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Abstract. The VU-theory for nonsmooth functions and the associated space decomposition have been used4
for studying the structure of nonsmoothness and for developing algorithms with superlinear convergence in those5
challenging (for fast convergence) settings. We extend the theory by defining a certain bivariate U-Lagrangian6
function and the partial U-Hessian. Utilizing smoothness properties of the new U-Lagrangian we develop the7
Proximal Gradient VU-method for continuous nonsmooth convex optimization, and show its superlinear convergence8
under natural assumptions. The framework consists of a V-step which is a prox-gradient step, and a U-step which9
can be considered as a quasi-Newton step applied to the U-Lagrangian. We show that partial U-Hessians exist for10
most partly smooth functions. As an example, our method is applied to solving ℓ1-regularized problems. We exhibit11
the explicit process of constructing a basis of the U-space and of calculating the U-Hessian. We conclude with12
numerical results illustrating the method’s performance.13
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1. Introduction. We consider the problem17

(1.1) min
𝑥∈R𝑛

𝑓 (𝑥) , where 𝑓 : R𝑛 → R is a nonsmooth convex function .18

The VU-theory introduced in [20, 22] (closely related to partial smoothness [24]) has been19
used for the study of smooth structures in nonsmooth functions in [30, 21, 32, 34, 7, 2].20
As explained in [42, 28], nonsmoothness is particularly difficult for fast (i.e., superlinear)21
convergence. Despite this challenging context, the VU-theory provides a favorable setting22
for the development of superlinearly convergent algorithms [39, 35, 11, 13, 3]; see also [25, 40].23
The approach is to decompose the space R𝑛 into two orthogonal subspaces called V and U,24
depending on a point 𝑥. The V-space is defined to be the subspace parallel to the affine25
hull of the subdifferential 𝜕 𝑓 (𝑥), and U consists of the directions such that the directional26
derivative 𝑓 ′ (𝑥; ·) is linear. Roughly speaking, the V and U spaces are defined so that near27
the point 𝑥 the nonsmoothness of 𝑓 is captured in the V-space and the smoothness of 𝑓 is28
captured in the U-space. Through a parametrized Lagrangian defined on the U-space, called29
the U-Lagrangian, second-order Taylor expansions of 𝑓 in U can be obtained if a generalized30
Hessian (called U-Hessian) exists for the U-Lagrangian.31

In the original VU-algorithm [22], the V-step minimizes a prox-regularization of 𝑓 in32
the V-subspace, and the U-step makes a Newton-type step in the U-subspace of the U-33
Lagrangian (where the U-Lagrangian looks smooth). The superlinear convergence requires34
the existence of a positive definite U-Hessian. This conceptual approach did not address how35
to identify the VU-geometry along an algorithmic procedure. In order to pass from theory36
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2 S. LIU, C. SAGASTIZÁBAL, AND M. SOLODOV

to computational implementation, it is important to examine the structure of (nonsmooth)37
functions. The specific VU-theory for finite-max functions and the numerical analysis of the38
relevant VU-objects were considered in [29] and [11]. A more general class of functions39
given in [30, 32], said to have primal-dual-gradient (PDG) structure, identifies a fast track,40
which are points from where fast Newton-type steps are possible. Links with the VU-theory41
of partly smooth functions are the subject of [15, 26, 10, 14]. In particular, [14, Theorem 3.2]42
establishes a one-to-one correspondence with the fast track and the active manifold of a partly43
smooth function.44

An important step towards implementable VU algorithms is [31], where it is shown that45
proximal points are on the fast track. This result suggests that the V-step can be implemented46
by a prox-step on 𝑓 when it is easy to compute, or by a bundle method [18] that approximates47
this step by computing proximal points of succesive cutting-planes models of 𝑓 . Fully imple-48
mentable (fast)VU-algorithms for solving (1.1) are scarce, because they need to approximate49
sufficiently well both the (exact proximal) V-step and the (exact) U-Newton direction. Gen-50
erally, this involves solving at least two quadratic programming problems per iteration. Such51
is the case of [35], the first VU-algorithm for problems like (1.1), where no specific structure52
for 𝑓 is required. The work [36] proposes two sequential Newtonian methods based on local53
parameterizations obtained from relatingVU-theory with Riemannian geometry. Like for the54
VU-theory, considering a family of functions with specific properties leads to more targeted55
implementations. For maximum eigenvalue and convex finite-max functions, we mention [39]56
and [13]. How the VU-decomposition can be iteratively constructed by bundle methods for57
a certain class that includes max-functions is explored in [7].58

When 𝑓 in (1.1) has additive structure as in (3.1) further below, subtle geometrical59
properties of the proximal operator allow [2] to asymptotically detect the correct V-step by60
means of a proximal gradient (PG) method [4]. Depending on the nonsmooth term, this61
calculation is explicit, or entails solving a simple quadratic program. The U-step corrects the62
PG iterate by a certain Newton-like direction, computed by solving a (possibly another, second)63
quadratic programming problem. When applied to the same class of functions, our proposal64
eliminates the latter second quadratic program, thanks to a suitable shifting of the optimal65
subgradient resulting from the PG iterate calculation. The full corresponding algorithm,66
named Proximal Gradient VU method or PGVU for short, is given in Algorithm 3.1 below.67

In order to analyze convergence of the PGVU method, an important extension of the68
VU-theory is needed. In all the mentioned studies, given a point 𝑥 ∈ R𝑛, the U-Lagrangian69
is a single-variable function, defined considering a subgradient 𝑔 ∈ 𝜕 𝑓 (𝑥) as a parameter.70
But in the algorithmic setting we have to deal with a sequence of subgradients (𝑔𝑘 ∈ 𝜕 𝑓 (𝑥𝑘)71
at iteration 𝑘), that change the parameter defining the U-Lagrangian along iterations. As72
illustrated by Example 2.2 below, with more than one fast track converging to a minimizer 𝑥,73
different subgradients yield U-Lagrangians associated with different fast tracks. To prevent74
possible oscillatory behaviour, in our U-Lagrangian definition, the subgradient is no longer75
a parameter, but another variable. Accordingly, we extend the theories to such bivariate76
U-Lagrangian, defining a partial U-Hessian as the general partial Hessian of the new U-77
Lagrangian. Properties that hold for the single-variable U-Lagrangian are now shown to hold78
for the bivariate U-Lagrangian. Thanks to our extended VU-theory, the proposed Proximal79
Gradient VU-method has superlinear convergence, requiring only the (natural, for potential80
fast convergence) assumptions of the existence of a positive-definite U-Hessian at a solution81
𝑥 such that 0 ∈ ri 𝜕 𝑓 (𝑥). Moreover, we show that any convex partly smooth function that82
satisfies 0 ∈ ri 𝜕 𝑓 (𝑥) automatically has a partial U-Hessian. Finally, we demonstrate the83
constructive process through the application of PGVU to ℓ1-regularized minimization.84

The rest of the paper is organized as follows. In the remaining part of Section 1 we85
introduce the notation. In Section 2, we lay out the foundation of VU-theory for the86
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PROXIMAL GRADIENT VU-METHOD 3

development of our Proximal Gradient VU-method. We give the definition and smoothness87
properties of the bivariate U-Lagrangian function and show that computing the proximal88
point can serve as the V-step. In Section 3, we give the details of our PGVU-method and89
show its global convergence. The definition of a partial U-Hessian is given in Section 490
and, under the assumption of a positive definite partial U-Hessian and 0 ∈ ri 𝜕 𝑓 (𝑥), we91
prove that PGVU is superlinearly convergent. In Section 4.2, we show that all convex partly92
smooth functions satisfying 0 ∈ ri 𝜕 𝑓 (𝑥) have a partial U-Hessian at 𝑥. Section 5 applies the93
proposed Proximal Gradient VU-method to ℓ1-regularized minimization. We first verify the94
existence of a U-Hessian. Then we provide an inexact prox-step as the V-step and construct95
a basis for the U-space. Numerical results reported at the end of this section show that PGVU96
performs well both in terms of computational time and accuracy. Concluding remarks are97
given in Section 6.98

Notation. We mostly follow [41]. Let R = [−∞,∞]. By 𝜕 𝑓 (𝑥) we denote the limiting99
subdifferential of 𝑓 at 𝑥, and by 𝜕∞ 𝑓 the horizon subdifferential of 𝑓 . This is needed to100
refer to some cited results. Of course, for a convex finite-valued 𝑓 , 𝜕 𝑓 (𝑥) is is the usual101
subdifferential in Convex Analysis. The notation 𝑓 ′ (𝑥; 𝑑) is the directional derivative at 𝑥 in102
the direction 𝑑. For a smooth bivariate function 𝑓 (𝑥, 𝑦), ∇𝑥 𝑓 (𝑥, 𝑦) and ∇2

𝑥𝑥 𝑓 (𝑥, 𝑦) are the103
partial gradient and partial Hessian of 𝑓 with respect to the variable 𝑥. For given points 𝑥104
and �̄�, the partial subdifferential 𝜕𝑥 𝑓 (𝑥, �̄�) is defined to be the subdifferential of 𝑓 (·, �̄�) at105
𝑥. The indicator function of a convex set 𝐶 is 𝛿𝐶 (·) and its interior and relative interior are106
respectively int𝐶 and ri𝐶. The distance of a point 𝑥 to a set 𝐶 is dist(𝑥;𝐶) := inf𝑧∈𝐶 ∥𝑧 − 𝑥∥ .107
The Euclidean closed ball in R𝑛 centered at 𝑥 with radius 𝜖 ≥ 0 is denoted by 𝐵(𝑥, 𝜖) and108
the ball in R𝑚 is 𝐵𝑚 (𝑥, 𝜖). For a function 𝑓 , its minimal value is denoted by 𝑓 ∗ and its109
set of minimizers by 𝑆. The vector 𝑒 𝑗 ∈ R𝑛 has all of its components null, except for110
𝑒
𝑗

𝑗
= 1. Regarding convergence rates, the notation “little o" in [38] for scalars is used for111

vectors, as follows. For vector sequences R𝑛 ⊃ {𝑥𝑘} → 𝑥 and R𝑚 ⊃ {𝑦𝑘} → �̄�, and112
for ∥ · ∥ the Euclidean norm in the corresponding space, 𝑥𝑘 = 𝑜(𝑦𝑘) is short hand for113
“∀𝜀 > 0 , ∃𝐾 : ∥𝑥𝑘 ∥ ≤ 𝜀∥𝑦𝑘 ∥ for all 𝑘 ≥ 𝐾” . The notation for “big O" term is used in a114
similar manner. The class of twice continuously differentiable functions is C2 .115

2. Elements of the VU-theory. We start with the definition of the two subspaces in116
question.117

Definition 2.1 (VU-decomposition). Given a convex function 𝑓 : R𝑛 → R and a point118
𝑥, the VU-decomposition of R𝑛 associated with 𝑓 and 𝑥 is defined by the subspaces119

V(𝑥) = span(𝜕 𝑓 (𝑥) − 𝑔), U(𝑥) = V(𝑥)⊥ ,120

where 𝑔 is an arbitrary subgradient in 𝜕 𝑓 (𝑥).121

The respective dimensions are 𝑚 = dimU(𝑥) and 𝑛 − 𝑚 = dimV(𝑥). As vector spaces,122
V(𝑥) and U(𝑥) are endowed with a scalar product and norm induced from R𝑛. When clear123
from the context, the short forms V and U are used below.124

The algebraic form of the decomposition depends on two matrices:125

R𝑛×𝑚 ∋ 𝑈 : = a matrix whose columns form an orthonormal basis for U
R𝑛×(𝑛−𝑚) ∋ 𝑉 : = a matrix whose columns form a basis for V ,

with Moore-Penrose pseudo-inverse 𝑉† := (𝑉 ᵀ𝑉)−1
𝑉 ᵀ .

126

More specifically, the U-and V-components of any 𝑥 ∈ R𝑛 are defined by127

𝑥𝑢 := 𝑈ᵀ𝑥, 𝑥𝑣 := 𝑉†𝑥 .128
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4 S. LIU, C. SAGASTIZÁBAL, AND M. SOLODOV

By the definitions of V and U, the set𝑈ᵀ𝜕 𝑓 (𝑥) is a singleton, and hence,129

(2.1) �̄�𝑢 := 𝑈ᵀ𝑔 for any 𝑔 ∈ 𝜕 𝑓 (𝑥) .130

2.1. The U-Lagrangian. Given �̄� ∈ 𝜕 𝑓 (𝑥), the single-variable U-Lagrangian of 𝑓 is131

R𝑚 ∋ 𝑢 ↦→ 𝐿
�̄�

𝑈
(𝑢) := inf

𝑤∈R𝑛−𝑚

{
𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) −

〈
�̄�𝑣 , 𝑉

ᵀ𝑉𝑤
〉}
.132

The associated set of V-space minimizers is133

𝑊 �̄� (𝑢) :=
{
𝑤 ∈ R𝑛−𝑚 : 𝐿�̄�

𝑈
(𝑢) = 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) −

〈
�̄�𝑣 , 𝑉

ᵀ𝑉𝑤
〉}
.134

By its definition, the U-Lagrangian is finite-valued and convex on R𝑛. When, in addition,135
�̄�𝑣 ∈ 𝑉† ri 𝜕 𝑓 (𝑥), it is shown in [22, Theorem 3.2, Theorem 3.3(ii)] that136

𝑊 �̄� (0) = {0} , 𝐿�̄�
𝑈
(0) = 𝑓 (𝑥), 𝐿�̄�

𝑈
is differentiable at 0 with ∇𝐿�̄�

𝑈
(0) = ∇ 𝑓�̄� (0) = �̄�𝑢 .(2.2)137

Evaluating the U-Lagrangian at some V-minimizer yields the following special first-order138
expansion for 𝑓 :139

∀𝑤�̄� (𝑢) ∈ 𝑊 �̄� (𝑢), 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤�̄� (𝑢)) = 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ +
〈
�̄�𝑣 , 𝑉

ᵀ𝑉𝑤�̄� (𝑢)
〉
+ 𝑜(𝑈𝑢) .140

When, in addition, second-order approximation for 𝑓 exists along the U-subspace, a Newton-141
like step is possible, opening the way to superlinearly convergent schemes; see Sections 2.3142
and 4 below.143

In the sequel, we shall introduce an important advance with respect to the previous VU-144
literature. It has to do with the following considerations. Note that the original U-Lagrangian145
from [22] was defined for some fixed �̄� ∈ ri 𝜕 𝑓 (𝑥). While it is true that (2.1) guarantees146
that the U-component �̄�𝑢 is the same for all �̄� ∈ 𝜕 𝑓 (𝑥), the argument is not valid for the147
V-component �̄�𝑣 . If, as in the example below, the value of �̄�𝑣 modifies the V-minimizer,148
different U-Lagrangians emerge from different �̄�𝑣 .149

Example 2.2 (A function with structured nonsmoothness). Given a scalar 𝑎 > 0, for150
(𝑢, 𝑣) ∈ R2 the function151

𝐹 (𝑢, 𝑣) = max
{ 𝑎

2
𝑢2, |𝑣 |

}
=
𝑎

2
𝑢2 + max

{
0, |𝑣 | − 𝑎

2
𝑢2
}

152

is differentiable everywhere except for points satisfying the equation |𝑣 | = 𝑎
2 𝑢

2. Its unique153
minimizer is 𝑥 = (0, 0), where the subdifferential is 𝜕𝐹 (𝑥) = {0} × [−1, 1]. Figure 2.1 shows154
that the graph of 𝐹 is U-shaped along the 𝑢-axis and V-shaped along the 𝑣-axis. The VU-155
decomposition at 𝑥 gives U = R× 0 and V = 0×R. Then for any �̄� ∈ ri 𝜕𝐹 (𝑥) = 0× (−1, 1)156
we have �̄�𝑣 ∈ (−1, 1). (When clear that a point is in R×0 or 0×R, we omit the 0 component.)157
Working out the calculations of the three cases for the V-minimizers, we obtain that158

𝑊 �̄� (𝑢) =

{
𝑎
2 𝑢

2} , if �̄�𝑣 ∈ (0, 1),{
𝑣 : |𝑣 | ≤ 𝑎

2 𝑢
2} , if �̄�𝑣 = 0,{

− 𝑎
2 𝑢

2} , if �̄�𝑣 ∈ (−1, 0).
=⇒ 𝐿

�̄�

𝑈
(𝑢) = (1 − |�̄�𝑣 |)

𝑎

2
𝑢2 .159

Notice the dependence of the U-Lagrangian on the chosen subgradient.160
For functions with structured nonsmoothness, the VU-decomposition is useful to reveal161

hidden smoothness. For 𝐹, this relates to the trajectory below:162

𝜒�̄� (𝑢) =
{
𝑥 + (𝑢, 𝑣�̄� (𝑢)) : for 𝑢 ∈ R and 𝑣�̄� (𝑢) = 𝑎

2
sign(�̄�𝑣)𝑢2 ∈ 𝑊 �̄� (𝑢)

}
.163
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Fig. 2.1: Function 𝐹 in Example 2.2, the associated V-minimizers, and fast tracks

In the parlance of [31], this is a fast track along which 𝐹 can be expanded up to second order:164

𝐹 (𝜒�̄� (𝑢)) = 𝑎

2
𝑢2, ∇𝑢𝐹 (𝜒�̄� (𝑢)) = 𝑎𝑢, and ∇2

𝑢𝑢𝐹 (𝜒�̄� (𝑢)) = 𝑎 .165

The fast track {(𝑢, 𝑎2 𝑢
2)} in Figure 2.1 is obtained with �̄� = 0.166

The situation illustrated by Example 2.2, with trajectories of smoothness depending on167
the choice of the subgradient �̄�, motivates the consideration of a bivariate U-Lagrangian,168
introduced in this work.169

2.2. Two-variable U-Lagrangian. Pursuing further the analysis of the impact of 𝑔𝑣170
on the U-objects, we now consider extending the VU-decomposition theory to a setting in171
which 𝑔𝑣 is an argument of the U-Lagrangian. Rather than depending only on 𝑢, the function172
has primal and dual variables, that is, (𝑢, �̄�𝑣) ∈ R𝑚 × R𝑛−𝑚.173

Definition 2.3 (U-Lagrangian with two variables). The bivariate U-Lagrangian of 𝑓174
is defined from R𝑚 ×𝑉†𝜕 𝑓 (𝑥) to R as follows:175

R𝑚 ×𝑉†𝜕 𝑓 (𝑥) ∋ (𝑢, 𝑔𝑣) ↦→ 𝐿𝑈 (𝑢, 𝑔𝑣) := inf𝑤∈R𝑛−𝑚 { 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) − ⟨𝑔𝑣 , 𝑉 ᵀ𝑉𝑤⟩} ,176

and the associated set of V-space minimizers is177

𝑊 (𝑢, 𝑔𝑣) :=
{
𝑤 ∈ R𝑛−𝑚 : 𝐿𝑈 (𝑢, 𝑔𝑣) = 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) −

〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤
〉}
.178

The notation in this work, 𝐿𝑈 (𝑢, �̄�𝑣), should not be confused with [31], where only 𝑢 is a179
variable, and the semicolon in 𝐿𝑈 (𝑢; �̄�𝑣) is used to expose that �̄�𝑣 is a parameter.180

The set ri 𝜕 𝑓 (𝑥) := {𝑔 ∈ R𝑛 : 𝑔 + int 𝐵(0, 𝜂) ∩ V ⊂ 𝜕 𝑓 (𝑥) for some 𝜂 > 0} defines the181
subdifferential relative interior. For each 𝑔 ∈ ri 𝜕 𝑓 (𝑥), we have 𝑈�̄�𝑢 + 𝑉𝑔𝑣 + 𝜂𝑉𝑤

∥𝑉𝑤 ∥ ∈ 𝜕 𝑓 (𝑥)182
for all 𝑤 ∈ R𝑛−𝑚 and the convexity of 𝑓 implies that, for any (𝑢, 𝑤) ∈ R𝑚 × R𝑛−𝑚, it holds183
that184

(2.3) 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) ≥ 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ +
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤
〉
+ 𝜂∥𝑉𝑤∥ .185

In order to properly deal with variations on the U-component in a manner that is uniform186
relative to interior subgradients, for a small positive number 𝜂, we define the closed subset187

(2.4) 𝜂- ri 𝜕 𝑓 (𝑥) := {𝑔 ∈ R𝑛 : 𝑔 + 𝐵(0, 𝜂) ∩ V ⊂ 𝜕 𝑓 (𝑥)} and let 𝐺𝑣 (𝑥) := 𝑉†𝜂- ri 𝜕 𝑓 (𝑥) .188
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To show some continuity and smoothness properties of theU-objects, we consider (𝑢, 𝑔𝑣)189
as a perturbation parameter in a family of parametric minimization problems with value190
function equal to the U-Lagrangian, and solution mapping equal to the set of V-minimizers.191

Lemma 2.4. Given 𝐺𝑣 (𝑥) from (2.4), the mapping192

Φ(𝑤, 𝑢, 𝑔𝑣) := 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) −
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤
〉
+ 𝛿𝐺𝑣 ( �̄� ) (𝑔𝑣) ,193

defined from R𝑛−𝑚×R𝑚×R𝑛−𝑚 to R, is proper, lsc, and level-bounded in 𝑤 locally uniformly194
in (𝑢, 𝑔𝑣); see [41, Definition 1.16].195

Proof. Clearly, Φ is proper because 𝑓 is finite-valued and Φ is lsc by the continuity196
of 𝑓 and closedness of 𝐺𝑣 (𝑥), which follows from the definitions in (2.4). To show the197
property of uniform level-boundedness, for all 𝛼 ∈ R consider the mapping 𝑆𝛼 (𝑢, 𝑔𝑣) := {𝑤 :198
Φ(𝑤, 𝑢, 𝑔𝑣) ≤ 𝛼}. This mapping is nonempty (and can be unbounded) only when 𝑔𝑣 ∈ 𝐺𝑣 (𝑥),199
in which case200

𝑆𝛼 (𝑢, 𝑔𝑣) = {𝑤 : 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) −
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤
〉
≤ 𝛼} .201

In view of (2.3), for any such 𝑔𝑣 and (𝑢, 𝑤) ∈ R𝑚+𝑝 with 𝑤 an element of 𝑆𝛼 (𝑢, 𝑔𝑣),202
we have 𝛼 ≥ 𝑓 (𝑥 + 𝑈𝑢 + 𝑉𝑤) − ⟨𝑔𝑣 , 𝑉 ᵀ𝑉𝑤⟩ ≥ 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ + 𝜂∥𝑉𝑤∥ , and therefore,203
𝑆𝛼 (𝑢, 𝑔𝑣) ⊂ 𝑇 (𝑢, 𝑔𝑣) := {𝑤 : 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ + 𝜂∥𝑉𝑤∥ ≤ 𝛼} . By [41, Example 5.17(b)],204
it suffices to show that 𝑆𝛼 is uniformly bounded below. We first derive a uniform local205
bound for the larger mapping 𝑇 , by considering (𝑢, 𝑔𝑣) ∈ 𝐵(�̄�, 𝜖) × 𝐺𝑣 (𝑥) ∩ 𝐵(�̄�𝑣 , 𝜖) , for206
some (�̄�, �̄�𝑣) ∈ R𝑚 × 𝐺𝑣 (𝑥). As �̄�𝑢 is fixed, the uniform bound follows, because ⟨�̄�𝑢, 𝑢⟩ ≥207

−∥�̄�𝑢∥
(
𝜖 + ∥�̄�∥

)
, which in particular yields that 𝜂∥𝑉𝑤∥ ≤ 𝛼 − 𝑓 (𝑥) + ∥�̄�𝑢∥

(
𝜖 + ∥�̄�∥

)
for all208

𝑤 ∈ 𝑆𝛼 (𝑢, 𝑔𝑣) ⊂ 𝑇 (𝑢, 𝑔𝑣).209

As stated, minimizing the mappings in Lemma 2.4 in the first variable yields, for all210
(𝑢, 𝑔𝑣) ∈ R𝑚 × 𝐺𝑣 (𝑥), the bivariate U-objects in Definition 2.3:211

𝐿𝑈 (𝑢, 𝑔𝑣) = inf
𝑤

Φ(𝑤, 𝑢, 𝑔𝑣) and 𝑊 (𝑢, 𝑔𝑣) = arg min
𝑤

Φ(𝑤, 𝑢, 𝑔𝑣) .212

Thanks to Lemma 2.4, several important relations known for the single-variableU-Lagrangian213
hold in our new bivariate context.214

Theorem 2.5 (Smoothness of bivariate U-objects). Given𝐺𝑣 (𝑥) from (2.4), the bivari-215
ate U-Lagrangian and the V-space minimizer set from Definition 2.3 satisfy the following216
properties.217

1. 𝐿𝑈 is finite-valued on R𝑚 × 𝐺𝑣 (𝑥);218
2. 𝑊 is outer semi-continuous and locally bounded on R𝑚 × 𝐺𝑣 (𝑥);219
3. 𝑊 (0, 𝑔𝑣) = {0} and𝑊 is continuous at (0, 𝑔𝑣) for any 𝑔𝑣 ∈ 𝐺𝑣 (𝑥);220
4. 𝐿𝑈 is locally Lipschitz continuous on the interior of R𝑚 × 𝐺𝑣 (𝑥);221
5. 𝐿𝑈 is differentiable at (0, 𝑔𝑣) for any 𝑔𝑣 in the interior of 𝐺𝑣 (𝑥), with222

∇𝐿𝑈 (0, 𝑔𝑣) = (�̄�𝑢, 0);223
6. For all (𝑢, 𝑔𝑣) ∈ R𝑚 ×𝑉† ri 𝜕 𝑓 (𝑥), and 𝑤 an arbitrary point in𝑊 (𝑢, 𝑔𝑣),224

𝜕𝑢𝐿𝑈 (𝑢, 𝑔𝑣) = {𝑠𝑢 : 𝑠 ∈ 𝜕 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤), 𝑠𝑣 = 𝑔𝑣} .225

Proof. For notational convenience, we define𝐺 := 𝐺𝑣 (𝑥). All the subsequent references226
in this proof are from the book [41], noting that the assumptions in the invoked statements hold227
thanks to Lemma 2.4. To see item (i), apply first Theorem 1.17(a), to show that 𝐿𝑈 is proper228
and lsc on R𝑛. For each (𝑢, 𝑔𝑣) ∈ R𝑚 × 𝐺, 𝐿𝑈 (𝑢, 𝑔𝑣) ≤ Φ(0, 𝑢, 𝑔𝑣) = 𝑓 (𝑥 + 𝑈𝑢) < +∞.229
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Consequently, 𝐿𝑈 is finite-valued on R𝑚 × 𝐺. From Theorem 1.17(c), we have that 𝐿𝑈 is230
continuous on R𝑚 ×𝐺, as for any �̄� ∈ 𝑊 (�̄�, �̄�𝑣) the function Φ(�̄�, ·) is continuous in (𝑢, 𝑔𝑣)231
at (�̄�, �̄�𝑣) relative to R𝑚 × 𝐺. Consequently, item (ii) follows from Theorem 7.41(b). Item232
(iii) is derived from Example 5.22, by exhibiting a point (�̄�, �̄�𝑣) ∈ R𝑚 ×𝐺 such that𝑊 (�̄�, �̄�𝑣)233
is single valued with 𝐿𝑈 (�̄�, �̄�𝑣) continuous relative to R𝑚 ×𝐺. The latter condition is ensured234
by item (i) while the former is achieved by taking �̄� = 0 and �̄�𝑣 ∈ 𝐺 and applying (2.2), noting235
that 𝑊 (0, �̄�𝑣) = 𝑊 �̄� (0) = {0} . To show the next item, according to Corollary 10.14(a), we236
need to verify that for any (𝑢, 𝑔𝑣) ∈ intR𝑚 × 𝐺, it holds that237

(2.5)
⋃

𝑤∈𝑊 (𝑢,𝑔𝑣 )

{
(𝑠1, 𝑠2) : (0, 𝑠1, 𝑠2) ∈ 𝜕∞Φ(𝑤, 𝑢, 𝑔𝑣)

}
= {(0, 0)} .238

To this end, define Φ = ℎ1 + ℎ2 for the following two functions from R𝑛−𝑚 ×R𝑚 ×R𝑛−𝑚 to R:239

ℎ1 (𝑤, 𝑢, 𝑔𝑣) := 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) + 𝛿𝐺 (𝑔𝑣) and ℎ2 (𝑤, 𝑢, 𝑔𝑣) := −
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤
〉
+ 𝛿𝐺 (𝑔𝑣) .240

Since ℎ1 is proper, lsc and convex and ℎ2 is strictly differentiable at (𝑤, 𝑢, 𝑔𝑣) for any241
𝑔𝑣 ∈ int𝐺, applying Exercises 10.10 and 10.7, we obtain that242

𝜕∞Φ(𝑤, 𝑢, 𝑔𝑣) = 𝜕∞ℎ1 (𝑤, 𝑢, 𝑔𝑣) =
{
(𝑉 ᵀ𝑠,𝑈ᵀ𝑠, 0) : 𝑠 ∈ 𝜕∞ 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤)

}
= {(0, 0, 0)} ,243

where the last equality holds because the horizon subdifferential of the finite-valued convex244
function 𝑓 is null. As claimed, (2.5) holds and (iv) follows. Item (v) is derived from the result245
𝑊 (0, 𝑔𝑣) = {0}, item (iv), and Corollary 10.14(b), by showing that246 {

(𝑦1, 𝑦2) : (0, 𝑦1, 𝑦2) ∈ 𝜕Φ(0, 0, 𝑔𝑣)
}
= {(�̄�𝑢, 0)} .(2.6)247

Once more, from Exercises 10.10 and 10.7, we get that248

𝜕Φ(0, 0, 𝑔𝑣) =
{
(𝑉 ᵀ𝑦 −𝑉 ᵀ𝑉𝑔𝑣 ,𝑈

ᵀ𝑦, 0) : 𝑦 ∈ 𝜕 𝑓 (𝑥)
}
.249

The expression in (2.6) then follows from (2.1), concluding the proof of item (v). Finally,250
to see item (vi), fix any 𝑔𝑣 ∈ 𝑉† ri 𝜕 𝑓 (𝑥). For each 𝑢 ∈ R𝑚, the partial subdifferential251
𝜕𝑢𝐿𝑈 (𝑢, 𝑔𝑣) is defined to be 𝜕𝐿𝑔

𝑈
(𝑢). For each 𝑔𝑣 ∈ 𝑉† ri 𝜕 𝑓 (𝑥), 𝐿𝑔

𝑈
(𝑢) = inf𝑤 Φ𝑔𝑣 (𝑤, 𝑢),252

where Φ𝑔𝑣 (𝑤, 𝑢) := 𝑓 (𝑥 + 𝑈𝑢 + 𝑉𝑤) − ⟨𝑔𝑣 , 𝑉 ᵀ𝑉𝑤⟩. In view of Lemma 2.4, Φ𝑔𝑣 (𝑤, 𝑢)253
is level-bounded in 𝑤 locally uniformly in 𝑢 because in this case 𝑔𝑣 is a parameter and254
(2.3) holds for some 𝜂𝑔𝑣 . Noting that 𝐿𝑔𝑣

𝑈
(𝑢) is convex, we can apply Corollary 10.13255

to obtain that 𝜕𝐿𝑔𝑣
𝑈
(𝑢) = {𝑦 ∈ R𝑚 : (0, 𝑦) ∈ 𝜕Φ𝑔𝑣 (𝑤, 𝑢)} for any 𝑤 ∈ 𝑊𝑔𝑣 (𝑢). It is next256

seen that 𝜕Φ𝑔𝑣 (𝑤, 𝑢) = {(𝑉 ᵀ𝑠 −𝑉 ᵀ𝑉𝑔𝑣 ,𝑈ᵀ𝑠) : 𝑠 ∈ 𝜕 𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤)}. We also have that257
0 ∈ 𝑉 ᵀ𝑠 −𝑉 ᵀ𝑉𝑔𝑣 equivalent to (𝑉 ᵀ𝑉)−1

𝑉 ᵀ𝑠 = 𝑔𝑣 . Consequently, item (vi) holds.258

All the properties listed in (2.2), with only 𝑢 considered a variable, can now be compared259
with the statements in items (iii) and (iv) of Theorem 2.5, shown in the bivariate setting.260

2.3. V-minimizers and proximal points. When the special trajectory associated with261
V-minimizers is identified, the function appears smooth along the resulting U-subspace, and262
a U-Newton step is possible. For a VU-method to be superlinearly convergent, the fast263
U-step should dominate over the V-step. In this respect, the behavior of V-minimizers in264
the set𝑊 (𝑢, 𝑔𝑣) from Definition 2.3 is crucial.265

For the original U-Lagrangian, [22, Corollary 3.5] shows that V-minimizers are tangent266
to the U-subspace. The same important result holds for our new bivariate U-Lagrangian, as267
established next.268
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Lemma 2.6 (Tangential trajectories). Let �̄� ∈ ri 𝜕 𝑓 (𝑥), 𝑥 ∈ R𝑛. With the notation and269
assumptions of Lemma 2.4, we have that270

𝐿𝑈 (𝑢, 𝑔𝑣) = 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ + 𝑜
(
𝑈𝑢 +𝑉 (𝑔𝑣 − �̄�𝑣)

)
.(2.7)271

Proof. By item (v) in Theorem 2.5, the function 𝐿𝑈 is differentiable at (0, �̄�𝑣), and hence,272

𝐿𝑈 (𝑢, 𝑔𝑣) = 𝐿𝑈 (0, �̄�𝑣) + ⟨∇𝐿𝑈 (0, �̄�𝑣), (𝑢, 𝑔𝑣) − (0, �̄�𝑣)⟩ + 𝑜
(
𝑈𝑢 +𝑉 (𝑔𝑣 − �̄�𝑣)

)
.273

Substituting 𝐿𝑈 (0, �̄�𝑣) and its gradient by their explicit expressions gives (2.7).274

Together with the U-Lagrangian given in Definition 2.3, from (2.7) we obtain the follow-275
ing first-order expansion for 𝑓 :276

𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤(𝑢, 𝑔𝑣)) = 𝑓 (𝑥) + ⟨�̄�𝑢, 𝑢⟩ +
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑤(𝑢, 𝑔𝑣)
〉
+ 𝑜

(
𝑈𝑢 +𝑉𝑔𝑣

)
.277

When compared with the relation given in Section 2.1 for the single-variable setting, we see278
that for fast convergenge purposes, not only the U-component (𝑢) should dominate eventually,279
but also the V-component of the subgradient (𝑔𝑣) should vanish. In Algorithm 3.1 below,280
this is achieved by adding the U-Newton step to the proximal gradient update.281

Having highlighted the importance of V-minimizers, we now show that they can be282
identified by means of the proximal point mapping. For any function ℎ : R𝑛 → R and a real283
number 𝜇 > 0, recall that the proximal mapping is given by284

proxℎ,𝜇 (𝑥) := arg min
𝑦∈R𝑛

{
ℎ(𝑦) + 𝜇

2
∥𝑦 − 𝑥∥2

}
.285

Combined with Lemma 2.6, the following result provides a mechanism that makes the V-step286
be tangential to the U-subspace.287

Lemma 2.7 (Characterization of V-minimizers). Let 𝑔 ∈ ri 𝜕 𝑓 (𝑥), 𝑥 ∈ R𝑛. For any288
𝑝 ∈ R𝑛 and the correspondingVU-components 𝑢(𝑝) := (𝑝−𝑥)𝑢 and 𝑣(𝑝) := (𝑝−𝑥)𝑣 , it holds289
that 𝑣(𝑝) ∈ 𝑊 (𝑢(𝑝), 𝑔𝑣) if and only if 𝑔𝑣 ∈ 𝑉†𝜕 𝑓 (𝑝) , in which case 𝑔𝑢 ∈ 𝜕𝑢𝐿𝑈 (𝑢(𝑝), 𝑔𝑣) .290
If, in addition, there is 𝑔′ ∈ 𝜕 𝑓 (𝑝) such that 𝑔′𝑣 = 𝑔𝑣 , then 𝑔′𝑢 ∈ 𝜕𝑢𝐿𝑈 (𝑢(𝑝), 𝑔𝑣).291

Proof. The convex function R𝑛−𝑚 ∋ 𝑣 ↦→ ℎ(𝑣) := 𝑓 (𝑥 + 𝑈𝑢(𝑝) + 𝑉𝑣) has the subdif-292
ferential 𝜕ℎ(𝑣) = 𝑉 ᵀ𝜕 𝑓 (𝑥 +𝑈𝑢(𝑝) + 𝑉𝑣). The necessary and sufficient optimality condition293
for 𝑣(𝑝) ∈ 𝑊 (𝑢(𝑝); 𝑔𝑣) is 0 ∈ 𝜕ℎ(𝑣(𝑝)) − 𝑉 ᵀ𝑉𝑔𝑣 = 𝑉 ᵀ𝜕 𝑓 (𝑥 +𝑈𝑢(𝑝) + 𝑉𝑣(𝑝)) − 𝑉 ᵀ𝑉𝑔𝑣 =294
𝑉 ᵀ𝜕 𝑓 (𝑝) − 𝑉 ᵀ𝑉𝑔𝑣 and the equivalence follows from the definition of the pseudo-inverse 𝑉†.295
To show that 𝑔𝑢 ∈ 𝜕𝑢𝐿𝑈 (𝑢(𝑝), 𝑔𝑣), note that if 𝑔′ ∈ 𝜕 𝑓 (𝑝) and 𝑔′𝑣 = 𝑔𝑣 , then 𝑔𝑣 ∈ 𝑉†𝜕 𝑓 (𝑝).296
Hence, the expression of 𝜕𝑢𝐿𝑈 (·, 𝑔𝑣) in Theorem 2.5 is verified by 𝑔′𝑢.297

Proximal points are related to V-minimizers through Lemma 2.7, by taking the subgradient298
in the optimality condition of the proximal point problem. Specifically, for given 𝑧 ∈ R𝑛299
and 𝜇 > 0, the result is applied with 𝑝 = prox 𝑓 ,𝜇 (𝑧) and 𝑔′ = 𝜇(𝑧 − 𝑝); see Theorem 3.1(i)300
below. In the algorithm given in next section, however, the V-step does not compute exact301
proximal points. Rather, having a model function for 𝑓 , the proximal point of the model is302
computed. By exploiting structural properties of the function to be minimized, given in (3.1)303
below, we can rewrite the model proximal point as an exact proximal point of 𝑓 , by shifting304
the prox-center; see Theorem 3.1. Thanks to this shifting, the result in Lemma 2.7 applies.305
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3. The algorithm and its global convergence. We next focus our attention on the306
function in (1.1) having the following additive structure:307

(3.1)

𝑓 (𝑥) ≡ 𝑞(𝑥) + ℎ(𝑥)
for 𝑞 : R𝑛 → R convex, C2-smooth

with gradient Lipschitz constant denoted by 𝛽
ℎ : R𝑛 → R a continuous convex function, possibly nonsmooth,

with an easy-to-compute proximal point.

308

In the considered context, for the family of model functions309

(3.2) 𝑚(𝑥; 𝑦) := 𝑞(𝑦) + ⟨∇𝑞(𝑦), 𝑥 − 𝑦⟩ + ℎ(𝑥) ,310

it is easy to compute the proximal point of 𝑚(·; 𝑦), for any parameter 𝑦 ∈ R𝑛.311

3.1. V-step: proximal gradient iterations. To minimize a function 𝑓 as in (3.1), the312
well-known proximal gradient algorithm [37, 5] computes the proximal point of the model313
(3.2). At iteration 𝑘 , given the current iterate 𝑥𝑘 and a prox-parameter 𝜇𝑘 , the next point is314
𝑥𝑘+1 = prox𝑚( ·;𝑥𝑘 ) ,𝜇𝑘

(𝑥𝑘). If 𝜇𝑘 ≥ 𝛽 and 𝑓 satisfies an error bound, the proximal gradient315
iterates converge with linear rate [9, Theorems 3.1 and 5.5]; see also [1]. To achieve superlinear316
speed, in our method those iterations are corrected by a suitable U-step; see Algorithm 3.1317
below. The proximal gradient iteration in Procedure 1 corresponds to our V-step.318

Procedure 1: Proximal Gradient(the V-) step)
Input: 𝑓 as in (3.1), 𝑥𝑘 ∈ R𝑛 , 𝜇𝑘 > 0, and 𝑝 = prox𝑚( ·;𝑥𝑘 ) ,𝜇𝑘

(𝑥𝑘) for the model
(3.2).

while 𝑞(𝑝) > 𝑞(𝑥𝑘) +
〈
∇𝑞(𝑥𝑘), 𝑝 − 𝑥𝑘

〉
+ 𝜇𝑘

2 ∥𝑝 − 𝑥𝑘 ∥2 do
declare a null step: set 𝜇𝑘 := 2𝜇𝑘
compute 𝑝 = prox𝑚( ·;𝑥𝑘 ) ,𝜇𝑘

(𝑥𝑘)
end
Output: 𝜇𝑘 and 𝑝𝑘 = 𝑝.

Some comments regarding Procedure 1 are in order. The output 𝑝𝑘 satisfies 𝑞(𝑝𝑘) ≤319
𝑞(𝑥𝑘) +

〈
∇𝑞(𝑥𝑘), 𝑝𝑘 − 𝑥𝑘

〉
+ 𝜇𝑘

2 ∥𝑝𝑘 − 𝑥𝑘 ∥2. With our assumptions in (3.1), this ensures that,320
once 𝜇𝑘 ≥ 𝛽, the procedure will terminate (in the bundle methods terminology [18], the321
sequence of null steps is always finite). Additionally, note that if in (3.1) there is no smooth322
term, then 𝑞 ≡ 0 and ℎ ≡ 𝑓 . Since in this case the model is the same function (assuming the323
prox-calculation of 𝑓 is easy), the V-step performs an exact proximal step for 𝑓 and there are324
no null steps.325

The procedure output is the proximal point of the model (3.2) at 𝑥𝑘 . In order to apply326
Lemma 2.7, and in this way identify the output with a V-minimizer, 𝑝𝑘 needs to be the327
proximal point of the function, and not of its model. This is shown in our next result, where328
we exhibit 𝑝𝑘 to be the exact proximal point of 𝑓 at a certain shifted point.329

Theorem 3.1 (Shifting proximal point of the model to exact proximal point of the func-330
tion).331

Given the output 𝑝𝑘 of Procedure 1, define332

(3.3) 𝑔𝑘 := 𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) + ∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘) and 𝑧𝑘 := 𝑝𝑘 + 1
𝜇𝑘
𝑔𝑘 .333
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Then it holds that334

(3.4) 𝑝𝑘 = prox 𝑓 ,𝜇𝑘
(𝑧𝑘) , 𝑧𝑘 = 𝑥𝑘 + 1

𝜇𝑘
(∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘)) , 𝑔𝑘 ∈ 𝜕 𝑓 (𝑝𝑘) .335

Therefore, for 𝑥 ∈ 𝑆 a minimizer of 𝑓 in (1.1), the following holds.336
(i) Setting 𝑢𝑘 := (𝑝𝑘 − 𝑥)𝑢, the corresponding V-component 𝑣𝑘 := (𝑝𝑘 − 𝑥)𝑣 ∈337

𝑊 (𝑢𝑘 , 𝑔𝑘𝑣 ) if and only if 𝑔𝑘𝑣 ∈ 𝑉† ri 𝜕 𝑓 (𝑥), in which case 𝑔𝑘𝑢 ∈ 𝜕𝑢𝐿𝑈 (𝑢𝑘 , 𝑔𝑘𝑣 ).338
(ii) Furthermore, whenever 𝜇𝑘 > 𝛽, it holds that339

∥𝑝𝑘 − 𝑥∥ ≤ 𝜇 + 𝛽
𝜇 − 𝛽 ∥𝑥

𝑘 − 𝑥∥ and ∥𝑔𝑘 ∥ ≤ 2𝜇(𝜇 + 𝛽)
𝜇 − 𝛽 ∥𝑥𝑘 − 𝑥∥ .340

Proof. We have that 𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) ∈ 𝜕𝑚(𝑝𝑘 ; 𝑥𝑘) = ∇𝑞(𝑥𝑘) + 𝜕ℎ(𝑝𝑘), which yields341
𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) − ∇𝑞(𝑥𝑘) ∈ 𝜕ℎ(𝑝𝑘). Ttherefore, 𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) + ∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘) ∈ ∇𝑞(𝑝𝑘) +342
𝜕ℎ(𝑝𝑘) = 𝜕 𝑓 (𝑝𝑘). The remaining assertions in (3.4) follow from the optimality condition343
0 ∈ 𝜕 𝑓 (𝑝𝑘) + 𝜇𝑘 (𝑝𝑘 − 𝑧𝑘), i.e., 𝜇𝑘 (𝑧𝑘 − 𝑝𝑘) ∈ 𝜕 𝑓 (𝑝𝑘) which by (3.3) is just 𝑔𝑘 ∈ 𝜕 𝑓 (𝑝𝑘) .344
Item (i) follows from (3.4) and Lemma 2.7, written with 𝑝, 𝑔′ therein replaced by 𝑝𝑘 , 𝑔𝑘 .345

For the final item, first note that, by (3.3), it holds that346

(3.5) ∥𝑔𝑘 ∥ ≤ (𝜇𝑘 + 𝛽)∥𝑥𝑘 − 𝑝𝑘 ∥ ≤ (𝜇𝑘 + 𝛽)
(
∥𝑥𝑘 − 𝑥∥ + ∥𝑥 − 𝑝𝑘 ∥

)
,347

Next, by (3.4) and the nonexpansiveness of the proximal operator,348

∥𝑥 − 𝑝𝑘 ∥ = ∥ prox 𝑓 ,𝜇𝑘
(𝑥) − prox 𝑓 ,𝜇𝑘

(𝑧𝑘)∥ ≤ ∥𝑥 − 𝑧𝑘 ∥ .349

Using the expression for 𝑧𝑘 in (3.4) and the bound for ∇𝑞 from (3.1), we obtain that350

∥𝑥 − 𝑝𝑘 ∥ ≤ ∥𝑥 − 𝑥𝑘 ∥ + 1
𝜇𝑘

∥∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘)∥ ≤ ∥𝑥 − 𝑥𝑘 ∥ + 𝛽

𝜇𝑘
∥𝑝𝑘 − 𝑥𝑘 ∥ .351

Adding 0 = ±𝑥 in the right-most term, gives352

∥𝑥 − 𝑝𝑘 ∥ ≤ ∥𝑥 − 𝑥𝑘 ∥ + 𝛽

𝜇𝑘
∥𝑝𝑘 − 𝑥∥ + 𝛽

𝜇𝑘
∥𝑥 − 𝑥𝑘 ∥ .353

After some rearrangements of terms we obtain that354

∥𝑥 − 𝑝𝑘 ∥ ≤
1 + 𝛽

𝜇𝑘

1 − 𝛽

𝜇𝑘

∥𝑥 − 𝑥𝑘 ∥ =
𝜇𝑘 + 𝛽
𝜇𝑘 − 𝛽

∥𝑥 − 𝑥𝑘 ∥ .355

The last inequality in (3.5) yields the final result.356

The explicit shifting in Theorem 3.1 is possible thanks to the structure of 𝑓 in (3.1).357
Note that the tangential property depends on 𝑔𝑘𝑣 eventually becoming (the 𝑉† component of)358
an interior subgradient at a minimizer. To achieve this, the VU-algorithm drives to zero359
the subgradient 𝑔𝑘 from (3.3). Accordingly, the Proximal Gradient VU-method given in360
Algorithm 3.1, stops when ∥𝑔𝑘 ∥ ≤ tol for a given tolerance tol.361

3.2. U-step and the algorithm statement. After the V-step is done, the output of362
Procedure 1 is corrected as follows:363

𝑥𝑘+1 = 𝑝𝑘 −𝑈𝑘𝑄𝑘𝑈
ᵀ
𝑘𝑔

𝑘 ,(3.6)364
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where𝑈𝑘 is a certain orthonormal matrix and𝑄𝑘 is positive semidefinite. The purpose of this365
correction is to eventually track a trajectory where the function behaves smoothly, through the366
relation of V-minimizers with proximal points. Thus, in (3.6) 𝑔𝑘 is the shifted gradient from367
(3.3),𝑄𝑘 asymptotically approximates the so-called U-Hessian (a second-order object related368
to the U-Lagrangian defined in Section 4), and the orthonormal matrix 𝑈𝑘 is a basis for a369
subspace U𝑘 that approximates U(𝑝𝑘). For the latter, see [7], and also Section 5 concerning370
the ℓ1-regularized setting which is our illustration in this paper.371

The full proximal gradient VU-method is given in Algorithm 3.1, where the stopping372
criterion is justified by the fact that 𝑔𝑘 → 0, shown in Theorem 3.3.373

Algorithm 3.1 Proximal Gradient VU-method (PGVU)
Data: 𝑓 as in (3.1), starting point 𝑥0 ∈ R𝑛, prox-parameter 𝜇0 > 0, and a stopping tolerance

tol ≥ 0. Set 𝑘 = 0.
repeat

Obtain 𝜇𝑘 and 𝑝𝑘 from Procedure 1.
Define (shift the subgradient) 𝑔𝑘 := 𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) + ∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘) .
Compute an orthonormal basis𝑈𝑘 ∈ R𝑛×𝑛𝑘 .
Choose a symmetric positive semidefinite matrix 𝑄𝑘 ∈ R𝑛𝑘×𝑛𝑘 .

Update 𝑥𝑘+1 = 𝑝𝑘 −𝑈𝑘𝑄𝑘𝑈
ᵀ
𝑘
𝑔𝑘 , set 𝑘 = 𝑘 + 1

until ∥𝑔𝑘 ∥ ≤ tol;

When 𝑓 is differentiable, U(𝑝𝑘) is the whole space, its basis is the identity matrix, and374
𝑄𝑘 can be defined as usual for quasi-Newton methods; see, e.g., [19]. Otherwise, the structural375
properties for 𝑓 are essential to define suitable matrices in (3.6). Namely, as 𝜕 𝑓 = ∇𝑞 + 𝜕ℎ,376
in Definition 2.1 the V-subspaces of 𝑓 , ℎ, and the model 𝑚 in (3.2) are all identical:377

V(𝑝) := V 𝑓 (𝑝) = Vℎ(𝑝) = V𝑚(𝑝; 𝑦) for all 𝑝, 𝑦 ∈ R𝑛 .378

Hence, also U(𝑝) := U 𝑓 (𝑝) = Uℎ(𝑝) = U𝑚(𝑝; 𝑦).379
To give an insight/illustration, we consider again our function from Example 2.2, and380

compare the performance of three methods, according to the possible choices.381

Example 3.2 (Proximal, proximal gradient and proximal gradient VU algorithms). For382
the function 𝐹 from Example 2.2, the smooth function in (3.1) is 𝑞(𝑢, 𝑣) = 𝑎

2 𝑢
2 and the383

Lipschitz constant is 𝛽 = 𝑎 = 2.384
We consider minimizing 𝐹 with the proximal point method (P), the proximal gradient385

algorithm (PG), and PGVU as given in Algorithm 3.1, with the following specifications:386
• The implementation of both P and PG follows Procedure 1, with respective model387

functions 𝐹 (·) and 𝑚(·, 𝑥𝑘) from (3.2), and stopping test max(∥𝑥𝑘 ∥, ∥𝑝𝑘 ∥) ≤ tol.388
• For PGVU, there is the additional U-step, requiring the matrices in (3.6).389

– Outside of the fast track, that is when 𝑝𝑘 ∉
{
(𝑝1, 𝑝2) : |𝑝2 | = 𝑎

2 (𝑝1)2}, the390

function is differentiable, U(𝑝𝑘) is the whole space, and𝑈𝑘 is just the identity391

matrix. The matrix 𝑄𝑘 is set to
[
𝑎 0
0 0

]†
if |𝑝𝑘2 | <

𝑎
2 (𝑝

𝑘
1 )

2, and 𝑄𝑘 = 0 if392

|𝑝𝑘2 | >
𝑎
2 (𝑝

𝑘
1 )

2.393

– When 𝑝𝑘 is on the fast track, its V(𝑝𝑘) subspace is generated by 𝜕𝐹 (𝑝𝑘) =394 {
(𝜉𝑎𝑝𝑘1 , 1 − 𝜉)⊤ : 𝜉 ∈ [0, 1]

}
. In this case, 𝑈𝑘 is the orthonormal vector gen-395

erated from
(
𝑠𝑖𝑔𝑛(𝑝𝑘1 ), 𝑠𝑖𝑔𝑛(𝑝

𝑘
2 )𝑎𝑝

𝑘
1

)
and 𝑄𝑘 = 𝑎

−1.396

The methods were run with the same initial 𝜇0 and 𝑥0, until the termination tolerance397
tol = 10−10 or a maximum number of iterations set to 50 achieved. Table 3.1 reports the398
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number of iterations and accuracy of the three algorithms, for two different initial values of399
𝜇0 and 𝑥0.400

Table 3.1: Methods’ performance

𝜇0 = 0.18
𝑥0 = (−1.2, 2.2)ᵀ 𝑥0 = (−1.1, 0.9)ᵀ

P PG PGVU P PG PGVU
Iterations 10 16 11 8 14 11

Digits 9 11 11 7 10 10

𝜇0 = 10
𝑥0 = (−1.2, 2.2)ᵀ 𝑥0 = (−1.1, 0.9)ᵀ

P PG PGVU P PG PGVU
Iterations 50 50 45 50 50 16

Digits 2 3 23 3 4 23

When 𝜇0 is small, the performances of P, PG, and PGVU are similar. This is explained401
by the “null-step” inner loop in Procedure 1, which makes all the three methods increase 𝜇𝑘402
until a value larger than 𝛽 = 2.0 is attained. By contrast, the runs with the large value of403
𝜇0 are troublesome for P and PG. Procedure 1 always accepts the large value 𝜇𝑘 = 𝜇0 = 10,404
there is no backtracking mechanism to reduce 𝜇𝑘 . This is prejudicial for P and PG, and can405
be explained by observing the plots in Fig. 3.1, with the three trajectories generated for one406
of the starting points.407
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0
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 x
0
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0.8

1

 x
0

-1 -0.8 -0.6 -0.4 -0.2 0

0

0.2
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0.6

0.8

1

 x
0

Fig. 3.1: P, PG, and PGVU iterations (left, middle, right), when minimizing 𝐹 from 𝑥0 =

(−1.1, 0.9)ᵀ, starting with 𝜇0 = 10. The dotted parabola is the fast track, rapidly identified by
all the algorithms. Because 𝜇𝑘 = 𝜇0 is too large, P and PG take very small steps along the fast
track, which hinders their performance. By contrast, thanks to its U-step, PGVU approaches
the fast track tangentially and reaches rapidly a much better degree of accuracy.

Figure 3.1 highlights the following important point: for a nonsmooth optimization method408
to achieve high accuracy, identifying the fast track is necessary, but it is not sufficient. Both P409
and PG iterates land soon on the smooth trajectory defined by the fast track. This is consistent410
with the theory in [31]; see also [3, Theorem 3.1]. Once on the fast track, P and PG both411
remain there. But because 𝜇𝑘 = 𝜇0 is too large, the progress between consecutive iterates412
becomes too small and, as illustrated by the left and middle plots in Fig. 3.1, those two methods413
see their performance severely impaired. On the other hand, on the right plot we see that the414
too large 𝜇𝑘 = 𝜇0 also makes PGVU take a too small V-step, but afterwards its U-step is415
long, in the “right direction” to solution, but also driving the iterate far from the fast track.416
The remedy is that the subsequent V-step takes the iterate to the fast track again, and a new417
fast U-step is possible again. The overall iterative process can be interpreted to work in a418
“predictor-corrector” fashion. Observe that PGVU achieves a much higher accuracy, in less419
iterations. Noting, of course, that one PGVU iteration involves more computational work.420
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The conclusion is that when accuracy is important, PGVU is the right approach. If accuracy421
is not a concern, simpler techniques would be preferred.422

3.3. Global convergence and some other asymptotic results. In Theorem 3.3 below423
about the global convergence result, we do not show that the sequence

{
𝑥𝑘
}

is bounded (has424
accumulation points). This is in part related to the comment above that in some naturally425
included special cases which do not involve nonsmoothness, our method can actually reduce426
to the usual smooth quasi-Newton technique. It is known that proving boundedness of the427
usual quasi-Newton updates (say, BFGS) without very technical complex modifications to428
the update, is not possible; see, e.g., [19]. Naturally, it is the same in our setting (also,429
proving properties about accumulation points of algorithmic sequences is quite standard in430
the literature, separately from their existence).431

Theorem 3.3 (Global convergence). In Algorithm 3.1, let the matrices {𝑈𝑘} and {𝑄𝑘}432
be bounded, and the prox-parameters satisfy 𝜇max ≥ 𝜇𝑘 ≥ 𝛽 for all 𝑘 sufficiently large.433

Then every accumulation point 𝑥 of the sequence
{
𝑥𝑘
}

generated by Algorithm 3.1 is a434
minimizer of 𝑓 .435

Proof. Let 𝑥 be an accumulation point of
{
𝑥𝑘
}
, i.e., there exists a convergent subsequence436

of
{
𝑥𝑘
}
, indexed by 𝑘 ′ ∈ K, such that

{
𝑥𝑘
}
𝑘′∈K → 𝑥. We claim that

{
𝑝𝑘 − 𝑥𝑘

}
𝑘′∈K → 0437

and {𝑔𝑘
𝑘′∈K } → �̄� = 0 .438

Let 𝑈, 𝑄 and �̄� denote limit points of the corresponding subsequences of matrices439
and prox-parameters. Define 𝐻 = 𝑈𝑄𝑈ᵀ. With the assumptions in (3.1), the models in440
(3.2) converge continously in the second argument: 𝑚(·; 𝑥𝑘) → 𝑚(·; 𝑥). Then, combining441
[41, Thms. 7.11 and 12.35], the models epi-converge to 𝑚(·; 𝑥), and the proximal mappings442
prox𝑚( ·;𝑥𝑘 ) ,𝜇𝑘

(·) converge to prox𝑚( ·;�̄� ) , �̄� (·) uniformly on bounded sets. By epi-convergence443
of the models and [41, Theorem 7.14], the proximal point sequence converges continuously:444
𝑝𝑘 → prox𝑚( ·;�̄� ) , �̄� (𝑥) =: 𝑝. Passing onto the limit in (3.6) with 𝑔𝑘 from (3.3),445

𝑥 = 𝑝 + 𝐻 ( �̄�(𝑝 − 𝑥) + ∇𝑞(𝑥) − ∇𝑞(𝑝)) .446

Since the Hessian ∇2𝑞(·) is positive semidefinite by assumption, by the mean-value theorem447
∇𝑞(𝑥) − ∇𝑞(𝑝) = ∇2𝑞( �̄�) (𝑥 − 𝑝) for some intermediate point �̄�. Then, after some direct448
algebraic manipulations, we obtain that449

(𝐼 + �̄�𝐻 − 𝐻∇2𝑞( �̄�)) (𝑝 − 𝑥) = (𝐼 + 𝐻
[
�̄�𝐼 − ∇2𝑞( �̄�)

]
) (𝑝 − 𝑥) = 0 .450

Because 𝜇𝑘 ≥ 𝛽 for large 𝑘 , the matrix �̄�𝐼 − ∇2𝑞( �̄�) is positive semidefinite and by positive451
semidefiniteness of𝑄, the matrix 𝐻 is positive semidefinite. As a result, 𝐼 +𝐻

[
�̄�𝐼 − ∇2𝑞( �̄�)

]
452

is positive definite and, hence, 𝑝 = 𝑥. The definition of 𝑔𝑘 in (3.3) and the continuity of ∇𝑞,453
readily give 𝑔𝑘 → 0. By (3.4), this means that 𝑝 = 𝑥 is a minimizer of 𝑓 , as stated.454

Thanks to the fact that 𝑔𝑘 → �̄� = 0, we are now in position to show that convergent455
subsequences eventually generate V-minimizers and identify smooth trajectories associated456
with the U-Lagrangian.457

Corollary 3.4 (Asymptotic U-Lagrangian identification and rates). Under the as-458
sumptions in Theorem 3.3, suppose �̄� = 0 ∈ ri 𝜕 𝑓 (𝑥). Then, for 𝑘 ∈ K sufficiently large and459
(𝑢𝑘 , 𝑣𝑘) defined in Theorem 3.1, the following holds.460

(i) 𝑔𝑘𝑢 ∈ 𝜕𝑢𝐿𝑈 (𝑢𝑘 , 𝑔𝑘𝑣 );461
(ii) If, in addition, 𝜇𝑘 > 𝛽, then 𝑉𝑣𝑘 = 𝑜(𝑥𝑘 − 𝑥).462

Proof. Throughout the proof, 𝑘 ∈ K. Notice that, by Theorem 3.3, the subsequence463
𝑝𝑘 → 𝑝 = 𝑥, and, thus, both 𝑢𝑘 and 𝑔𝑘 → 0. By (2.4), 𝑔𝑘𝑣 ∈ 𝐺𝑣 (𝑥) ⊂ 𝑉† ri 𝜕 𝑓 (𝑥) , so464
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eventually 𝑔𝑘𝑣 lies in the relative interior of 𝑉†𝜕 𝑓 (𝑥), and the statement in (i) corresponds to465
Theorem 3.1(i), where it is also shown that 𝑣𝑘 ∈ 𝑊 (𝑢𝑘 , 𝑔𝑘𝑣 ).466

To show the final result recall that, since ∥𝑈𝑢𝑘 ∥ ≤ ∥𝑝𝑘 − 𝑥∥ and ∥𝑉𝑔𝑘𝑣 ∥ ≤ ∥𝑔𝑘 ∥, by467
Theorem 3.1(iii) we obtain that468

(3.7) ∥𝑈𝑢𝑘 +𝑉𝑔𝑘𝑣 ∥ ≤ 3𝜇(𝜇 + 𝛽)
𝜇 − 𝛽 ∥𝑥𝑘 − 𝑥∥ .469

The U-Lagrangian Definition 2.3 combined with the expression (2.7) with �̄� = 0, yields470

𝑓 (𝑥 +𝑈𝑢𝑘 +𝑉𝑣𝑘) −
〈
𝑔𝑘𝑣 , 𝑉

ᵀ𝑉𝑣𝑘
〉
= 𝐿𝑈 (𝑢𝑘 , 𝑔𝑘𝑣 ) = 𝑓 (𝑥) + 𝑜

(
𝑈𝑢𝑘 +𝑉𝑔𝑘𝑣

)
.471

The inequality (2.3) written with 𝑤 = 𝑣𝑘 and �̄�𝑢 = 0 gives the lower bound 𝑓 (𝑥) + 𝜂∥𝑉𝑣𝑘 ∥472

for the left-hand side in the relations above. Hence, 𝜂∥𝑉𝑣𝑘 ∥ ≤ 𝑜

(
𝑈𝑢𝑘 + 𝑉𝑔𝑘𝑣

)
, and (3.7)473

concludes the proof.474

4. U-Hessians and superlinear convergence. The V-minimizers exhibit first-order475
expansions for 𝑓 . To proceed further, a generalized notion of a Hessian [17] is needed.476

4.1. A partial second-order object for the bivariate U-Lagrangian. The U-Hessian477
introduced in [22, § 3.3] for the single-variable U-Lagrangian is the basis to define a partial478
U-Hessian, obtained when differentiating the bivariate U-Lagrangian in the first variable.479

Definition 4.1 (partial U-Hessian). Given 𝑥 and �̄� ∈ ri 𝜕 𝑓 (𝑥), we say that 𝑓 has at 𝑥480
a partial U-Hessian 𝐻 (𝑥; �̄�𝑣) associated with �̄�𝑣 if481

(4.1) 𝜕𝑢𝐿𝑈 (𝑢, �̄�𝑣 + 𝑧) ⊂ �̄�𝑢 + 𝐻 (𝑥; �̄�𝑣)𝑢 + 𝐵𝑚 (0, 𝑜(𝑢, 𝑧)) ,482

where �̄�𝑢 is defined in (2.1) and 𝑧 ∈ R𝑛−𝑚 is such that �̄�𝑣 + 𝑧 ∈ 𝑉†𝜕 𝑓 (𝑥).483

Lemma 4.2 (relation with single-variableU-Hessian). The partialU-Hessian in (4.1) is484
also theU-Hessian associated with single-variableU-Lagrangian, with �̄� being a parameter:485

𝜕𝐿
�̄�

𝑈
(𝑢) ⊂ ∇𝐿�̄�

𝑈
(0) + 𝐻 �̄� (𝑥)𝑢 + 𝐵𝑚 (0, 𝑜(∥𝑢∥)) , where 𝐻 �̄� (𝑥) = 𝐻 (𝑥; �̄�𝑣) .486

Furthermore, if 0 ∈ ri 𝜕 𝑓 (𝑥) and 𝑓 has a partial U-Hessian at 𝑥 associated with �̄�𝑣 = 0,487
then the following holds for 𝐻 = 𝐻 (𝑥, 0).488

(i) Under the assumptions in Theorem 3.3, the shifted gradients in Algorithm 3.1 satisfy489
the inclusion 𝑔𝑘𝑢 ∈ 𝐻𝑢𝑘 + 𝑜(𝑢𝑘);490

(ii) For small 𝑑 ∈ R𝑛, 𝑓 (𝑥 + 𝑑) = 𝑓 (𝑥) + 1
2
〈
𝐻𝑑𝑢, 𝑑𝑢

〉
+ 𝑜(∥𝑑2

𝑢∥) . As a result, if 𝐻 is491
positive definite,492

∃𝑐 > 0 : 𝑑 ∈ R𝑛 small =⇒ 𝑓 (𝑥 + 𝑑) ≥ 𝑓 (𝑥) + 𝑐
2
∥𝑑∥2 .493

In particular, 𝑥 is the unique solution in (1.1).494

Proof. For the identification with the single-variable U-Hessian it suffices to recall (2.2)495
and write (4.1) with 𝑧 ≡ 0. Item (i) also follows from (4.1), because with our assumptions496
𝑔𝑘𝑢 ∈ 𝜕𝑢𝐿U (𝑢𝑘 , 𝑔𝑘𝑣 ) by Corollary 3.4(i). To show (ii), note that if 0 ∈ ri 𝜕 𝑓 (𝑥) then �̄�𝑢 = 0 and497
we can take �̄�𝑣 = 0. By the identification between the partial and single-variable U-Hessians,498
𝐻 = 𝐻 �̄�=0 (𝑥). Thus, 𝑓 has a U-Hessian at 𝑥, and [22, Theorem 3.9] gives the second-order499
expansion. If 𝐻 is positive definite, then [21, Corollary 1] gives the lower bound for all small500
𝑑. Uniqueness of 𝑥, called a strong minimizer in [35], follows from 𝑓 ’s convexity.501

The lower bound for 𝑓 that holds when the partial U-Hessian is positive definite is called502
local subdifferential convexity in [9, Theorem 6.2]. The property is shown to be equivalent503
to both tilt stability and to strong metric regularity of the subdifferential at 𝑥, a stable strong504
minimizer for (1.1); see also [8].505
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4.2. The partial U-Hessian of partly smooth functions. When the function in (1.1) is506
partly smooth [24, Definition 2.7], it is shown in [3] that Riemannian Newton-like methods can507
be combined with proximal gradient steps to boost convergence speed. Under the assumption508
of partial smoothness, we now study conditions for the existence of a partial U-Hessian.509

Definition 4.3. A convex function 𝑓 is said to be partly smooth at 𝑥 relative to a set M510
if M is a manifold around 𝑥 and the following three properties hold:511

(i) (restricted smoothness) in a neighbourhood 𝑋 of 𝑥, the restriction of 𝑓 to M, 𝑓
��
M∩𝑋,512

is of class C2 ;513
(ii) (normals parallel to subdifferential) 𝑁M (𝑥) = V(𝑥);514
(iii) (subgradient continuity) the subdifferential 𝜕 𝑓 is continuous at 𝑥 relative to M.515

The function 𝐹 in Example 2.2 has the partial U-Hessian 𝐻 = 𝑎 > 0, corresponding to516

the bivariateU-Lagrangian 𝐿 (𝑢, �̄�𝑣) = (1−|�̄�𝑣 |) 𝑎
2

2 . However, 𝐹 is not partly smooth, because517
near 𝑥 = 0 there are two distinct activity manifolds M. These are the two fast tracks displayed518
in Figure 2.1, generated by the different V-minimizers that emanate from taking a positive519
or a negative �̄�𝑣 in Definition 2.3, i.e., 𝑊 (𝑢, �̄�𝑣) =

{
𝑎
2 𝑠𝑖𝑔𝑛(�̄�𝑣)𝑢

2}. By contrast, the simple520

modification of Example 2.2 given by �̃� (𝑢, 𝑣) = 𝑎
2 𝑢

2 + max
{
0, 𝑣 − 𝑎

2 𝑢
2} , is partly smooth521

at 𝑥. The fundamental difference is that the V-minimizers of �̃� are 𝑊 (𝑢, �̄�𝑣) =
{
𝑎
2 𝑢

2}, the522

same for all �̄�𝑣 . Now the U-Lagrangian 𝐿𝑈 (𝑢, �̄�𝑣) = (1− �̄�𝑣) 𝑎2 𝑢
2 provides the single activity523

manifold M :=
{
(𝑣, 𝑢) : 𝑣 = 𝑎

2 𝑢
2}, where the partial U-Hessian is again 𝐻 = 𝑎 > 0.524

Our next result states a similar relation in the general setting, by connecting partial525
smoothness and VU-analysis, thanks to [24, Theorem 6.1]. We associate the manifold of526
partial smoothness with a special V-minimizer that is a 𝐶2-function and is the same for all527
interior subgradients (the same function was considered in [34, Theorem 6] to characterize528
fast tracks for prox-regular functions).529

Theorem 4.4 (Special V-minimizers from partial smoothness). Let 𝑓 be a convex530
function that is partly smooth at the point 𝑥 relative to a non-singleton set M ⊂ R𝑛 . Then,531
for all small 𝑢, there exists a 𝐶2 function 𝑣𝜕 𝑓 such that532

∀𝑔 ∈ ri 𝜕 𝑓 (𝑥) , 𝑣𝜕 𝑓 (𝑢) ∈ 𝑊 (𝑢, 𝑔𝑣), and 𝑣𝜕 𝑓 (𝑢) = 𝑂 (∥𝑢∥2) .533

As a result, there exist a neighborhood 𝑋 ⊂ R𝑛 of 𝑥, a neighborhood 𝑌 ⊂ R𝑚 of 0 such that534

𝐿𝑈 (𝑢, 𝑔𝑣) = 𝑓
��
M∩𝑋 (𝑢) −

〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑣𝜕 𝑓 (𝑢)
〉
.(4.2)535

M ∩ 𝑋 =
{
𝑥 +𝑈𝑢 +𝑉𝑣𝜕 𝑓 (𝑢) : 𝑢 ∈ 𝑌

}
,(4.3)536

where 𝑓
��
M∩𝑋 is considered a composite function of 𝑢.537

Proof. From the property (ii) in Definition 4.3, when the set M is not a singleton, the538
subspaces tangent and normal to the manifold at 𝑥 coincide respectively with U and V. Then,539
by [24, Theorem 6.1], there exist a neighborhood 𝑋 ⊂ R𝑛 of 𝑥, a neighborhood 𝑌 ⊂ R𝑚 of 0,540
and a function 𝑣𝜕 𝑓 : R𝑚 → R𝑛−𝑚 such that for all 𝑢 ∈ 𝑌 ,541

𝑣𝜕 𝑓 (𝑢) is of class C2 , 𝑣𝜕 𝑓 (𝑢) = 𝑂 (∥𝑢∥2) , and M ∩ 𝑋 =
{
𝑥 +𝑈𝑢 +𝑉𝑣𝜕 𝑓 (𝑢) : 𝑢 ∈ 𝑌

}
.542

From the last relation, the restriction in Definition 4.3(i) has the expression 𝑓
��
M∩𝑋 = 𝑓 (𝑥 +543

𝑈𝑢 + 𝑉𝑣𝜕 𝑓 (𝑢)). Again by [24, Theorem 6.1], for all 𝑔 ∈ ri 𝜕 𝑓 (𝑥), the function ℎ𝑔 (𝑤) :=544
𝑓 (𝑥 +𝑈𝑢 +𝑉𝑤) − ⟨𝑔, 𝑥 +𝑈𝑢 +𝑉𝑤⟩ has 𝑣𝜕 𝑓 as a sharp minimizer. The identity (4.2) follows545
because ⟨𝑔𝑣 , 𝑉𝑤⟩ = ⟨𝑔, 𝑥 +𝑈𝑢 +𝑉𝑤⟩, which shows that ℎ𝑔 (𝑤) is the minimand defining the546
bivariate U-Lagrangian.547
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When specializing Theorem 4.4 to the setting (3.1), it is possible to derive an explicit548
expression for the U-Hessian when the nonsmooth function in (3.1) is polyhedral, as in549
regularized regression problems.550

Corollary 4.5 (explicit partial U-Hessian). When, under the assumptions in Theo-551
rem 4.4, 0 ∈ ri 𝜕 𝑓 (𝑥), a partial U-Hessian of 𝑓 at 𝑥 associated with �̄� = 0 is given by the552
Hessian restriction: 𝐻 = ∇2

𝑢𝑢 𝑓
��
M∩𝑋 (0).553

If, in addition, in (3.1) the nonsmooth function ℎ is finite-valued and polyhedral, then554
𝐻 = 𝑈⊤∇2𝑞(𝑥)𝑈.555

Proof. In (4.2), the linear term defines the bivariate function on 𝑌 ×𝑉† ri 𝜕 𝑓 (𝑥) given by556

𝑃(𝑢, 𝑔𝑣) :=
〈
𝑔𝑣 , 𝑉

ᵀ𝑉𝑣(𝑢)
〉
= 𝑔⊤𝑉𝑣𝜕 𝑓 (𝑢) ,557

by definition of the V-components. The Jacobian of this function on the first component is558

J𝑢𝑃(𝑢, 𝑔𝑣) = J𝑣𝜕 𝑓 (𝑢)ᵀ𝑉 ᵀ𝑔 = J𝑣𝜕 𝑓 (𝑢)ᵀ𝑉 ᵀ𝑉𝑔𝑣 .(4.4)559

Since 𝑊 (𝑢, 𝑔𝑣) ∋ 𝑣𝜕 𝑓 (𝑢) = 𝑂 (∥𝑢∥2) by Theorem 4.4, combining Theorem 2.5(iii) and the560
fact that561

J𝑣(𝑢) = J𝑣(0) +𝑂 (𝑢) = 𝑂 (𝑢) ,562

gives the following expansion for the gradient of the U-Lagrangian from (4.2):563

∇𝑢𝐿𝑈 (𝑢, 𝑔𝑣 + 𝑧) = ∇𝑢𝐿𝑈 (0, 𝑔𝑣) + ∇2
𝑢𝑢𝐿𝑈 (0, 𝑔𝑣)𝑢 +

𝜕2

𝜕𝑢𝜕𝑔𝑣
𝐿𝑈 (0, 𝑔𝑣)𝑧 + 𝑜(𝑢, 𝑧) ,564

for any 𝑧 ∈ R𝑛−𝑚 small enough such that 𝑔𝑣 + 𝑧 ∈ 𝑉† ri 𝜕 𝑓 (𝑥). In this expansion, by (4.4) and565
(4.2), the cross-derivative has the form566

𝜕2

𝜕𝑢𝜕𝑔𝑣
𝐿𝑈 (0, 𝑔𝑣) = − 𝜕2

𝜕𝑢𝜕𝑔𝑣
𝑃(0, 𝑔𝑣) = −J𝑣𝜕 𝑓 (0)⊤𝑉⊤𝑉 = 0 .567

Recalling that ∇𝑢𝐿𝑈 (0, 𝑔𝑣) = �̄�𝑢, gives the desired expression for the partial U-Hessian. In568
view of (4.4),569

(4.5) J𝑢𝑃(𝑢, 𝑔𝑣) = 𝑜(𝑢, 𝑔𝑣) .570

In particular, J𝑢𝑃(0, 𝑔𝑣) = 0. Hence, by (4.2) and the fact that 𝑓
��
M∩𝑋 is a composite function571

of 𝑢, we obtain that ∇𝑢 𝑓
��
M∩𝑋 (0) = ∇𝑢𝐿𝑈 (0, 𝑔𝑣) +∇𝑢𝑃(0, 𝑔𝑣) = �̄�𝑢 . Then the smoothness of572

𝑓
��
M∩𝑋 yields ∇𝑢 𝑓

��
M∩𝑋 (𝑢) = �̄�𝑢 + ∇2

𝑢𝑢 𝑓
��
M∩𝑋 (0)𝑢 + 𝑜(𝑢). Consequently, by (4.2) and (4.5),573

∇𝑢𝐿𝑈 (𝑢, 𝑔𝑣) = ∇𝑢 𝑓
��
M∩𝑋 (𝑢) − ∇𝑢𝑃(𝑢, 𝑔𝑣) = �̄�𝑢 + ∇2

𝑢𝑢 𝑓
��
M∩𝑋 (0)𝑢 + 𝑜(𝑢) − 𝑜(𝑢, 𝑔𝑣) .574

As 𝑜(𝑢)−𝑜(𝑢, 𝑔𝑣) = 𝑜(𝑢, 𝑔𝑣), we see from Prop. 4.2 that∇2
𝑢𝑢 𝑓

��
M∩𝑋 (0) is a partialU-Hessian575

of 𝑓 at 𝑥 associated with 0.576
Now consider the special setting of 𝑓 in (3.1), with ℎ finite-valued polyhedral, so that577

ℎ(𝑥) = max
𝑖∈𝐼

{〈
𝑎𝑖 , 𝑥

〉
+ 𝑏𝑖

}
for some finite index set 𝐼 ≠ ∅.578

Then, for the “active" index set 𝐼 (𝑥) =
{
𝑖 ∈ 𝐼 :

〈
𝑎𝑖 , 𝑥

〉
+ 𝑏𝑖 = 𝑓 (𝑥)

}
,579

(4.6) 𝜕ℎ(𝑥) =


∑︁
𝑖∈𝐼 (𝑥 )

𝛼𝑖𝑎
𝑖 :

∑︁
𝑖∈𝐼 (𝑥 )

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0 (𝑖 ∈ 𝐼 (𝑥)).
580
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The function ℎ is partly smooth at any 𝑥 relative to M �̄� := {𝑥 ∈ R𝑛 : 𝐼 (𝑥) = 𝐼 (𝑥)}, [24,581
Example 3.4]. From [24, Corollary 4.7] we see that 𝑓 is partly smooth at 𝑥 relative to M �̄�582
and that ℎ is partly smooth at 𝑥 relative to M. By [12, Corollary 4.2], the active manifold in583
the definition of partial smoothness is unique. Hence, near 𝑥 we have M ≡ M �̄� .584

Next, we show that whenever a vector �̄� ∈ R𝑛−𝑚 satisfies 𝑥 + 𝑈𝑢 + 𝑉�̄� ∈ M ∩ 𝑋 , it585
must hold that �̄� = 0; so M ∩ 𝑋 = {𝑥 +𝑈𝑢 : 𝑢 ∈ 𝑌 }, for 𝑌 a neigbourhood of 0 ∈ R𝑚. To586
show the claim, consider 𝑖 ∈ 𝐼 (𝑥) and note that, because 𝑥 + 𝑈𝑢 + 𝑉�̄� ∈ M �̄� , it must be587
that 𝐼 (𝑥 + 𝑈𝑢 + 𝑉�̄�) = 𝐼 (𝑥), that is ℎ(𝑥 + 𝑈𝑢 + 𝑉�̄�) =

〈
𝑎𝑖 , 𝑥 +𝑈𝑢 +𝑉�̄�

〉
=

〈
𝑎𝑖 , 𝑥

〉
+ 𝑏𝑖 +588 〈

𝑎𝑖 ,𝑈𝑢 +𝑉�̄�
〉
= ℎ(𝑥) +

〈
𝑎𝑖 ,𝑈𝑢 +𝑉�̄�

〉
. Therefore,589

(4.7) ℎ(𝑥 +𝑈𝑢 +𝑉�̄�) − ℎ(𝑥) =
〈
𝑎𝑖 ,𝑈𝑢 +𝑉�̄�

〉
.590

Because 0 ∈ 𝜕 𝑓 (𝑥), we have that −∇𝑞(𝑥) ∈ 𝜕ℎ(𝑥) and 𝑎𝑖 + ∇𝑞(𝑥) ∈ V. As a result,591 〈
𝑎𝑖 + ∇𝑞(𝑥),𝑈𝑢

〉
= 0 and

〈
𝑎𝑖 ,𝑈𝑢

〉
= − ⟨∇𝑞(𝑥),𝑈𝑢⟩. And (4.7) yields

〈
𝑉�̄�, 𝑎𝑖

〉
= ℎ(𝑥 +𝑈𝑢+592

𝑉�̄�) − ℎ(𝑥) + ⟨∇𝑞(𝑥),𝑈𝑢⟩. The expression −∇𝑞(𝑥) = ∑
𝑖∈𝐼 ( �̄� ) �̄�𝑖𝑎

𝑖 with
∑

𝑖∈𝐼 ( �̄� ) 𝛼𝑖 = 1, �̄�𝑖 ≥593
0 (𝑖 ∈ 𝐼 (𝑥)) implies that ⟨𝑉�̄�,−∇𝑞(𝑥)⟩ = ℎ(𝑥 +𝑈𝑢 + 𝑉�̄�) − ℎ(𝑥) + ⟨∇𝑞(𝑥),𝑈𝑢⟩, and hence,594 〈
𝑉�̄�, 𝑎𝑖 + ∇𝑞(𝑥)

〉
= 0. Because V = span(𝜕ℎ(𝑥) + ∇𝑞(𝑥)) = span

{
𝑎𝑖 + ∇𝑞(𝑥) : 𝑖 ∈ 𝐼 (𝑥)

}
,595

we actually have that ⟨𝑉�̄�, 𝑧⟩ = 0 for all 𝑧 ∈ V and our claim that �̄� = 0 follows.596
Consider 𝑢 ∈ 𝑌 . Since M ∩ 𝑋 = {𝑥 +𝑈𝑢 : 𝑢 ∈ 𝑌 } = M �̄� ∩ 𝑋 and 𝐼 (𝑥 + 𝑈𝑢) = 𝐼 (𝑥),597

from the characterization of 𝜕ℎ(𝑥) in (4.6), it holds that 𝜕ℎ(𝑥 +𝑈𝑢) = 𝜕ℎ(𝑥). Consequently,598
𝑈⊤𝜕ℎ(𝑥 + 𝑈𝑢) = 𝑈⊤𝜕ℎ(𝑥) = �̄�𝑢. On the other hand, in view of (4.3) in Thm. 4.4 we599
can take 𝑋 and 𝑌 sufficently small such that 𝑣𝜕 𝑓 (𝑢) ≡ 0. Consequently, the restriction600
of 𝑓 on M ∩ 𝑋 is 𝑓 (𝑥 + 𝑈𝑢) = 𝑞(𝑥 + 𝑈𝑢) + ℎ(𝑥 + 𝑈𝑢) and, therefore, ∇𝑢 𝑓 (𝑥 + 𝑈𝑢) =601
𝑈⊤∇𝑞(𝑥 +𝑈𝑢) +𝑈⊤𝜕ℎ(𝑥 +𝑈𝑢). Because 𝑈⊤𝜕ℎ(𝑥 +𝑈𝑢) = �̄�𝑢, this completes the proof, as602
then ∇2

𝑢𝑢 𝑓 (𝑥 +𝑈𝑢) = 𝑈⊤∇2𝑞(𝑥 +𝑈𝑢)𝑈.603

Partly smooth functions with the structure in (3.1) are considered in [3] to show that the604
proximal gradient method can identify the smooth manifold at a minimizer. This manifold is605
actually the fast track, which has been shown to be equivalent objects, for convex functions in606
[12] and for prox-regular functions in [26]. In the method proposed in [3], after identifying607
the manifold via the proximal gradient mapping, certain Riemannian gradient and Hessian are608
employed to compute a U-Newton direction.609

4.3. Superlinear convergence of the PGVU method. For superlinear convergence,610
naturally, properties of the partial U-Hessian at 𝑥 associated with �̄�𝑣 = 0 are important. This611
matrix is assumed to be positive definite. Also, the Dennis-Moré-type condition below, typical612
in quasi-Newton methods (see, e.g., [19]), is required:613

(4.8) (𝑈𝑘𝑄𝑘𝑈
ᵀ
𝑘 −𝑈𝑊𝑈

ᵀ)𝑔𝑘 = 𝑜(𝑈𝑔𝑘𝑢) , where𝑊−1 = 𝐻 := 𝐻 (𝑥; 0) .614

Recall that the matrix𝑈 spans the U(𝑥)-subspace.615

Theorem 4.6 (Superlinear rate). Suppose 𝑓 has a positive definite partial U-Hessian616
𝐻 at 𝑥 associated with �̄�𝑣 = 0 and that (4.8) holds. Under the assumptions in Theorem 3.3,617
let 𝑥 be an accumulation point of

{
𝑥𝑘
}

such that �̄� = 0 ∈ ri 𝜕 𝑓 (𝑥). Then 𝑥 is the unique618

minimizer of 𝑓 , and both
{
𝑥𝑘
}

and
{
𝑝𝑘

}
converge to 𝑥. Furthermore, if 𝜇𝑘 > 𝛽, then619

∥𝑥𝑘+1 − 𝑥∥ = 𝑜(𝑥𝑘 − 𝑥), i.e., the iterates generated by Algorithm 3.1 converge superlinearly.620

Proof. Because 0 ∈ ri 𝜕 𝑓 (𝑥) and 𝑓 has a positive definite partial U-Hessian at 𝑥, we621
have from Lemma 4.2 that 𝑥 is the unique minimizer of 𝑓 . Recall from Theorem 3.3 that622
every accumulation point of the sequence

{
𝑥𝑘
}

generated by Algorithm 3.1 is a minimizer623

of 𝑓 . Consequently, 𝑥 is the unique accumulation point of
{
𝑥𝑘
}
, with both

{
𝑥𝑘
}

and
{
𝑝𝑘

}
624

converging to 𝑥, as stated.625
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Next, using (3.6), adding ±𝑈𝑊𝑈ᵀ𝑔𝑘 , and recalling the definition of (𝑢𝑘 , 𝑣𝑘) in Theo-626
rem 3.1:627

𝑥𝑘+1 − 𝑥 = 𝑝𝑘 −𝑈𝑘𝑄𝑘𝑈
ᵀ
𝑘
𝑔𝑘 − 𝑥

= −𝑈𝑘𝑄𝑘𝑈
ᵀ
𝑘
𝑔𝑘 + 𝑝𝑘 − 𝑥 ±𝑈𝑊𝑈ᵀ𝑔𝑘

=

(
𝑈𝑊𝑈ᵀ −𝑈𝑘𝑄𝑘𝑈

ᵀ
𝑘

)
𝑔𝑘 −𝑈𝑊𝑈ᵀ𝑔𝑘 + (𝑝𝑘 − 𝑥)𝑢 + (𝑝𝑘 − 𝑥)𝑣

=

(
𝑈𝑊𝑈ᵀ −𝑈𝑘𝑄𝑘𝑈

ᵀ
𝑘

)
𝑔𝑘 +

(
𝑈𝑢𝑘 −𝑈𝑊𝑈ᵀ𝑔𝑘

)
+ 𝑣𝑘 .

628

The third term above is of the order 𝑜(𝑥𝑘 − 𝑥), by item (ii) in Corollary3.4. The same holds629

for the first term, as
(
𝑈𝑊𝑈ᵀ −𝑈𝑘𝑄𝑘𝑈

ᵀ
𝑘

)
𝑔𝑘 = 𝑜(𝑔𝑘) because of (4.8), and 𝑔𝑘 = 𝑂 (𝑥𝑘 − 𝑥), by630

Theorem 3.1(ii). To conclude the proof, it remains to show that 𝑇2 :=
(
𝑈𝑢𝑘 −𝑈𝑊𝑈ᵀ𝑔𝑘

)
=631

𝑜(𝑥𝑘 − 𝑥). Since 𝑇2 = 𝑈

(
𝑢𝑘 −𝑊𝑈ᵀ𝑔𝑘

)
= 𝑈

(
𝑢𝑘 −𝑊𝑔𝑘𝑢

)
, after multiplying on the left by632

𝐻𝑈ᵀ, we see that 𝐻𝑈ᵀ𝑇2 = 𝐻𝑢𝑘 − 𝑔𝑘𝑢 . Lemma 4.2(i) then ensures that 𝐻𝑈ᵀ𝑇 = 𝑜(𝑢𝑘). The633
result follows, because 𝑢𝑘 = 𝑂 (𝑥𝑘 − 𝑥), by Theorem 3.1(ii).634

The following two examples of polyhedral functions that are partly smooth relative to635
an affine or linear set from [43, Sec. 3.1], are common illustrations in regularized regression636
problems. The corresponding U-subspaces have then an explicit expression. If637

(4.9) ℎ(𝑥) = ∥𝑥∥1 then U(𝑝) = lin
{
𝑒 𝑗 : 𝑗 ∈ 𝐽 (𝑝)} for 𝐽 (𝑝) = {𝑖 ≤ 𝑛 : |𝑝 𝑗 | > 0

}
.638

Likewise, if ℎ(𝑥) = ∥𝑥∥∞, then U(𝑝) = {𝑥 : 𝑥𝐽 = 𝑘 sign(𝑝𝐽 ), 𝑘 ∈ R} for the activity index639
set 𝐽 = 𝐽 (𝑝) = {𝑖 ≤ 𝑛 : |𝑝𝑖 | = ∥𝑝∥∞}.640

For our numerical validation, we now consider problems having ℎ as in (4.9).641

5. Application to ℓ1-regularized minimization. We now apply the PGVU method642
(Algorithm 3.1), as its illustration, to solve ℓ1-regularized problems. So,643

(5.1) in (3.1) the nonsmooth function is ℎ(𝑥) = 𝜆∥𝑥∥1 , for a positive parameter 𝜆,644

and the proximal points for ℎ are easy to compute. Accordingly, the V-step in Procedure 1645
computes646

(5.2) 𝑝𝑘 = max{0, 𝑤𝑘 − 𝜆

𝜇𝑘
} − max{0,−𝑤𝑘 − 𝜆

𝜇𝑘
} , for 𝑤𝑘 = 𝑥𝑘 − 1

𝜇𝑘
∇𝑞(𝑥𝑘) .647

The remaining two calculations that need to be specified in Algorithm 3.1 refer to the648
orthonormal basis𝑈𝑘 , and the positive semidefinite matrix 𝑄𝑘 .649

5.1. Defining 𝑄𝑘 and 𝑈𝑘 . For PGVU global convergence in Theorem 3.3, the matrices650
only need to be bounded. The superlinear rate in Theorem 4.6 requires a quite standard651
Dennis-Moré-type condition, natural in quasi-Newton frameworks. There are various choices652
that are compatible with the theory. For better numerical performance, it is preferable that653
matrices do not change too abruptly along consecutive iterations.654

Regarding the second-order information along the U-subspace, [43, Example 10] shows655
that the ℓ1-norm is partly smooth at any 𝑝 ∈ R𝑛 relative to U(𝑝) defined in (4.9). As the656
same holds for 𝑓 when ℎ is as in (5.1), by Theorem 4.4, if 0 ∈ 𝑉† ri 𝜕 𝑓 (𝑥) then657

𝐻 := 𝑈⊤∇2𝑞(𝑥)𝑈658

is a partial U-Hessian of 𝑓 at 𝑥 associated with �̄�𝑣 = 0. Thus, a natural choice for the659
quasi-Newton matrices in the U-step is to take 𝑄−1

𝑘
= 𝑈⊤

𝑘
∇2𝑞(𝑥𝑘)𝑈𝑘 .660
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The choice of the matrices 𝑈𝑘 is more delicate. Since 𝜕 𝑓 (𝑥) = ∇𝑞(𝑥) + 𝜆𝜕ℎ(𝑥), the661
VU-decomposition is determined by theV-subspace associated with ℎ. Then, at first glance,662
defining the basis matrix𝑈𝑘 for the subspaces U(𝑝𝑘) from (4.9) might appear straightfoward.663
Nevertheless, given 𝜀 ≥ 0, we consider instead the smaller subspaces664

(5.3) U𝜀 (𝑥) = span
{
𝑒 𝑗 : 𝑗 ∈ 𝐽𝜀 (𝑥)

}
for 𝐽𝜀 (𝑥) :=

{
𝑖 ≤ 𝑛 : |𝑥𝑖 | >

𝜀

2

}
.665

This V𝜀U𝜀-decomposition was introduced in [27] to deal with the lack of continuity of the666
subdifferential as a multifunction. Unlike the VU-decomposition, the following important667
continuity property, [27, equation (5.13)], holds for the 𝜀-counterpart:668

lim(𝑥,𝜀)→( �̄�,0)
𝜀≥0

V𝜀 (𝑥) = V(𝑥) and lim(𝑥,𝜀)→( �̄�,0)
𝜀≥0

U𝜀 (𝑥) = U(𝑥) .669

Thanks to this property, taking𝑈𝑘 as an orthonormal basis for
[
𝑒 𝑗 : 𝑗 ∈ 𝐽𝜀𝑘 (𝑥𝑘)

]
with 𝜀𝑘 → 0670

and 𝑥𝑘 → 𝑥, ensures that 𝑈𝑘 → 𝑈, as needed to satisfy the Dennis-Moré condition (4.8) in671
Theorem 4.6.672

The choice of the parameter 𝜀 should ensure that it is driven to zero by the algorithmic673
process. We discuss the impact of such choices on our previous example function.674

Example 5.1 (Choosing 𝜀). For 𝐹 from Example 2.2, we run PGVU considering for the675
U-step three different (natural) choices for 𝜀 in (5.3):676

𝜀𝑘0 = 0 , 𝜀𝑘1 = 𝑓 (𝑥𝑘) − 𝑓 (𝑝𝑘) − 𝜇𝑘 ∥𝑝𝑘 − 𝑥𝑘 ∥2 , and 𝜀𝑘2 = 𝜇𝑘 ∥𝑝𝑘 − 𝑥𝑘 ∥2 .677

The first option corresponds to the PGVU runs in Example 3.2. The second one transports678
𝜇𝑘 (𝑥𝑘−𝑝𝑘), a subgradient of the model at 𝑝𝑘 , to 𝜇𝑘 (𝑥𝑘−𝑝𝑘) ∈ 𝜕𝜀𝑘 𝑓 (𝑥𝑘), [18, Prop. Xl.4.2.2].679
Since computing 𝜀𝑘1 can be time consuming (it requires to evaluate 𝑓 at two points), the third680

option appears a good alternative (Theorem 3.3 shows that 𝑥𝑘 − 𝑝𝑘 → 0).681
For the two initial values of 𝜇0 and 𝑥0 in Table 3.1, we run each PGVU variant, respectively682

labeled PGVU-0,1,2, in a reference to the value of 𝜀𝑘 employed in (5.3). The comparison of683
the number of iterations and digits of accuracy indicate 𝜀𝑘2 as the best option, as illustrated by684

the trajectories in Figure 5.1, generated with 𝜀𝑘0 on the left plot and with 𝜀𝑘2 on the right.
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Fig. 5.1: Trajectories of PGVU-0 and PGVU-2 iterations, when minimizing 𝐹 from 𝑥0 =

(−1.2, 2.2)ᵀ, starting with 𝜇0 = 10. Both variants stopped having reached more than 20
digits of accuracy, but PGVU-2 needed much less iterations. When the U𝜀𝑘 (𝑝𝑘) subspace is
determined with 𝜀𝑘 = 0, as on the left plot, only 4 U-steps are done, and PGVU-0 needed
45 iterations to trigger the stopping test. For the trajectory on the right, by contrast, that was
generated with 𝜀𝑘2 , it sufficed to perform 9 iterations that involved 8 U-steps.

685
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Algorithm 5.1 Proximal Gradient VU-method for ℓ1-regularized minimization (PGVU-2)

Data: 𝑓 from (5.1), starting point 𝑥0, prox-parameter 𝜇0, and a stopping tolerance tol. Set
𝑘 = 0.

repeat
Apply Procedure 1 with 𝑝𝑘 defined in (5.2).

Shift the gradient 𝑔𝑘 = 𝜇𝑘 (𝑥𝑘 − 𝑝𝑘) + ∇𝑞(𝑝𝑘) − ∇𝑞(𝑥𝑘) .
Compute𝑈𝑘 =

[
𝑒 𝑗 : |𝑥𝑘

𝑗
| > 𝜀𝑘

2 , 1 ≤ 𝑗 ≤ 𝑛
]

for 𝜀𝑘 := max
(
tol, 𝜇𝑘 ∥𝑝𝑘 − 𝑥𝑘 ∥

)
.

Obtain the direction 𝑑𝑘 = −𝑊 𝑘𝑈ᵀ
𝑘
𝑔𝑘 for𝑊 𝑘 ≈ (𝑈ᵀ

𝑘
∇2𝑞(𝑥𝑘)𝑈𝑘)†.

Update 𝑥𝑘+1 = 𝑝𝑘 +𝑈𝑘𝑑
𝑘 , set 𝑘 = 𝑘 + 1

until ∥𝑔𝑘 ∥ ≤ tol;

5.2. Algorithm statement and numerical experiments. We are now ready to introduce686
the algorithm.687

Being a special instance of PGVU, Algorithm 5.1 has global and superlinear convergence688
if the conditions in Theorems 3.3 and 4.6 are satisfied. With our definitions, such is the case689
if 𝜇𝑘 > 𝛽 and, for 𝑥 an accumulation point of

{
𝑥𝑘
}

generated by Algorithm 5.1, it holds that690

0 ∈ ri 𝜕 𝑓 (𝑥) and 𝐻 = 𝑈ᵀ∇2𝑞(𝑥)𝑈 is positive definite.691

5.2.1. Test functions and parameters. The performance of Algorithm 5.1 is assessed692
on regularized least-square problems:693

in (1.1), 𝑓 (𝑥) = 1
2
∥𝐴𝑥 − 𝑏∥2 + 𝜆∥𝑥∥1 for 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , and 𝜆 = 0.1∥𝐴⊤𝑏∥∞ .694

There are two sets of problems: 5000 mid-size randomly generated instances, and 95 large-695
size statistical classification and regression instances in the webpage 1 of LIBSVM, a library696
for support vector machines. The mid-size problems, refered below as QUAD, have random697
dimensions𝑚 ∈ [10, 1000] and 𝑛 ∈ [0.1𝑚, 2𝑚]. For half of the QUAD problems, that is 2500698
runs, we set 𝐴 = − 1√

2𝑛
𝐴′ for a random matrix 𝐴′. The outcome vector 𝑏 = 𝐴𝑏′ + 0.0001𝜉 for699

random 𝜉 ∈ [0, 1] uniformly distributed. The vector 𝑏′ has non-null components set to ±1,700
depending on a sparsity parameter randomly chosen. The second half of the QUAD problems,701
sets 𝐴 as a random matrix with normalized columns and 𝑏 = 𝐴𝑏′ +

√
0.002𝜉 for 𝑏′ and 𝜉 as702

above. The support vector machine (SVM) problems are all scaled to [-1,1] or [0,1].703

In Procedure 1, we set 𝑥0 = 0, 𝜎 = 10−4 and 𝜇0 =
∇ 𝑓 (𝑥𝑜 )⊤∇ 𝑓 (𝑥0 )
2 max{1, | 𝑓 (𝑥0 ) |} . The maximal704

number of iterations was set to 100, and the stopping tolerance is tol = 10−6. After the705

U-step, the prox-parameter is updated according to [23], i.e., 𝜇𝑘+1 =
𝑦𝑘

⊤
𝑦𝑘𝜇𝑘

𝑦𝑘
⊤
𝑦𝑘+𝜇𝑘 𝑦

𝑘⊤𝑠𝑘
where706

𝑦𝑘 := ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘) and 𝑠𝑘 := 𝑥𝑘+1 − 𝑥𝑘 . In the U-step, to compute 𝑑𝑘 , since707
∇2𝑞(𝑥) = 𝐴ᵀ𝐴 for all 𝑥, we let Id denote the identity matrix of order 𝑛 and define708

𝑊 𝑘 =

{
(𝐴ᵀ𝐴 + tol Id)−1 for QUAD,
𝑑𝑖𝑎𝑔(𝐴ᵀ𝐴 + tol Id)−1 for SVM.709

5.2.2. Solvers and figures with evaluation measures. The benchmark compares MAT-710
LAB implementations of the following solvers:711

1. PGVU-2, as in Algorithm 5.1.712
2. SpaRSA 2.0, the sparse reconstruction by separable approximation[44] 2.713

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2http://www.lx.it.pt/~mtf/SpaRSA/
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3. FISTA, the fast iterative shrinkage-thresholding algorithm [4] 3.714
4. ADMM, the alternating direction method of multipliers[6], with parameters (𝜌, 𝛼) =715

(0.0001, 1.5) 4.716
5. qNVU, the VU-algorithm from [35].717

The experiments were performed on an Intel Core i7 computer with 12 cores and 32 GB718
RAM, running under Ubuntu 22.02.2 LTS.719

The performance is measured by comparing the accuracy and the computing time of each720
solver, separately for the QUAD and SVM problems. We proceed as follows. First, for the721
accuracy criterion, if best is the smallest functional value found on a given instance for all722
the solvers, the accuracy of solver 𝑠 is723

acc(𝑠) = min
(
− log

(
| 𝑓 ∗ (𝑠) − best|

|best|

)
, 16

)
.724

Solvers having achieved at least cutoff ∈ {2, 4, 6} digits of accuracy are considered success-725
ful. The corresponding values are reported in Table 5.1, where the high achieved accuracy, the726
differential of both VU-based methods, becomes evident. The accuracy achieved by FISTA727
is also impressive, being slightly inferior to VU for the large SVM instances.728

Table 5.1: Successful runs for each solver

PGVU-2 SpaRSA FISTA ADMM qNVU
QUAD acc ≥ 2 5000 4998 5000 516 5000

mid-size acc ≥ 4 4999 4933 5000 5 5000
(5000 runs) acc ≥ 6 4998 4493 5000 1 5000

SVM acc ≥ 2 86 91 85 8 86
large-size acc ≥ 4 81 51 79 2 86
(95 runs) acc ≥ 6 74 26 70 0 86

SpaRSA has good accuracy for the mid-size instances, but performs less well for the729
SVM problems. On these runs, and with the considered parameters, ADMM did not perform730
well.731

Regarding computing times, for low accuracy (cutoff=2), SpaRSA is always the fastest732
solver. The profile in Figure 5.2 compares computing times among the successful runs, for733
the value of cutoff=4. In the right plot in Figure 5.2, qNVU exhibits a slower performance.734
This is because at each iteration the qNVU method [35] solves two quadratic programming735
problems, a computationally expensive calculation for the large SVM instances. For the736
mid-size instances, SpaRSA remains the fastest solver, but not for the SVM problems. A737
solver-to-solver comparison clarifies this situation with four plots reported in Figure 5.3,738
comparing PGVU-2 to SpaRSA and FISTA, when SVM problems were solved with at least 2739
or 4 digits.740

On the top left plot in Figure 5.3, we notice that to reach 2 digits of accuracy, SpaRSA741
is faster than PGVU-2, which is in turn faster than FISTA (right top plot). To get 4 digits,742
the bottom plots show that PGVU-2 always wins, reaching the accuracy level faster than both743
SpaRSA and FISTA.744

6. Concluding remarks. We have extended the VU-theory for convex functions by745
defining the two variable U-Lagrangian and the partial U-Hessian. We showed that V-746

3https://github.com/tiepvupsu/FISTA
4https://web.stanford.edu/~boyd/papers/admm/lasso/lasso.html
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Fig. 5.2: Profiles for computing time for the successful runs for all solvers.

Fig. 5.3: Solver-to-solver time comparisons over SVM instances for different accuracy.

minimizers are tangent to the U-subspace, an important property leading to superlinear747
convergence of the Proximal Gradient VU-method, under natural assumptions.748

For PDG-structured functions (including ℓ1-regularization), the Hessian of the single-749
variable U-Lagrangian exists along a certain fast-track [33, Theorem 4.1]. We extend this750
result to our bivariateU-Lagrangian, so that a Newtonian step can be performed as theU-step.751
In particular, we proved that partly smooth functions satisfying 0 ∈ ri 𝜕 𝑓 (𝑥) always have a752
partial U-Hessian at 𝑥.753

We introduced the Proximal Gradient VU method, applicable to various structured754
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convex optimization problems, with superlinear convergence despite the nonsmoothness.755
Numerical experiments verify that the method is particularly useful when high accuracy is756
desired.757

Originally defined for convex functions, the VU-theory has been generalized to the758
nonconvex setting [33, 16, 26]. In [26] a localized version of U-Lagrangian and the notion759
of fast track are defined for a type of nonconvex functions called prox-regular functions [41],760
and the correspondence between an active manifold of a partly smooth function and a fast761
track is given. In [10], under the condition called tilt stability, the smoothness properties of762
the function 𝑓 restricted to the fast track are shown. Combining those theoretical results with763
a suitable line-search, developing nonconvex versions of PGVU might be a subject for future764
research.765
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