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CONVERGENCE PROPERTIES OF PROXIMAL (SUB)GRADIENT
METHODS WITHOUT CONVEXITY OR SMOOTHNESS OF ANY

OF THE FUNCTIONS∗
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Abstract. We establish convergence properties for a framework that includes a variety of prox-
imal subgradient methods, where none of the involved functions needs to be convex or differentiable.
The functions are assumed to be Clarke-regular. Our results cover the projected and conditional
variants for the constrained case, the use of the inertial/momentum terms, and incremental methods
when each of the functions is itself a sum, and the methods process the components in this sum
separately.
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1. Introduction. We consider constrained optimization problems of the form

(1.1) min
x∈D

f(x) :=

m∑
i=1

fi(x), fi(x) = hi(x) + gi(x) , i = 1, . . . ,m ,

where D ⊂ Rn is a closed convex set and m ≥ 1 is an integer. The functions
hi : Rn → R and gi : Rn → R, i = 1, . . . ,m, are assumed to be locally Lipschitz-
continuous and regular in the sense of Clarke [9, 28]. Note that the number of functions
hi and gi in a given problem can be different. But one can always aggregate or split
the components, or add trivial ones, to arrive to the format given by (1.1).

We emphasize that none of the functions need to be differentiable or convex. That
said, while there are many situations where functions involved are Clarke-regular, this
setting does not cover some important applications, like ReLU neural networks; see,
e.g., the discussions in [13] and [33]. The purpose of this paper is to show that, when
the functions are regular, a vareity of (incremental) proximal gradient type methods
can be shown to converge (in a certain sense) in the fully nonsmooth and nonconvex
settings.

When in (1.1) m = 1 and D = Rn, the problem becomes

min f(x) := (h(x) + g(x)) .

If h is differentiable and its gradient is Lipschitz-continuous with modulus L > 0, and
g is convex, the fundamental algorithm for solving the problem is that of proximal
gradient; see, e.g., [2, Chapter 10] and [10, Chapter 2]. In its basic form, given the
current iterate xk ∈ Rn, this method first makes the gradient step on h,

zk = xk − 1

L
h′(xk),
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2 M. SOLODOV

and then obtains the next iterate by computing the proximal point for g with respect
to this zk,

xk+1 = argmin

(
1

L
g(x) +

1

2
∥x− zk∥2

)
.

Or, equivalently,

(1.2) xk+1 = argmin

(
1

L
g(x) +

1

2
∥x− (xk − 1

L
h′(xk))∥2

)
.

The motivation for this scheme is that, in many important applications, the structure
of g is such that computing proximal points in (1.2) can be easy or even explicit; see,
e.g., [8]. Of course, (1.2) is the conceptual idea, and more sophisticated algorithms
have been developed around it.

When m in (1.1) is large, incremental methods [4] process one function fi at a
time. For example, given the current iterate xk ∈ Rn, when D = Rn and the functions
fi are differentiable, the basic incremental gradient method proceeds as follows:

yk,0 = xk, αk > 0, yk,i = yk,i−1 − αkf
′
i(y

k,i−1) , i = 1, . . . ,m, xk+1 = yk,m .

Incremental gradient methods were originally motivated by machine learning appli-
cations, where they were known as backpropagation. Their convergence analysis dates
back to [25, 23]. In this paper, instead of the incremental gradient steps for the compo-
nents fi, we shall consider incremental proximal (sub)gradient steps for fi = (hi+ gi)
of the form in (1.2), but without differentiability assumptions on hi.

At its origins, in the proximal gradient methods (incremental or not) the function
h, or the functions hi comprising h, were always assumed to be differentiable, typically
with Lipschitz-continuous gradient; see, e.g., [3, 15, 24, 31] for some examples (without
attempting to be exhaustive in the list of relevant literature). In [20], Lipschitz-
continuity of gradients is relaxed to a weaker property, but the functions hi are still
assumed to be differentiable. The function g was usually assumed to be convex; see,
e.g., [2, Chapter 10], [31]. There are extentions allowing nonconvex g (but still with
smooth h); see, e.g., [1] for the proximal gradient method (1.2), and more generally
[6], and [20], [21] for some related incremental approaches. In [16] the proximal
subgradient method is considered when both h and g are nonsmooth but convex (and
m = 1).

We next discuss some literature where, like in this paper, none of the functions
is assumed to be differentiable or convex. The fundamental work [13] proves con-
vergence of the proximal subgradient method for the class of tame functions, with
m = 1. On the other hand, apart from the different settings, the current paper covers
the important case of incremental algorithms (m > 1), the use of momentum terms,
allows possibly different subgradient and proximal parameters along the iterations,
and larger stepsizes (here, the stepsizes are allowed to go to zero arbitrarily slowly,
while [13] requires them to tend to zero fast enough – be square summable). Con-
vergence rates for the proximal subgradient method for weakly convex functions [12]
are obtained in [11]. In [33] some algorithms for more general than regular functions
are considered. However, the nature of those algorithms is very different. First, the
framework requires checking a descent test, which means knowing the value of the
full function f . This cannot be applied in incremental methods, where knowledge of
one fi at a time is only available, while the full function f is never known. And more
importantly, the framework in [33] is not of the “black-box” type when it comes to
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computing subgradients. Even in the non-incremental case (m = 1) it requires to
compute a special subgradient (not an arbitrary one), in particular the one which is
associated to the directional derivative at the given point. While this is possible in
some applications, it is not so in nonsmooth optimization in general (see, e.g., the
discussion in [7, Part II]). The issue of using the traditional subgradient oracle has
been addressed in [14] in the randomized framework. The work [19] derandomizes the
algorithm, and [17] includes the constrained setting.

Some words about our notation. By B we denote the unit ball in Rn centered at
the origin. By PD(z) we denote the Euclidean projection of the point z ∈ Rn onto D.
The normal cone to D at z ∈ Rn is given by ND(z) = {ν ∈ Rn | ⟨ν, y−z⟩ ≤ 0 ∀ y ∈ D}
for z ∈ D; ND(z) = ∅ if z ̸∈ D. Recall that for any z ∈ Rn,

(1.3) z − PD(z) ∈ ND(PD(z)) , ⟨z − PD(z), y − PD(z)⟩ ≤ 0 ∀ y ∈ D .

Let conv X stand for the convex hull of a set X ⊂ Rn. Recall that a (locally)
Lipschitz-continuous function f : Rn → R is differentiable almost everywhere. Let Df

be the set of points where f is differentiable. Then the Clarke subdifferential of f at
x ∈ Rn is the set

∂f(x) = conv{v ∈ Rn | ∃ {yj} → x s.t. {yj} ⊂ Df , {f ′(yj)} → v , j → ∞} .

When f is convex, ∂f is the same as the subdifferential in Convex Analysis.
Under our standing assumptions, it holds that for any bounded set X ⊂ Rn there

exists some constant L > 0 such that

(1.4) ∥vhi
∥ ≤ L, ∥vgi∥ ≤ L, ∀ vhi

∈ ∂hi(x), ∀ vgi ∈ ∂gi(x), ∀x ∈ X ,

i = 1, . . . ,m.
The set of stationary points of problem (1.1) is given by

(1.5) S := {x ∈ D | 0 ∈ ∂f(x) +ND(x)}.

For a set-valued mapping F from Rn to the subsets of Rn, its outer limit at z̄ ∈ Rn

is the set

lim sup
z→z̄

F (z) = {v ∈ Rn | ∃ {zj} → z̄, ∃ vj ∈ F (zj) s.t. {vj} → v , j → ∞}.

The mapping F is outer semi-continuous at z̄ if it holds that lim supz→z̄ F (z) ⊂ F (z̄).
Under our standing assumptions, the Clarke subdifferentials of hi, gi, i = 1, . . . ,m,
and of f, h, g, are outer semi-continuous at any x ∈ D. Also, the normal cone ND(x)
is outer semi-continuous at all x ∈ D.

For a set-valued mapping Φ from N× Rn to the subsets of Rn, its outer limit at
z̄ ∈ Rn is

lim sup
k→∞ ,z→z̄

Φ(k, z) =

{
v ∈ Rn

∣∣∣∣ ∃{jk} → ∞ as k → ∞,∃{zk} → z̄,∃vk ∈ Φ(jk, z
k)

s.t. {vk} → v , k → ∞

}
.

2. Description of the algorithms. We proceed to formally state the algo-
rithms in consideration. The relations that need to be imposed on the algorithmic
parameters (the prox-paramenter, the subgradient stepsize, inexactness in solving sub-
problems, and the momentum term) are stated in the convergence analysis Section 3
below. One interesting new feature of all the algorithms is that the prox-paramenters
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βk and the subgradient stepsizes αk are allowed to be unequal along iterations, as
long as their ratio tends to one asymptotically (as will be stated in Section 3). Of
course, they can also be taken equal, as is usual in the literature.

What is meant by an approximate stationary point of the subproblem (2.1) below
is specified in (2.3), immediately after the algorithm. This algorithm takes the starting
point x0 ∈ D. Then, by (2.2), it generates feasible iterates xk ∈ D for all k =
0, 1, 2, . . ..

Algorithm 2.1. [Incremental Proximal Gradient Method with Momen-
tum Terms]

1. For the iteration k ∈ N and the corresponding iterate xk, set yk,0 = xk and
choose αk > 0, βk > 0.

2. For i = 1, . . . ,m, choose the error-tolerance parameter εk,i ≥ 0 and compute
yk,i as an approximate, in the sense of (2.3), stationary point of the problem

(2.1)

min
x∈Rn

βkgi(x) +
1

2
∥x− (yk,i−1 − αkv

k,i−1
h )∥2, where vk,i−1

h ∈ ∂hi(y
k,i−1).

3. Choose γk ≥ 0 and set

(2.2) xk+1 = PD(yk,m + γk(x
k − xk−1)).

Set k := k + 1 and go to Step 1.

By computing an approximate stationary point of (2.1) we mean the natural
condition that yk,i satisfies

(2.3) 0 ∈ βk∂gi(y
k,i) + yk,i − yk,i−1 + αkv

k,i−1
h + εk,iB .

Note that when gi is not convex, for the step (2.1) in Algorithm 2.1 to be well-
defined, the assumption that the proximal subproblems therein are solvable is re-
quired. This can be related, for example, to prox-boundedness [27] of gi. However, we
actually only need the existence of stationary points of proximal subproblems, which
furthermore need not be unique. Also, as commented by a referee, prox-boundedness
can be ensured by adding to gi and subtracting from hi a function with sufficient
coercivity properties. For example, if gi is weakly convex [12] then adding to it a
certain multiple of ∥x∥2 would make the sum convex and thus prox-bounded.

The inertia term γk(x
k − xk−1) in (2.2) is known as “momentum term” in the

machine learning literature [18], and “heavy ball term” in optimization [26]. This,
or some similar modification of the step playing the same role, is important for im-
proving computational performance in many applications [18, 8]. Our momentum
term parameters γk would require to tend to zero, which is different from the previ-
ous literature for smooth functions and non-incremental algorithms. However, it is
known that it has to go to zero even in the simpler (than considered here) incremental
gradient methods, and also in the smooth case [25, Theorem 3.1].

Remark 2.1. It is worth to mention that just like the tolerance parameter εk,i, we
could allow the subgradient stepsize αk and the prox-parameter βk to vary over the
components i = 1, . . . ,m. However, this would complicate considerably the notation
and technical details in the convergence analysis in Section 3. For this reason, we
limit this issue to a remark.
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In the following conditional variant of the method, where in (2.4) below mini-
mization is performed over the set D, no solvability assumptions are needed if the set
D is compact.

Again, at k = 0, we take x0 ∈ D.

Algorithm 2.2. [Incremental Conditional Proximal Gradient Method
with Momentum Terms]

1. For the iteration k ∈ N and the corresponding iterate xk, set yk,0 = xk and
choose αk > 0, βk > 0.

2. For i = 1, . . . ,m, choose the error-tolerance parameter εk,i ≥ 0 and compute
yk,i as an approximate, in the sense of (2.6), stationary point of the problem

(2.4)

min
x∈D

βkgi(x) +
1

2
∥x− (yk,i−1 − αkv

k,i−1
h )∥2, where vk,i−1

h ∈ ∂hi(y
k,i−1).

3. Choose γk ≥ 0 and set

(2.5) xk+1 = PD(yk,m + γk(x
k − xk−1)).

Set k := k + 1 and go to Step 1.

By computing an approximate stationary point yk,i of (2.4) we mean the following
natural condition for constrained problems:

(2.6)
∃wk,i ∈ βk∂gi(y

k,i) + yk,i − yk,i−1 + αkv
k,i−1
h such that

yk,i − PD(yk,i − wk,i) ∈ εk,iB .

In particular, for εk,i = 0, the relations in (2.6) mean computing an exact stationary
point of (2.4).

The following algorithm differs from Algorithm 2.1 in that each proximal gradient
step for i = 1, . . . ,m is followed by projection onto D.

Algorithm 2.3. [Incremental Projected Proximal Gradient Method
with Momentum Terms]

1. For the iteration k ∈ N and the corresponding iterate xk, set yk,0 = xk and
choose αk > 0, βk > 0.

2. For i = 1, . . . ,m, choose the error-tolerance parameter εk,i ≥ 0 and compute
zk,i as an approximate, in the sense of (2.3) with yk,i therein substituted by
zk,i, stationary point of the problem (2.1), and set

(2.7) yk,i = PD(zk,i).

3. Choose γk ≥ 0 and set

(2.8) xk+1 = PD(yk,m + γk(x
k − xk−1)).

Set k := k + 1 and go to Step 1.

3. Convergence analysis. We first outline the Generalized Lyapunov Direct
Method convergence analysis technique of [32] (see also [30]), adapted to our purposes.
This technique is particularly useful when there does not exist a classical Lyapunov
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function, which is guaranteed to behave monotonically along the iterative process.
Note that, in general, such a function cannot be exhibited for incremental methods
(even if the functions are smooth), as well as for nonsmooth subgradient methods
(even without the incremental features).

Consider the general iterative process

(3.1) xk+1 ∈ xk − αkΦ(k, x
k), k = 0, 1, . . . , x0 ∈ X,

where Φ is a set-valued mapping from N ×X to the subsets of X, with X being an
open set in Rn.

Choose a locally Lipschitz-continuous function V : Rn → R, regular in the sense
of Clarke. We call V pseudo-Lyapunov function (“pseudo”, because it need not be
monotone along the iterative sequence {xk} generated by (3.1)). The choice of V
depends on the problem being solved, and the specific instance of (3.1), i.e., on the
algorithm mapping Φ. In our applications below, V = f , the objective function in
(1.1).

Let {xk} be a bounded sequence, with all its accumulation points belonging to
some convex compact set C ⊂ X. Define

R(x) = conv{∂V (x) ∪NC(x)}.

Denote the outer limit of Φ at x by

Φ̄(x) := lim sup
k→∞, z→x

Φ(k, z) .

For the pseudo-Lyapunov function V , the set C, and the mapping Φ̄, define the
following set:

(3.2) A := {x ∈ C | max
ρ∈R(x)

min
q∈Φ̄(x)

⟨ρ, q⟩ ≤ 0} .

This set serves as an attractor for the iterates generated by (3.1); it consists of all the
points in C for which −Φ̄(x) does not contain feasible directions (for C) that are of
descent for the pseudo-Lyapunov function V . In our applications below, we will have
V = f (the objective function of (1.1)) and C being the intersection of D (the feasible
set of (1.1)) with some compact convex set X that contains the (assumed bounded)
iterative sequences in its interior. Furthermore, it will be proven that A ⊂ S, where
S is given by (1.5) (i.e., the attractors are stationary points of problem (1.1)).

A set Ω ⊂ Rn is said to be V -connected, if the set V (Ω) = {t ∈ R | ∃x ∈ Ω, t =
V (x)} is a connected set in R. Denote by {At}, t ∈ T , the (unique) decomposition
of A into V -connected components, i.e.,

A = ∪t∈TA
t, At′ ̸= At′′ for t′ ̸= t′′, t′, t′′ ∈ T.

Theorem 3.1. [32, 30, Adapted version] Let {xk} be any sequence generated by
the process (3.1), where

(3.3) sup
x∈X

lim sup
z→x,k→∞

sup
u∈Φ(k,z)

∥u∥ < ∞ ,

(3.4) αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞ .
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Suppose further that {xk} is bounded, with all its accumulation points belonging to
some convex compact set C ⊂ X.

Then there exists t ∈ T such that all accumulation points of the sequence {V (xk)}
belong to the set V

(
At ∩ X̄

)
, where X̄ is the set of all accumulation points of {xk}.

If, in addition, the set V (A) is nowhere dense in R, then all the accumulation
points of the sequence {xk} belong to a V -connected component of A defined by (3.2).

The following lemma will be used for relating the algorithms stated in Section 2
to the framework of (3.1) and Theorem 3.1.

Lemma 3.2. Let D ⊂ Rn be a closed convex set. Then for x = PD(y−αd), where
y ∈ D, d ∈ Rn and α > 0, there exists ν ∈ ND(x) such that x = y − α(d + ν) and
∥ν∥ ≤ ∥d∥.

Proof. By the property of the projection operator (1.3), (y − αd) − x ∈ ND(x).

Hence, there exists ν̂ ∈ ND(x) such that y − αd − x = ν̂. Define ν = 1
α ν̂ ∈ ND(x).

Then d = 1
α (y − x)− ν. We obtain that

∥ν∥2 ≤ ∥ν∥2 + 1

α2
∥y − x∥2

≤ ∥ν∥2 + 1

α2
∥y − x∥2 − 1

α
⟨ν, y − x⟩

= ∥d∥2 ,

where the second inequality holds because ν ∈ ND(x) and y ∈ D.

We start with convergence analysis of the Incremental Proximal Gradient Method
with Momentum Terms (Algorithm 2.1).

It is well known that the condition of stepsize tending to zero (like that in (3.4))
is indispensable for convergence of subgradient methods in the nonsmooth case, even
for convex problems and without any incremental features. This condition is also
required for incremental methods, even when all the functions are smooth (the latter
is demonstrated in [22, Section 2]; see also [25]). The exceptions are some special
cases (like [5]) or when the theoretical convergence guarantees concern approximate
solutions [29].

We shall assume implicitly that Algorithm 2.1 is well-defined, in the sense that
the proximal subproblems therein are solvable (at least to approximate stationarity).
This issue has been already discussed in Section 2. We shall also assume that all
the generated iterates are bounded. In a sense, this is a limitation of the general
nonconvex nonsmooth setting and of the adopted methodology.

Theorem 3.3. Let {xk} and {yk,i}, i = 1, . . . ,m, be any bounded sequences gen-
erated by Algorithm 2.1, where the parameters satisfy (3.4) and

(3.5) lim
k→∞

βk

αk
= 1, lim

k→∞

γk
αk

= 0, lim
k→∞

εk,i
αk

= 0, i = 1, . . .m.

Then there exists an f -connected component St of the set of stationary points S
of problem (1.1) such that all accumulation points of the sequence {f(xk)} belong to
the set f(St ∩ X̄), where X̄ is the set of accumulation points of {xk}.

If, in addition, the set f(S) is nowhere dense in R, then all accumulation points
of {xk} belong to an f -connected component of the set of stationary points S.
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Proof. By (2.3), we obtain that there exist vk,ig ∈ ∂gi(y
k,i) and rk,i ∈ B such that

βkv
k,i
g + yk,i − yk,i−1 + αkv

k,i−1
h + εk,ir

k,i = 0, i = 1, . . . ,m,

where vk,i−1
h ∈ ∂hi(y

k,i−1). Hence,

yk,i = yk,i−1 − αk

(
vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig +

εk,i
αk

rk,i
)
, i = 1, . . . ,m ,

where yk,0 = xk ∈ D. Defining

(3.6) dk,i = vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig +

εk,i
αk

rk,i, i = 1, . . . ,m ,

we obtain that

yk,m = xk − αk

m∑
i=1

dk,i.

Therefore (see (2.2)),

xk+1 = PD(yk,m + γk(x
k − xk−1))

= PD

(
xk − αk

(
m∑
i=1

dk,i − γk
αk

(xk − xk−1)

))

= xk − αk

(
m∑
i=1

dk,i − γk
αk

(xk − xk−1) + νk+1

)
,(3.7)

where the last equality is by Lemma 3.2, with

(3.8) νk+1 ∈ ND(xk+1), ∥νk+1∥ ≤

∥∥∥∥∥
m∑
i=1

dk,i − γk
αk

(xk − xk−1)

∥∥∥∥∥ .
Let Z ⊂ Rn be some compact convex set containing {xk} and at least one sta-

tionary point of (1.1) (i.e, Z ∩S ̸= ∅). Let further X ⊂ Rn be some open bounded set
containing Z and {yk,i}, i = 1, . . . ,m. By (1.4), by the definition of dk,i in (3.6), by
the conditions on the algorithm parameters (3.5), and by (3.8), it follows that there
exists some c > 0 such that

(3.9)

∥∥∥∥∥
m∑
i=1

dk,i

∥∥∥∥∥ ≤ c, ∥xk − xk−1∥ ≤ c, ∥νk+1∥ ≤ c

holds for all k = 1, 2, . . .. We can further enlarge the sets Z and X, if necessary, so
that still Z ⊂ X and

m∑
i=1

dk,i − γk
αk

(xk − xk−1) + νk+1 ∈ X,

for all k = 1, 2, . . ..
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We next write the iterates update (3.7) in the form of the iterative process (3.1)
with the following mapping Φ from N×X to the subsets of X:
(3.10)

Φ(k, x) =


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u =
∑m

i=1 d
i − γk

αk
w + ν,

di = vi−1
h + vig +

(
βk

αk
− 1
)
vig +

εk,i

αk
ri,

vi−1
h ∈ ∂hi(y

i−1), vig ∈ ∂gi(y
i), ri ∈ B,

y0 = x, yi = yi−1 − αkd
i, i = 1, . . . ,m,

ν ∈ ND(p), ∥ν∥ ≤ c, p = x− αk

(∑m
i=1 d

i − γk

αk
w + ν

)
,

w ∈ Rn, ∥w∥ ≤ c.


In the context of the iterative process (3.1) and Theorem 3.1, we choose V = f

and C = D ∩ Z. We next show that the attraction set for (3.1),

A = {x ∈ C | max
ρ∈R(x)

min
q∈Φ̄(x)

⟨ρ, q⟩ ≤ 0} ,

where

R(x) = conv{∂f(x) ∪NC(x)},

belongs to the set of stationary points S (1.5) of problem (1.1).
By (3.9) it holds that the mapping Φ given by (3.10) is bounded on X, and hence

its outer limits are bounded, and the condition (3.3) of Theorem 3.1 holds.
We next estimate the outer limit Φ̄(x) = lim supk→∞, z→x Φ(k, z). By (3.4), (3.5)

and (3.9), we have that yi → x, i = 1, . . . ,m, and p → x as z → x, k → ∞. Then,
by the other semicontinuity of the Clarke subdifferentials and of the normal cone to
the closed convex set D, we have that the accumulation points of vi−1

h ∈ ∂hi(y
i−1)

belong to ∂hi(x), the accumulation points of vig ∈ ∂gi(y
i) belong to ∂gi(x), and the

accumulation points of ν belong to ND(x), as z → x, k → ∞. It further follows,
by (3.5), that the accumulation points of di belong to ∂hi(x) + ∂gi(x). Taking into
account again (3.5), (3.9), and putting things together, we conclude that

Φ̄(x) = lim sup
k→∞, z→x

Φ(k, z) ⊂
m∑
i=1

(∂hi(x) + ∂gi(x)) +ND(x)

= ∂f(x) +ND(x) ,(3.11)

where Clarke regularity of the functions involved was taken into account.
We prove that A ⊂ Z ∩ S ⊂ S by showing that if x ̸∈ Z ∩ S then x ̸∈ A.

Suppose x ̸∈ Z ∩ S. If x ̸∈ C = D ∩ Z, then x ̸∈ A by the very definition of A. Let
x ∈ C = D ∩ Z. Then x ̸∈ Z ∩ S implies that x ̸∈ S. The latter means that the
problem

min ∥s∥ subject to s ∈ ∂f(x) +ND(x) ,

has (unique) solution s̄ ̸= 0. Since x ∈ C = D ∩ Z, we have that ND(x) ⊂ NC(x).
Hence, s̄ ∈ ∂f(x) +NC(x).

Then,

s̄ = s1 + s2, s1 ∈ ∂f(x), s2 ∈ NC(x).

It follows that

1

2
s̄ =

1

2
s1 +

1

2
s2 ∈ conv{∂f(x) ∪NC(x)} = R(x).
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We then obtain that

max
ρ∈R(x)

min
q∈Φ̄(x)

⟨ρ, q⟩ ≥ 1

2
min

q∈Φ̄(x)
⟨s̄, q⟩

≥ 1

2
min

q∈∂f(x)+ND(x)
⟨s̄, q⟩ ,(3.12)

where the second inequality is by (3.11).
As s̄ is the orthogonal projection of the origin onto ∂f(x) +ND(x), by (1.3) we

have that

(3.13) ∥s̄∥2 ≤ ⟨s̄, q⟩ ∀q ∈ ∂f(x) +ND(x) .

Combining (3.12) and (3.13), we conclude that

max
ρ∈R(x)

min
q∈Φ̄(x)

⟨ρ, q⟩ ≥ 1

2
∥s̄∥2 > 0 ,

because s̄ ̸= 0 when x ̸∈ S.
This proves that A ⊂ S, and the assertions now follow from Theorem 3.1.

Remark 3.4. Note that according to (3.5), for convergence the proximal parame-
ter βk can be along iterations both smaller or larger than the subgradient stepsize αk

(or also equal to it). However, their ratio must tend to one eventually.

We next turn our attention to the conditional variant of the method, i.e., Al-
gorithm 2.2. Note that as all the generated iterates in this case are feasible, their
boundedness is automatic if the set D is compact.

Theorem 3.5. For sequences generated by Algorithm 2.2, under the same as-
sumptions as those in Theorem 3.3, the same assertions hold.

Proof. By (2.6), we have that there exist vk,ig ∈ ∂gi(y
k,i) and rk,i ∈ B such that,

for i = 1, . . . ,m,

yk,i = PD(yk,i − wk,i) + εk,ir
k,i

= PD(yk,i−1 − βkv
k,i
g − αkv

k,i−1
h ) + εk,ir

k,i

= PD

(
yk,i−1 − αk

(
vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig

))
+ εk,ir

k,i

= yk,i−1 − αk

(
vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig + νk,i

)
+ εk,ir

k,i ,

where the last equality is by Lemma 3.2, with

(3.14) νk,i ∈ ND(yk,i), ∥νk,i∥ ≤
∥∥∥∥vk,i−1

h + vk,ig +

(
βk

αk
− 1

)
vk,ig

∥∥∥∥ .

Defining dk,i as in (3.6), and taking into account that yk,0 = xk, we obtain that

yk,m = xk − αk

m∑
i=1

(dk,i + νk,i).
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Therefore (see (2.5)),

xk+1 = PD(yk,m + γk(x
k − xk−1))

= PD

(
xk − αk

(
m∑
i=1

(dk,i + νk,i)− γk
αk

(xk − xk−1)

))

= xk − αk

(
m∑
i=1

(dk,i + νk,i)− γk
αk

(xk − xk−1) + νk+1

)
,(3.15)

where the last equality is by Lemma 3.2, with

(3.16) νk+1 ∈ ND(xk+1), ∥νk+1∥ ≤

∥∥∥∥∥
m∑
i=1

(dk,i + νk,i)− γk
αk

(xk − xk−1)

∥∥∥∥∥ .
Taking again Z ⊂ Rn to be some compact convex set containing {xk} and at least

one point in S, and taking X ⊂ Rn to be some open bounded set containing Z and
{yk,i}, i = 1, . . . ,m, by (1.4), by the definition of dk,i in (3.6), by the conditions on
the algorithm parameters (3.5), and by (3.14) and (3.16), we can ensure that all the
involved objects are bounded in norm by some c > 0. Also,

m∑
i=1

(dk,i + νk,i)− γk
αk

(xk − xk−1) ∈ X .

We next define the mapping Φ from N×X to the subsets of X, associated to the
iterates given by (3.15):

(3.17) Φ(k, x) =


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u =
∑m

i=1(d
i + νi)− γk

αk
w + ν,

di = vi−1
h + vig +

(
βk

αk
− 1
)
vig +

εk,i

αk
ri,

vi−1
h ∈ ∂hi(y

i−1), vig ∈ ∂gi(y
i), ri ∈ B,

νi ∈ ND(yi), ∥νi∥ ≤ c,
y0 = x, yi = yi−1 − αkd

i, i = 1, . . . ,m,
ν ∈ ND(p), ∥ν∥ ≤ c,

p = x− αk

(∑m
i=1(d

i + νi)− γk

αk
w + ν

)
,

w ∈ Rn, ∥w∥ ≤ c.


Estimating the outer limit Φ̄(x) = lim supk→∞, z→x Φ(k, z), we have that yi → x,

i = 1, . . . ,m, and p → x as z → x, k → ∞. Then,

Φ̄(x) = lim sup
k→∞, z→x

Φ(k, z) ⊂
m∑
i=1

(∂hi(x) + ∂gi(x) +ND(x)) +ND(x)

= ∂f(x) +ND(x) ,(3.18)

where Clarke regularity of the functions involved was taken into account, as well as
the fact that for any convex cone K it holds that K +K = K.

The rest of the proof is the same as the corresponding part of Theorem 3.3.

We finally consider Algorithm 2.3, where the projection is performed after each
proximal-subgradient step.
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Theorem 3.6. For sequences generated by Algorithm 2.3, under the same as-
sumptions as those in Theorem 3.3, the same assertions hold.

Proof. By (2.3) written for zk,i, there exist vk,ig ∈ ∂gi(z
k,i) and rk,i ∈ B such that

βkv
k,i
g + zk,i − yk,i−1 + αkv

k,i−1
h + εk,ir

k,i = 0, i = 1, . . . ,m,

where vk,i−1
h ∈ ∂hi(y

k,i−1). We then obtain that

yk,i = PD(zk,i)

= PD(yk,i−1 − βkv
k,i
g − αkv

k,i−1
h − εk,ir

k,i)

= PD

(
yk,i−1 − αk

(
vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig +

εk,i
αk

rk,i
))

= yk,i−1 − αk

(
vk,i−1
h + vk,ig +

(
βk

αk
− 1

)
vk,ig +

εk,i
αk

rk,i + νk,i
)

,

where the last equality is by Lemma 3.2, with

(3.19) νk,i ∈ ND(yk,i), ∥νk,i∥ ≤
∥∥∥∥vk,i−1

h + vk,ig +

(
βk

αk
− 1

)
vk,ig +

εk,i
αk

rk,i
∥∥∥∥ .

Defining again dk,i by (3.6), we have that the relations (3.15) and (3.16) hold, with
the difference that now dk,i involves vk,ig ∈ ∂gi(z

k,i) (instead of vk,ig ∈ ∂gi(y
k,i) in

Theorem 3.5).
Accordingly, the mapping characterizing Algorithm 2.3 is given by

Φ(k, x) =



u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u =
∑m

i=1(d
i + νi)− γk

αk
w + ν,

di = vi−1
h + vig +

(
βk

αk
− 1
)
vig +

εk,i

αk
ri,

vi−1
h ∈ ∂hi(y

i−1), vig ∈ ∂gi(z
i), ri ∈ B,

νi ∈ ND(yi), ∥νi∥ ≤ c,
y0 = x, yi = yi−1 − αkd

i,

zi = yi−1 − βkv
i
g − αkv

i−1
h − εk,ir

i,
i = 1, . . . ,m,

ν ∈ ND(p), ∥ν∥ ≤ c,

p = x− αk

(∑m
i=1(d

i + νi)− γk

αk
w + ν

)
,

w ∈ Rn, ∥w∥ ≤ c.


Estimating the outer limit Φ̄(x) = lim supk→∞, z→x Φ(k, z), we have that yi → x

and zi → x, i = 1, . . . ,m, and p → x as z → x, k → ∞. Then, (3.18) still holds, and
the rest of the proof is the same as the corresponding part of Theorem 3.3.

4. Concluding remarks. Convergence properties of proximal (sub)gradient
methods had been shown for the case when none of the involved functions needs
to be smooth or convex, but be regular in the sense of Clarke. The analysis covers
methods with inertial (momentum) terms, as well as the incremental, projected, and
conditional variants.
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