BWAPI
SPAR/AIModule/BWTA/vendors/CGAL/CGAL/Cartesian/Vector_3.h
Go to the documentation of this file.
00001 // Copyright (c) 2000  Utrecht University (The Netherlands),
00002 // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
00003 // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
00004 // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
00005 // and Tel-Aviv University (Israel).  All rights reserved.
00006 //
00007 // This file is part of CGAL (www.cgal.org); you can redistribute it and/or
00008 // modify it under the terms of the GNU Lesser General Public License as
00009 // published by the Free Software Foundation; version 2.1 of the License.
00010 // See the file LICENSE.LGPL distributed with CGAL.
00011 //
00012 // Licensees holding a valid commercial license may use this file in
00013 // accordance with the commercial license agreement provided with the software.
00014 //
00015 // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
00016 // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
00017 //
00018 // $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Cartesian_kernel/include/CGAL/Cartesian/Vector_3.h $
00019 // $Id: Vector_3.h 49589 2009-05-26 07:54:52Z spion $
00020 // 
00021 //
00022 // Author        : Andreas Fabri
00023 
00024 #ifndef CGAL_CARTESIAN_VECTOR_3_H
00025 #define CGAL_CARTESIAN_VECTOR_3_H
00026 
00027 #include <CGAL/Origin.h>
00028 #include <CGAL/array.h>
00029 #include <CGAL/constant.h>
00030 
00031 CGAL_BEGIN_NAMESPACE
00032 
00033 template < class R_ >
00034 class VectorC3
00035 {
00036   typedef typename R_::FT                   FT;
00037   typedef typename R_::Point_3              Point_3;
00038   typedef typename R_::Vector_3             Vector_3;
00039   typedef typename R_::Ray_3                Ray_3;
00040   typedef typename R_::Segment_3            Segment_3;
00041   typedef typename R_::Line_3               Line_3;
00042   typedef typename R_::Direction_3          Direction_3;
00043 
00044   typedef cpp0x::array<FT, 3>               Rep;
00045   typedef typename R_::template Handle<Rep>::type  Base;
00046 
00047   Base base;
00048 
00049 public:
00050 
00051   typedef typename Rep::const_iterator      Cartesian_const_iterator;
00052 
00053   typedef R_                                R;
00054 
00055   VectorC3() {}
00056 
00057   VectorC3(const Null_vector &n)
00058   { *this = R().construct_vector_3_object()(n); }
00059 
00060   VectorC3(const Point_3 &a, const Point_3 &b)
00061   { *this = R().construct_vector_3_object()(a, b); }
00062 
00063   explicit VectorC3(const Segment_3 &s)
00064   { *this = R().construct_vector_3_object()(s); }
00065 
00066   explicit VectorC3(const Ray_3 &r)
00067   { *this = R().construct_vector_3_object()(r); }
00068 
00069   explicit VectorC3(const Line_3 &l)
00070   { *this = R().construct_vector_3_object()(l); }
00071 
00072   VectorC3(const FT &x, const FT &y, const FT &z)
00073     : base(CGAL::make_array(x, y, z)) {}
00074 
00075   VectorC3(const FT &x, const FT &y, const FT &z, const FT &w)
00076     : base( w != FT(1) ? CGAL::make_array(x/w, y/w, z/w)
00077                        : CGAL::make_array(x, y, z) ) {}
00078 
00079   const FT & x() const
00080   {
00081       return get(base)[0];
00082   }
00083   const FT & y() const
00084   {
00085       return get(base)[1];
00086   }
00087   const FT & z() const
00088   {
00089       return get(base)[2];
00090   }
00091 
00092   const FT & hx() const
00093   {
00094       return x();
00095   }
00096   const FT & hy() const
00097   {
00098       return y();
00099   }
00100   const FT & hz() const
00101   {
00102       return z();
00103   }
00104   const FT & hw() const
00105   {
00106       return constant<FT, 1>();
00107   }
00108 
00109   Cartesian_const_iterator cartesian_begin() const
00110   {
00111     return get(base).begin();
00112   }
00113 
00114   Cartesian_const_iterator cartesian_end() const
00115   {
00116     return get(base).end();
00117   }
00118 
00119   const FT & cartesian(int i) const;
00120   const FT & operator[](int i) const;
00121   const FT & homogeneous(int i) const;
00122 
00123   int dimension() const
00124   {
00125       return 3;
00126   }
00127 
00128   Vector_3 operator+(const VectorC3 &w) const;
00129   Vector_3 operator-(const VectorC3 &w) const;
00130   Vector_3 operator-() const;
00131   Vector_3 operator/(const FT &c) const;
00132   FT squared_length() const;
00133   Direction_3 direction() const;
00134 };
00135 
00136 template < class R >
00137 inline
00138 bool
00139 operator==(const VectorC3<R> &v, const VectorC3<R> &w)
00140 {
00141   return w.x() == v.x() && w.y() == v.y() && w.z() == v.z();
00142 }
00143 
00144 template < class R >
00145 inline
00146 bool
00147 operator!=(const VectorC3<R> &v, const VectorC3<R> &w)
00148 {
00149   return !(v == w);
00150 }
00151 
00152 template < class R >
00153 inline
00154 bool
00155 operator==(const VectorC3<R> &v, const Null_vector &) 
00156 {
00157   return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) &&
00158          CGAL_NTS is_zero(v.z());
00159 }
00160 
00161 template < class R >
00162 inline
00163 bool
00164 operator==(const Null_vector &n, const VectorC3<R> &v) 
00165 {
00166   return v == n;
00167 }
00168 
00169 template < class R >
00170 inline
00171 bool
00172 operator!=(const VectorC3<R> &v, const Null_vector &n)
00173 {
00174   return !(v == n);
00175 }
00176 
00177 template < class R >
00178 inline
00179 bool
00180 operator!=(const Null_vector &n, const VectorC3<R> &v)
00181 {
00182   return !(v == n);
00183 }
00184 
00185 template < class R >
00186 inline
00187 const typename VectorC3<R>::FT &
00188 VectorC3<R>::cartesian(int i) const
00189 {
00190   CGAL_kernel_precondition( (i>=0) & (i<3) );
00191   if (i==0) return x();
00192   if (i==1) return y();
00193   return z();
00194 }
00195 
00196 template < class R >
00197 inline
00198 const typename VectorC3<R>::FT &
00199 VectorC3<R>::operator[](int i) const
00200 {
00201   return cartesian(i);
00202 }
00203 
00204 template < class R >
00205 const typename VectorC3<R>::FT &
00206 VectorC3<R>::homogeneous(int i) const
00207 {
00208   if (i==3) return hw();
00209   return cartesian(i);
00210 }
00211 
00212 template < class R >
00213 inline
00214 typename VectorC3<R>::Vector_3
00215 VectorC3<R>::
00216 operator+(const VectorC3<R> &w) const
00217 {
00218   return VectorC3<R>(x() + w.x(), y() + w.y(), z() + w.z());
00219 }
00220 
00221 template < class R >
00222 inline
00223 typename VectorC3<R>::Vector_3
00224 VectorC3<R>::operator-(const VectorC3<R> &w) const
00225 {
00226   return VectorC3<R>(x() - w.x(), y() - w.y(), z() - w.z());
00227 }
00228 
00229 template < class R >
00230 inline
00231 typename VectorC3<R>::Vector_3
00232 VectorC3<R>::operator-() const
00233 {
00234   return R().construct_opposite_vector_3_object()(*this);
00235 }
00236 
00237 template < class R >
00238 inline
00239 typename VectorC3<R>::FT
00240 VectorC3<R>::squared_length() const
00241 {
00242   return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z());
00243 }
00244 
00245 template < class R >
00246 inline
00247 typename VectorC3<R>::Vector_3
00248 VectorC3<R>::
00249 operator/(const typename VectorC3<R>::FT &c) const
00250 {
00251   return VectorC3<R>(x()/c, y()/c, z()/c);
00252 }
00253 
00254 template < class R >
00255 inline
00256 typename VectorC3<R>::Direction_3
00257 VectorC3<R>::direction() const
00258 {
00259   return Direction_3(*this);
00260 }
00261 
00262 CGAL_END_NAMESPACE
00263 
00264 #endif // CGAL_CARTESIAN_VECTOR_3_H
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines