BWAPI
|
00001 // Copyright (c) 2000,2001 Utrecht University (The Netherlands), 00002 // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), 00003 // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg 00004 // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), 00005 // and Tel-Aviv University (Israel). All rights reserved. 00006 // 00007 // This file is part of CGAL (www.cgal.org); you can redistribute it and/or 00008 // modify it under the terms of the GNU Lesser General Public License as 00009 // published by the Free Software Foundation; version 2.1 of the License. 00010 // See the file LICENSE.LGPL distributed with CGAL. 00011 // 00012 // Licensees holding a valid commercial license may use this file in 00013 // accordance with the commercial license agreement provided with the software. 00014 // 00015 // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE 00016 // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 00017 // 00018 // $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Kernel_d/include/CGAL/Kernel_d/Aff_transformationHd.h $ 00019 // $Id: Aff_transformationHd.h 42940 2008-04-17 13:32:52Z spion $ 00020 // 00021 // 00022 // Author(s) : Michael Seel 00023 00024 #ifndef CGAL_AFF_TRANSFORMATIONHD_H 00025 #define CGAL_AFF_TRANSFORMATIONHD_H 00026 00027 #include <CGAL/basic.h> 00028 #include <CGAL/aff_transformation_tags.h> 00029 #include <CGAL/rational_rotation.h> 00030 #include <CGAL/Handle_for.h> 00031 00032 CGAL_BEGIN_NAMESPACE 00033 00034 template <class RT, class LA > class Aff_transformationHd; 00035 template <class RT, class LA > class Aff_transformationHd_rep; 00036 00037 template <class RT, class LA> 00038 class Aff_transformationHd_rep 00039 { 00040 friend class Aff_transformationHd<RT,LA>; 00041 typedef typename LA::Matrix Matrix; 00042 Matrix M_; 00043 public: 00044 Aff_transformationHd_rep(int d) : M_(d+1) {} 00045 Aff_transformationHd_rep(const Matrix& M_init) : M_(M_init) {} 00046 ~Aff_transformationHd_rep() {} 00047 }; 00048 00049 00050 /*{\Moptions outfile=Aff_transformation_d.man}*/ 00051 /*{\Manpage{Aff_transformation_d}{R}{Affine Transformations}{t}}*/ 00052 /*{\Msubst 00053 Hd<RT,LA>#_d<R> 00054 Aff_transformationHd#Aff_transformation_d 00055 Quotient<RT>#FT 00056 }*/ 00057 00058 template <class _RT, class _LA> 00059 class Aff_transformationHd : 00060 public Handle_for< Aff_transformationHd_rep<_RT,_LA> > { 00061 00062 typedef Aff_transformationHd_rep<_RT,_LA> Rep; 00063 typedef Handle_for<Rep> Base; 00064 typedef Aff_transformationHd<_RT,_LA> Self; 00065 00066 using Base::ptr; 00067 00068 /*{\Mdefinition 00069 An instance of the data type |\Mname| is an affine transformation of 00070 $d$-dimensional space. It is specified by a square matrix 00071 $M$ of dimension $d + 1$. All entries in the last row of |M| except 00072 the diagonal entry must be zero; the diagonal entry must be non-zero. 00073 A point $p$ with homogeneous coordinates $(p[0], \ldots, p[d])$ can be 00074 transformed into the point |p.transform(A)|, where |A| is an affine 00075 transformation created from |M| by the constructors below. }*/ 00076 00077 public: 00078 /*{\Mtypes 4}*/ 00079 00080 typedef _RT RT; 00081 /*{\Mtypemember the ring type.}*/ 00082 typedef Quotient<_RT> FT; 00083 /*{\Mtypemember the field type.}*/ 00084 typedef _LA LA; 00085 /*{\Mtypemember the linear algebra layer.}*/ 00086 typedef typename _LA::Matrix Matrix; 00087 /*{\Mtypemember the matrix type.}*/ 00088 typedef typename _LA::Vector Vector; 00089 00090 /*{\Mcreation 3}*/ 00091 00092 Aff_transformationHd(int d = 0) : Base( Rep(d) ) {} 00093 /*{\Mcreate introduces a transformation in $d$-dimensional space.}*/ 00094 00095 Aff_transformationHd(int d, Identity_transformation) : Base( Rep(d) ) 00096 /*{\Mcreate introduces the identity transformation in $d$-dimensional 00097 space.}*/ 00098 { for (int i = 0; i <= d; ++i) ptr()->M_(i,i) = RT(1); } 00099 00100 Aff_transformationHd(const Matrix& M) : Base( Rep(M) ) 00101 /*{\Mcreate introduces the transformation of $d$ - space specified by 00102 matrix $M$. \precond |M| is a square matrix of dimension $d + 1$. }*/ 00103 { CGAL_assertion_msg((M.row_dimension()==M.column_dimension()), 00104 "Aff_transformationHd::\ 00105 construction: initialization matrix is not quadratic."); 00106 } 00107 00108 template <typename Forward_iterator> 00109 Aff_transformationHd(Scaling, Forward_iterator start, Forward_iterator end) : 00110 Base( Rep(std::distance(start,end)-1) ) 00111 /*{\Mcreate introduces the transformation of $d$-space specified by a 00112 diagonal matrix with entries |set [start,end)| on the diagonal 00113 (a scaling of the space). \precond |set [start,end)| is a vector of 00114 dimension $d+1$.}*/ 00115 { int i=0; while (start != end) { ptr()->M_(i,i) = *start++;++i; } } 00116 00117 Aff_transformationHd(Translation, const VectorHd<RT,LA>& v) : 00118 Base( Rep(v.dimension()) ) 00119 /*{\Mcreate introduces the translation by vector $v$.}*/ 00120 { int d = v.dimension(); 00121 for (int i = 0; i < d; ++i) { 00122 ptr()->M_(i,i) = v.homogeneous(d); 00123 ptr()->M_(i,d) = v.homogeneous(i); 00124 } 00125 ptr()->M_(d,d) = v.homogeneous(d); 00126 } 00127 00128 Aff_transformationHd(int d, Scaling, const RT& num, const RT& den) 00129 : Base( Rep(d) ) 00130 /*{\Mcreate returns a scaling by a scale factor |num/den|.}*/ 00131 { Matrix& M = ptr()->M_; 00132 for (int i = 0; i < d; ++i) M(i,i) = num; 00133 M(d,d) = den; 00134 } 00135 00136 Aff_transformationHd(int d, Rotation, 00137 const RT& sin_num, const RT& cos_num, const RT& den, 00138 int e1 = 0, int e2 = 1) : Base( Rep(d) ) 00139 /*{\Mcreate returns a planar rotation with sine and cosine values 00140 |sin_num/den| and |cos_num/den| in the plane spanned by 00141 the base vectors $b_{e1}$ and $b_{e2}$ in $d$-space. Thus 00142 the default use delivers a planar rotation in the $x$-$y$ 00143 plane. \precond $|sin_num|^2 + |cos_num|^2 = |den|^2$ 00144 and $0 \leq e_1 < e_2 < d$}*/ 00145 { 00146 CGAL_assertion_msg((sin_num*sin_num + cos_num*cos_num == den*den), 00147 "planar_rotation: rotation parameters disobey precondition."); 00148 CGAL_assertion_msg((0<=e1 && e1<=e2 && e2<d), 00149 "planar_rotation: base vector indices wrong."); 00150 Matrix& M = ptr()->M_; 00151 for (int i=0; i<d; i++) M(i,i) = 1; 00152 M(e1,e1) = cos_num; M(e1,e2) = -sin_num; 00153 M(e2,e1) = sin_num; M(e2,e2) = cos_num; 00154 M(d,d) = den; 00155 } 00156 00157 Aff_transformationHd(int d, Rotation, const DirectionHd<RT,LA>& dir, 00158 const RT& eps_num, const RT& eps_den, int e1 = 0, int e2 = 1) 00159 /*{\Mcreate returns a planar rotation within the plane spanned by 00160 the base vectors $b_{e1}$ and $b_{e2}$ in $d$-space. The rotation 00161 parameters are given by the $2$-dimensional direction |dir|, such that 00162 the difference between the sines and cosines of the rotation given by 00163 |dir| and the approximated rotation are at most |num/den| each.\\ 00164 \precond |dir.dimension()==2|, |!dir.is_degenerate()| and |num < den| 00165 is positive and $0 \leq e_1 < e_2 < d$ }*/ 00166 : Base( Rep(d) ) 00167 { 00168 CGAL_assertion(dir.dimension()==2); 00169 Matrix& M = ptr()->M_; 00170 for (int i=0; i<d; i++) M(i,i) = RT(1); 00171 RT sin_num, cos_num, denom; 00172 rational_rotation_approximation(dir.dx(), dir.dy(), 00173 sin_num, cos_num, denom, 00174 eps_num, eps_den); 00175 00176 M(e1,e1) = cos_num; M(e1,e2) = -sin_num; 00177 M(e2,e1) = sin_num; M(e2,e2) = cos_num; 00178 M(d,d) = denom; 00179 } 00180 00181 /*{\Moperations 5 3}*/ 00182 00183 int dimension() const 00184 { return ptr()->M_.row_dimension()-1; } 00185 /*{\Mop the dimension of the underlying space }*/ 00186 00187 const Matrix& matrix() const { return ptr()->M_; } 00188 /*{\Mop returns the transformation matrix }*/ 00189 00190 Vector operator()(const Vector& iv) const 00191 // transforms the ivector by a matrix multiplication 00192 { return matrix()*iv; } 00193 00194 bool is_odd() const 00195 /*{\Mop returns true iff |\Mvar| is odd.}*/ 00196 { return LA::sign_of_determinant(matrix())<0; } 00197 00198 Aff_transformationHd<RT,LA> inverse() const 00199 /*{\Mop returns the inverse transformation. 00200 \precond |\Mvar.matrix()| is invertible.}*/ 00201 { Aff_transformationHd<RT,LA> Inv; RT D; 00202 Vector dummy; 00203 if ( !LA::inverse(matrix(),Inv.ptr()->M_,D,dummy) ) 00204 CGAL_error_msg("Aff_transformationHd::inverse: not invertible."); 00205 if ( D < 0 ) Inv.ptr()->M_ = -Inv.ptr()->M_; 00206 return Inv; 00207 } 00208 00209 Aff_transformationHd<RT,LA> 00210 operator*(const Aff_transformationHd<RT,LA>& s) const 00211 /*{\Mbinop composition of transformations. Note that transformations 00212 are not necessarily commutative. |t*s| is the transformation 00213 which transforms first by |t| and then by |s|.}*/ 00214 { CGAL_assertion_msg((dimension()==s.dimension()), 00215 "Aff_transformationHd::operator*: dimensions disagree."); 00216 return Aff_transformationHd<RT,LA>(matrix()*s.matrix()); 00217 } 00218 00219 bool operator==(const Aff_transformationHd<RT,LA>& a1) const 00220 { if ( this->identical(a1) ) return true; 00221 return ( matrix() == a1.matrix() ); 00222 } 00223 bool operator!=(const Aff_transformationHd<RT,LA>& a1) const 00224 { return !operator==(a1); } 00225 00226 }; // Aff_transformationHd 00227 00228 template <class RT, class LA> 00229 std::ostream& operator<<( 00230 std::ostream& os, const Aff_transformationHd<RT,LA>& t) 00231 { os << t.matrix(); return os; } 00232 00233 template <class RT, class LA> 00234 std::istream& operator>>( 00235 std::istream& is, Aff_transformationHd<RT,LA>& t) 00236 { typename LA::Matrix M(t.dimension()); 00237 is >> M; t = Aff_transformationHd<RT,LA>(M); 00238 return is; 00239 } 00240 00241 /*{\Mimplementation 00242 Affine Transformations are implemented by matrices of integers as an 00243 item type. All operations like creation, initialization, input and 00244 output on a transformation $t$ take time $O(|t.dimension()|^2)$. |dimension()| 00245 takes constant time. The operations for inversion and composition 00246 have the cubic costs of the used matrix operations. The space 00247 requirement is $O(|t.dimension()|^2)$. }*/ 00248 00249 // ----------------------------- end of file ---------------------------- 00250 00251 00252 CGAL_END_NAMESPACE 00253 #endif // CGAL_AFF_TRANSFORMATIONHD_H 00254