.2011.09.042
https://doi.org/10.1007/978-1-4614-9035-7_10
https://doi.org/10.1007/978-1-4614-9035-7_10
https://doi.org/10.1007/s00186-016-0565-x
https://doi.org/10.2307/1911818
https://doi.org/10.1007/s10614-005-2519-x
https://doi.org/10.1007/s10614-005-2519-x


s10614-005-2519-x

[24] Chung, W., Fuller, J.D.: Subproblem approximation in Dantzig-Wolfe decompo-
sition of variational inequality models with an application to a multicommodity
economic equilibrium model. Operations Research 58(5), 1318–1327 (2010) https:
//doi.org/10.1287/opre.1090.0803

[25] Luna, J.P., Sagastizábal, C., Solodov, M.: A class of Dantzig–Wolfe type decom-
position methods for variational inequality problems. Mathematical Programming
143(1–2), 177–209 (2012) https://doi.org/10.1007/s10107-012-0599-7

[26] Luna, J.P., Sagastizábal, C., Solodov, M.: An approximation scheme for a class
of risk-averse stochastic equilibrium problems. Math. Program. 157(2), 451–481
(2016) https://doi.org/10.1007/s10107-016-0988-4

[27] Luna, J.P., Sagastizábal, C., Solodov, M.: A class of Benders decomposition meth-
ods for variational inequalities. Comput. Optim. Appl. 76(3), 935–959 (2020)
https://doi.org/10.1007/s10589-019-00157-y

[28] Deride, J., Jofré, A., Wets, R.J.-B.: Solving deterministic and stochastic equi-
librium problems via augmented walrasian. Computational Economics 53(1),
315–342 (2019) https://doi.org/10.1007/s10614-017-9733-1

[29] Borges, P., Sagastizábal, C., Solodov, M.: Decomposition algorithms for
some deterministic and two-stage stochastic single-leader multi-follower
games. Comput. Optim. Appl. 78(3), 675–704 (2021) https://doi.org/10.1007/
s10589-020-00257-0

[30] GAMS: General Algebraic Modeling System Release 40.3.0. Fairfax, VA, USA
(2022). Release Date: Sep 16, 2022. Available for download at https://www.gams.
com/download/

[31] Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Michigan
Mathematical Journal 16(4) (1969) https://doi.org/10.1307/mmj/1029000324

[32] Burachik, R.S., Iusem, A.N.: Maximal Monotone Operators, pp. 121–159.
Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-69757-4 .
https://doi.org/10.1007/978-0-387-69757-4

[33] Solodov, M.V.: Constraint Qualifications. John Wiley and Sons, Ltd, Chichester,
UK (2011). https://doi.org/10.1002/9780470400531.eorms0978

[34] Kim, Y., Ferris, M.C.: Solving equilibrium problems using extended mathematical
programming. Mathematical Programming Computation 11(3), 457–501 (2019)
https://doi.org/10.1007/s12532-019-00156-4

[35] Dirkse, S.P., Ferris, M.C.: The PATH solver : A nonmonotone stabilization scheme

23

https://doi.org/10.1007/s10614-005-2519-x
https://doi.org/10.1007/s10614-005-2519-x
https://doi.org/10.1007/s10614-005-2519-x
https://doi.org/10.1287/opre.1090.0803
https://doi.org/10.1287/opre.1090.0803
https://doi.org/10.1007/s10107-012-0599-7
https://doi.org/10.1007/s10107-016-0988-4
https://doi.org/10.1007/s10589-019-00157-y
https://doi.org/10.1007/s10614-017-9733-1
https://doi.org/10.1007/s10589-020-00257-0
https://doi.org/10.1007/s10589-020-00257-0
https://www.gams.com/download/
https://www.gams.com/download/
https://doi.org/10.1307/mmj/1029000324
https://doi.org/10.1007/978-0-387-69757-4
https://doi.org/10.1002/9780470400531.eorms0978
https://doi.org/10.1007/s12532-019-00156-4


for mixed complementarity problems. Optimization Methods and Software 5,
123–156 (1995)

[36] Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy.
Econometrica 22(3), 265 (1954) https://doi.org/10.2307/1907353

24

https://doi.org/10.2307/1907353

	Introduction
	Dantzig-Wolfe decomposition for QVI
	General organization and master QVI definition
	Subproblem definition

	Algorithm statement and its convergence
	Gap function and finite termination
	Asymptotic convergence of Algorithm 1

	Block-Separable Approximations
	Numerical Results
	Walrasian Equilibrium Problems
	Problem formulation and QVI blockwise structure
	Solvers, data generation, and results

	Moving Set Problems
	Acknowledgements



